GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
41
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline int32_t percent_fp(int percent)
81 {
82         return div_fp(percent, 100);
83 }
84
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87         return (x * y) >> EXT_FRAC_BITS;
88 }
89
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92         return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94
95 static inline int32_t percent_ext_fp(int percent)
96 {
97         return div_ext_fp(percent, 100);
98 }
99
100 /**
101  * struct sample -      Store performance sample
102  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
103  *                      performance during last sample period
104  * @busy_scaled:        Scaled busy value which is used to calculate next
105  *                      P state. This can be different than core_avg_perf
106  *                      to account for cpu idle period
107  * @aperf:              Difference of actual performance frequency clock count
108  *                      read from APERF MSR between last and current sample
109  * @mperf:              Difference of maximum performance frequency clock count
110  *                      read from MPERF MSR between last and current sample
111  * @tsc:                Difference of time stamp counter between last and
112  *                      current sample
113  * @time:               Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119         int32_t core_avg_perf;
120         int32_t busy_scaled;
121         u64 aperf;
122         u64 mperf;
123         u64 tsc;
124         u64 time;
125 };
126
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:     Current requested P state
130  * @min_pstate:         Min P state possible for this platform
131  * @max_pstate:         Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *                      This can be higher than the max_pstate which can
134  *                      be limited by platform thermal design power limits
135  * @scaling:            Scaling factor to  convert frequency to cpufreq
136  *                      frequency units
137  * @turbo_pstate:       Max Turbo P state possible for this platform
138  * @max_freq:           @max_pstate frequency in cpufreq units
139  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144         int     current_pstate;
145         int     min_pstate;
146         int     max_pstate;
147         int     max_pstate_physical;
148         int     scaling;
149         int     turbo_pstate;
150         unsigned int max_freq;
151         unsigned int turbo_freq;
152 };
153
154 /**
155  * struct vid_data -    Stores voltage information data
156  * @min:                VID data for this platform corresponding to
157  *                      the lowest P state
158  * @max:                VID data corresponding to the highest P State.
159  * @turbo:              VID data for turbo P state
160  * @ratio:              Ratio of (vid max - vid min) /
161  *                      (max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168         int min;
169         int max;
170         int turbo;
171         int32_t ratio;
172 };
173
174 /**
175  * struct global_params - Global parameters, mostly tunable via sysfs.
176  * @no_turbo:           Whether or not to use turbo P-states.
177  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
178  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
179  *                      not the maximum reported turbo P-state is different from
180  *                      the maximum reported non-turbo one.
181  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  */
186 struct global_params {
187         bool no_turbo;
188         bool turbo_disabled;
189         int max_perf_pct;
190         int min_perf_pct;
191 };
192
193 /**
194  * struct cpudata -     Per CPU instance data storage
195  * @cpu:                CPU number for this instance data
196  * @policy:             CPUFreq policy value
197  * @update_util:        CPUFreq utility callback information
198  * @update_util_set:    CPUFreq utility callback is set
199  * @iowait_boost:       iowait-related boost fraction
200  * @last_update:        Time of the last update.
201  * @pstate:             Stores P state limits for this CPU
202  * @vid:                Stores VID limits for this CPU
203  * @last_sample_time:   Last Sample time
204  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
205  *                      This shift is a multiplier to mperf delta to
206  *                      calculate CPU busy.
207  * @prev_aperf:         Last APERF value read from APERF MSR
208  * @prev_mperf:         Last MPERF value read from MPERF MSR
209  * @prev_tsc:           Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *                      current sample
212  * @sample:             Storage for storing last Sample data
213  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
216  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:      Last saved HWP energy performance preference
218  *                      (EPP) or energy performance bias (EPB),
219  *                      when policy switched to performance
220  * @epp_policy:         Last saved policy used to set EPP/EPB
221  * @epp_default:        Power on default HWP energy performance
222  *                      preference/bias
223  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
224  *                      operation
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_saved;
257 };
258
259 static struct cpudata **all_cpu_data;
260
261 /**
262  * struct pstate_funcs - Per CPU model specific callbacks
263  * @get_max:            Callback to get maximum non turbo effective P state
264  * @get_max_physical:   Callback to get maximum non turbo physical P state
265  * @get_min:            Callback to get minimum P state
266  * @get_turbo:          Callback to get turbo P state
267  * @get_scaling:        Callback to get frequency scaling factor
268  * @get_val:            Callback to convert P state to actual MSR write value
269  * @get_vid:            Callback to get VID data for Atom platforms
270  *
271  * Core and Atom CPU models have different way to get P State limits. This
272  * structure is used to store those callbacks.
273  */
274 struct pstate_funcs {
275         int (*get_max)(void);
276         int (*get_max_physical)(void);
277         int (*get_min)(void);
278         int (*get_turbo)(void);
279         int (*get_scaling)(void);
280         int (*get_aperf_mperf_shift)(void);
281         u64 (*get_val)(struct cpudata*, int pstate);
282         void (*get_vid)(struct cpudata *);
283 };
284
285 static struct pstate_funcs pstate_funcs __read_mostly;
286
287 static int hwp_active __read_mostly;
288 static int hwp_mode_bdw __read_mostly;
289 static bool per_cpu_limits __read_mostly;
290
291 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
292
293 #ifdef CONFIG_ACPI
294 static bool acpi_ppc;
295 #endif
296
297 static struct global_params global;
298
299 static DEFINE_MUTEX(intel_pstate_driver_lock);
300 static DEFINE_MUTEX(intel_pstate_limits_lock);
301
302 #ifdef CONFIG_ACPI
303
304 static bool intel_pstate_get_ppc_enable_status(void)
305 {
306         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
307             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
308                 return true;
309
310         return acpi_ppc;
311 }
312
313 #ifdef CONFIG_ACPI_CPPC_LIB
314
315 /* The work item is needed to avoid CPU hotplug locking issues */
316 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
317 {
318         sched_set_itmt_support();
319 }
320
321 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
322
323 static void intel_pstate_set_itmt_prio(int cpu)
324 {
325         struct cppc_perf_caps cppc_perf;
326         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
327         int ret;
328
329         ret = cppc_get_perf_caps(cpu, &cppc_perf);
330         if (ret)
331                 return;
332
333         /*
334          * The priorities can be set regardless of whether or not
335          * sched_set_itmt_support(true) has been called and it is valid to
336          * update them at any time after it has been called.
337          */
338         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
339
340         if (max_highest_perf <= min_highest_perf) {
341                 if (cppc_perf.highest_perf > max_highest_perf)
342                         max_highest_perf = cppc_perf.highest_perf;
343
344                 if (cppc_perf.highest_perf < min_highest_perf)
345                         min_highest_perf = cppc_perf.highest_perf;
346
347                 if (max_highest_perf > min_highest_perf) {
348                         /*
349                          * This code can be run during CPU online under the
350                          * CPU hotplug locks, so sched_set_itmt_support()
351                          * cannot be called from here.  Queue up a work item
352                          * to invoke it.
353                          */
354                         schedule_work(&sched_itmt_work);
355                 }
356         }
357 }
358 #else
359 static void intel_pstate_set_itmt_prio(int cpu)
360 {
361 }
362 #endif
363
364 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
365 {
366         struct cpudata *cpu;
367         int ret;
368         int i;
369
370         if (hwp_active) {
371                 intel_pstate_set_itmt_prio(policy->cpu);
372                 return;
373         }
374
375         if (!intel_pstate_get_ppc_enable_status())
376                 return;
377
378         cpu = all_cpu_data[policy->cpu];
379
380         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
381                                                   policy->cpu);
382         if (ret)
383                 return;
384
385         /*
386          * Check if the control value in _PSS is for PERF_CTL MSR, which should
387          * guarantee that the states returned by it map to the states in our
388          * list directly.
389          */
390         if (cpu->acpi_perf_data.control_register.space_id !=
391                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
392                 goto err;
393
394         /*
395          * If there is only one entry _PSS, simply ignore _PSS and continue as
396          * usual without taking _PSS into account
397          */
398         if (cpu->acpi_perf_data.state_count < 2)
399                 goto err;
400
401         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
402         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
403                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
404                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
405                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
406                          (u32) cpu->acpi_perf_data.states[i].power,
407                          (u32) cpu->acpi_perf_data.states[i].control);
408         }
409
410         /*
411          * The _PSS table doesn't contain whole turbo frequency range.
412          * This just contains +1 MHZ above the max non turbo frequency,
413          * with control value corresponding to max turbo ratio. But
414          * when cpufreq set policy is called, it will call with this
415          * max frequency, which will cause a reduced performance as
416          * this driver uses real max turbo frequency as the max
417          * frequency. So correct this frequency in _PSS table to
418          * correct max turbo frequency based on the turbo state.
419          * Also need to convert to MHz as _PSS freq is in MHz.
420          */
421         if (!global.turbo_disabled)
422                 cpu->acpi_perf_data.states[0].core_frequency =
423                                         policy->cpuinfo.max_freq / 1000;
424         cpu->valid_pss_table = true;
425         pr_debug("_PPC limits will be enforced\n");
426
427         return;
428
429  err:
430         cpu->valid_pss_table = false;
431         acpi_processor_unregister_performance(policy->cpu);
432 }
433
434 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
435 {
436         struct cpudata *cpu;
437
438         cpu = all_cpu_data[policy->cpu];
439         if (!cpu->valid_pss_table)
440                 return;
441
442         acpi_processor_unregister_performance(policy->cpu);
443 }
444 #else
445 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
446 {
447 }
448
449 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
450 {
451 }
452 #endif
453
454 static inline void update_turbo_state(void)
455 {
456         u64 misc_en;
457         struct cpudata *cpu;
458
459         cpu = all_cpu_data[0];
460         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
461         global.turbo_disabled =
462                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
463                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
464 }
465
466 static int min_perf_pct_min(void)
467 {
468         struct cpudata *cpu = all_cpu_data[0];
469         int turbo_pstate = cpu->pstate.turbo_pstate;
470
471         return turbo_pstate ?
472                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
473 }
474
475 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
476 {
477         u64 epb;
478         int ret;
479
480         if (!static_cpu_has(X86_FEATURE_EPB))
481                 return -ENXIO;
482
483         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
484         if (ret)
485                 return (s16)ret;
486
487         return (s16)(epb & 0x0f);
488 }
489
490 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
491 {
492         s16 epp;
493
494         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
495                 /*
496                  * When hwp_req_data is 0, means that caller didn't read
497                  * MSR_HWP_REQUEST, so need to read and get EPP.
498                  */
499                 if (!hwp_req_data) {
500                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
501                                             &hwp_req_data);
502                         if (epp)
503                                 return epp;
504                 }
505                 epp = (hwp_req_data >> 24) & 0xff;
506         } else {
507                 /* When there is no EPP present, HWP uses EPB settings */
508                 epp = intel_pstate_get_epb(cpu_data);
509         }
510
511         return epp;
512 }
513
514 static int intel_pstate_set_epb(int cpu, s16 pref)
515 {
516         u64 epb;
517         int ret;
518
519         if (!static_cpu_has(X86_FEATURE_EPB))
520                 return -ENXIO;
521
522         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
523         if (ret)
524                 return ret;
525
526         epb = (epb & ~0x0f) | pref;
527         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
528
529         return 0;
530 }
531
532 /*
533  * EPP/EPB display strings corresponding to EPP index in the
534  * energy_perf_strings[]
535  *      index           String
536  *-------------------------------------
537  *      0               default
538  *      1               performance
539  *      2               balance_performance
540  *      3               balance_power
541  *      4               power
542  */
543 static const char * const energy_perf_strings[] = {
544         "default",
545         "performance",
546         "balance_performance",
547         "balance_power",
548         "power",
549         NULL
550 };
551 static const unsigned int epp_values[] = {
552         HWP_EPP_PERFORMANCE,
553         HWP_EPP_BALANCE_PERFORMANCE,
554         HWP_EPP_BALANCE_POWERSAVE,
555         HWP_EPP_POWERSAVE
556 };
557
558 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
559 {
560         s16 epp;
561         int index = -EINVAL;
562
563         epp = intel_pstate_get_epp(cpu_data, 0);
564         if (epp < 0)
565                 return epp;
566
567         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
568                 if (epp == HWP_EPP_PERFORMANCE)
569                         return 1;
570                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
571                         return 2;
572                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
573                         return 3;
574                 else
575                         return 4;
576         } else if (static_cpu_has(X86_FEATURE_EPB)) {
577                 /*
578                  * Range:
579                  *      0x00-0x03       :       Performance
580                  *      0x04-0x07       :       Balance performance
581                  *      0x08-0x0B       :       Balance power
582                  *      0x0C-0x0F       :       Power
583                  * The EPB is a 4 bit value, but our ranges restrict the
584                  * value which can be set. Here only using top two bits
585                  * effectively.
586                  */
587                 index = (epp >> 2) + 1;
588         }
589
590         return index;
591 }
592
593 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
594                                               int pref_index)
595 {
596         int epp = -EINVAL;
597         int ret;
598
599         if (!pref_index)
600                 epp = cpu_data->epp_default;
601
602         mutex_lock(&intel_pstate_limits_lock);
603
604         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
605                 u64 value;
606
607                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
608                 if (ret)
609                         goto return_pref;
610
611                 value &= ~GENMASK_ULL(31, 24);
612
613                 if (epp == -EINVAL)
614                         epp = epp_values[pref_index - 1];
615
616                 value |= (u64)epp << 24;
617                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
618         } else {
619                 if (epp == -EINVAL)
620                         epp = (pref_index - 1) << 2;
621                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
622         }
623 return_pref:
624         mutex_unlock(&intel_pstate_limits_lock);
625
626         return ret;
627 }
628
629 static ssize_t show_energy_performance_available_preferences(
630                                 struct cpufreq_policy *policy, char *buf)
631 {
632         int i = 0;
633         int ret = 0;
634
635         while (energy_perf_strings[i] != NULL)
636                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
637
638         ret += sprintf(&buf[ret], "\n");
639
640         return ret;
641 }
642
643 cpufreq_freq_attr_ro(energy_performance_available_preferences);
644
645 static ssize_t store_energy_performance_preference(
646                 struct cpufreq_policy *policy, const char *buf, size_t count)
647 {
648         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
649         char str_preference[21];
650         int ret, i = 0;
651
652         ret = sscanf(buf, "%20s", str_preference);
653         if (ret != 1)
654                 return -EINVAL;
655
656         while (energy_perf_strings[i] != NULL) {
657                 if (!strcmp(str_preference, energy_perf_strings[i])) {
658                         intel_pstate_set_energy_pref_index(cpu_data, i);
659                         return count;
660                 }
661                 ++i;
662         }
663
664         return -EINVAL;
665 }
666
667 static ssize_t show_energy_performance_preference(
668                                 struct cpufreq_policy *policy, char *buf)
669 {
670         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
671         int preference;
672
673         preference = intel_pstate_get_energy_pref_index(cpu_data);
674         if (preference < 0)
675                 return preference;
676
677         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
678 }
679
680 cpufreq_freq_attr_rw(energy_performance_preference);
681
682 static struct freq_attr *hwp_cpufreq_attrs[] = {
683         &energy_performance_preference,
684         &energy_performance_available_preferences,
685         NULL,
686 };
687
688 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
689                                      int *current_max)
690 {
691         u64 cap;
692
693         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
694         if (global.no_turbo)
695                 *current_max = HWP_GUARANTEED_PERF(cap);
696         else
697                 *current_max = HWP_HIGHEST_PERF(cap);
698
699         *phy_max = HWP_HIGHEST_PERF(cap);
700 }
701
702 static void intel_pstate_hwp_set(unsigned int cpu)
703 {
704         struct cpudata *cpu_data = all_cpu_data[cpu];
705         int max, min;
706         u64 value;
707         s16 epp;
708
709         max = cpu_data->max_perf_ratio;
710         min = cpu_data->min_perf_ratio;
711
712         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
713                 min = max;
714
715         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
716
717         value &= ~HWP_MIN_PERF(~0L);
718         value |= HWP_MIN_PERF(min);
719
720         value &= ~HWP_MAX_PERF(~0L);
721         value |= HWP_MAX_PERF(max);
722
723         if (cpu_data->epp_policy == cpu_data->policy)
724                 goto skip_epp;
725
726         cpu_data->epp_policy = cpu_data->policy;
727
728         if (cpu_data->epp_saved >= 0) {
729                 epp = cpu_data->epp_saved;
730                 cpu_data->epp_saved = -EINVAL;
731                 goto update_epp;
732         }
733
734         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
735                 epp = intel_pstate_get_epp(cpu_data, value);
736                 cpu_data->epp_powersave = epp;
737                 /* If EPP read was failed, then don't try to write */
738                 if (epp < 0)
739                         goto skip_epp;
740
741                 epp = 0;
742         } else {
743                 /* skip setting EPP, when saved value is invalid */
744                 if (cpu_data->epp_powersave < 0)
745                         goto skip_epp;
746
747                 /*
748                  * No need to restore EPP when it is not zero. This
749                  * means:
750                  *  - Policy is not changed
751                  *  - user has manually changed
752                  *  - Error reading EPB
753                  */
754                 epp = intel_pstate_get_epp(cpu_data, value);
755                 if (epp)
756                         goto skip_epp;
757
758                 epp = cpu_data->epp_powersave;
759         }
760 update_epp:
761         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
762                 value &= ~GENMASK_ULL(31, 24);
763                 value |= (u64)epp << 24;
764         } else {
765                 intel_pstate_set_epb(cpu, epp);
766         }
767 skip_epp:
768         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
769 }
770
771 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
772 {
773         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
774
775         if (!hwp_active)
776                 return 0;
777
778         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
779
780         return 0;
781 }
782
783 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
784
785 static int intel_pstate_resume(struct cpufreq_policy *policy)
786 {
787         if (!hwp_active)
788                 return 0;
789
790         mutex_lock(&intel_pstate_limits_lock);
791
792         if (policy->cpu == 0)
793                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
794
795         all_cpu_data[policy->cpu]->epp_policy = 0;
796         intel_pstate_hwp_set(policy->cpu);
797
798         mutex_unlock(&intel_pstate_limits_lock);
799
800         return 0;
801 }
802
803 static void intel_pstate_update_policies(void)
804 {
805         int cpu;
806
807         for_each_possible_cpu(cpu)
808                 cpufreq_update_policy(cpu);
809 }
810
811 /************************** sysfs begin ************************/
812 #define show_one(file_name, object)                                     \
813         static ssize_t show_##file_name                                 \
814         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
815         {                                                               \
816                 return sprintf(buf, "%u\n", global.object);             \
817         }
818
819 static ssize_t intel_pstate_show_status(char *buf);
820 static int intel_pstate_update_status(const char *buf, size_t size);
821
822 static ssize_t show_status(struct kobject *kobj,
823                            struct kobj_attribute *attr, char *buf)
824 {
825         ssize_t ret;
826
827         mutex_lock(&intel_pstate_driver_lock);
828         ret = intel_pstate_show_status(buf);
829         mutex_unlock(&intel_pstate_driver_lock);
830
831         return ret;
832 }
833
834 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
835                             const char *buf, size_t count)
836 {
837         char *p = memchr(buf, '\n', count);
838         int ret;
839
840         mutex_lock(&intel_pstate_driver_lock);
841         ret = intel_pstate_update_status(buf, p ? p - buf : count);
842         mutex_unlock(&intel_pstate_driver_lock);
843
844         return ret < 0 ? ret : count;
845 }
846
847 static ssize_t show_turbo_pct(struct kobject *kobj,
848                                 struct kobj_attribute *attr, char *buf)
849 {
850         struct cpudata *cpu;
851         int total, no_turbo, turbo_pct;
852         uint32_t turbo_fp;
853
854         mutex_lock(&intel_pstate_driver_lock);
855
856         if (!intel_pstate_driver) {
857                 mutex_unlock(&intel_pstate_driver_lock);
858                 return -EAGAIN;
859         }
860
861         cpu = all_cpu_data[0];
862
863         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
864         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
865         turbo_fp = div_fp(no_turbo, total);
866         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
867
868         mutex_unlock(&intel_pstate_driver_lock);
869
870         return sprintf(buf, "%u\n", turbo_pct);
871 }
872
873 static ssize_t show_num_pstates(struct kobject *kobj,
874                                 struct kobj_attribute *attr, char *buf)
875 {
876         struct cpudata *cpu;
877         int total;
878
879         mutex_lock(&intel_pstate_driver_lock);
880
881         if (!intel_pstate_driver) {
882                 mutex_unlock(&intel_pstate_driver_lock);
883                 return -EAGAIN;
884         }
885
886         cpu = all_cpu_data[0];
887         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
888
889         mutex_unlock(&intel_pstate_driver_lock);
890
891         return sprintf(buf, "%u\n", total);
892 }
893
894 static ssize_t show_no_turbo(struct kobject *kobj,
895                              struct kobj_attribute *attr, char *buf)
896 {
897         ssize_t ret;
898
899         mutex_lock(&intel_pstate_driver_lock);
900
901         if (!intel_pstate_driver) {
902                 mutex_unlock(&intel_pstate_driver_lock);
903                 return -EAGAIN;
904         }
905
906         update_turbo_state();
907         if (global.turbo_disabled)
908                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
909         else
910                 ret = sprintf(buf, "%u\n", global.no_turbo);
911
912         mutex_unlock(&intel_pstate_driver_lock);
913
914         return ret;
915 }
916
917 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
918                               const char *buf, size_t count)
919 {
920         unsigned int input;
921         int ret;
922
923         ret = sscanf(buf, "%u", &input);
924         if (ret != 1)
925                 return -EINVAL;
926
927         mutex_lock(&intel_pstate_driver_lock);
928
929         if (!intel_pstate_driver) {
930                 mutex_unlock(&intel_pstate_driver_lock);
931                 return -EAGAIN;
932         }
933
934         mutex_lock(&intel_pstate_limits_lock);
935
936         update_turbo_state();
937         if (global.turbo_disabled) {
938                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
939                 mutex_unlock(&intel_pstate_limits_lock);
940                 mutex_unlock(&intel_pstate_driver_lock);
941                 return -EPERM;
942         }
943
944         global.no_turbo = clamp_t(int, input, 0, 1);
945
946         if (global.no_turbo) {
947                 struct cpudata *cpu = all_cpu_data[0];
948                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
949
950                 /* Squash the global minimum into the permitted range. */
951                 if (global.min_perf_pct > pct)
952                         global.min_perf_pct = pct;
953         }
954
955         mutex_unlock(&intel_pstate_limits_lock);
956
957         intel_pstate_update_policies();
958
959         mutex_unlock(&intel_pstate_driver_lock);
960
961         return count;
962 }
963
964 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
965                                   const char *buf, size_t count)
966 {
967         unsigned int input;
968         int ret;
969
970         ret = sscanf(buf, "%u", &input);
971         if (ret != 1)
972                 return -EINVAL;
973
974         mutex_lock(&intel_pstate_driver_lock);
975
976         if (!intel_pstate_driver) {
977                 mutex_unlock(&intel_pstate_driver_lock);
978                 return -EAGAIN;
979         }
980
981         mutex_lock(&intel_pstate_limits_lock);
982
983         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
984
985         mutex_unlock(&intel_pstate_limits_lock);
986
987         intel_pstate_update_policies();
988
989         mutex_unlock(&intel_pstate_driver_lock);
990
991         return count;
992 }
993
994 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
995                                   const char *buf, size_t count)
996 {
997         unsigned int input;
998         int ret;
999
1000         ret = sscanf(buf, "%u", &input);
1001         if (ret != 1)
1002                 return -EINVAL;
1003
1004         mutex_lock(&intel_pstate_driver_lock);
1005
1006         if (!intel_pstate_driver) {
1007                 mutex_unlock(&intel_pstate_driver_lock);
1008                 return -EAGAIN;
1009         }
1010
1011         mutex_lock(&intel_pstate_limits_lock);
1012
1013         global.min_perf_pct = clamp_t(int, input,
1014                                       min_perf_pct_min(), global.max_perf_pct);
1015
1016         mutex_unlock(&intel_pstate_limits_lock);
1017
1018         intel_pstate_update_policies();
1019
1020         mutex_unlock(&intel_pstate_driver_lock);
1021
1022         return count;
1023 }
1024
1025 show_one(max_perf_pct, max_perf_pct);
1026 show_one(min_perf_pct, min_perf_pct);
1027
1028 define_one_global_rw(status);
1029 define_one_global_rw(no_turbo);
1030 define_one_global_rw(max_perf_pct);
1031 define_one_global_rw(min_perf_pct);
1032 define_one_global_ro(turbo_pct);
1033 define_one_global_ro(num_pstates);
1034
1035 static struct attribute *intel_pstate_attributes[] = {
1036         &status.attr,
1037         &no_turbo.attr,
1038         &turbo_pct.attr,
1039         &num_pstates.attr,
1040         NULL
1041 };
1042
1043 static const struct attribute_group intel_pstate_attr_group = {
1044         .attrs = intel_pstate_attributes,
1045 };
1046
1047 static void __init intel_pstate_sysfs_expose_params(void)
1048 {
1049         struct kobject *intel_pstate_kobject;
1050         int rc;
1051
1052         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1053                                                 &cpu_subsys.dev_root->kobj);
1054         if (WARN_ON(!intel_pstate_kobject))
1055                 return;
1056
1057         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1058         if (WARN_ON(rc))
1059                 return;
1060
1061         /*
1062          * If per cpu limits are enforced there are no global limits, so
1063          * return without creating max/min_perf_pct attributes
1064          */
1065         if (per_cpu_limits)
1066                 return;
1067
1068         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1069         WARN_ON(rc);
1070
1071         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1072         WARN_ON(rc);
1073
1074 }
1075 /************************** sysfs end ************************/
1076
1077 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1078 {
1079         /* First disable HWP notification interrupt as we don't process them */
1080         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1081                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1082
1083         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1084         cpudata->epp_policy = 0;
1085         if (cpudata->epp_default == -EINVAL)
1086                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1087 }
1088
1089 #define MSR_IA32_POWER_CTL_BIT_EE       19
1090
1091 /* Disable energy efficiency optimization */
1092 static void intel_pstate_disable_ee(int cpu)
1093 {
1094         u64 power_ctl;
1095         int ret;
1096
1097         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1098         if (ret)
1099                 return;
1100
1101         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1102                 pr_info("Disabling energy efficiency optimization\n");
1103                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1104                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1105         }
1106 }
1107
1108 static int atom_get_min_pstate(void)
1109 {
1110         u64 value;
1111
1112         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1113         return (value >> 8) & 0x7F;
1114 }
1115
1116 static int atom_get_max_pstate(void)
1117 {
1118         u64 value;
1119
1120         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1121         return (value >> 16) & 0x7F;
1122 }
1123
1124 static int atom_get_turbo_pstate(void)
1125 {
1126         u64 value;
1127
1128         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1129         return value & 0x7F;
1130 }
1131
1132 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1133 {
1134         u64 val;
1135         int32_t vid_fp;
1136         u32 vid;
1137
1138         val = (u64)pstate << 8;
1139         if (global.no_turbo && !global.turbo_disabled)
1140                 val |= (u64)1 << 32;
1141
1142         vid_fp = cpudata->vid.min + mul_fp(
1143                 int_tofp(pstate - cpudata->pstate.min_pstate),
1144                 cpudata->vid.ratio);
1145
1146         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1147         vid = ceiling_fp(vid_fp);
1148
1149         if (pstate > cpudata->pstate.max_pstate)
1150                 vid = cpudata->vid.turbo;
1151
1152         return val | vid;
1153 }
1154
1155 static int silvermont_get_scaling(void)
1156 {
1157         u64 value;
1158         int i;
1159         /* Defined in Table 35-6 from SDM (Sept 2015) */
1160         static int silvermont_freq_table[] = {
1161                 83300, 100000, 133300, 116700, 80000};
1162
1163         rdmsrl(MSR_FSB_FREQ, value);
1164         i = value & 0x7;
1165         WARN_ON(i > 4);
1166
1167         return silvermont_freq_table[i];
1168 }
1169
1170 static int airmont_get_scaling(void)
1171 {
1172         u64 value;
1173         int i;
1174         /* Defined in Table 35-10 from SDM (Sept 2015) */
1175         static int airmont_freq_table[] = {
1176                 83300, 100000, 133300, 116700, 80000,
1177                 93300, 90000, 88900, 87500};
1178
1179         rdmsrl(MSR_FSB_FREQ, value);
1180         i = value & 0xF;
1181         WARN_ON(i > 8);
1182
1183         return airmont_freq_table[i];
1184 }
1185
1186 static void atom_get_vid(struct cpudata *cpudata)
1187 {
1188         u64 value;
1189
1190         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1191         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1192         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1193         cpudata->vid.ratio = div_fp(
1194                 cpudata->vid.max - cpudata->vid.min,
1195                 int_tofp(cpudata->pstate.max_pstate -
1196                         cpudata->pstate.min_pstate));
1197
1198         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1199         cpudata->vid.turbo = value & 0x7f;
1200 }
1201
1202 static int core_get_min_pstate(void)
1203 {
1204         u64 value;
1205
1206         rdmsrl(MSR_PLATFORM_INFO, value);
1207         return (value >> 40) & 0xFF;
1208 }
1209
1210 static int core_get_max_pstate_physical(void)
1211 {
1212         u64 value;
1213
1214         rdmsrl(MSR_PLATFORM_INFO, value);
1215         return (value >> 8) & 0xFF;
1216 }
1217
1218 static int core_get_tdp_ratio(u64 plat_info)
1219 {
1220         /* Check how many TDP levels present */
1221         if (plat_info & 0x600000000) {
1222                 u64 tdp_ctrl;
1223                 u64 tdp_ratio;
1224                 int tdp_msr;
1225                 int err;
1226
1227                 /* Get the TDP level (0, 1, 2) to get ratios */
1228                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1229                 if (err)
1230                         return err;
1231
1232                 /* TDP MSR are continuous starting at 0x648 */
1233                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1234                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1235                 if (err)
1236                         return err;
1237
1238                 /* For level 1 and 2, bits[23:16] contain the ratio */
1239                 if (tdp_ctrl & 0x03)
1240                         tdp_ratio >>= 16;
1241
1242                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1243                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1244
1245                 return (int)tdp_ratio;
1246         }
1247
1248         return -ENXIO;
1249 }
1250
1251 static int core_get_max_pstate(void)
1252 {
1253         u64 tar;
1254         u64 plat_info;
1255         int max_pstate;
1256         int tdp_ratio;
1257         int err;
1258
1259         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1260         max_pstate = (plat_info >> 8) & 0xFF;
1261
1262         tdp_ratio = core_get_tdp_ratio(plat_info);
1263         if (tdp_ratio <= 0)
1264                 return max_pstate;
1265
1266         if (hwp_active) {
1267                 /* Turbo activation ratio is not used on HWP platforms */
1268                 return tdp_ratio;
1269         }
1270
1271         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1272         if (!err) {
1273                 int tar_levels;
1274
1275                 /* Do some sanity checking for safety */
1276                 tar_levels = tar & 0xff;
1277                 if (tdp_ratio - 1 == tar_levels) {
1278                         max_pstate = tar_levels;
1279                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1280                 }
1281         }
1282
1283         return max_pstate;
1284 }
1285
1286 static int core_get_turbo_pstate(void)
1287 {
1288         u64 value;
1289         int nont, ret;
1290
1291         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1292         nont = core_get_max_pstate();
1293         ret = (value) & 255;
1294         if (ret <= nont)
1295                 ret = nont;
1296         return ret;
1297 }
1298
1299 static inline int core_get_scaling(void)
1300 {
1301         return 100000;
1302 }
1303
1304 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1305 {
1306         u64 val;
1307
1308         val = (u64)pstate << 8;
1309         if (global.no_turbo && !global.turbo_disabled)
1310                 val |= (u64)1 << 32;
1311
1312         return val;
1313 }
1314
1315 static int knl_get_aperf_mperf_shift(void)
1316 {
1317         return 10;
1318 }
1319
1320 static int knl_get_turbo_pstate(void)
1321 {
1322         u64 value;
1323         int nont, ret;
1324
1325         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1326         nont = core_get_max_pstate();
1327         ret = (((value) >> 8) & 0xFF);
1328         if (ret <= nont)
1329                 ret = nont;
1330         return ret;
1331 }
1332
1333 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1334 {
1335         return global.no_turbo || global.turbo_disabled ?
1336                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1337 }
1338
1339 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1340 {
1341         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1342         cpu->pstate.current_pstate = pstate;
1343         /*
1344          * Generally, there is no guarantee that this code will always run on
1345          * the CPU being updated, so force the register update to run on the
1346          * right CPU.
1347          */
1348         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1349                       pstate_funcs.get_val(cpu, pstate));
1350 }
1351
1352 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1353 {
1354         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1355 }
1356
1357 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1358 {
1359         int pstate;
1360
1361         update_turbo_state();
1362         pstate = intel_pstate_get_base_pstate(cpu);
1363         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1364         intel_pstate_set_pstate(cpu, pstate);
1365 }
1366
1367 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1368 {
1369         cpu->pstate.min_pstate = pstate_funcs.get_min();
1370         cpu->pstate.max_pstate = pstate_funcs.get_max();
1371         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1372         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1373         cpu->pstate.scaling = pstate_funcs.get_scaling();
1374         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1375
1376         if (hwp_active && !hwp_mode_bdw) {
1377                 unsigned int phy_max, current_max;
1378
1379                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1380                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1381                 cpu->pstate.turbo_pstate = phy_max;
1382         } else {
1383                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1384         }
1385
1386         if (pstate_funcs.get_aperf_mperf_shift)
1387                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1388
1389         if (pstate_funcs.get_vid)
1390                 pstate_funcs.get_vid(cpu);
1391
1392         intel_pstate_set_min_pstate(cpu);
1393 }
1394
1395 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1396 {
1397         struct sample *sample = &cpu->sample;
1398
1399         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1400 }
1401
1402 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1403 {
1404         u64 aperf, mperf;
1405         unsigned long flags;
1406         u64 tsc;
1407
1408         local_irq_save(flags);
1409         rdmsrl(MSR_IA32_APERF, aperf);
1410         rdmsrl(MSR_IA32_MPERF, mperf);
1411         tsc = rdtsc();
1412         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1413                 local_irq_restore(flags);
1414                 return false;
1415         }
1416         local_irq_restore(flags);
1417
1418         cpu->last_sample_time = cpu->sample.time;
1419         cpu->sample.time = time;
1420         cpu->sample.aperf = aperf;
1421         cpu->sample.mperf = mperf;
1422         cpu->sample.tsc =  tsc;
1423         cpu->sample.aperf -= cpu->prev_aperf;
1424         cpu->sample.mperf -= cpu->prev_mperf;
1425         cpu->sample.tsc -= cpu->prev_tsc;
1426
1427         cpu->prev_aperf = aperf;
1428         cpu->prev_mperf = mperf;
1429         cpu->prev_tsc = tsc;
1430         /*
1431          * First time this function is invoked in a given cycle, all of the
1432          * previous sample data fields are equal to zero or stale and they must
1433          * be populated with meaningful numbers for things to work, so assume
1434          * that sample.time will always be reset before setting the utilization
1435          * update hook and make the caller skip the sample then.
1436          */
1437         if (cpu->last_sample_time) {
1438                 intel_pstate_calc_avg_perf(cpu);
1439                 return true;
1440         }
1441         return false;
1442 }
1443
1444 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1445 {
1446         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1447 }
1448
1449 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1450 {
1451         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1452                           cpu->sample.core_avg_perf);
1453 }
1454
1455 static inline int32_t get_target_pstate(struct cpudata *cpu)
1456 {
1457         struct sample *sample = &cpu->sample;
1458         int32_t busy_frac, boost;
1459         int target, avg_pstate;
1460
1461         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1462                            sample->tsc);
1463
1464         boost = cpu->iowait_boost;
1465         cpu->iowait_boost >>= 1;
1466
1467         if (busy_frac < boost)
1468                 busy_frac = boost;
1469
1470         sample->busy_scaled = busy_frac * 100;
1471
1472         target = global.no_turbo || global.turbo_disabled ?
1473                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1474         target += target >> 2;
1475         target = mul_fp(target, busy_frac);
1476         if (target < cpu->pstate.min_pstate)
1477                 target = cpu->pstate.min_pstate;
1478
1479         /*
1480          * If the average P-state during the previous cycle was higher than the
1481          * current target, add 50% of the difference to the target to reduce
1482          * possible performance oscillations and offset possible performance
1483          * loss related to moving the workload from one CPU to another within
1484          * a package/module.
1485          */
1486         avg_pstate = get_avg_pstate(cpu);
1487         if (avg_pstate > target)
1488                 target += (avg_pstate - target) >> 1;
1489
1490         return target;
1491 }
1492
1493 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1494 {
1495         int max_pstate = intel_pstate_get_base_pstate(cpu);
1496         int min_pstate;
1497
1498         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1499         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1500         return clamp_t(int, pstate, min_pstate, max_pstate);
1501 }
1502
1503 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1504 {
1505         if (pstate == cpu->pstate.current_pstate)
1506                 return;
1507
1508         cpu->pstate.current_pstate = pstate;
1509         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1510 }
1511
1512 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1513 {
1514         int from = cpu->pstate.current_pstate;
1515         struct sample *sample;
1516         int target_pstate;
1517
1518         update_turbo_state();
1519
1520         target_pstate = get_target_pstate(cpu);
1521         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1522         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1523         intel_pstate_update_pstate(cpu, target_pstate);
1524
1525         sample = &cpu->sample;
1526         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1527                 fp_toint(sample->busy_scaled),
1528                 from,
1529                 cpu->pstate.current_pstate,
1530                 sample->mperf,
1531                 sample->aperf,
1532                 sample->tsc,
1533                 get_avg_frequency(cpu),
1534                 fp_toint(cpu->iowait_boost * 100));
1535 }
1536
1537 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1538                                      unsigned int flags)
1539 {
1540         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1541         u64 delta_ns;
1542
1543         /* Don't allow remote callbacks */
1544         if (smp_processor_id() != cpu->cpu)
1545                 return;
1546
1547         if (flags & SCHED_CPUFREQ_IOWAIT) {
1548                 cpu->iowait_boost = int_tofp(1);
1549                 cpu->last_update = time;
1550                 /*
1551                  * The last time the busy was 100% so P-state was max anyway
1552                  * so avoid overhead of computation.
1553                  */
1554                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1555                         return;
1556
1557                 goto set_pstate;
1558         } else if (cpu->iowait_boost) {
1559                 /* Clear iowait_boost if the CPU may have been idle. */
1560                 delta_ns = time - cpu->last_update;
1561                 if (delta_ns > TICK_NSEC)
1562                         cpu->iowait_boost = 0;
1563         }
1564         cpu->last_update = time;
1565         delta_ns = time - cpu->sample.time;
1566         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1567                 return;
1568
1569 set_pstate:
1570         if (intel_pstate_sample(cpu, time))
1571                 intel_pstate_adjust_pstate(cpu);
1572 }
1573
1574 static struct pstate_funcs core_funcs = {
1575         .get_max = core_get_max_pstate,
1576         .get_max_physical = core_get_max_pstate_physical,
1577         .get_min = core_get_min_pstate,
1578         .get_turbo = core_get_turbo_pstate,
1579         .get_scaling = core_get_scaling,
1580         .get_val = core_get_val,
1581 };
1582
1583 static const struct pstate_funcs silvermont_funcs = {
1584         .get_max = atom_get_max_pstate,
1585         .get_max_physical = atom_get_max_pstate,
1586         .get_min = atom_get_min_pstate,
1587         .get_turbo = atom_get_turbo_pstate,
1588         .get_val = atom_get_val,
1589         .get_scaling = silvermont_get_scaling,
1590         .get_vid = atom_get_vid,
1591 };
1592
1593 static const struct pstate_funcs airmont_funcs = {
1594         .get_max = atom_get_max_pstate,
1595         .get_max_physical = atom_get_max_pstate,
1596         .get_min = atom_get_min_pstate,
1597         .get_turbo = atom_get_turbo_pstate,
1598         .get_val = atom_get_val,
1599         .get_scaling = airmont_get_scaling,
1600         .get_vid = atom_get_vid,
1601 };
1602
1603 static const struct pstate_funcs knl_funcs = {
1604         .get_max = core_get_max_pstate,
1605         .get_max_physical = core_get_max_pstate_physical,
1606         .get_min = core_get_min_pstate,
1607         .get_turbo = knl_get_turbo_pstate,
1608         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1609         .get_scaling = core_get_scaling,
1610         .get_val = core_get_val,
1611 };
1612
1613 static const struct pstate_funcs bxt_funcs = {
1614         .get_max = core_get_max_pstate,
1615         .get_max_physical = core_get_max_pstate_physical,
1616         .get_min = core_get_min_pstate,
1617         .get_turbo = core_get_turbo_pstate,
1618         .get_scaling = core_get_scaling,
1619         .get_val = core_get_val,
1620 };
1621
1622 #define ICPU(model, policy) \
1623         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1624                         (unsigned long)&policy }
1625
1626 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1627         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1628         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1629         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1630         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1631         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1632         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1633         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1634         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1635         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1636         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1637         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1638         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1639         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1640         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1641         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1642         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1643         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1644         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1645         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_funcs),
1646         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     bxt_funcs),
1647         {}
1648 };
1649 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1650
1651 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1652         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1653         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1654         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1655         {}
1656 };
1657
1658 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1659         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1660         {}
1661 };
1662
1663 static int intel_pstate_init_cpu(unsigned int cpunum)
1664 {
1665         struct cpudata *cpu;
1666
1667         cpu = all_cpu_data[cpunum];
1668
1669         if (!cpu) {
1670                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1671                 if (!cpu)
1672                         return -ENOMEM;
1673
1674                 all_cpu_data[cpunum] = cpu;
1675
1676                 cpu->epp_default = -EINVAL;
1677                 cpu->epp_powersave = -EINVAL;
1678                 cpu->epp_saved = -EINVAL;
1679         }
1680
1681         cpu = all_cpu_data[cpunum];
1682
1683         cpu->cpu = cpunum;
1684
1685         if (hwp_active) {
1686                 const struct x86_cpu_id *id;
1687
1688                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1689                 if (id)
1690                         intel_pstate_disable_ee(cpunum);
1691
1692                 intel_pstate_hwp_enable(cpu);
1693         }
1694
1695         intel_pstate_get_cpu_pstates(cpu);
1696
1697         pr_debug("controlling: cpu %d\n", cpunum);
1698
1699         return 0;
1700 }
1701
1702 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1703 {
1704         struct cpudata *cpu = all_cpu_data[cpu_num];
1705
1706         if (hwp_active)
1707                 return;
1708
1709         if (cpu->update_util_set)
1710                 return;
1711
1712         /* Prevent intel_pstate_update_util() from using stale data. */
1713         cpu->sample.time = 0;
1714         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1715                                      intel_pstate_update_util);
1716         cpu->update_util_set = true;
1717 }
1718
1719 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1720 {
1721         struct cpudata *cpu_data = all_cpu_data[cpu];
1722
1723         if (!cpu_data->update_util_set)
1724                 return;
1725
1726         cpufreq_remove_update_util_hook(cpu);
1727         cpu_data->update_util_set = false;
1728         synchronize_sched();
1729 }
1730
1731 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1732 {
1733         return global.turbo_disabled || global.no_turbo ?
1734                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1735 }
1736
1737 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1738                                             struct cpudata *cpu)
1739 {
1740         int max_freq = intel_pstate_get_max_freq(cpu);
1741         int32_t max_policy_perf, min_policy_perf;
1742         int max_state, turbo_max;
1743
1744         /*
1745          * HWP needs some special consideration, because on BDX the
1746          * HWP_REQUEST uses abstract value to represent performance
1747          * rather than pure ratios.
1748          */
1749         if (hwp_active) {
1750                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1751         } else {
1752                 max_state = intel_pstate_get_base_pstate(cpu);
1753                 turbo_max = cpu->pstate.turbo_pstate;
1754         }
1755
1756         max_policy_perf = max_state * policy->max / max_freq;
1757         if (policy->max == policy->min) {
1758                 min_policy_perf = max_policy_perf;
1759         } else {
1760                 min_policy_perf = max_state * policy->min / max_freq;
1761                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1762                                           0, max_policy_perf);
1763         }
1764
1765         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1766                  policy->cpu, max_state,
1767                  min_policy_perf, max_policy_perf);
1768
1769         /* Normalize user input to [min_perf, max_perf] */
1770         if (per_cpu_limits) {
1771                 cpu->min_perf_ratio = min_policy_perf;
1772                 cpu->max_perf_ratio = max_policy_perf;
1773         } else {
1774                 int32_t global_min, global_max;
1775
1776                 /* Global limits are in percent of the maximum turbo P-state. */
1777                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1778                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1779                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1780
1781                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1782                          global_min, global_max);
1783
1784                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1785                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1786                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1787                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1788
1789                 /* Make sure min_perf <= max_perf */
1790                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1791                                           cpu->max_perf_ratio);
1792
1793         }
1794         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1795                  cpu->max_perf_ratio,
1796                  cpu->min_perf_ratio);
1797 }
1798
1799 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1800 {
1801         struct cpudata *cpu;
1802
1803         if (!policy->cpuinfo.max_freq)
1804                 return -ENODEV;
1805
1806         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1807                  policy->cpuinfo.max_freq, policy->max);
1808
1809         cpu = all_cpu_data[policy->cpu];
1810         cpu->policy = policy->policy;
1811
1812         mutex_lock(&intel_pstate_limits_lock);
1813
1814         intel_pstate_update_perf_limits(policy, cpu);
1815
1816         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1817                 /*
1818                  * NOHZ_FULL CPUs need this as the governor callback may not
1819                  * be invoked on them.
1820                  */
1821                 intel_pstate_clear_update_util_hook(policy->cpu);
1822                 intel_pstate_max_within_limits(cpu);
1823         } else {
1824                 intel_pstate_set_update_util_hook(policy->cpu);
1825         }
1826
1827         if (hwp_active)
1828                 intel_pstate_hwp_set(policy->cpu);
1829
1830         mutex_unlock(&intel_pstate_limits_lock);
1831
1832         return 0;
1833 }
1834
1835 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1836                                          struct cpudata *cpu)
1837 {
1838         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1839             policy->max < policy->cpuinfo.max_freq &&
1840             policy->max > cpu->pstate.max_freq) {
1841                 pr_debug("policy->max > max non turbo frequency\n");
1842                 policy->max = policy->cpuinfo.max_freq;
1843         }
1844 }
1845
1846 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1847 {
1848         struct cpudata *cpu = all_cpu_data[policy->cpu];
1849
1850         update_turbo_state();
1851         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1852                                      intel_pstate_get_max_freq(cpu));
1853
1854         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1855             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1856                 return -EINVAL;
1857
1858         intel_pstate_adjust_policy_max(policy, cpu);
1859
1860         return 0;
1861 }
1862
1863 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1864 {
1865         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1866 }
1867
1868 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1869 {
1870         pr_debug("CPU %d exiting\n", policy->cpu);
1871
1872         intel_pstate_clear_update_util_hook(policy->cpu);
1873         if (hwp_active)
1874                 intel_pstate_hwp_save_state(policy);
1875         else
1876                 intel_cpufreq_stop_cpu(policy);
1877 }
1878
1879 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1880 {
1881         intel_pstate_exit_perf_limits(policy);
1882
1883         policy->fast_switch_possible = false;
1884
1885         return 0;
1886 }
1887
1888 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1889 {
1890         struct cpudata *cpu;
1891         int rc;
1892
1893         rc = intel_pstate_init_cpu(policy->cpu);
1894         if (rc)
1895                 return rc;
1896
1897         cpu = all_cpu_data[policy->cpu];
1898
1899         cpu->max_perf_ratio = 0xFF;
1900         cpu->min_perf_ratio = 0;
1901
1902         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1903         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1904
1905         /* cpuinfo and default policy values */
1906         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1907         update_turbo_state();
1908         policy->cpuinfo.max_freq = global.turbo_disabled ?
1909                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1910         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1911
1912         intel_pstate_init_acpi_perf_limits(policy);
1913
1914         policy->fast_switch_possible = true;
1915
1916         return 0;
1917 }
1918
1919 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1920 {
1921         int ret = __intel_pstate_cpu_init(policy);
1922
1923         if (ret)
1924                 return ret;
1925
1926         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1927                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1928         else
1929                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1930
1931         return 0;
1932 }
1933
1934 static struct cpufreq_driver intel_pstate = {
1935         .flags          = CPUFREQ_CONST_LOOPS,
1936         .verify         = intel_pstate_verify_policy,
1937         .setpolicy      = intel_pstate_set_policy,
1938         .suspend        = intel_pstate_hwp_save_state,
1939         .resume         = intel_pstate_resume,
1940         .init           = intel_pstate_cpu_init,
1941         .exit           = intel_pstate_cpu_exit,
1942         .stop_cpu       = intel_pstate_stop_cpu,
1943         .name           = "intel_pstate",
1944 };
1945
1946 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1947 {
1948         struct cpudata *cpu = all_cpu_data[policy->cpu];
1949
1950         update_turbo_state();
1951         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1952                                      intel_pstate_get_max_freq(cpu));
1953
1954         intel_pstate_adjust_policy_max(policy, cpu);
1955
1956         intel_pstate_update_perf_limits(policy, cpu);
1957
1958         return 0;
1959 }
1960
1961 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1962                                 unsigned int target_freq,
1963                                 unsigned int relation)
1964 {
1965         struct cpudata *cpu = all_cpu_data[policy->cpu];
1966         struct cpufreq_freqs freqs;
1967         int target_pstate;
1968
1969         update_turbo_state();
1970
1971         freqs.old = policy->cur;
1972         freqs.new = target_freq;
1973
1974         cpufreq_freq_transition_begin(policy, &freqs);
1975         switch (relation) {
1976         case CPUFREQ_RELATION_L:
1977                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1978                 break;
1979         case CPUFREQ_RELATION_H:
1980                 target_pstate = freqs.new / cpu->pstate.scaling;
1981                 break;
1982         default:
1983                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1984                 break;
1985         }
1986         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1987         if (target_pstate != cpu->pstate.current_pstate) {
1988                 cpu->pstate.current_pstate = target_pstate;
1989                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1990                               pstate_funcs.get_val(cpu, target_pstate));
1991         }
1992         freqs.new = target_pstate * cpu->pstate.scaling;
1993         cpufreq_freq_transition_end(policy, &freqs, false);
1994
1995         return 0;
1996 }
1997
1998 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1999                                               unsigned int target_freq)
2000 {
2001         struct cpudata *cpu = all_cpu_data[policy->cpu];
2002         int target_pstate;
2003
2004         update_turbo_state();
2005
2006         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2007         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2008         intel_pstate_update_pstate(cpu, target_pstate);
2009         return target_pstate * cpu->pstate.scaling;
2010 }
2011
2012 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2013 {
2014         int ret = __intel_pstate_cpu_init(policy);
2015
2016         if (ret)
2017                 return ret;
2018
2019         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2020         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2021         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2022         policy->cur = policy->cpuinfo.min_freq;
2023
2024         return 0;
2025 }
2026
2027 static struct cpufreq_driver intel_cpufreq = {
2028         .flags          = CPUFREQ_CONST_LOOPS,
2029         .verify         = intel_cpufreq_verify_policy,
2030         .target         = intel_cpufreq_target,
2031         .fast_switch    = intel_cpufreq_fast_switch,
2032         .init           = intel_cpufreq_cpu_init,
2033         .exit           = intel_pstate_cpu_exit,
2034         .stop_cpu       = intel_cpufreq_stop_cpu,
2035         .name           = "intel_cpufreq",
2036 };
2037
2038 static struct cpufreq_driver *default_driver = &intel_pstate;
2039
2040 static void intel_pstate_driver_cleanup(void)
2041 {
2042         unsigned int cpu;
2043
2044         get_online_cpus();
2045         for_each_online_cpu(cpu) {
2046                 if (all_cpu_data[cpu]) {
2047                         if (intel_pstate_driver == &intel_pstate)
2048                                 intel_pstate_clear_update_util_hook(cpu);
2049
2050                         kfree(all_cpu_data[cpu]);
2051                         all_cpu_data[cpu] = NULL;
2052                 }
2053         }
2054         put_online_cpus();
2055         intel_pstate_driver = NULL;
2056 }
2057
2058 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2059 {
2060         int ret;
2061
2062         memset(&global, 0, sizeof(global));
2063         global.max_perf_pct = 100;
2064
2065         intel_pstate_driver = driver;
2066         ret = cpufreq_register_driver(intel_pstate_driver);
2067         if (ret) {
2068                 intel_pstate_driver_cleanup();
2069                 return ret;
2070         }
2071
2072         global.min_perf_pct = min_perf_pct_min();
2073
2074         return 0;
2075 }
2076
2077 static int intel_pstate_unregister_driver(void)
2078 {
2079         if (hwp_active)
2080                 return -EBUSY;
2081
2082         cpufreq_unregister_driver(intel_pstate_driver);
2083         intel_pstate_driver_cleanup();
2084
2085         return 0;
2086 }
2087
2088 static ssize_t intel_pstate_show_status(char *buf)
2089 {
2090         if (!intel_pstate_driver)
2091                 return sprintf(buf, "off\n");
2092
2093         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2094                                         "active" : "passive");
2095 }
2096
2097 static int intel_pstate_update_status(const char *buf, size_t size)
2098 {
2099         int ret;
2100
2101         if (size == 3 && !strncmp(buf, "off", size)) {
2102                 if (!intel_pstate_driver)
2103                         return -EINVAL;
2104
2105                 if (hwp_active)
2106                         return -EBUSY;
2107
2108                 return intel_pstate_unregister_driver();
2109         }
2110
2111         if (size == 6 && !strncmp(buf, "active", size)) {
2112                 if (intel_pstate_driver) {
2113                         if (intel_pstate_driver == &intel_pstate)
2114                                 return 0;
2115
2116                         ret = intel_pstate_unregister_driver();
2117                         if (ret)
2118                                 return ret;
2119                 }
2120
2121                 return intel_pstate_register_driver(&intel_pstate);
2122         }
2123
2124         if (size == 7 && !strncmp(buf, "passive", size)) {
2125                 if (intel_pstate_driver) {
2126                         if (intel_pstate_driver == &intel_cpufreq)
2127                                 return 0;
2128
2129                         ret = intel_pstate_unregister_driver();
2130                         if (ret)
2131                                 return ret;
2132                 }
2133
2134                 return intel_pstate_register_driver(&intel_cpufreq);
2135         }
2136
2137         return -EINVAL;
2138 }
2139
2140 static int no_load __initdata;
2141 static int no_hwp __initdata;
2142 static int hwp_only __initdata;
2143 static unsigned int force_load __initdata;
2144
2145 static int __init intel_pstate_msrs_not_valid(void)
2146 {
2147         if (!pstate_funcs.get_max() ||
2148             !pstate_funcs.get_min() ||
2149             !pstate_funcs.get_turbo())
2150                 return -ENODEV;
2151
2152         return 0;
2153 }
2154
2155 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2156 {
2157         pstate_funcs.get_max   = funcs->get_max;
2158         pstate_funcs.get_max_physical = funcs->get_max_physical;
2159         pstate_funcs.get_min   = funcs->get_min;
2160         pstate_funcs.get_turbo = funcs->get_turbo;
2161         pstate_funcs.get_scaling = funcs->get_scaling;
2162         pstate_funcs.get_val   = funcs->get_val;
2163         pstate_funcs.get_vid   = funcs->get_vid;
2164         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2165 }
2166
2167 #ifdef CONFIG_ACPI
2168
2169 static bool __init intel_pstate_no_acpi_pss(void)
2170 {
2171         int i;
2172
2173         for_each_possible_cpu(i) {
2174                 acpi_status status;
2175                 union acpi_object *pss;
2176                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2177                 struct acpi_processor *pr = per_cpu(processors, i);
2178
2179                 if (!pr)
2180                         continue;
2181
2182                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2183                 if (ACPI_FAILURE(status))
2184                         continue;
2185
2186                 pss = buffer.pointer;
2187                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2188                         kfree(pss);
2189                         return false;
2190                 }
2191
2192                 kfree(pss);
2193         }
2194
2195         return true;
2196 }
2197
2198 static bool __init intel_pstate_no_acpi_pcch(void)
2199 {
2200         acpi_status status;
2201         acpi_handle handle;
2202
2203         status = acpi_get_handle(NULL, "\\_SB", &handle);
2204         if (ACPI_FAILURE(status))
2205                 return true;
2206
2207         return !acpi_has_method(handle, "PCCH");
2208 }
2209
2210 static bool __init intel_pstate_has_acpi_ppc(void)
2211 {
2212         int i;
2213
2214         for_each_possible_cpu(i) {
2215                 struct acpi_processor *pr = per_cpu(processors, i);
2216
2217                 if (!pr)
2218                         continue;
2219                 if (acpi_has_method(pr->handle, "_PPC"))
2220                         return true;
2221         }
2222         return false;
2223 }
2224
2225 enum {
2226         PSS,
2227         PPC,
2228 };
2229
2230 /* Hardware vendor-specific info that has its own power management modes */
2231 static struct acpi_platform_list plat_info[] __initdata = {
2232         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2233         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2234         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2235         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2236         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2237         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2238         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2239         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2240         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2241         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2242         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2243         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2244         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2245         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2246         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2247         { } /* End */
2248 };
2249
2250 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2251 {
2252         const struct x86_cpu_id *id;
2253         u64 misc_pwr;
2254         int idx;
2255
2256         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2257         if (id) {
2258                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2259                 if ( misc_pwr & (1 << 8))
2260                         return true;
2261         }
2262
2263         idx = acpi_match_platform_list(plat_info);
2264         if (idx < 0)
2265                 return false;
2266
2267         switch (plat_info[idx].data) {
2268         case PSS:
2269                 if (!intel_pstate_no_acpi_pss())
2270                         return false;
2271
2272                 return intel_pstate_no_acpi_pcch();
2273         case PPC:
2274                 return intel_pstate_has_acpi_ppc() && !force_load;
2275         }
2276
2277         return false;
2278 }
2279
2280 static void intel_pstate_request_control_from_smm(void)
2281 {
2282         /*
2283          * It may be unsafe to request P-states control from SMM if _PPC support
2284          * has not been enabled.
2285          */
2286         if (acpi_ppc)
2287                 acpi_processor_pstate_control();
2288 }
2289 #else /* CONFIG_ACPI not enabled */
2290 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2291 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2292 static inline void intel_pstate_request_control_from_smm(void) {}
2293 #endif /* CONFIG_ACPI */
2294
2295 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2296
2297 #define ICPU_HWP(model, hwp_mode) \
2298         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2299
2300 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2301         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2302         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2303         ICPU_HWP(X86_MODEL_ANY, 0),
2304         {}
2305 };
2306
2307 static int __init intel_pstate_init(void)
2308 {
2309         const struct x86_cpu_id *id;
2310         int rc;
2311
2312         if (no_load)
2313                 return -ENODEV;
2314
2315         id = x86_match_cpu(hwp_support_ids);
2316         if (id) {
2317                 copy_cpu_funcs(&core_funcs);
2318                 if (!no_hwp) {
2319                         hwp_active++;
2320                         hwp_mode_bdw = id->driver_data;
2321                         intel_pstate.attr = hwp_cpufreq_attrs;
2322                         goto hwp_cpu_matched;
2323                 }
2324         } else {
2325                 id = x86_match_cpu(intel_pstate_cpu_ids);
2326                 if (!id)
2327                         return -ENODEV;
2328
2329                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2330         }
2331
2332         if (intel_pstate_msrs_not_valid())
2333                 return -ENODEV;
2334
2335 hwp_cpu_matched:
2336         /*
2337          * The Intel pstate driver will be ignored if the platform
2338          * firmware has its own power management modes.
2339          */
2340         if (intel_pstate_platform_pwr_mgmt_exists())
2341                 return -ENODEV;
2342
2343         if (!hwp_active && hwp_only)
2344                 return -ENOTSUPP;
2345
2346         pr_info("Intel P-state driver initializing\n");
2347
2348         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2349         if (!all_cpu_data)
2350                 return -ENOMEM;
2351
2352         intel_pstate_request_control_from_smm();
2353
2354         intel_pstate_sysfs_expose_params();
2355
2356         mutex_lock(&intel_pstate_driver_lock);
2357         rc = intel_pstate_register_driver(default_driver);
2358         mutex_unlock(&intel_pstate_driver_lock);
2359         if (rc)
2360                 return rc;
2361
2362         if (hwp_active)
2363                 pr_info("HWP enabled\n");
2364
2365         return 0;
2366 }
2367 device_initcall(intel_pstate_init);
2368
2369 static int __init intel_pstate_setup(char *str)
2370 {
2371         if (!str)
2372                 return -EINVAL;
2373
2374         if (!strcmp(str, "disable")) {
2375                 no_load = 1;
2376         } else if (!strcmp(str, "passive")) {
2377                 pr_info("Passive mode enabled\n");
2378                 default_driver = &intel_cpufreq;
2379                 no_hwp = 1;
2380         }
2381         if (!strcmp(str, "no_hwp")) {
2382                 pr_info("HWP disabled\n");
2383                 no_hwp = 1;
2384         }
2385         if (!strcmp(str, "force"))
2386                 force_load = 1;
2387         if (!strcmp(str, "hwp_only"))
2388                 hwp_only = 1;
2389         if (!strcmp(str, "per_cpu_perf_limits"))
2390                 per_cpu_limits = true;
2391
2392 #ifdef CONFIG_ACPI
2393         if (!strcmp(str, "support_acpi_ppc"))
2394                 acpi_ppc = true;
2395 #endif
2396
2397         return 0;
2398 }
2399 early_param("intel_pstate", intel_pstate_setup);
2400
2401 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2402 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2403 MODULE_LICENSE("GPL");