GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define MAX_PSTATE_SHIFT        32
45 #define LPSTATE_SHIFT           48
46 #define GPSTATE_SHIFT           56
47 #define MAX_NR_CHIPS            32
48
49 #define MAX_RAMP_DOWN_TIME                              5120
50 /*
51  * On an idle system we want the global pstate to ramp-down from max value to
52  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
53  * then ramp-down rapidly later on.
54  *
55  * This gives a percentage rampdown for time elapsed in milliseconds.
56  * ramp_down_percentage = ((ms * ms) >> 18)
57  *                      ~= 3.8 * (sec * sec)
58  *
59  * At 0 ms      ramp_down_percent = 0
60  * At 5120 ms   ramp_down_percent = 100
61  */
62 #define ramp_down_percent(time)         ((time * time) >> 18)
63
64 /* Interval after which the timer is queued to bring down global pstate */
65 #define GPSTATE_TIMER_INTERVAL                          2000
66
67 /**
68  * struct global_pstate_info -  Per policy data structure to maintain history of
69  *                              global pstates
70  * @highest_lpstate_idx:        The local pstate index from which we are
71  *                              ramping down
72  * @elapsed_time:               Time in ms spent in ramping down from
73  *                              highest_lpstate_idx
74  * @last_sampled_time:          Time from boot in ms when global pstates were
75  *                              last set
76  * @last_lpstate_idx,           Last set value of local pstate and global
77  * last_gpstate_idx             pstate in terms of cpufreq table index
78  * @timer:                      Is used for ramping down if cpu goes idle for
79  *                              a long time with global pstate held high
80  * @gpstate_lock:               A spinlock to maintain synchronization between
81  *                              routines called by the timer handler and
82  *                              governer's target_index calls
83  */
84 struct global_pstate_info {
85         int highest_lpstate_idx;
86         unsigned int elapsed_time;
87         unsigned int last_sampled_time;
88         int last_lpstate_idx;
89         int last_gpstate_idx;
90         spinlock_t gpstate_lock;
91         struct timer_list timer;
92 };
93
94 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
95 u32 pstate_sign_prefix;
96 static bool rebooting, throttled, occ_reset;
97
98 static const char * const throttle_reason[] = {
99         "No throttling",
100         "Power Cap",
101         "Processor Over Temperature",
102         "Power Supply Failure",
103         "Over Current",
104         "OCC Reset"
105 };
106
107 enum throttle_reason_type {
108         NO_THROTTLE = 0,
109         POWERCAP,
110         CPU_OVERTEMP,
111         POWER_SUPPLY_FAILURE,
112         OVERCURRENT,
113         OCC_RESET_THROTTLE,
114         OCC_MAX_REASON
115 };
116
117 static struct chip {
118         unsigned int id;
119         bool throttled;
120         bool restore;
121         u8 throttle_reason;
122         cpumask_t mask;
123         struct work_struct throttle;
124         int throttle_turbo;
125         int throttle_sub_turbo;
126         int reason[OCC_MAX_REASON];
127 } *chips;
128
129 static int nr_chips;
130 static DEFINE_PER_CPU(struct chip *, chip_info);
131
132 /*
133  * Note:
134  * The set of pstates consists of contiguous integers.
135  * powernv_pstate_info stores the index of the frequency table for
136  * max, min and nominal frequencies. It also stores number of
137  * available frequencies.
138  *
139  * powernv_pstate_info.nominal indicates the index to the highest
140  * non-turbo frequency.
141  */
142 static struct powernv_pstate_info {
143         unsigned int min;
144         unsigned int max;
145         unsigned int nominal;
146         unsigned int nr_pstates;
147         bool wof_enabled;
148 } powernv_pstate_info;
149
150 static inline int extract_pstate(u64 pmsr_val, unsigned int shift)
151 {
152         int ret = ((pmsr_val >> shift) & 0xFF);
153
154         if (!ret)
155                 return ret;
156
157         return (pstate_sign_prefix | ret);
158 }
159
160 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
161 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
162 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
163
164 /* Use following macros for conversions between pstate_id and index */
165 static inline int idx_to_pstate(unsigned int i)
166 {
167         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
168                 pr_warn_once("index %u is out of bound\n", i);
169                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
170         }
171
172         return powernv_freqs[i].driver_data;
173 }
174
175 static inline unsigned int pstate_to_idx(int pstate)
176 {
177         int min = powernv_freqs[powernv_pstate_info.min].driver_data;
178         int max = powernv_freqs[powernv_pstate_info.max].driver_data;
179
180         if (min > 0) {
181                 if (unlikely((pstate < max) || (pstate > min))) {
182                         pr_warn_once("pstate %d is out of bound\n", pstate);
183                         return powernv_pstate_info.nominal;
184                 }
185         } else {
186                 if (unlikely((pstate > max) || (pstate < min))) {
187                         pr_warn_once("pstate %d is out of bound\n", pstate);
188                         return powernv_pstate_info.nominal;
189                 }
190         }
191         /*
192          * abs() is deliberately used so that is works with
193          * both monotonically increasing and decreasing
194          * pstate values
195          */
196         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
197 }
198
199 static inline void reset_gpstates(struct cpufreq_policy *policy)
200 {
201         struct global_pstate_info *gpstates = policy->driver_data;
202
203         gpstates->highest_lpstate_idx = 0;
204         gpstates->elapsed_time = 0;
205         gpstates->last_sampled_time = 0;
206         gpstates->last_lpstate_idx = 0;
207         gpstates->last_gpstate_idx = 0;
208 }
209
210 /*
211  * Initialize the freq table based on data obtained
212  * from the firmware passed via device-tree
213  */
214 static int init_powernv_pstates(void)
215 {
216         struct device_node *power_mgt;
217         int i, nr_pstates = 0;
218         const __be32 *pstate_ids, *pstate_freqs;
219         u32 len_ids, len_freqs;
220         u32 pstate_min, pstate_max, pstate_nominal;
221         u32 pstate_turbo, pstate_ultra_turbo;
222
223         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
224         if (!power_mgt) {
225                 pr_warn("power-mgt node not found\n");
226                 return -ENODEV;
227         }
228
229         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
230                 pr_warn("ibm,pstate-min node not found\n");
231                 return -ENODEV;
232         }
233
234         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
235                 pr_warn("ibm,pstate-max node not found\n");
236                 return -ENODEV;
237         }
238
239         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
240                                  &pstate_nominal)) {
241                 pr_warn("ibm,pstate-nominal not found\n");
242                 return -ENODEV;
243         }
244
245         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
246                                  &pstate_ultra_turbo)) {
247                 powernv_pstate_info.wof_enabled = false;
248                 goto next;
249         }
250
251         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
252                                  &pstate_turbo)) {
253                 powernv_pstate_info.wof_enabled = false;
254                 goto next;
255         }
256
257         if (pstate_turbo == pstate_ultra_turbo)
258                 powernv_pstate_info.wof_enabled = false;
259         else
260                 powernv_pstate_info.wof_enabled = true;
261
262 next:
263         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
264                 pstate_nominal, pstate_max);
265         pr_info("Workload Optimized Frequency is %s in the platform\n",
266                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
267
268         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
269         if (!pstate_ids) {
270                 pr_warn("ibm,pstate-ids not found\n");
271                 return -ENODEV;
272         }
273
274         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
275                                       &len_freqs);
276         if (!pstate_freqs) {
277                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
278                 return -ENODEV;
279         }
280
281         if (len_ids != len_freqs) {
282                 pr_warn("Entries in ibm,pstate-ids and "
283                         "ibm,pstate-frequencies-mhz does not match\n");
284         }
285
286         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
287         if (!nr_pstates) {
288                 pr_warn("No PStates found\n");
289                 return -ENODEV;
290         }
291
292         powernv_pstate_info.nr_pstates = nr_pstates;
293         pr_debug("NR PStates %d\n", nr_pstates);
294
295         pstate_sign_prefix = pstate_min & ~0xFF;
296
297         for (i = 0; i < nr_pstates; i++) {
298                 u32 id = be32_to_cpu(pstate_ids[i]);
299                 u32 freq = be32_to_cpu(pstate_freqs[i]);
300
301                 pr_debug("PState id %d freq %d MHz\n", id, freq);
302                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
303                 powernv_freqs[i].driver_data = id;
304
305                 if (id == pstate_max)
306                         powernv_pstate_info.max = i;
307                 if (id == pstate_nominal)
308                         powernv_pstate_info.nominal = i;
309                 if (id == pstate_min)
310                         powernv_pstate_info.min = i;
311
312                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
313                         int j;
314
315                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
316                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
317                 }
318         }
319
320         /* End of list marker entry */
321         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
322         return 0;
323 }
324
325 /* Returns the CPU frequency corresponding to the pstate_id. */
326 static unsigned int pstate_id_to_freq(int pstate_id)
327 {
328         int i;
329
330         i = pstate_to_idx(pstate_id);
331         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
332                 pr_warn("PState id %d outside of PState table, "
333                         "reporting nominal id %d instead\n",
334                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
335                 i = powernv_pstate_info.nominal;
336         }
337
338         return powernv_freqs[i].frequency;
339 }
340
341 /*
342  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
343  * the firmware
344  */
345 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
346                                         char *buf)
347 {
348         return sprintf(buf, "%u\n",
349                 powernv_freqs[powernv_pstate_info.nominal].frequency);
350 }
351
352 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
353         __ATTR_RO(cpuinfo_nominal_freq);
354
355 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
356
357 static struct freq_attr *powernv_cpu_freq_attr[] = {
358         &cpufreq_freq_attr_scaling_available_freqs,
359         &cpufreq_freq_attr_cpuinfo_nominal_freq,
360         &cpufreq_freq_attr_scaling_boost_freqs,
361         NULL,
362 };
363
364 #define throttle_attr(name, member)                                     \
365 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
366 {                                                                       \
367         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
368                                                                         \
369         return sprintf(buf, "%u\n", chip->member);                      \
370 }                                                                       \
371                                                                         \
372 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
373
374 throttle_attr(unthrottle, reason[NO_THROTTLE]);
375 throttle_attr(powercap, reason[POWERCAP]);
376 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
377 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
378 throttle_attr(overcurrent, reason[OVERCURRENT]);
379 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
380 throttle_attr(turbo_stat, throttle_turbo);
381 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
382
383 static struct attribute *throttle_attrs[] = {
384         &throttle_attr_unthrottle.attr,
385         &throttle_attr_powercap.attr,
386         &throttle_attr_overtemp.attr,
387         &throttle_attr_supply_fault.attr,
388         &throttle_attr_overcurrent.attr,
389         &throttle_attr_occ_reset.attr,
390         &throttle_attr_turbo_stat.attr,
391         &throttle_attr_sub_turbo_stat.attr,
392         NULL,
393 };
394
395 static const struct attribute_group throttle_attr_grp = {
396         .name   = "throttle_stats",
397         .attrs  = throttle_attrs,
398 };
399
400 /* Helper routines */
401
402 /* Access helpers to power mgt SPR */
403
404 static inline unsigned long get_pmspr(unsigned long sprn)
405 {
406         switch (sprn) {
407         case SPRN_PMCR:
408                 return mfspr(SPRN_PMCR);
409
410         case SPRN_PMICR:
411                 return mfspr(SPRN_PMICR);
412
413         case SPRN_PMSR:
414                 return mfspr(SPRN_PMSR);
415         }
416         BUG();
417 }
418
419 static inline void set_pmspr(unsigned long sprn, unsigned long val)
420 {
421         switch (sprn) {
422         case SPRN_PMCR:
423                 mtspr(SPRN_PMCR, val);
424                 return;
425
426         case SPRN_PMICR:
427                 mtspr(SPRN_PMICR, val);
428                 return;
429         }
430         BUG();
431 }
432
433 /*
434  * Use objects of this type to query/update
435  * pstates on a remote CPU via smp_call_function.
436  */
437 struct powernv_smp_call_data {
438         unsigned int freq;
439         int pstate_id;
440         int gpstate_id;
441 };
442
443 /*
444  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
445  *
446  * Called via smp_call_function.
447  *
448  * Note: The caller of the smp_call_function should pass an argument of
449  * the type 'struct powernv_smp_call_data *' along with this function.
450  *
451  * The current frequency on this CPU will be returned via
452  * ((struct powernv_smp_call_data *)arg)->freq;
453  */
454 static void powernv_read_cpu_freq(void *arg)
455 {
456         unsigned long pmspr_val;
457         struct powernv_smp_call_data *freq_data = arg;
458
459         pmspr_val = get_pmspr(SPRN_PMSR);
460         freq_data->pstate_id = extract_local_pstate(pmspr_val);
461         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
462
463         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
464                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
465                 freq_data->freq);
466 }
467
468 /*
469  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
470  * firmware for CPU 'cpu'. This value is reported through the sysfs
471  * file cpuinfo_cur_freq.
472  */
473 static unsigned int powernv_cpufreq_get(unsigned int cpu)
474 {
475         struct powernv_smp_call_data freq_data;
476
477         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
478                         &freq_data, 1);
479
480         return freq_data.freq;
481 }
482
483 /*
484  * set_pstate: Sets the pstate on this CPU.
485  *
486  * This is called via an smp_call_function.
487  *
488  * The caller must ensure that freq_data is of the type
489  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
490  * on this CPU should be present in freq_data->pstate_id.
491  */
492 static void set_pstate(void *data)
493 {
494         unsigned long val;
495         struct powernv_smp_call_data *freq_data = data;
496         unsigned long pstate_ul = freq_data->pstate_id;
497         unsigned long gpstate_ul = freq_data->gpstate_id;
498
499         val = get_pmspr(SPRN_PMCR);
500         val = val & 0x0000FFFFFFFFFFFFULL;
501
502         pstate_ul = pstate_ul & 0xFF;
503         gpstate_ul = gpstate_ul & 0xFF;
504
505         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
506         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
507
508         pr_debug("Setting cpu %d pmcr to %016lX\n",
509                         raw_smp_processor_id(), val);
510         set_pmspr(SPRN_PMCR, val);
511 }
512
513 /*
514  * get_nominal_index: Returns the index corresponding to the nominal
515  * pstate in the cpufreq table
516  */
517 static inline unsigned int get_nominal_index(void)
518 {
519         return powernv_pstate_info.nominal;
520 }
521
522 static void powernv_cpufreq_throttle_check(void *data)
523 {
524         struct chip *chip;
525         unsigned int cpu = smp_processor_id();
526         unsigned long pmsr;
527         int pmsr_pmax;
528         unsigned int pmsr_pmax_idx;
529
530         pmsr = get_pmspr(SPRN_PMSR);
531         chip = this_cpu_read(chip_info);
532
533         /* Check for Pmax Capping */
534         pmsr_pmax = extract_max_pstate(pmsr);
535         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
536         if (pmsr_pmax_idx != powernv_pstate_info.max) {
537                 if (chip->throttled)
538                         goto next;
539                 chip->throttled = true;
540                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
541                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
542                                      cpu, chip->id, pmsr_pmax,
543                                      idx_to_pstate(powernv_pstate_info.nominal));
544                         chip->throttle_sub_turbo++;
545                 } else {
546                         chip->throttle_turbo++;
547                 }
548                 trace_powernv_throttle(chip->id,
549                                       throttle_reason[chip->throttle_reason],
550                                       pmsr_pmax);
551         } else if (chip->throttled) {
552                 chip->throttled = false;
553                 trace_powernv_throttle(chip->id,
554                                       throttle_reason[chip->throttle_reason],
555                                       pmsr_pmax);
556         }
557
558         /* Check if Psafe_mode_active is set in PMSR. */
559 next:
560         if (pmsr & PMSR_PSAFE_ENABLE) {
561                 throttled = true;
562                 pr_info("Pstate set to safe frequency\n");
563         }
564
565         /* Check if SPR_EM_DISABLE is set in PMSR */
566         if (pmsr & PMSR_SPR_EM_DISABLE) {
567                 throttled = true;
568                 pr_info("Frequency Control disabled from OS\n");
569         }
570
571         if (throttled) {
572                 pr_info("PMSR = %16lx\n", pmsr);
573                 pr_warn("CPU Frequency could be throttled\n");
574         }
575 }
576
577 /**
578  * calc_global_pstate - Calculate global pstate
579  * @elapsed_time:               Elapsed time in milliseconds
580  * @local_pstate_idx:           New local pstate
581  * @highest_lpstate_idx:        pstate from which its ramping down
582  *
583  * Finds the appropriate global pstate based on the pstate from which its
584  * ramping down and the time elapsed in ramping down. It follows a quadratic
585  * equation which ensures that it reaches ramping down to pmin in 5sec.
586  */
587 static inline int calc_global_pstate(unsigned int elapsed_time,
588                                      int highest_lpstate_idx,
589                                      int local_pstate_idx)
590 {
591         int index_diff;
592
593         /*
594          * Using ramp_down_percent we get the percentage of rampdown
595          * that we are expecting to be dropping. Difference between
596          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
597          * number of how many pstates we will drop eventually by the end of
598          * 5 seconds, then just scale it get the number pstates to be dropped.
599          */
600         index_diff =  ((int)ramp_down_percent(elapsed_time) *
601                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
602
603         /* Ensure that global pstate is >= to local pstate */
604         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
605                 return local_pstate_idx;
606         else
607                 return highest_lpstate_idx + index_diff;
608 }
609
610 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
611 {
612         unsigned int timer_interval;
613
614         /*
615          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
616          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
617          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
618          * seconds of ramp down time.
619          */
620         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
621              > MAX_RAMP_DOWN_TIME)
622                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
623         else
624                 timer_interval = GPSTATE_TIMER_INTERVAL;
625
626         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
627 }
628
629 /**
630  * gpstate_timer_handler
631  *
632  * @data: pointer to cpufreq_policy on which timer was queued
633  *
634  * This handler brings down the global pstate closer to the local pstate
635  * according quadratic equation. Queues a new timer if it is still not equal
636  * to local pstate
637  */
638 void gpstate_timer_handler(unsigned long data)
639 {
640         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
641         struct global_pstate_info *gpstates = policy->driver_data;
642         int gpstate_idx, lpstate_idx;
643         unsigned long val;
644         unsigned int time_diff = jiffies_to_msecs(jiffies)
645                                         - gpstates->last_sampled_time;
646         struct powernv_smp_call_data freq_data;
647
648         if (!spin_trylock(&gpstates->gpstate_lock))
649                 return;
650         /*
651          * If the timer has migrated to the different cpu then bring
652          * it back to one of the policy->cpus
653          */
654         if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
655                 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
656                 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
657                 spin_unlock(&gpstates->gpstate_lock);
658                 return;
659         }
660
661         /*
662          * If PMCR was last updated was using fast_swtich then
663          * We may have wrong in gpstate->last_lpstate_idx
664          * value. Hence, read from PMCR to get correct data.
665          */
666         val = get_pmspr(SPRN_PMCR);
667         freq_data.gpstate_id = extract_global_pstate(val);
668         freq_data.pstate_id = extract_local_pstate(val);
669         if (freq_data.gpstate_id  == freq_data.pstate_id) {
670                 reset_gpstates(policy);
671                 spin_unlock(&gpstates->gpstate_lock);
672                 return;
673         }
674
675         gpstates->last_sampled_time += time_diff;
676         gpstates->elapsed_time += time_diff;
677
678         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
679                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
680                 lpstate_idx = gpstate_idx;
681                 reset_gpstates(policy);
682                 gpstates->highest_lpstate_idx = gpstate_idx;
683         } else {
684                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
685                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
686                                                  gpstates->highest_lpstate_idx,
687                                                  lpstate_idx);
688         }
689         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
690         gpstates->last_gpstate_idx = gpstate_idx;
691         gpstates->last_lpstate_idx = lpstate_idx;
692         /*
693          * If local pstate is equal to global pstate, rampdown is over
694          * So timer is not required to be queued.
695          */
696         if (gpstate_idx != gpstates->last_lpstate_idx)
697                 queue_gpstate_timer(gpstates);
698
699         set_pstate(&freq_data);
700         spin_unlock(&gpstates->gpstate_lock);
701 }
702
703 /*
704  * powernv_cpufreq_target_index: Sets the frequency corresponding to
705  * the cpufreq table entry indexed by new_index on the cpus in the
706  * mask policy->cpus
707  */
708 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
709                                         unsigned int new_index)
710 {
711         struct powernv_smp_call_data freq_data;
712         unsigned int cur_msec, gpstate_idx;
713         struct global_pstate_info *gpstates = policy->driver_data;
714
715         if (unlikely(rebooting) && new_index != get_nominal_index())
716                 return 0;
717
718         if (!throttled) {
719                 /* we don't want to be preempted while
720                  * checking if the CPU frequency has been throttled
721                  */
722                 preempt_disable();
723                 powernv_cpufreq_throttle_check(NULL);
724                 preempt_enable();
725         }
726
727         cur_msec = jiffies_to_msecs(get_jiffies_64());
728
729         spin_lock(&gpstates->gpstate_lock);
730         freq_data.pstate_id = idx_to_pstate(new_index);
731
732         if (!gpstates->last_sampled_time) {
733                 gpstate_idx = new_index;
734                 gpstates->highest_lpstate_idx = new_index;
735                 goto gpstates_done;
736         }
737
738         if (gpstates->last_gpstate_idx < new_index) {
739                 gpstates->elapsed_time += cur_msec -
740                                                  gpstates->last_sampled_time;
741
742                 /*
743                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
744                  * we should be resetting all global pstate related data. Set it
745                  * equal to local pstate to start fresh.
746                  */
747                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
748                         reset_gpstates(policy);
749                         gpstates->highest_lpstate_idx = new_index;
750                         gpstate_idx = new_index;
751                 } else {
752                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
753                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
754                                                          gpstates->highest_lpstate_idx,
755                                                          new_index);
756                 }
757         } else {
758                 reset_gpstates(policy);
759                 gpstates->highest_lpstate_idx = new_index;
760                 gpstate_idx = new_index;
761         }
762
763         /*
764          * If local pstate is equal to global pstate, rampdown is over
765          * So timer is not required to be queued.
766          */
767         if (gpstate_idx != new_index)
768                 queue_gpstate_timer(gpstates);
769         else
770                 del_timer_sync(&gpstates->timer);
771
772 gpstates_done:
773         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
774         gpstates->last_sampled_time = cur_msec;
775         gpstates->last_gpstate_idx = gpstate_idx;
776         gpstates->last_lpstate_idx = new_index;
777
778         spin_unlock(&gpstates->gpstate_lock);
779
780         /*
781          * Use smp_call_function to send IPI and execute the
782          * mtspr on target CPU.  We could do that without IPI
783          * if current CPU is within policy->cpus (core)
784          */
785         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
786         return 0;
787 }
788
789 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
790 {
791         int base, i, ret;
792         struct kernfs_node *kn;
793         struct global_pstate_info *gpstates;
794
795         base = cpu_first_thread_sibling(policy->cpu);
796
797         for (i = 0; i < threads_per_core; i++)
798                 cpumask_set_cpu(base + i, policy->cpus);
799
800         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
801         if (!kn) {
802                 int ret;
803
804                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
805                 if (ret) {
806                         pr_info("Failed to create throttle stats directory for cpu %d\n",
807                                 policy->cpu);
808                         return ret;
809                 }
810         } else {
811                 kernfs_put(kn);
812         }
813
814         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
815         if (!gpstates)
816                 return -ENOMEM;
817
818         policy->driver_data = gpstates;
819
820         /* initialize timer */
821         init_timer_pinned_deferrable(&gpstates->timer);
822         gpstates->timer.data = (unsigned long)policy;
823         gpstates->timer.function = gpstate_timer_handler;
824         gpstates->timer.expires = jiffies +
825                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
826         spin_lock_init(&gpstates->gpstate_lock);
827         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
828
829         if (ret < 0) {
830                 kfree(policy->driver_data);
831                 return ret;
832         }
833
834         policy->fast_switch_possible = true;
835         return ret;
836 }
837
838 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
839 {
840         /* timer is deleted in cpufreq_cpu_stop() */
841         kfree(policy->driver_data);
842
843         return 0;
844 }
845
846 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
847                                 unsigned long action, void *unused)
848 {
849         int cpu;
850         struct cpufreq_policy *cpu_policy;
851
852         rebooting = true;
853         for_each_online_cpu(cpu) {
854                 cpu_policy = cpufreq_cpu_get(cpu);
855                 if (!cpu_policy)
856                         continue;
857                 powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
858                 cpufreq_cpu_put(cpu_policy);
859         }
860
861         return NOTIFY_DONE;
862 }
863
864 static struct notifier_block powernv_cpufreq_reboot_nb = {
865         .notifier_call = powernv_cpufreq_reboot_notifier,
866 };
867
868 void powernv_cpufreq_work_fn(struct work_struct *work)
869 {
870         struct chip *chip = container_of(work, struct chip, throttle);
871         struct cpufreq_policy *policy;
872         unsigned int cpu;
873         cpumask_t mask;
874
875         get_online_cpus();
876         cpumask_and(&mask, &chip->mask, cpu_online_mask);
877         smp_call_function_any(&mask,
878                               powernv_cpufreq_throttle_check, NULL, 0);
879
880         if (!chip->restore)
881                 goto out;
882
883         chip->restore = false;
884         for_each_cpu(cpu, &mask) {
885                 int index;
886
887                 policy = cpufreq_cpu_get(cpu);
888                 if (!policy)
889                         continue;
890                 index = cpufreq_table_find_index_c(policy, policy->cur);
891                 powernv_cpufreq_target_index(policy, index);
892                 cpumask_andnot(&mask, &mask, policy->cpus);
893                 cpufreq_cpu_put(policy);
894         }
895 out:
896         put_online_cpus();
897 }
898
899 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
900                                    unsigned long msg_type, void *_msg)
901 {
902         struct opal_msg *msg = _msg;
903         struct opal_occ_msg omsg;
904         int i;
905
906         if (msg_type != OPAL_MSG_OCC)
907                 return 0;
908
909         omsg.type = be64_to_cpu(msg->params[0]);
910
911         switch (omsg.type) {
912         case OCC_RESET:
913                 occ_reset = true;
914                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
915                 /*
916                  * powernv_cpufreq_throttle_check() is called in
917                  * target() callback which can detect the throttle state
918                  * for governors like ondemand.
919                  * But static governors will not call target() often thus
920                  * report throttling here.
921                  */
922                 if (!throttled) {
923                         throttled = true;
924                         pr_warn("CPU frequency is throttled for duration\n");
925                 }
926
927                 break;
928         case OCC_LOAD:
929                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
930                 break;
931         case OCC_THROTTLE:
932                 omsg.chip = be64_to_cpu(msg->params[1]);
933                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
934
935                 if (occ_reset) {
936                         occ_reset = false;
937                         throttled = false;
938                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
939
940                         for (i = 0; i < nr_chips; i++) {
941                                 chips[i].restore = true;
942                                 schedule_work(&chips[i].throttle);
943                         }
944
945                         return 0;
946                 }
947
948                 for (i = 0; i < nr_chips; i++)
949                         if (chips[i].id == omsg.chip)
950                                 break;
951
952                 if (omsg.throttle_status >= 0 &&
953                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
954                         chips[i].throttle_reason = omsg.throttle_status;
955                         chips[i].reason[omsg.throttle_status]++;
956                 }
957
958                 if (!omsg.throttle_status)
959                         chips[i].restore = true;
960
961                 schedule_work(&chips[i].throttle);
962         }
963         return 0;
964 }
965
966 static struct notifier_block powernv_cpufreq_opal_nb = {
967         .notifier_call  = powernv_cpufreq_occ_msg,
968         .next           = NULL,
969         .priority       = 0,
970 };
971
972 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
973 {
974         struct powernv_smp_call_data freq_data;
975         struct global_pstate_info *gpstates = policy->driver_data;
976
977         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
978         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
979         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
980         del_timer_sync(&gpstates->timer);
981 }
982
983 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
984                                         unsigned int target_freq)
985 {
986         int index;
987         struct powernv_smp_call_data freq_data;
988
989         index = cpufreq_table_find_index_dl(policy, target_freq);
990         freq_data.pstate_id = powernv_freqs[index].driver_data;
991         freq_data.gpstate_id = powernv_freqs[index].driver_data;
992         set_pstate(&freq_data);
993
994         return powernv_freqs[index].frequency;
995 }
996
997 static struct cpufreq_driver powernv_cpufreq_driver = {
998         .name           = "powernv-cpufreq",
999         .flags          = CPUFREQ_CONST_LOOPS,
1000         .init           = powernv_cpufreq_cpu_init,
1001         .exit           = powernv_cpufreq_cpu_exit,
1002         .verify         = cpufreq_generic_frequency_table_verify,
1003         .target_index   = powernv_cpufreq_target_index,
1004         .fast_switch    = powernv_fast_switch,
1005         .get            = powernv_cpufreq_get,
1006         .stop_cpu       = powernv_cpufreq_stop_cpu,
1007         .attr           = powernv_cpu_freq_attr,
1008 };
1009
1010 static int init_chip_info(void)
1011 {
1012         unsigned int *chip;
1013         unsigned int cpu, i;
1014         unsigned int prev_chip_id = UINT_MAX;
1015         cpumask_t *chip_cpu_mask;
1016         int ret = 0;
1017
1018         chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1019         if (!chip)
1020                 return -ENOMEM;
1021
1022         /* Allocate a chip cpu mask large enough to fit mask for all chips */
1023         chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1024         if (!chip_cpu_mask) {
1025                 ret = -ENOMEM;
1026                 goto free_and_return;
1027         }
1028
1029         for_each_possible_cpu(cpu) {
1030                 unsigned int id = cpu_to_chip_id(cpu);
1031
1032                 if (prev_chip_id != id) {
1033                         prev_chip_id = id;
1034                         chip[nr_chips++] = id;
1035                 }
1036                 cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1037         }
1038
1039         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1040         if (!chips) {
1041                 ret = -ENOMEM;
1042                 goto out_free_chip_cpu_mask;
1043         }
1044
1045         for (i = 0; i < nr_chips; i++) {
1046                 chips[i].id = chip[i];
1047                 cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1048                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1049                 for_each_cpu(cpu, &chips[i].mask)
1050                         per_cpu(chip_info, cpu) =  &chips[i];
1051         }
1052
1053 out_free_chip_cpu_mask:
1054         kfree(chip_cpu_mask);
1055 free_and_return:
1056         kfree(chip);
1057         return ret;
1058 }
1059
1060 static inline void clean_chip_info(void)
1061 {
1062         int i;
1063
1064         /* flush any pending work items */
1065         if (chips)
1066                 for (i = 0; i < nr_chips; i++)
1067                         cancel_work_sync(&chips[i].throttle);
1068         kfree(chips);
1069 }
1070
1071 static inline void unregister_all_notifiers(void)
1072 {
1073         opal_message_notifier_unregister(OPAL_MSG_OCC,
1074                                          &powernv_cpufreq_opal_nb);
1075         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1076 }
1077
1078 static int __init powernv_cpufreq_init(void)
1079 {
1080         int rc = 0;
1081
1082         /* Don't probe on pseries (guest) platforms */
1083         if (!firmware_has_feature(FW_FEATURE_OPAL))
1084                 return -ENODEV;
1085
1086         /* Discover pstates from device tree and init */
1087         rc = init_powernv_pstates();
1088         if (rc)
1089                 goto out;
1090
1091         /* Populate chip info */
1092         rc = init_chip_info();
1093         if (rc)
1094                 goto out;
1095
1096         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1097         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1098
1099         if (powernv_pstate_info.wof_enabled)
1100                 powernv_cpufreq_driver.boost_enabled = true;
1101         else
1102                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1103
1104         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1105         if (rc) {
1106                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1107                 goto cleanup_notifiers;
1108         }
1109
1110         if (powernv_pstate_info.wof_enabled)
1111                 cpufreq_enable_boost_support();
1112
1113         return 0;
1114 cleanup_notifiers:
1115         unregister_all_notifiers();
1116         clean_chip_info();
1117 out:
1118         pr_info("Platform driver disabled. System does not support PState control\n");
1119         return rc;
1120 }
1121 module_init(powernv_cpufreq_init);
1122
1123 static void __exit powernv_cpufreq_exit(void)
1124 {
1125         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1126         unregister_all_notifiers();
1127         clean_chip_info();
1128 }
1129 module_exit(powernv_cpufreq_exit);
1130
1131 MODULE_LICENSE("GPL");
1132 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");