GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / crypto / atmel-aes.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/gcm.h>
40 #include <crypto/xts.h>
41 #include <crypto/internal/aead.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include <dt-bindings/dma/at91.h>
44 #include "atmel-aes-regs.h"
45 #include "atmel-authenc.h"
46
47 #define ATMEL_AES_PRIORITY      300
48
49 #define ATMEL_AES_BUFFER_ORDER  2
50 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
51
52 #define CFB8_BLOCK_SIZE         1
53 #define CFB16_BLOCK_SIZE        2
54 #define CFB32_BLOCK_SIZE        4
55 #define CFB64_BLOCK_SIZE        8
56
57 #define SIZE_IN_WORDS(x)        ((x) >> 2)
58
59 /* AES flags */
60 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
61 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
62 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
63 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
64 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
65 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
66 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
67 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
68 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
69 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
70 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
71 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
72 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
73 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
74 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
75
76 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
77                                  AES_FLAGS_ENCRYPT |            \
78                                  AES_FLAGS_GTAGEN)
79
80 #define AES_FLAGS_BUSY          BIT(3)
81 #define AES_FLAGS_DUMP_REG      BIT(4)
82 #define AES_FLAGS_OWN_SHA       BIT(5)
83
84 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
85
86 #define ATMEL_AES_QUEUE_LENGTH  50
87
88 #define ATMEL_AES_DMA_THRESHOLD         256
89
90
91 struct atmel_aes_caps {
92         bool                    has_dualbuff;
93         bool                    has_cfb64;
94         bool                    has_gcm;
95         bool                    has_xts;
96         bool                    has_authenc;
97         u32                     max_burst_size;
98 };
99
100 struct atmel_aes_dev;
101
102
103 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
104
105
106 struct atmel_aes_base_ctx {
107         struct atmel_aes_dev    *dd;
108         atmel_aes_fn_t          start;
109         int                     keylen;
110         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
111         u16                     block_size;
112         bool                    is_aead;
113 };
114
115 struct atmel_aes_ctx {
116         struct atmel_aes_base_ctx       base;
117 };
118
119 struct atmel_aes_ctr_ctx {
120         struct atmel_aes_base_ctx       base;
121
122         u32                     iv[AES_BLOCK_SIZE / sizeof(u32)];
123         size_t                  offset;
124         struct scatterlist      src[2];
125         struct scatterlist      dst[2];
126 };
127
128 struct atmel_aes_gcm_ctx {
129         struct atmel_aes_base_ctx       base;
130
131         struct scatterlist      src[2];
132         struct scatterlist      dst[2];
133
134         u32                     j0[AES_BLOCK_SIZE / sizeof(u32)];
135         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
136         u32                     ghash[AES_BLOCK_SIZE / sizeof(u32)];
137         size_t                  textlen;
138
139         const u32               *ghash_in;
140         u32                     *ghash_out;
141         atmel_aes_fn_t          ghash_resume;
142 };
143
144 struct atmel_aes_xts_ctx {
145         struct atmel_aes_base_ctx       base;
146
147         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
148 };
149
150 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151 struct atmel_aes_authenc_ctx {
152         struct atmel_aes_base_ctx       base;
153         struct atmel_sha_authenc_ctx    *auth;
154 };
155 #endif
156
157 struct atmel_aes_reqctx {
158         unsigned long           mode;
159         u32                     lastc[AES_BLOCK_SIZE / sizeof(u32)];
160 };
161
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164         struct atmel_aes_reqctx base;
165
166         struct scatterlist      src[2];
167         struct scatterlist      dst[2];
168         size_t                  textlen;
169         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171         /* auth_req MUST be place last. */
172         struct ahash_request    auth_req;
173 };
174 #endif
175
176 struct atmel_aes_dma {
177         struct dma_chan         *chan;
178         struct scatterlist      *sg;
179         int                     nents;
180         unsigned int            remainder;
181         unsigned int            sg_len;
182 };
183
184 struct atmel_aes_dev {
185         struct list_head        list;
186         unsigned long           phys_base;
187         void __iomem            *io_base;
188
189         struct crypto_async_request     *areq;
190         struct atmel_aes_base_ctx       *ctx;
191
192         bool                    is_async;
193         atmel_aes_fn_t          resume;
194         atmel_aes_fn_t          cpu_transfer_complete;
195
196         struct device           *dev;
197         struct clk              *iclk;
198         int                     irq;
199
200         unsigned long           flags;
201
202         spinlock_t              lock;
203         struct crypto_queue     queue;
204
205         struct tasklet_struct   done_task;
206         struct tasklet_struct   queue_task;
207
208         size_t                  total;
209         size_t                  datalen;
210         u32                     *data;
211
212         struct atmel_aes_dma    src;
213         struct atmel_aes_dma    dst;
214
215         size_t                  buflen;
216         void                    *buf;
217         struct scatterlist      aligned_sg;
218         struct scatterlist      *real_dst;
219
220         struct atmel_aes_caps   caps;
221
222         u32                     hw_version;
223 };
224
225 struct atmel_aes_drv {
226         struct list_head        dev_list;
227         spinlock_t              lock;
228 };
229
230 static struct atmel_aes_drv atmel_aes = {
231         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234
235 #ifdef VERBOSE_DEBUG
236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238         switch (offset) {
239         case AES_CR:
240                 return "CR";
241
242         case AES_MR:
243                 return "MR";
244
245         case AES_ISR:
246                 return "ISR";
247
248         case AES_IMR:
249                 return "IMR";
250
251         case AES_IER:
252                 return "IER";
253
254         case AES_IDR:
255                 return "IDR";
256
257         case AES_KEYWR(0):
258         case AES_KEYWR(1):
259         case AES_KEYWR(2):
260         case AES_KEYWR(3):
261         case AES_KEYWR(4):
262         case AES_KEYWR(5):
263         case AES_KEYWR(6):
264         case AES_KEYWR(7):
265                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266                 break;
267
268         case AES_IDATAR(0):
269         case AES_IDATAR(1):
270         case AES_IDATAR(2):
271         case AES_IDATAR(3):
272                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273                 break;
274
275         case AES_ODATAR(0):
276         case AES_ODATAR(1):
277         case AES_ODATAR(2):
278         case AES_ODATAR(3):
279                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280                 break;
281
282         case AES_IVR(0):
283         case AES_IVR(1):
284         case AES_IVR(2):
285         case AES_IVR(3):
286                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287                 break;
288
289         case AES_AADLENR:
290                 return "AADLENR";
291
292         case AES_CLENR:
293                 return "CLENR";
294
295         case AES_GHASHR(0):
296         case AES_GHASHR(1):
297         case AES_GHASHR(2):
298         case AES_GHASHR(3):
299                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300                 break;
301
302         case AES_TAGR(0):
303         case AES_TAGR(1):
304         case AES_TAGR(2):
305         case AES_TAGR(3):
306                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307                 break;
308
309         case AES_CTRR:
310                 return "CTRR";
311
312         case AES_GCMHR(0):
313         case AES_GCMHR(1):
314         case AES_GCMHR(2):
315         case AES_GCMHR(3):
316                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317                 break;
318
319         case AES_EMR:
320                 return "EMR";
321
322         case AES_TWR(0):
323         case AES_TWR(1):
324         case AES_TWR(2):
325         case AES_TWR(3):
326                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327                 break;
328
329         case AES_ALPHAR(0):
330         case AES_ALPHAR(1):
331         case AES_ALPHAR(2):
332         case AES_ALPHAR(3):
333                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334                 break;
335
336         default:
337                 snprintf(tmp, sz, "0x%02x", offset);
338                 break;
339         }
340
341         return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344
345 /* Shared functions */
346
347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349         u32 value = readl_relaxed(dd->io_base + offset);
350
351 #ifdef VERBOSE_DEBUG
352         if (dd->flags & AES_FLAGS_DUMP_REG) {
353                 char tmp[16];
354
355                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357         }
358 #endif /* VERBOSE_DEBUG */
359
360         return value;
361 }
362
363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364                                         u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367         if (dd->flags & AES_FLAGS_DUMP_REG) {
368                 char tmp[16];
369
370                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372         }
373 #endif /* VERBOSE_DEBUG */
374
375         writel_relaxed(value, dd->io_base + offset);
376 }
377
378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379                                         u32 *value, int count)
380 {
381         for (; count--; value++, offset += 4)
382                 *value = atmel_aes_read(dd, offset);
383 }
384
385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386                               const u32 *value, int count)
387 {
388         for (; count--; value++, offset += 4)
389                 atmel_aes_write(dd, offset, *value);
390 }
391
392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393                                         u32 *value)
394 {
395         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397
398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399                                          const u32 *value)
400 {
401         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403
404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405                                                 atmel_aes_fn_t resume)
406 {
407         u32 isr = atmel_aes_read(dd, AES_ISR);
408
409         if (unlikely(isr & AES_INT_DATARDY))
410                 return resume(dd);
411
412         dd->resume = resume;
413         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414         return -EINPROGRESS;
415 }
416
417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419         len &= block_size - 1;
420         return len ? block_size - len : 0;
421 }
422
423 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
424 {
425         struct atmel_aes_dev *aes_dd = NULL;
426         struct atmel_aes_dev *tmp;
427
428         spin_lock_bh(&atmel_aes.lock);
429         if (!ctx->dd) {
430                 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
431                         aes_dd = tmp;
432                         break;
433                 }
434                 ctx->dd = aes_dd;
435         } else {
436                 aes_dd = ctx->dd;
437         }
438
439         spin_unlock_bh(&atmel_aes.lock);
440
441         return aes_dd;
442 }
443
444 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
445 {
446         int err;
447
448         err = clk_enable(dd->iclk);
449         if (err)
450                 return err;
451
452         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
453         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
454
455         return 0;
456 }
457
458 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
459 {
460         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
461 }
462
463 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
464 {
465         int err;
466
467         err = atmel_aes_hw_init(dd);
468         if (err)
469                 return err;
470
471         dd->hw_version = atmel_aes_get_version(dd);
472
473         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
474
475         clk_disable(dd->iclk);
476         return 0;
477 }
478
479 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
480                                       const struct atmel_aes_reqctx *rctx)
481 {
482         /* Clear all but persistent flags and set request flags. */
483         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
484 }
485
486 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
487 {
488         return (dd->flags & AES_FLAGS_ENCRYPT);
489 }
490
491 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
492 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
493 #endif
494
495 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
496 {
497         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
498         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
499         struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
500         unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
501
502         if (req->nbytes < ivsize)
503                 return;
504
505         if (rctx->mode & AES_FLAGS_ENCRYPT) {
506                 scatterwalk_map_and_copy(req->info, req->dst,
507                                          req->nbytes - ivsize, ivsize, 0);
508         } else {
509                 if (req->src == req->dst)
510                         memcpy(req->info, rctx->lastc, ivsize);
511                 else
512                         scatterwalk_map_and_copy(req->info, req->src,
513                                                  req->nbytes - ivsize,
514                                                  ivsize, 0);
515         }
516 }
517
518 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
519 {
520 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
521         if (dd->ctx->is_aead)
522                 atmel_aes_authenc_complete(dd, err);
523 #endif
524
525         clk_disable(dd->iclk);
526         dd->flags &= ~AES_FLAGS_BUSY;
527
528         if (!dd->ctx->is_aead)
529                 atmel_aes_set_iv_as_last_ciphertext_block(dd);
530
531         if (dd->is_async)
532                 dd->areq->complete(dd->areq, err);
533
534         tasklet_schedule(&dd->queue_task);
535
536         return err;
537 }
538
539 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
540                                      const u32 *iv, const u32 *key, int keylen)
541 {
542         u32 valmr = 0;
543
544         /* MR register must be set before IV registers */
545         if (keylen == AES_KEYSIZE_128)
546                 valmr |= AES_MR_KEYSIZE_128;
547         else if (keylen == AES_KEYSIZE_192)
548                 valmr |= AES_MR_KEYSIZE_192;
549         else
550                 valmr |= AES_MR_KEYSIZE_256;
551
552         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
553
554         if (use_dma) {
555                 valmr |= AES_MR_SMOD_IDATAR0;
556                 if (dd->caps.has_dualbuff)
557                         valmr |= AES_MR_DUALBUFF;
558         } else {
559                 valmr |= AES_MR_SMOD_AUTO;
560         }
561
562         atmel_aes_write(dd, AES_MR, valmr);
563
564         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
565
566         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
567                 atmel_aes_write_block(dd, AES_IVR(0), iv);
568 }
569
570 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
571                                         const u32 *iv)
572
573 {
574         atmel_aes_write_ctrl_key(dd, use_dma, iv,
575                                  dd->ctx->key, dd->ctx->keylen);
576 }
577
578 /* CPU transfer */
579
580 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
581 {
582         int err = 0;
583         u32 isr;
584
585         for (;;) {
586                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
587                 dd->data += 4;
588                 dd->datalen -= AES_BLOCK_SIZE;
589
590                 if (dd->datalen < AES_BLOCK_SIZE)
591                         break;
592
593                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
594
595                 isr = atmel_aes_read(dd, AES_ISR);
596                 if (!(isr & AES_INT_DATARDY)) {
597                         dd->resume = atmel_aes_cpu_transfer;
598                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
599                         return -EINPROGRESS;
600                 }
601         }
602
603         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
604                                  dd->buf, dd->total))
605                 err = -EINVAL;
606
607         if (err)
608                 return atmel_aes_complete(dd, err);
609
610         return dd->cpu_transfer_complete(dd);
611 }
612
613 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
614                                struct scatterlist *src,
615                                struct scatterlist *dst,
616                                size_t len,
617                                atmel_aes_fn_t resume)
618 {
619         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
620
621         if (unlikely(len == 0))
622                 return -EINVAL;
623
624         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
625
626         dd->total = len;
627         dd->real_dst = dst;
628         dd->cpu_transfer_complete = resume;
629         dd->datalen = len + padlen;
630         dd->data = (u32 *)dd->buf;
631         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
632         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
633 }
634
635
636 /* DMA transfer */
637
638 static void atmel_aes_dma_callback(void *data);
639
640 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
641                                     struct scatterlist *sg,
642                                     size_t len,
643                                     struct atmel_aes_dma *dma)
644 {
645         int nents;
646
647         if (!IS_ALIGNED(len, dd->ctx->block_size))
648                 return false;
649
650         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
651                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
652                         return false;
653
654                 if (len <= sg->length) {
655                         if (!IS_ALIGNED(len, dd->ctx->block_size))
656                                 return false;
657
658                         dma->nents = nents+1;
659                         dma->remainder = sg->length - len;
660                         sg->length = len;
661                         return true;
662                 }
663
664                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
665                         return false;
666
667                 len -= sg->length;
668         }
669
670         return false;
671 }
672
673 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
674 {
675         struct scatterlist *sg = dma->sg;
676         int nents = dma->nents;
677
678         if (!dma->remainder)
679                 return;
680
681         while (--nents > 0 && sg)
682                 sg = sg_next(sg);
683
684         if (!sg)
685                 return;
686
687         sg->length += dma->remainder;
688 }
689
690 static int atmel_aes_map(struct atmel_aes_dev *dd,
691                          struct scatterlist *src,
692                          struct scatterlist *dst,
693                          size_t len)
694 {
695         bool src_aligned, dst_aligned;
696         size_t padlen;
697
698         dd->total = len;
699         dd->src.sg = src;
700         dd->dst.sg = dst;
701         dd->real_dst = dst;
702
703         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
704         if (src == dst)
705                 dst_aligned = src_aligned;
706         else
707                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
708         if (!src_aligned || !dst_aligned) {
709                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
710
711                 if (dd->buflen < len + padlen)
712                         return -ENOMEM;
713
714                 if (!src_aligned) {
715                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
716                         dd->src.sg = &dd->aligned_sg;
717                         dd->src.nents = 1;
718                         dd->src.remainder = 0;
719                 }
720
721                 if (!dst_aligned) {
722                         dd->dst.sg = &dd->aligned_sg;
723                         dd->dst.nents = 1;
724                         dd->dst.remainder = 0;
725                 }
726
727                 sg_init_table(&dd->aligned_sg, 1);
728                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
729         }
730
731         if (dd->src.sg == dd->dst.sg) {
732                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
733                                             DMA_BIDIRECTIONAL);
734                 dd->dst.sg_len = dd->src.sg_len;
735                 if (!dd->src.sg_len)
736                         return -EFAULT;
737         } else {
738                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
739                                             DMA_TO_DEVICE);
740                 if (!dd->src.sg_len)
741                         return -EFAULT;
742
743                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
744                                             DMA_FROM_DEVICE);
745                 if (!dd->dst.sg_len) {
746                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
747                                      DMA_TO_DEVICE);
748                         return -EFAULT;
749                 }
750         }
751
752         return 0;
753 }
754
755 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
756 {
757         if (dd->src.sg == dd->dst.sg) {
758                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
759                              DMA_BIDIRECTIONAL);
760
761                 if (dd->src.sg != &dd->aligned_sg)
762                         atmel_aes_restore_sg(&dd->src);
763         } else {
764                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
765                              DMA_FROM_DEVICE);
766
767                 if (dd->dst.sg != &dd->aligned_sg)
768                         atmel_aes_restore_sg(&dd->dst);
769
770                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
771                              DMA_TO_DEVICE);
772
773                 if (dd->src.sg != &dd->aligned_sg)
774                         atmel_aes_restore_sg(&dd->src);
775         }
776
777         if (dd->dst.sg == &dd->aligned_sg)
778                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
779                                     dd->buf, dd->total);
780 }
781
782 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
783                                         enum dma_slave_buswidth addr_width,
784                                         enum dma_transfer_direction dir,
785                                         u32 maxburst)
786 {
787         struct dma_async_tx_descriptor *desc;
788         struct dma_slave_config config;
789         dma_async_tx_callback callback;
790         struct atmel_aes_dma *dma;
791         int err;
792
793         memset(&config, 0, sizeof(config));
794         config.direction = dir;
795         config.src_addr_width = addr_width;
796         config.dst_addr_width = addr_width;
797         config.src_maxburst = maxburst;
798         config.dst_maxburst = maxburst;
799
800         switch (dir) {
801         case DMA_MEM_TO_DEV:
802                 dma = &dd->src;
803                 callback = NULL;
804                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
805                 break;
806
807         case DMA_DEV_TO_MEM:
808                 dma = &dd->dst;
809                 callback = atmel_aes_dma_callback;
810                 config.src_addr = dd->phys_base + AES_ODATAR(0);
811                 break;
812
813         default:
814                 return -EINVAL;
815         }
816
817         err = dmaengine_slave_config(dma->chan, &config);
818         if (err)
819                 return err;
820
821         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
822                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
823         if (!desc)
824                 return -ENOMEM;
825
826         desc->callback = callback;
827         desc->callback_param = dd;
828         dmaengine_submit(desc);
829         dma_async_issue_pending(dma->chan);
830
831         return 0;
832 }
833
834 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
835                                         enum dma_transfer_direction dir)
836 {
837         struct atmel_aes_dma *dma;
838
839         switch (dir) {
840         case DMA_MEM_TO_DEV:
841                 dma = &dd->src;
842                 break;
843
844         case DMA_DEV_TO_MEM:
845                 dma = &dd->dst;
846                 break;
847
848         default:
849                 return;
850         }
851
852         dmaengine_terminate_all(dma->chan);
853 }
854
855 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
856                                struct scatterlist *src,
857                                struct scatterlist *dst,
858                                size_t len,
859                                atmel_aes_fn_t resume)
860 {
861         enum dma_slave_buswidth addr_width;
862         u32 maxburst;
863         int err;
864
865         switch (dd->ctx->block_size) {
866         case CFB8_BLOCK_SIZE:
867                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
868                 maxburst = 1;
869                 break;
870
871         case CFB16_BLOCK_SIZE:
872                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
873                 maxburst = 1;
874                 break;
875
876         case CFB32_BLOCK_SIZE:
877         case CFB64_BLOCK_SIZE:
878                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
879                 maxburst = 1;
880                 break;
881
882         case AES_BLOCK_SIZE:
883                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
884                 maxburst = dd->caps.max_burst_size;
885                 break;
886
887         default:
888                 err = -EINVAL;
889                 goto exit;
890         }
891
892         err = atmel_aes_map(dd, src, dst, len);
893         if (err)
894                 goto exit;
895
896         dd->resume = resume;
897
898         /* Set output DMA transfer first */
899         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
900                                            maxburst);
901         if (err)
902                 goto unmap;
903
904         /* Then set input DMA transfer */
905         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
906                                            maxburst);
907         if (err)
908                 goto output_transfer_stop;
909
910         return -EINPROGRESS;
911
912 output_transfer_stop:
913         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
914 unmap:
915         atmel_aes_unmap(dd);
916 exit:
917         return atmel_aes_complete(dd, err);
918 }
919
920 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
921 {
922         atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
923         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
924         atmel_aes_unmap(dd);
925 }
926
927 static void atmel_aes_dma_callback(void *data)
928 {
929         struct atmel_aes_dev *dd = data;
930
931         atmel_aes_dma_stop(dd);
932         dd->is_async = true;
933         (void)dd->resume(dd);
934 }
935
936 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
937                                   struct crypto_async_request *new_areq)
938 {
939         struct crypto_async_request *areq, *backlog;
940         struct atmel_aes_base_ctx *ctx;
941         unsigned long flags;
942         bool start_async;
943         int err, ret = 0;
944
945         spin_lock_irqsave(&dd->lock, flags);
946         if (new_areq)
947                 ret = crypto_enqueue_request(&dd->queue, new_areq);
948         if (dd->flags & AES_FLAGS_BUSY) {
949                 spin_unlock_irqrestore(&dd->lock, flags);
950                 return ret;
951         }
952         backlog = crypto_get_backlog(&dd->queue);
953         areq = crypto_dequeue_request(&dd->queue);
954         if (areq)
955                 dd->flags |= AES_FLAGS_BUSY;
956         spin_unlock_irqrestore(&dd->lock, flags);
957
958         if (!areq)
959                 return ret;
960
961         if (backlog)
962                 backlog->complete(backlog, -EINPROGRESS);
963
964         ctx = crypto_tfm_ctx(areq->tfm);
965
966         dd->areq = areq;
967         dd->ctx = ctx;
968         start_async = (areq != new_areq);
969         dd->is_async = start_async;
970
971         /* WARNING: ctx->start() MAY change dd->is_async. */
972         err = ctx->start(dd);
973         return (start_async) ? ret : err;
974 }
975
976
977 /* AES async block ciphers */
978
979 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
980 {
981         return atmel_aes_complete(dd, 0);
982 }
983
984 static int atmel_aes_start(struct atmel_aes_dev *dd)
985 {
986         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
987         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
988         bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
989                         dd->ctx->block_size != AES_BLOCK_SIZE);
990         int err;
991
992         atmel_aes_set_mode(dd, rctx);
993
994         err = atmel_aes_hw_init(dd);
995         if (err)
996                 return atmel_aes_complete(dd, err);
997
998         atmel_aes_write_ctrl(dd, use_dma, req->info);
999         if (use_dma)
1000                 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1001                                            atmel_aes_transfer_complete);
1002
1003         return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1004                                    atmel_aes_transfer_complete);
1005 }
1006
1007 static inline struct atmel_aes_ctr_ctx *
1008 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1009 {
1010         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1011 }
1012
1013 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1014 {
1015         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1016         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1017         struct scatterlist *src, *dst;
1018         size_t datalen;
1019         u32 ctr;
1020         u16 blocks, start, end;
1021         bool use_dma, fragmented = false;
1022
1023         /* Check for transfer completion. */
1024         ctx->offset += dd->total;
1025         if (ctx->offset >= req->nbytes)
1026                 return atmel_aes_transfer_complete(dd);
1027
1028         /* Compute data length. */
1029         datalen = req->nbytes - ctx->offset;
1030         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1031         ctr = be32_to_cpu(ctx->iv[3]);
1032
1033         /* Check 16bit counter overflow. */
1034         start = ctr & 0xffff;
1035         end = start + blocks - 1;
1036
1037         if (blocks >> 16 || end < start) {
1038                 ctr |= 0xffff;
1039                 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1040                 fragmented = true;
1041         }
1042
1043         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1044
1045         /* Jump to offset. */
1046         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1047         dst = ((req->src == req->dst) ? src :
1048                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1049
1050         /* Configure hardware. */
1051         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1052         if (unlikely(fragmented)) {
1053                 /*
1054                  * Increment the counter manually to cope with the hardware
1055                  * counter overflow.
1056                  */
1057                 ctx->iv[3] = cpu_to_be32(ctr);
1058                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1059         }
1060
1061         if (use_dma)
1062                 return atmel_aes_dma_start(dd, src, dst, datalen,
1063                                            atmel_aes_ctr_transfer);
1064
1065         return atmel_aes_cpu_start(dd, src, dst, datalen,
1066                                    atmel_aes_ctr_transfer);
1067 }
1068
1069 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1070 {
1071         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1072         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1073         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1074         int err;
1075
1076         atmel_aes_set_mode(dd, rctx);
1077
1078         err = atmel_aes_hw_init(dd);
1079         if (err)
1080                 return atmel_aes_complete(dd, err);
1081
1082         memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1083         ctx->offset = 0;
1084         dd->total = 0;
1085         return atmel_aes_ctr_transfer(dd);
1086 }
1087
1088 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1089 {
1090         struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1091         struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1092         struct atmel_aes_reqctx *rctx;
1093         struct atmel_aes_dev *dd;
1094
1095         switch (mode & AES_FLAGS_OPMODE_MASK) {
1096         case AES_FLAGS_CFB8:
1097                 ctx->block_size = CFB8_BLOCK_SIZE;
1098                 break;
1099
1100         case AES_FLAGS_CFB16:
1101                 ctx->block_size = CFB16_BLOCK_SIZE;
1102                 break;
1103
1104         case AES_FLAGS_CFB32:
1105                 ctx->block_size = CFB32_BLOCK_SIZE;
1106                 break;
1107
1108         case AES_FLAGS_CFB64:
1109                 ctx->block_size = CFB64_BLOCK_SIZE;
1110                 break;
1111
1112         default:
1113                 ctx->block_size = AES_BLOCK_SIZE;
1114                 break;
1115         }
1116         ctx->is_aead = false;
1117
1118         dd = atmel_aes_find_dev(ctx);
1119         if (!dd)
1120                 return -ENODEV;
1121
1122         rctx = ablkcipher_request_ctx(req);
1123         rctx->mode = mode;
1124
1125         if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1126                 unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1127
1128                 if (req->nbytes >= ivsize)
1129                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1130                                                  req->nbytes - ivsize,
1131                                                  ivsize, 0);
1132         }
1133
1134         return atmel_aes_handle_queue(dd, &req->base);
1135 }
1136
1137 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138                            unsigned int keylen)
1139 {
1140         struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1141
1142         if (keylen != AES_KEYSIZE_128 &&
1143             keylen != AES_KEYSIZE_192 &&
1144             keylen != AES_KEYSIZE_256) {
1145                 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146                 return -EINVAL;
1147         }
1148
1149         memcpy(ctx->key, key, keylen);
1150         ctx->keylen = keylen;
1151
1152         return 0;
1153 }
1154
1155 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1156 {
1157         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1158 }
1159
1160 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1161 {
1162         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1163 }
1164
1165 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1166 {
1167         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1168 }
1169
1170 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1171 {
1172         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1173 }
1174
1175 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1176 {
1177         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1178 }
1179
1180 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1181 {
1182         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1183 }
1184
1185 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1186 {
1187         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1188 }
1189
1190 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1191 {
1192         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1193 }
1194
1195 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1196 {
1197         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1198 }
1199
1200 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1201 {
1202         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1203 }
1204
1205 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1206 {
1207         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1208 }
1209
1210 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1211 {
1212         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1213 }
1214
1215 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1216 {
1217         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1218 }
1219
1220 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1221 {
1222         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1223 }
1224
1225 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1226 {
1227         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1228 }
1229
1230 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1231 {
1232         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1233 }
1234
1235 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1236 {
1237         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1238 }
1239
1240 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1241 {
1242         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1243 }
1244
1245 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1246 {
1247         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1248
1249         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1250         ctx->base.start = atmel_aes_start;
1251
1252         return 0;
1253 }
1254
1255 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1256 {
1257         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1258
1259         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1260         ctx->base.start = atmel_aes_ctr_start;
1261
1262         return 0;
1263 }
1264
1265 static struct crypto_alg aes_algs[] = {
1266 {
1267         .cra_name               = "ecb(aes)",
1268         .cra_driver_name        = "atmel-ecb-aes",
1269         .cra_priority           = ATMEL_AES_PRIORITY,
1270         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271         .cra_blocksize          = AES_BLOCK_SIZE,
1272         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1273         .cra_alignmask          = 0xf,
1274         .cra_type               = &crypto_ablkcipher_type,
1275         .cra_module             = THIS_MODULE,
1276         .cra_init               = atmel_aes_cra_init,
1277         .cra_u.ablkcipher = {
1278                 .min_keysize    = AES_MIN_KEY_SIZE,
1279                 .max_keysize    = AES_MAX_KEY_SIZE,
1280                 .setkey         = atmel_aes_setkey,
1281                 .encrypt        = atmel_aes_ecb_encrypt,
1282                 .decrypt        = atmel_aes_ecb_decrypt,
1283         }
1284 },
1285 {
1286         .cra_name               = "cbc(aes)",
1287         .cra_driver_name        = "atmel-cbc-aes",
1288         .cra_priority           = ATMEL_AES_PRIORITY,
1289         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290         .cra_blocksize          = AES_BLOCK_SIZE,
1291         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1292         .cra_alignmask          = 0xf,
1293         .cra_type               = &crypto_ablkcipher_type,
1294         .cra_module             = THIS_MODULE,
1295         .cra_init               = atmel_aes_cra_init,
1296         .cra_u.ablkcipher = {
1297                 .min_keysize    = AES_MIN_KEY_SIZE,
1298                 .max_keysize    = AES_MAX_KEY_SIZE,
1299                 .ivsize         = AES_BLOCK_SIZE,
1300                 .setkey         = atmel_aes_setkey,
1301                 .encrypt        = atmel_aes_cbc_encrypt,
1302                 .decrypt        = atmel_aes_cbc_decrypt,
1303         }
1304 },
1305 {
1306         .cra_name               = "ofb(aes)",
1307         .cra_driver_name        = "atmel-ofb-aes",
1308         .cra_priority           = ATMEL_AES_PRIORITY,
1309         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310         .cra_blocksize          = AES_BLOCK_SIZE,
1311         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1312         .cra_alignmask          = 0xf,
1313         .cra_type               = &crypto_ablkcipher_type,
1314         .cra_module             = THIS_MODULE,
1315         .cra_init               = atmel_aes_cra_init,
1316         .cra_u.ablkcipher = {
1317                 .min_keysize    = AES_MIN_KEY_SIZE,
1318                 .max_keysize    = AES_MAX_KEY_SIZE,
1319                 .ivsize         = AES_BLOCK_SIZE,
1320                 .setkey         = atmel_aes_setkey,
1321                 .encrypt        = atmel_aes_ofb_encrypt,
1322                 .decrypt        = atmel_aes_ofb_decrypt,
1323         }
1324 },
1325 {
1326         .cra_name               = "cfb(aes)",
1327         .cra_driver_name        = "atmel-cfb-aes",
1328         .cra_priority           = ATMEL_AES_PRIORITY,
1329         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330         .cra_blocksize          = AES_BLOCK_SIZE,
1331         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1332         .cra_alignmask          = 0xf,
1333         .cra_type               = &crypto_ablkcipher_type,
1334         .cra_module             = THIS_MODULE,
1335         .cra_init               = atmel_aes_cra_init,
1336         .cra_u.ablkcipher = {
1337                 .min_keysize    = AES_MIN_KEY_SIZE,
1338                 .max_keysize    = AES_MAX_KEY_SIZE,
1339                 .ivsize         = AES_BLOCK_SIZE,
1340                 .setkey         = atmel_aes_setkey,
1341                 .encrypt        = atmel_aes_cfb_encrypt,
1342                 .decrypt        = atmel_aes_cfb_decrypt,
1343         }
1344 },
1345 {
1346         .cra_name               = "cfb32(aes)",
1347         .cra_driver_name        = "atmel-cfb32-aes",
1348         .cra_priority           = ATMEL_AES_PRIORITY,
1349         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350         .cra_blocksize          = CFB32_BLOCK_SIZE,
1351         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1352         .cra_alignmask          = 0x3,
1353         .cra_type               = &crypto_ablkcipher_type,
1354         .cra_module             = THIS_MODULE,
1355         .cra_init               = atmel_aes_cra_init,
1356         .cra_u.ablkcipher = {
1357                 .min_keysize    = AES_MIN_KEY_SIZE,
1358                 .max_keysize    = AES_MAX_KEY_SIZE,
1359                 .ivsize         = AES_BLOCK_SIZE,
1360                 .setkey         = atmel_aes_setkey,
1361                 .encrypt        = atmel_aes_cfb32_encrypt,
1362                 .decrypt        = atmel_aes_cfb32_decrypt,
1363         }
1364 },
1365 {
1366         .cra_name               = "cfb16(aes)",
1367         .cra_driver_name        = "atmel-cfb16-aes",
1368         .cra_priority           = ATMEL_AES_PRIORITY,
1369         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370         .cra_blocksize          = CFB16_BLOCK_SIZE,
1371         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1372         .cra_alignmask          = 0x1,
1373         .cra_type               = &crypto_ablkcipher_type,
1374         .cra_module             = THIS_MODULE,
1375         .cra_init               = atmel_aes_cra_init,
1376         .cra_u.ablkcipher = {
1377                 .min_keysize    = AES_MIN_KEY_SIZE,
1378                 .max_keysize    = AES_MAX_KEY_SIZE,
1379                 .ivsize         = AES_BLOCK_SIZE,
1380                 .setkey         = atmel_aes_setkey,
1381                 .encrypt        = atmel_aes_cfb16_encrypt,
1382                 .decrypt        = atmel_aes_cfb16_decrypt,
1383         }
1384 },
1385 {
1386         .cra_name               = "cfb8(aes)",
1387         .cra_driver_name        = "atmel-cfb8-aes",
1388         .cra_priority           = ATMEL_AES_PRIORITY,
1389         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390         .cra_blocksize          = CFB8_BLOCK_SIZE,
1391         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1392         .cra_alignmask          = 0x0,
1393         .cra_type               = &crypto_ablkcipher_type,
1394         .cra_module             = THIS_MODULE,
1395         .cra_init               = atmel_aes_cra_init,
1396         .cra_u.ablkcipher = {
1397                 .min_keysize    = AES_MIN_KEY_SIZE,
1398                 .max_keysize    = AES_MAX_KEY_SIZE,
1399                 .ivsize         = AES_BLOCK_SIZE,
1400                 .setkey         = atmel_aes_setkey,
1401                 .encrypt        = atmel_aes_cfb8_encrypt,
1402                 .decrypt        = atmel_aes_cfb8_decrypt,
1403         }
1404 },
1405 {
1406         .cra_name               = "ctr(aes)",
1407         .cra_driver_name        = "atmel-ctr-aes",
1408         .cra_priority           = ATMEL_AES_PRIORITY,
1409         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410         .cra_blocksize          = 1,
1411         .cra_ctxsize            = sizeof(struct atmel_aes_ctr_ctx),
1412         .cra_alignmask          = 0xf,
1413         .cra_type               = &crypto_ablkcipher_type,
1414         .cra_module             = THIS_MODULE,
1415         .cra_init               = atmel_aes_ctr_cra_init,
1416         .cra_u.ablkcipher = {
1417                 .min_keysize    = AES_MIN_KEY_SIZE,
1418                 .max_keysize    = AES_MAX_KEY_SIZE,
1419                 .ivsize         = AES_BLOCK_SIZE,
1420                 .setkey         = atmel_aes_setkey,
1421                 .encrypt        = atmel_aes_ctr_encrypt,
1422                 .decrypt        = atmel_aes_ctr_decrypt,
1423         }
1424 },
1425 };
1426
1427 static struct crypto_alg aes_cfb64_alg = {
1428         .cra_name               = "cfb64(aes)",
1429         .cra_driver_name        = "atmel-cfb64-aes",
1430         .cra_priority           = ATMEL_AES_PRIORITY,
1431         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432         .cra_blocksize          = CFB64_BLOCK_SIZE,
1433         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1434         .cra_alignmask          = 0x7,
1435         .cra_type               = &crypto_ablkcipher_type,
1436         .cra_module             = THIS_MODULE,
1437         .cra_init               = atmel_aes_cra_init,
1438         .cra_u.ablkcipher = {
1439                 .min_keysize    = AES_MIN_KEY_SIZE,
1440                 .max_keysize    = AES_MAX_KEY_SIZE,
1441                 .ivsize         = AES_BLOCK_SIZE,
1442                 .setkey         = atmel_aes_setkey,
1443                 .encrypt        = atmel_aes_cfb64_encrypt,
1444                 .decrypt        = atmel_aes_cfb64_decrypt,
1445         }
1446 };
1447
1448
1449 /* gcm aead functions */
1450
1451 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452                                const u32 *data, size_t datalen,
1453                                const u32 *ghash_in, u32 *ghash_out,
1454                                atmel_aes_fn_t resume);
1455 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1457
1458 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1465
1466 static inline struct atmel_aes_gcm_ctx *
1467 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1468 {
1469         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1470 }
1471
1472 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473                                const u32 *data, size_t datalen,
1474                                const u32 *ghash_in, u32 *ghash_out,
1475                                atmel_aes_fn_t resume)
1476 {
1477         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1478
1479         dd->data = (u32 *)data;
1480         dd->datalen = datalen;
1481         ctx->ghash_in = ghash_in;
1482         ctx->ghash_out = ghash_out;
1483         ctx->ghash_resume = resume;
1484
1485         atmel_aes_write_ctrl(dd, false, NULL);
1486         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1487 }
1488
1489 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1490 {
1491         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1492
1493         /* Set the data length. */
1494         atmel_aes_write(dd, AES_AADLENR, dd->total);
1495         atmel_aes_write(dd, AES_CLENR, 0);
1496
1497         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498         if (ctx->ghash_in)
1499                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1500
1501         return atmel_aes_gcm_ghash_finalize(dd);
1502 }
1503
1504 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1505 {
1506         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507         u32 isr;
1508
1509         /* Write data into the Input Data Registers. */
1510         while (dd->datalen > 0) {
1511                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512                 dd->data += 4;
1513                 dd->datalen -= AES_BLOCK_SIZE;
1514
1515                 isr = atmel_aes_read(dd, AES_ISR);
1516                 if (!(isr & AES_INT_DATARDY)) {
1517                         dd->resume = atmel_aes_gcm_ghash_finalize;
1518                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519                         return -EINPROGRESS;
1520                 }
1521         }
1522
1523         /* Read the computed hash from GHASHRx. */
1524         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1525
1526         return ctx->ghash_resume(dd);
1527 }
1528
1529
1530 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1531 {
1532         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533         struct aead_request *req = aead_request_cast(dd->areq);
1534         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536         size_t ivsize = crypto_aead_ivsize(tfm);
1537         size_t datalen, padlen;
1538         const void *iv = req->iv;
1539         u8 *data = dd->buf;
1540         int err;
1541
1542         atmel_aes_set_mode(dd, rctx);
1543
1544         err = atmel_aes_hw_init(dd);
1545         if (err)
1546                 return atmel_aes_complete(dd, err);
1547
1548         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549                 memcpy(ctx->j0, iv, ivsize);
1550                 ctx->j0[3] = cpu_to_be32(1);
1551                 return atmel_aes_gcm_process(dd);
1552         }
1553
1554         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556         if (datalen > dd->buflen)
1557                 return atmel_aes_complete(dd, -EINVAL);
1558
1559         memcpy(data, iv, ivsize);
1560         memset(data + ivsize, 0, padlen + sizeof(u64));
1561         ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1562
1563         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564                                    NULL, ctx->j0, atmel_aes_gcm_process);
1565 }
1566
1567 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1568 {
1569         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570         struct aead_request *req = aead_request_cast(dd->areq);
1571         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572         bool enc = atmel_aes_is_encrypt(dd);
1573         u32 authsize;
1574
1575         /* Compute text length. */
1576         authsize = crypto_aead_authsize(tfm);
1577         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1578
1579         /*
1580          * According to tcrypt test suite, the GCM Automatic Tag Generation
1581          * fails when both the message and its associated data are empty.
1582          */
1583         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584                 dd->flags |= AES_FLAGS_GTAGEN;
1585
1586         atmel_aes_write_ctrl(dd, false, NULL);
1587         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1588 }
1589
1590 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1591 {
1592         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593         struct aead_request *req = aead_request_cast(dd->areq);
1594         u32 j0_lsw, *j0 = ctx->j0;
1595         size_t padlen;
1596
1597         /* Write incr32(J0) into IV. */
1598         j0_lsw = j0[3];
1599         j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600         atmel_aes_write_block(dd, AES_IVR(0), j0);
1601         j0[3] = j0_lsw;
1602
1603         /* Set aad and text lengths. */
1604         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1606
1607         /* Check whether AAD are present. */
1608         if (unlikely(req->assoclen == 0)) {
1609                 dd->datalen = 0;
1610                 return atmel_aes_gcm_data(dd);
1611         }
1612
1613         /* Copy assoc data and add padding. */
1614         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615         if (unlikely(req->assoclen + padlen > dd->buflen))
1616                 return atmel_aes_complete(dd, -EINVAL);
1617         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1618
1619         /* Write assoc data into the Input Data register. */
1620         dd->data = (u32 *)dd->buf;
1621         dd->datalen = req->assoclen + padlen;
1622         return atmel_aes_gcm_data(dd);
1623 }
1624
1625 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1626 {
1627         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628         struct aead_request *req = aead_request_cast(dd->areq);
1629         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630         struct scatterlist *src, *dst;
1631         u32 isr, mr;
1632
1633         /* Write AAD first. */
1634         while (dd->datalen > 0) {
1635                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636                 dd->data += 4;
1637                 dd->datalen -= AES_BLOCK_SIZE;
1638
1639                 isr = atmel_aes_read(dd, AES_ISR);
1640                 if (!(isr & AES_INT_DATARDY)) {
1641                         dd->resume = atmel_aes_gcm_data;
1642                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643                         return -EINPROGRESS;
1644                 }
1645         }
1646
1647         /* GMAC only. */
1648         if (unlikely(ctx->textlen == 0))
1649                 return atmel_aes_gcm_tag_init(dd);
1650
1651         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653         dst = ((req->src == req->dst) ? src :
1654                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1655
1656         if (use_dma) {
1657                 /* Update the Mode Register for DMA transfers. */
1658                 mr = atmel_aes_read(dd, AES_MR);
1659                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660                 mr |= AES_MR_SMOD_IDATAR0;
1661                 if (dd->caps.has_dualbuff)
1662                         mr |= AES_MR_DUALBUFF;
1663                 atmel_aes_write(dd, AES_MR, mr);
1664
1665                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666                                            atmel_aes_gcm_tag_init);
1667         }
1668
1669         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670                                    atmel_aes_gcm_tag_init);
1671 }
1672
1673 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1674 {
1675         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676         struct aead_request *req = aead_request_cast(dd->areq);
1677         u64 *data = dd->buf;
1678
1679         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681                         dd->resume = atmel_aes_gcm_tag_init;
1682                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683                         return -EINPROGRESS;
1684                 }
1685
1686                 return atmel_aes_gcm_finalize(dd);
1687         }
1688
1689         /* Read the GCM Intermediate Hash Word Registers. */
1690         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1691
1692         data[0] = cpu_to_be64(req->assoclen * 8);
1693         data[1] = cpu_to_be64(ctx->textlen * 8);
1694
1695         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1697 }
1698
1699 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1700 {
1701         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702         unsigned long flags;
1703
1704         /*
1705          * Change mode to CTR to complete the tag generation.
1706          * Use J0 as Initialization Vector.
1707          */
1708         flags = dd->flags;
1709         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710         dd->flags |= AES_FLAGS_CTR;
1711         atmel_aes_write_ctrl(dd, false, ctx->j0);
1712         dd->flags = flags;
1713
1714         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1716 }
1717
1718 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1719 {
1720         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721         struct aead_request *req = aead_request_cast(dd->areq);
1722         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723         bool enc = atmel_aes_is_encrypt(dd);
1724         u32 offset, authsize, itag[4], *otag = ctx->tag;
1725         int err;
1726
1727         /* Read the computed tag. */
1728         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730         else
1731                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1732
1733         offset = req->assoclen + ctx->textlen;
1734         authsize = crypto_aead_authsize(tfm);
1735         if (enc) {
1736                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737                 err = 0;
1738         } else {
1739                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1741         }
1742
1743         return atmel_aes_complete(dd, err);
1744 }
1745
1746 static int atmel_aes_gcm_crypt(struct aead_request *req,
1747                                unsigned long mode)
1748 {
1749         struct atmel_aes_base_ctx *ctx;
1750         struct atmel_aes_reqctx *rctx;
1751         struct atmel_aes_dev *dd;
1752
1753         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754         ctx->block_size = AES_BLOCK_SIZE;
1755         ctx->is_aead = true;
1756
1757         dd = atmel_aes_find_dev(ctx);
1758         if (!dd)
1759                 return -ENODEV;
1760
1761         rctx = aead_request_ctx(req);
1762         rctx->mode = AES_FLAGS_GCM | mode;
1763
1764         return atmel_aes_handle_queue(dd, &req->base);
1765 }
1766
1767 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768                                 unsigned int keylen)
1769 {
1770         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1771
1772         if (keylen != AES_KEYSIZE_256 &&
1773             keylen != AES_KEYSIZE_192 &&
1774             keylen != AES_KEYSIZE_128) {
1775                 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776                 return -EINVAL;
1777         }
1778
1779         memcpy(ctx->key, key, keylen);
1780         ctx->keylen = keylen;
1781
1782         return 0;
1783 }
1784
1785 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786                                      unsigned int authsize)
1787 {
1788         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789         switch (authsize) {
1790         case 4:
1791         case 8:
1792         case 12:
1793         case 13:
1794         case 14:
1795         case 15:
1796         case 16:
1797                 break;
1798         default:
1799                 return -EINVAL;
1800         }
1801
1802         return 0;
1803 }
1804
1805 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1806 {
1807         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1808 }
1809
1810 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1811 {
1812         return atmel_aes_gcm_crypt(req, 0);
1813 }
1814
1815 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1816 {
1817         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1818
1819         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1820         ctx->base.start = atmel_aes_gcm_start;
1821
1822         return 0;
1823 }
1824
1825 static struct aead_alg aes_gcm_alg = {
1826         .setkey         = atmel_aes_gcm_setkey,
1827         .setauthsize    = atmel_aes_gcm_setauthsize,
1828         .encrypt        = atmel_aes_gcm_encrypt,
1829         .decrypt        = atmel_aes_gcm_decrypt,
1830         .init           = atmel_aes_gcm_init,
1831         .ivsize         = GCM_AES_IV_SIZE,
1832         .maxauthsize    = AES_BLOCK_SIZE,
1833
1834         .base = {
1835                 .cra_name               = "gcm(aes)",
1836                 .cra_driver_name        = "atmel-gcm-aes",
1837                 .cra_priority           = ATMEL_AES_PRIORITY,
1838                 .cra_flags              = CRYPTO_ALG_ASYNC,
1839                 .cra_blocksize          = 1,
1840                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1841                 .cra_alignmask          = 0xf,
1842                 .cra_module             = THIS_MODULE,
1843         },
1844 };
1845
1846
1847 /* xts functions */
1848
1849 static inline struct atmel_aes_xts_ctx *
1850 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1851 {
1852         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1853 }
1854
1855 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1856
1857 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1858 {
1859         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862         unsigned long flags;
1863         int err;
1864
1865         atmel_aes_set_mode(dd, rctx);
1866
1867         err = atmel_aes_hw_init(dd);
1868         if (err)
1869                 return atmel_aes_complete(dd, err);
1870
1871         /* Compute the tweak value from req->info with ecb(aes). */
1872         flags = dd->flags;
1873         dd->flags &= ~AES_FLAGS_MODE_MASK;
1874         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875         atmel_aes_write_ctrl_key(dd, false, NULL,
1876                                  ctx->key2, ctx->base.keylen);
1877         dd->flags = flags;
1878
1879         atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1881 }
1882
1883 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1884 {
1885         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886         bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888         static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889         u8 *tweak_bytes = (u8 *)tweak;
1890         int i;
1891
1892         /* Read the computed ciphered tweak value. */
1893         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1894         /*
1895          * Hardware quirk:
1896          * the order of the ciphered tweak bytes need to be reversed before
1897          * writing them into the ODATARx registers.
1898          */
1899         for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900                 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1901
1902                 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903                 tweak_bytes[i] = tmp;
1904         }
1905
1906         /* Process the data. */
1907         atmel_aes_write_ctrl(dd, use_dma, NULL);
1908         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910         if (use_dma)
1911                 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1912                                            atmel_aes_transfer_complete);
1913
1914         return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915                                    atmel_aes_transfer_complete);
1916 }
1917
1918 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919                                 unsigned int keylen)
1920 {
1921         struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922         int err;
1923
1924         err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1925         if (err)
1926                 return err;
1927
1928         memcpy(ctx->base.key, key, keylen/2);
1929         memcpy(ctx->key2, key + keylen/2, keylen/2);
1930         ctx->base.keylen = keylen/2;
1931
1932         return 0;
1933 }
1934
1935 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1936 {
1937         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1938 }
1939
1940 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1941 {
1942         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1943 }
1944
1945 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1946 {
1947         struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1948
1949         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1950         ctx->base.start = atmel_aes_xts_start;
1951
1952         return 0;
1953 }
1954
1955 static struct crypto_alg aes_xts_alg = {
1956         .cra_name               = "xts(aes)",
1957         .cra_driver_name        = "atmel-xts-aes",
1958         .cra_priority           = ATMEL_AES_PRIORITY,
1959         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960         .cra_blocksize          = AES_BLOCK_SIZE,
1961         .cra_ctxsize            = sizeof(struct atmel_aes_xts_ctx),
1962         .cra_alignmask          = 0xf,
1963         .cra_type               = &crypto_ablkcipher_type,
1964         .cra_module             = THIS_MODULE,
1965         .cra_init               = atmel_aes_xts_cra_init,
1966         .cra_u.ablkcipher = {
1967                 .min_keysize    = 2 * AES_MIN_KEY_SIZE,
1968                 .max_keysize    = 2 * AES_MAX_KEY_SIZE,
1969                 .ivsize         = AES_BLOCK_SIZE,
1970                 .setkey         = atmel_aes_xts_setkey,
1971                 .encrypt        = atmel_aes_xts_encrypt,
1972                 .decrypt        = atmel_aes_xts_decrypt,
1973         }
1974 };
1975
1976 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1977 /* authenc aead functions */
1978
1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981                                   bool is_async);
1982 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983                                       bool is_async);
1984 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986                                    bool is_async);
1987
1988 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1989 {
1990         struct aead_request *req = aead_request_cast(dd->areq);
1991         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992
1993         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994                 atmel_sha_authenc_abort(&rctx->auth_req);
1995         dd->flags &= ~AES_FLAGS_OWN_SHA;
1996 }
1997
1998 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1999 {
2000         struct aead_request *req = aead_request_cast(dd->areq);
2001         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004         int err;
2005
2006         atmel_aes_set_mode(dd, &rctx->base);
2007
2008         err = atmel_aes_hw_init(dd);
2009         if (err)
2010                 return atmel_aes_complete(dd, err);
2011
2012         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013                                           atmel_aes_authenc_init, dd);
2014 }
2015
2016 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017                                   bool is_async)
2018 {
2019         struct aead_request *req = aead_request_cast(dd->areq);
2020         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2021
2022         if (is_async)
2023                 dd->is_async = true;
2024         if (err)
2025                 return atmel_aes_complete(dd, err);
2026
2027         /* If here, we've got the ownership of the SHA device. */
2028         dd->flags |= AES_FLAGS_OWN_SHA;
2029
2030         /* Configure the SHA device. */
2031         return atmel_sha_authenc_init(&rctx->auth_req,
2032                                       req->src, req->assoclen,
2033                                       rctx->textlen,
2034                                       atmel_aes_authenc_transfer, dd);
2035 }
2036
2037 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038                                       bool is_async)
2039 {
2040         struct aead_request *req = aead_request_cast(dd->areq);
2041         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042         bool enc = atmel_aes_is_encrypt(dd);
2043         struct scatterlist *src, *dst;
2044         u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045         u32 emr;
2046
2047         if (is_async)
2048                 dd->is_async = true;
2049         if (err)
2050                 return atmel_aes_complete(dd, err);
2051
2052         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054         dst = src;
2055
2056         if (req->src != req->dst)
2057                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2058
2059         /* Configure the AES device. */
2060         memcpy(iv, req->iv, sizeof(iv));
2061
2062         /*
2063          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064          * 'true' even if the data transfer is actually performed by the CPU (so
2065          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067          * must be set to *_MR_SMOD_IDATAR0.
2068          */
2069         atmel_aes_write_ctrl(dd, true, iv);
2070         emr = AES_EMR_PLIPEN;
2071         if (!enc)
2072                 emr |= AES_EMR_PLIPD;
2073         atmel_aes_write(dd, AES_EMR, emr);
2074
2075         /* Transfer data. */
2076         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077                                    atmel_aes_authenc_digest);
2078 }
2079
2080 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2081 {
2082         struct aead_request *req = aead_request_cast(dd->areq);
2083         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2084
2085         /* atmel_sha_authenc_final() releases the SHA device. */
2086         dd->flags &= ~AES_FLAGS_OWN_SHA;
2087         return atmel_sha_authenc_final(&rctx->auth_req,
2088                                        rctx->digest, sizeof(rctx->digest),
2089                                        atmel_aes_authenc_final, dd);
2090 }
2091
2092 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093                                    bool is_async)
2094 {
2095         struct aead_request *req = aead_request_cast(dd->areq);
2096         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098         bool enc = atmel_aes_is_encrypt(dd);
2099         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100         u32 offs, authsize;
2101
2102         if (is_async)
2103                 dd->is_async = true;
2104         if (err)
2105                 goto complete;
2106
2107         offs = req->assoclen + rctx->textlen;
2108         authsize = crypto_aead_authsize(tfm);
2109         if (enc) {
2110                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111         } else {
2112                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113                 if (crypto_memneq(idigest, odigest, authsize))
2114                         err = -EBADMSG;
2115         }
2116
2117 complete:
2118         return atmel_aes_complete(dd, err);
2119 }
2120
2121 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122                                     unsigned int keylen)
2123 {
2124         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125         struct crypto_authenc_keys keys;
2126         u32 flags;
2127         int err;
2128
2129         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130                 goto badkey;
2131
2132         if (keys.enckeylen > sizeof(ctx->base.key))
2133                 goto badkey;
2134
2135         /* Save auth key. */
2136         flags = crypto_aead_get_flags(tfm);
2137         err = atmel_sha_authenc_setkey(ctx->auth,
2138                                        keys.authkey, keys.authkeylen,
2139                                        &flags);
2140         crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141         if (err) {
2142                 memzero_explicit(&keys, sizeof(keys));
2143                 return err;
2144         }
2145
2146         /* Save enc key. */
2147         ctx->base.keylen = keys.enckeylen;
2148         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2149
2150         memzero_explicit(&keys, sizeof(keys));
2151         return 0;
2152
2153 badkey:
2154         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155         memzero_explicit(&keys, sizeof(keys));
2156         return -EINVAL;
2157 }
2158
2159 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160                                       unsigned long auth_mode)
2161 {
2162         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2164
2165         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166         if (IS_ERR(ctx->auth))
2167                 return PTR_ERR(ctx->auth);
2168
2169         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170                                       auth_reqsize));
2171         ctx->base.start = atmel_aes_authenc_start;
2172
2173         return 0;
2174 }
2175
2176 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2177 {
2178         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2179 }
2180
2181 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2182 {
2183         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2184 }
2185
2186 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2187 {
2188         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2189 }
2190
2191 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2192 {
2193         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2194 }
2195
2196 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2197 {
2198         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2199 }
2200
2201 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2202 {
2203         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2204
2205         atmel_sha_authenc_free(ctx->auth);
2206 }
2207
2208 static int atmel_aes_authenc_crypt(struct aead_request *req,
2209                                    unsigned long mode)
2210 {
2211         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214         u32 authsize = crypto_aead_authsize(tfm);
2215         bool enc = (mode & AES_FLAGS_ENCRYPT);
2216         struct atmel_aes_dev *dd;
2217
2218         /* Compute text length. */
2219         if (!enc && req->cryptlen < authsize)
2220                 return -EINVAL;
2221         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2222
2223         /*
2224          * Currently, empty messages are not supported yet:
2225          * the SHA auto-padding can be used only on non-empty messages.
2226          * Hence a special case needs to be implemented for empty message.
2227          */
2228         if (!rctx->textlen && !req->assoclen)
2229                 return -EINVAL;
2230
2231         rctx->base.mode = mode;
2232         ctx->block_size = AES_BLOCK_SIZE;
2233         ctx->is_aead = true;
2234
2235         dd = atmel_aes_find_dev(ctx);
2236         if (!dd)
2237                 return -ENODEV;
2238
2239         return atmel_aes_handle_queue(dd, &req->base);
2240 }
2241
2242 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2243 {
2244         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2245 }
2246
2247 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2248 {
2249         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2250 }
2251
2252 static struct aead_alg aes_authenc_algs[] = {
2253 {
2254         .setkey         = atmel_aes_authenc_setkey,
2255         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2256         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2257         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2258         .exit           = atmel_aes_authenc_exit_tfm,
2259         .ivsize         = AES_BLOCK_SIZE,
2260         .maxauthsize    = SHA1_DIGEST_SIZE,
2261
2262         .base = {
2263                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2264                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2265                 .cra_priority           = ATMEL_AES_PRIORITY,
2266                 .cra_flags              = CRYPTO_ALG_ASYNC,
2267                 .cra_blocksize          = AES_BLOCK_SIZE,
2268                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2269                 .cra_alignmask          = 0xf,
2270                 .cra_module             = THIS_MODULE,
2271         },
2272 },
2273 {
2274         .setkey         = atmel_aes_authenc_setkey,
2275         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2276         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2277         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2278         .exit           = atmel_aes_authenc_exit_tfm,
2279         .ivsize         = AES_BLOCK_SIZE,
2280         .maxauthsize    = SHA224_DIGEST_SIZE,
2281
2282         .base = {
2283                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2284                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2285                 .cra_priority           = ATMEL_AES_PRIORITY,
2286                 .cra_flags              = CRYPTO_ALG_ASYNC,
2287                 .cra_blocksize          = AES_BLOCK_SIZE,
2288                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2289                 .cra_alignmask          = 0xf,
2290                 .cra_module             = THIS_MODULE,
2291         },
2292 },
2293 {
2294         .setkey         = atmel_aes_authenc_setkey,
2295         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2296         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2297         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2298         .exit           = atmel_aes_authenc_exit_tfm,
2299         .ivsize         = AES_BLOCK_SIZE,
2300         .maxauthsize    = SHA256_DIGEST_SIZE,
2301
2302         .base = {
2303                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2304                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2305                 .cra_priority           = ATMEL_AES_PRIORITY,
2306                 .cra_flags              = CRYPTO_ALG_ASYNC,
2307                 .cra_blocksize          = AES_BLOCK_SIZE,
2308                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2309                 .cra_alignmask          = 0xf,
2310                 .cra_module             = THIS_MODULE,
2311         },
2312 },
2313 {
2314         .setkey         = atmel_aes_authenc_setkey,
2315         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2316         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2317         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2318         .exit           = atmel_aes_authenc_exit_tfm,
2319         .ivsize         = AES_BLOCK_SIZE,
2320         .maxauthsize    = SHA384_DIGEST_SIZE,
2321
2322         .base = {
2323                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2324                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2325                 .cra_priority           = ATMEL_AES_PRIORITY,
2326                 .cra_flags              = CRYPTO_ALG_ASYNC,
2327                 .cra_blocksize          = AES_BLOCK_SIZE,
2328                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2329                 .cra_alignmask          = 0xf,
2330                 .cra_module             = THIS_MODULE,
2331         },
2332 },
2333 {
2334         .setkey         = atmel_aes_authenc_setkey,
2335         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2336         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2337         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2338         .exit           = atmel_aes_authenc_exit_tfm,
2339         .ivsize         = AES_BLOCK_SIZE,
2340         .maxauthsize    = SHA512_DIGEST_SIZE,
2341
2342         .base = {
2343                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2344                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2345                 .cra_priority           = ATMEL_AES_PRIORITY,
2346                 .cra_flags              = CRYPTO_ALG_ASYNC,
2347                 .cra_blocksize          = AES_BLOCK_SIZE,
2348                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2349                 .cra_alignmask          = 0xf,
2350                 .cra_module             = THIS_MODULE,
2351         },
2352 },
2353 };
2354 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2355
2356 /* Probe functions */
2357
2358 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2359 {
2360         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2363
2364         if (!dd->buf) {
2365                 dev_err(dd->dev, "unable to alloc pages.\n");
2366                 return -ENOMEM;
2367         }
2368
2369         return 0;
2370 }
2371
2372 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2373 {
2374         free_page((unsigned long)dd->buf);
2375 }
2376
2377 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2378 {
2379         struct at_dma_slave     *sl = slave;
2380
2381         if (sl && sl->dma_dev == chan->device->dev) {
2382                 chan->private = sl;
2383                 return true;
2384         } else {
2385                 return false;
2386         }
2387 }
2388
2389 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390                               struct crypto_platform_data *pdata)
2391 {
2392         struct at_dma_slave *slave;
2393         dma_cap_mask_t mask;
2394
2395         dma_cap_zero(mask);
2396         dma_cap_set(DMA_SLAVE, mask);
2397
2398         /* Try to grab 2 DMA channels */
2399         slave = &pdata->dma_slave->rxdata;
2400         dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401                                                         slave, dd->dev, "tx");
2402         if (!dd->src.chan)
2403                 goto err_dma_in;
2404
2405         slave = &pdata->dma_slave->txdata;
2406         dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407                                                         slave, dd->dev, "rx");
2408         if (!dd->dst.chan)
2409                 goto err_dma_out;
2410
2411         return 0;
2412
2413 err_dma_out:
2414         dma_release_channel(dd->src.chan);
2415 err_dma_in:
2416         dev_warn(dd->dev, "no DMA channel available\n");
2417         return -ENODEV;
2418 }
2419
2420 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2421 {
2422         dma_release_channel(dd->dst.chan);
2423         dma_release_channel(dd->src.chan);
2424 }
2425
2426 static void atmel_aes_queue_task(unsigned long data)
2427 {
2428         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429
2430         atmel_aes_handle_queue(dd, NULL);
2431 }
2432
2433 static void atmel_aes_done_task(unsigned long data)
2434 {
2435         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436
2437         dd->is_async = true;
2438         (void)dd->resume(dd);
2439 }
2440
2441 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2442 {
2443         struct atmel_aes_dev *aes_dd = dev_id;
2444         u32 reg;
2445
2446         reg = atmel_aes_read(aes_dd, AES_ISR);
2447         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448                 atmel_aes_write(aes_dd, AES_IDR, reg);
2449                 if (AES_FLAGS_BUSY & aes_dd->flags)
2450                         tasklet_schedule(&aes_dd->done_task);
2451                 else
2452                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453                 return IRQ_HANDLED;
2454         }
2455
2456         return IRQ_NONE;
2457 }
2458
2459 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2460 {
2461         int i;
2462
2463 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2464         if (dd->caps.has_authenc)
2465                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466                         crypto_unregister_aead(&aes_authenc_algs[i]);
2467 #endif
2468
2469         if (dd->caps.has_xts)
2470                 crypto_unregister_alg(&aes_xts_alg);
2471
2472         if (dd->caps.has_gcm)
2473                 crypto_unregister_aead(&aes_gcm_alg);
2474
2475         if (dd->caps.has_cfb64)
2476                 crypto_unregister_alg(&aes_cfb64_alg);
2477
2478         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479                 crypto_unregister_alg(&aes_algs[i]);
2480 }
2481
2482 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2483 {
2484         int err, i, j;
2485
2486         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487                 err = crypto_register_alg(&aes_algs[i]);
2488                 if (err)
2489                         goto err_aes_algs;
2490         }
2491
2492         if (dd->caps.has_cfb64) {
2493                 err = crypto_register_alg(&aes_cfb64_alg);
2494                 if (err)
2495                         goto err_aes_cfb64_alg;
2496         }
2497
2498         if (dd->caps.has_gcm) {
2499                 err = crypto_register_aead(&aes_gcm_alg);
2500                 if (err)
2501                         goto err_aes_gcm_alg;
2502         }
2503
2504         if (dd->caps.has_xts) {
2505                 err = crypto_register_alg(&aes_xts_alg);
2506                 if (err)
2507                         goto err_aes_xts_alg;
2508         }
2509
2510 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2511         if (dd->caps.has_authenc) {
2512                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2513                         err = crypto_register_aead(&aes_authenc_algs[i]);
2514                         if (err)
2515                                 goto err_aes_authenc_alg;
2516                 }
2517         }
2518 #endif
2519
2520         return 0;
2521
2522 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2523         /* i = ARRAY_SIZE(aes_authenc_algs); */
2524 err_aes_authenc_alg:
2525         for (j = 0; j < i; j++)
2526                 crypto_unregister_aead(&aes_authenc_algs[j]);
2527         crypto_unregister_alg(&aes_xts_alg);
2528 #endif
2529 err_aes_xts_alg:
2530         crypto_unregister_aead(&aes_gcm_alg);
2531 err_aes_gcm_alg:
2532         crypto_unregister_alg(&aes_cfb64_alg);
2533 err_aes_cfb64_alg:
2534         i = ARRAY_SIZE(aes_algs);
2535 err_aes_algs:
2536         for (j = 0; j < i; j++)
2537                 crypto_unregister_alg(&aes_algs[j]);
2538
2539         return err;
2540 }
2541
2542 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2543 {
2544         dd->caps.has_dualbuff = 0;
2545         dd->caps.has_cfb64 = 0;
2546         dd->caps.has_gcm = 0;
2547         dd->caps.has_xts = 0;
2548         dd->caps.has_authenc = 0;
2549         dd->caps.max_burst_size = 1;
2550
2551         /* keep only major version number */
2552         switch (dd->hw_version & 0xff0) {
2553         case 0x500:
2554                 dd->caps.has_dualbuff = 1;
2555                 dd->caps.has_cfb64 = 1;
2556                 dd->caps.has_gcm = 1;
2557                 dd->caps.has_xts = 1;
2558                 dd->caps.has_authenc = 1;
2559                 dd->caps.max_burst_size = 4;
2560                 break;
2561         case 0x200:
2562                 dd->caps.has_dualbuff = 1;
2563                 dd->caps.has_cfb64 = 1;
2564                 dd->caps.has_gcm = 1;
2565                 dd->caps.max_burst_size = 4;
2566                 break;
2567         case 0x130:
2568                 dd->caps.has_dualbuff = 1;
2569                 dd->caps.has_cfb64 = 1;
2570                 dd->caps.max_burst_size = 4;
2571                 break;
2572         case 0x120:
2573                 break;
2574         default:
2575                 dev_warn(dd->dev,
2576                                 "Unmanaged aes version, set minimum capabilities\n");
2577                 break;
2578         }
2579 }
2580
2581 #if defined(CONFIG_OF)
2582 static const struct of_device_id atmel_aes_dt_ids[] = {
2583         { .compatible = "atmel,at91sam9g46-aes" },
2584         { /* sentinel */ }
2585 };
2586 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2587
2588 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2589 {
2590         struct device_node *np = pdev->dev.of_node;
2591         struct crypto_platform_data *pdata;
2592
2593         if (!np) {
2594                 dev_err(&pdev->dev, "device node not found\n");
2595                 return ERR_PTR(-EINVAL);
2596         }
2597
2598         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2599         if (!pdata)
2600                 return ERR_PTR(-ENOMEM);
2601
2602         pdata->dma_slave = devm_kzalloc(&pdev->dev,
2603                                         sizeof(*(pdata->dma_slave)),
2604                                         GFP_KERNEL);
2605         if (!pdata->dma_slave) {
2606                 devm_kfree(&pdev->dev, pdata);
2607                 return ERR_PTR(-ENOMEM);
2608         }
2609
2610         return pdata;
2611 }
2612 #else
2613 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2614 {
2615         return ERR_PTR(-EINVAL);
2616 }
2617 #endif
2618
2619 static int atmel_aes_probe(struct platform_device *pdev)
2620 {
2621         struct atmel_aes_dev *aes_dd;
2622         struct crypto_platform_data *pdata;
2623         struct device *dev = &pdev->dev;
2624         struct resource *aes_res;
2625         int err;
2626
2627         pdata = pdev->dev.platform_data;
2628         if (!pdata) {
2629                 pdata = atmel_aes_of_init(pdev);
2630                 if (IS_ERR(pdata)) {
2631                         err = PTR_ERR(pdata);
2632                         goto aes_dd_err;
2633                 }
2634         }
2635
2636         if (!pdata->dma_slave) {
2637                 err = -ENXIO;
2638                 goto aes_dd_err;
2639         }
2640
2641         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2642         if (aes_dd == NULL) {
2643                 err = -ENOMEM;
2644                 goto aes_dd_err;
2645         }
2646
2647         aes_dd->dev = dev;
2648
2649         platform_set_drvdata(pdev, aes_dd);
2650
2651         INIT_LIST_HEAD(&aes_dd->list);
2652         spin_lock_init(&aes_dd->lock);
2653
2654         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2655                                         (unsigned long)aes_dd);
2656         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2657                                         (unsigned long)aes_dd);
2658
2659         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2660
2661         /* Get the base address */
2662         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2663         if (!aes_res) {
2664                 dev_err(dev, "no MEM resource info\n");
2665                 err = -ENODEV;
2666                 goto res_err;
2667         }
2668         aes_dd->phys_base = aes_res->start;
2669
2670         /* Get the IRQ */
2671         aes_dd->irq = platform_get_irq(pdev,  0);
2672         if (aes_dd->irq < 0) {
2673                 dev_err(dev, "no IRQ resource info\n");
2674                 err = aes_dd->irq;
2675                 goto res_err;
2676         }
2677
2678         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2679                                IRQF_SHARED, "atmel-aes", aes_dd);
2680         if (err) {
2681                 dev_err(dev, "unable to request aes irq.\n");
2682                 goto res_err;
2683         }
2684
2685         /* Initializing the clock */
2686         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2687         if (IS_ERR(aes_dd->iclk)) {
2688                 dev_err(dev, "clock initialization failed.\n");
2689                 err = PTR_ERR(aes_dd->iclk);
2690                 goto res_err;
2691         }
2692
2693         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2694         if (IS_ERR(aes_dd->io_base)) {
2695                 dev_err(dev, "can't ioremap\n");
2696                 err = PTR_ERR(aes_dd->io_base);
2697                 goto res_err;
2698         }
2699
2700         err = clk_prepare(aes_dd->iclk);
2701         if (err)
2702                 goto res_err;
2703
2704         err = atmel_aes_hw_version_init(aes_dd);
2705         if (err)
2706                 goto iclk_unprepare;
2707
2708         atmel_aes_get_cap(aes_dd);
2709
2710 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2711         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2712                 err = -EPROBE_DEFER;
2713                 goto iclk_unprepare;
2714         }
2715 #endif
2716
2717         err = atmel_aes_buff_init(aes_dd);
2718         if (err)
2719                 goto err_aes_buff;
2720
2721         err = atmel_aes_dma_init(aes_dd, pdata);
2722         if (err)
2723                 goto err_aes_dma;
2724
2725         spin_lock(&atmel_aes.lock);
2726         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2727         spin_unlock(&atmel_aes.lock);
2728
2729         err = atmel_aes_register_algs(aes_dd);
2730         if (err)
2731                 goto err_algs;
2732
2733         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2734                         dma_chan_name(aes_dd->src.chan),
2735                         dma_chan_name(aes_dd->dst.chan));
2736
2737         return 0;
2738
2739 err_algs:
2740         spin_lock(&atmel_aes.lock);
2741         list_del(&aes_dd->list);
2742         spin_unlock(&atmel_aes.lock);
2743         atmel_aes_dma_cleanup(aes_dd);
2744 err_aes_dma:
2745         atmel_aes_buff_cleanup(aes_dd);
2746 err_aes_buff:
2747 iclk_unprepare:
2748         clk_unprepare(aes_dd->iclk);
2749 res_err:
2750         tasklet_kill(&aes_dd->done_task);
2751         tasklet_kill(&aes_dd->queue_task);
2752 aes_dd_err:
2753         if (err != -EPROBE_DEFER)
2754                 dev_err(dev, "initialization failed.\n");
2755
2756         return err;
2757 }
2758
2759 static int atmel_aes_remove(struct platform_device *pdev)
2760 {
2761         struct atmel_aes_dev *aes_dd;
2762
2763         aes_dd = platform_get_drvdata(pdev);
2764         if (!aes_dd)
2765                 return -ENODEV;
2766         spin_lock(&atmel_aes.lock);
2767         list_del(&aes_dd->list);
2768         spin_unlock(&atmel_aes.lock);
2769
2770         atmel_aes_unregister_algs(aes_dd);
2771
2772         tasklet_kill(&aes_dd->done_task);
2773         tasklet_kill(&aes_dd->queue_task);
2774
2775         atmel_aes_dma_cleanup(aes_dd);
2776         atmel_aes_buff_cleanup(aes_dd);
2777
2778         clk_unprepare(aes_dd->iclk);
2779
2780         return 0;
2781 }
2782
2783 static struct platform_driver atmel_aes_driver = {
2784         .probe          = atmel_aes_probe,
2785         .remove         = atmel_aes_remove,
2786         .driver         = {
2787                 .name   = "atmel_aes",
2788                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2789         },
2790 };
2791
2792 module_platform_driver(atmel_aes_driver);
2793
2794 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2795 MODULE_LICENSE("GPL v2");
2796 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");