GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / crypto / ccree / cc_aead.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
3
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17
18 #define template_aead   template_u.aead
19
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25
26 #define AES_CCM_RFC4309_NONCE_SIZE 3
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28
29 /* Value of each ICV_CMP byte (of 8) in case of success */
30 #define ICV_VERIF_OK 0x01
31
32 struct cc_aead_handle {
33         cc_sram_addr_t sram_workspace_addr;
34         struct list_head aead_list;
35 };
36
37 struct cc_hmac_s {
38         u8 *padded_authkey;
39         u8 *ipad_opad; /* IPAD, OPAD*/
40         dma_addr_t padded_authkey_dma_addr;
41         dma_addr_t ipad_opad_dma_addr;
42 };
43
44 struct cc_xcbc_s {
45         u8 *xcbc_keys; /* K1,K2,K3 */
46         dma_addr_t xcbc_keys_dma_addr;
47 };
48
49 struct cc_aead_ctx {
50         struct cc_drvdata *drvdata;
51         u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
52         u8 *enckey;
53         dma_addr_t enckey_dma_addr;
54         union {
55                 struct cc_hmac_s hmac;
56                 struct cc_xcbc_s xcbc;
57         } auth_state;
58         unsigned int enc_keylen;
59         unsigned int auth_keylen;
60         unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
61         enum drv_cipher_mode cipher_mode;
62         enum cc_flow_mode flow_mode;
63         enum drv_hash_mode auth_mode;
64 };
65
66 static inline bool valid_assoclen(struct aead_request *req)
67 {
68         return ((req->assoclen == 16) || (req->assoclen == 20));
69 }
70
71 static void cc_aead_exit(struct crypto_aead *tfm)
72 {
73         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
74         struct device *dev = drvdata_to_dev(ctx->drvdata);
75
76         dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
77                 crypto_tfm_alg_name(&tfm->base));
78
79         /* Unmap enckey buffer */
80         if (ctx->enckey) {
81                 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
82                                   ctx->enckey_dma_addr);
83                 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
84                         &ctx->enckey_dma_addr);
85                 ctx->enckey_dma_addr = 0;
86                 ctx->enckey = NULL;
87         }
88
89         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
90                 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
91
92                 if (xcbc->xcbc_keys) {
93                         dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
94                                           xcbc->xcbc_keys,
95                                           xcbc->xcbc_keys_dma_addr);
96                 }
97                 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
98                         &xcbc->xcbc_keys_dma_addr);
99                 xcbc->xcbc_keys_dma_addr = 0;
100                 xcbc->xcbc_keys = NULL;
101         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
102                 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
103
104                 if (hmac->ipad_opad) {
105                         dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
106                                           hmac->ipad_opad,
107                                           hmac->ipad_opad_dma_addr);
108                         dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
109                                 &hmac->ipad_opad_dma_addr);
110                         hmac->ipad_opad_dma_addr = 0;
111                         hmac->ipad_opad = NULL;
112                 }
113                 if (hmac->padded_authkey) {
114                         dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
115                                           hmac->padded_authkey,
116                                           hmac->padded_authkey_dma_addr);
117                         dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
118                                 &hmac->padded_authkey_dma_addr);
119                         hmac->padded_authkey_dma_addr = 0;
120                         hmac->padded_authkey = NULL;
121                 }
122         }
123 }
124
125 static int cc_aead_init(struct crypto_aead *tfm)
126 {
127         struct aead_alg *alg = crypto_aead_alg(tfm);
128         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129         struct cc_crypto_alg *cc_alg =
130                         container_of(alg, struct cc_crypto_alg, aead_alg);
131         struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132
133         dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134                 crypto_tfm_alg_name(&tfm->base));
135
136         /* Initialize modes in instance */
137         ctx->cipher_mode = cc_alg->cipher_mode;
138         ctx->flow_mode = cc_alg->flow_mode;
139         ctx->auth_mode = cc_alg->auth_mode;
140         ctx->drvdata = cc_alg->drvdata;
141         crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
142
143         /* Allocate key buffer, cache line aligned */
144         ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145                                          &ctx->enckey_dma_addr, GFP_KERNEL);
146         if (!ctx->enckey) {
147                 dev_err(dev, "Failed allocating key buffer\n");
148                 goto init_failed;
149         }
150         dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151                 ctx->enckey);
152
153         /* Set default authlen value */
154
155         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156                 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157                 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158
159                 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160                 /* (and temporary for user key - up to 256b) */
161                 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162                                                      &xcbc->xcbc_keys_dma_addr,
163                                                      GFP_KERNEL);
164                 if (!xcbc->xcbc_keys) {
165                         dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166                         goto init_failed;
167                 }
168         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169                 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170                 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171                 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172
173                 /* Allocate dma-coherent buffer for IPAD + OPAD */
174                 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175                                                      &hmac->ipad_opad_dma_addr,
176                                                      GFP_KERNEL);
177
178                 if (!hmac->ipad_opad) {
179                         dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180                         goto init_failed;
181                 }
182
183                 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184                         hmac->ipad_opad);
185
186                 hmac->padded_authkey = dma_alloc_coherent(dev,
187                                                           MAX_HMAC_BLOCK_SIZE,
188                                                           pkey_dma,
189                                                           GFP_KERNEL);
190
191                 if (!hmac->padded_authkey) {
192                         dev_err(dev, "failed to allocate padded_authkey\n");
193                         goto init_failed;
194                 }
195         } else {
196                 ctx->auth_state.hmac.ipad_opad = NULL;
197                 ctx->auth_state.hmac.padded_authkey = NULL;
198         }
199
200         return 0;
201
202 init_failed:
203         cc_aead_exit(tfm);
204         return -ENOMEM;
205 }
206
207 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
208 {
209         struct aead_request *areq = (struct aead_request *)cc_req;
210         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
211         struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
212         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
213
214         cc_unmap_aead_request(dev, areq);
215
216         /* Restore ordinary iv pointer */
217         areq->iv = areq_ctx->backup_iv;
218
219         if (err)
220                 goto done;
221
222         if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
223                 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
224                            ctx->authsize) != 0) {
225                         dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
226                                 ctx->authsize, ctx->cipher_mode);
227                         /* In case of payload authentication failure, MUST NOT
228                          * revealed the decrypted message --> zero its memory.
229                          */
230                         cc_zero_sgl(areq->dst, areq->cryptlen);
231                         err = -EBADMSG;
232                 }
233         } else { /*ENCRYPT*/
234                 if (areq_ctx->is_icv_fragmented) {
235                         u32 skip = areq->cryptlen + areq_ctx->dst_offset;
236
237                         cc_copy_sg_portion(dev, areq_ctx->mac_buf,
238                                            areq_ctx->dst_sgl, skip,
239                                            (skip + ctx->authsize),
240                                            CC_SG_FROM_BUF);
241                 }
242
243                 /* If an IV was generated, copy it back to the user provided
244                  * buffer.
245                  */
246                 if (areq_ctx->backup_giv) {
247                         if (ctx->cipher_mode == DRV_CIPHER_CTR)
248                                 memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
249                                        CTR_RFC3686_NONCE_SIZE,
250                                        CTR_RFC3686_IV_SIZE);
251                         else if (ctx->cipher_mode == DRV_CIPHER_CCM)
252                                 memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
253                                        CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE);
254                 }
255         }
256 done:
257         aead_request_complete(areq, err);
258 }
259
260 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
261                                 struct cc_aead_ctx *ctx)
262 {
263         /* Load the AES key */
264         hw_desc_init(&desc[0]);
265         /* We are using for the source/user key the same buffer
266          * as for the output keys, * because after this key loading it
267          * is not needed anymore
268          */
269         set_din_type(&desc[0], DMA_DLLI,
270                      ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
271                      NS_BIT);
272         set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
273         set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
274         set_key_size_aes(&desc[0], ctx->auth_keylen);
275         set_flow_mode(&desc[0], S_DIN_to_AES);
276         set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
277
278         hw_desc_init(&desc[1]);
279         set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
280         set_flow_mode(&desc[1], DIN_AES_DOUT);
281         set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
282                       AES_KEYSIZE_128, NS_BIT, 0);
283
284         hw_desc_init(&desc[2]);
285         set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
286         set_flow_mode(&desc[2], DIN_AES_DOUT);
287         set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
288                                          + AES_KEYSIZE_128),
289                               AES_KEYSIZE_128, NS_BIT, 0);
290
291         hw_desc_init(&desc[3]);
292         set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
293         set_flow_mode(&desc[3], DIN_AES_DOUT);
294         set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
295                                           + 2 * AES_KEYSIZE_128),
296                               AES_KEYSIZE_128, NS_BIT, 0);
297
298         return 4;
299 }
300
301 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
302 {
303         unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
304         unsigned int digest_ofs = 0;
305         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
306                         DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
307         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
308                         CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
309         struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
310
311         unsigned int idx = 0;
312         int i;
313
314         /* calc derived HMAC key */
315         for (i = 0; i < 2; i++) {
316                 /* Load hash initial state */
317                 hw_desc_init(&desc[idx]);
318                 set_cipher_mode(&desc[idx], hash_mode);
319                 set_din_sram(&desc[idx],
320                              cc_larval_digest_addr(ctx->drvdata,
321                                                    ctx->auth_mode),
322                              digest_size);
323                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
324                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
325                 idx++;
326
327                 /* Load the hash current length*/
328                 hw_desc_init(&desc[idx]);
329                 set_cipher_mode(&desc[idx], hash_mode);
330                 set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
331                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
332                 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
333                 idx++;
334
335                 /* Prepare ipad key */
336                 hw_desc_init(&desc[idx]);
337                 set_xor_val(&desc[idx], hmac_pad_const[i]);
338                 set_cipher_mode(&desc[idx], hash_mode);
339                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
340                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
341                 idx++;
342
343                 /* Perform HASH update */
344                 hw_desc_init(&desc[idx]);
345                 set_din_type(&desc[idx], DMA_DLLI,
346                              hmac->padded_authkey_dma_addr,
347                              SHA256_BLOCK_SIZE, NS_BIT);
348                 set_cipher_mode(&desc[idx], hash_mode);
349                 set_xor_active(&desc[idx]);
350                 set_flow_mode(&desc[idx], DIN_HASH);
351                 idx++;
352
353                 /* Get the digset */
354                 hw_desc_init(&desc[idx]);
355                 set_cipher_mode(&desc[idx], hash_mode);
356                 set_dout_dlli(&desc[idx],
357                               (hmac->ipad_opad_dma_addr + digest_ofs),
358                               digest_size, NS_BIT, 0);
359                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
360                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
361                 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
362                 idx++;
363
364                 digest_ofs += digest_size;
365         }
366
367         return idx;
368 }
369
370 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
371 {
372         struct device *dev = drvdata_to_dev(ctx->drvdata);
373
374         dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
375                 ctx->enc_keylen, ctx->auth_keylen);
376
377         switch (ctx->auth_mode) {
378         case DRV_HASH_SHA1:
379         case DRV_HASH_SHA256:
380                 break;
381         case DRV_HASH_XCBC_MAC:
382                 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
383                     ctx->auth_keylen != AES_KEYSIZE_192 &&
384                     ctx->auth_keylen != AES_KEYSIZE_256)
385                         return -ENOTSUPP;
386                 break;
387         case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
388                 if (ctx->auth_keylen > 0)
389                         return -EINVAL;
390                 break;
391         default:
392                 dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
393                 return -EINVAL;
394         }
395         /* Check cipher key size */
396         if (ctx->flow_mode == S_DIN_to_DES) {
397                 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
398                         dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
399                                 ctx->enc_keylen);
400                         return -EINVAL;
401                 }
402         } else { /* Default assumed to be AES ciphers */
403                 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
404                     ctx->enc_keylen != AES_KEYSIZE_192 &&
405                     ctx->enc_keylen != AES_KEYSIZE_256) {
406                         dev_err(dev, "Invalid cipher(AES) key size: %u\n",
407                                 ctx->enc_keylen);
408                         return -EINVAL;
409                 }
410         }
411
412         return 0; /* All tests of keys sizes passed */
413 }
414
415 /* This function prepers the user key so it can pass to the hmac processing
416  * (copy to intenral buffer or hash in case of key longer than block
417  */
418 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
419                                  unsigned int keylen)
420 {
421         dma_addr_t key_dma_addr = 0;
422         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
423         struct device *dev = drvdata_to_dev(ctx->drvdata);
424         u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
425         struct cc_crypto_req cc_req = {};
426         unsigned int blocksize;
427         unsigned int digestsize;
428         unsigned int hashmode;
429         unsigned int idx = 0;
430         int rc = 0;
431         u8 *key = NULL;
432         struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
433         dma_addr_t padded_authkey_dma_addr =
434                 ctx->auth_state.hmac.padded_authkey_dma_addr;
435
436         switch (ctx->auth_mode) { /* auth_key required and >0 */
437         case DRV_HASH_SHA1:
438                 blocksize = SHA1_BLOCK_SIZE;
439                 digestsize = SHA1_DIGEST_SIZE;
440                 hashmode = DRV_HASH_HW_SHA1;
441                 break;
442         case DRV_HASH_SHA256:
443         default:
444                 blocksize = SHA256_BLOCK_SIZE;
445                 digestsize = SHA256_DIGEST_SIZE;
446                 hashmode = DRV_HASH_HW_SHA256;
447         }
448
449         if (keylen != 0) {
450
451                 key = kmemdup(authkey, keylen, GFP_KERNEL);
452                 if (!key)
453                         return -ENOMEM;
454
455                 key_dma_addr = dma_map_single(dev, (void *)key, keylen,
456                                               DMA_TO_DEVICE);
457                 if (dma_mapping_error(dev, key_dma_addr)) {
458                         dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
459                                 key, keylen);
460                         kzfree(key);
461                         return -ENOMEM;
462                 }
463                 if (keylen > blocksize) {
464                         /* Load hash initial state */
465                         hw_desc_init(&desc[idx]);
466                         set_cipher_mode(&desc[idx], hashmode);
467                         set_din_sram(&desc[idx], larval_addr, digestsize);
468                         set_flow_mode(&desc[idx], S_DIN_to_HASH);
469                         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
470                         idx++;
471
472                         /* Load the hash current length*/
473                         hw_desc_init(&desc[idx]);
474                         set_cipher_mode(&desc[idx], hashmode);
475                         set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
476                         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
477                         set_flow_mode(&desc[idx], S_DIN_to_HASH);
478                         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
479                         idx++;
480
481                         hw_desc_init(&desc[idx]);
482                         set_din_type(&desc[idx], DMA_DLLI,
483                                      key_dma_addr, keylen, NS_BIT);
484                         set_flow_mode(&desc[idx], DIN_HASH);
485                         idx++;
486
487                         /* Get hashed key */
488                         hw_desc_init(&desc[idx]);
489                         set_cipher_mode(&desc[idx], hashmode);
490                         set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
491                                       digestsize, NS_BIT, 0);
492                         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
493                         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
494                         set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
495                         set_cipher_config0(&desc[idx],
496                                            HASH_DIGEST_RESULT_LITTLE_ENDIAN);
497                         idx++;
498
499                         hw_desc_init(&desc[idx]);
500                         set_din_const(&desc[idx], 0, (blocksize - digestsize));
501                         set_flow_mode(&desc[idx], BYPASS);
502                         set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
503                                       digestsize), (blocksize - digestsize),
504                                       NS_BIT, 0);
505                         idx++;
506                 } else {
507                         hw_desc_init(&desc[idx]);
508                         set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
509                                      keylen, NS_BIT);
510                         set_flow_mode(&desc[idx], BYPASS);
511                         set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
512                                       keylen, NS_BIT, 0);
513                         idx++;
514
515                         if ((blocksize - keylen) != 0) {
516                                 hw_desc_init(&desc[idx]);
517                                 set_din_const(&desc[idx], 0,
518                                               (blocksize - keylen));
519                                 set_flow_mode(&desc[idx], BYPASS);
520                                 set_dout_dlli(&desc[idx],
521                                               (padded_authkey_dma_addr +
522                                                keylen),
523                                               (blocksize - keylen), NS_BIT, 0);
524                                 idx++;
525                         }
526                 }
527         } else {
528                 hw_desc_init(&desc[idx]);
529                 set_din_const(&desc[idx], 0, (blocksize - keylen));
530                 set_flow_mode(&desc[idx], BYPASS);
531                 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
532                               blocksize, NS_BIT, 0);
533                 idx++;
534         }
535
536         rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
537         if (rc)
538                 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
539
540         if (key_dma_addr)
541                 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
542
543         kzfree(key);
544
545         return rc;
546 }
547
548 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
549                           unsigned int keylen)
550 {
551         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
552         struct cc_crypto_req cc_req = {};
553         struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
554         unsigned int seq_len = 0;
555         struct device *dev = drvdata_to_dev(ctx->drvdata);
556         const u8 *enckey, *authkey;
557         int rc;
558
559         dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
560                 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
561
562         /* STAT_PHASE_0: Init and sanity checks */
563
564         if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
565                 struct crypto_authenc_keys keys;
566
567                 rc = crypto_authenc_extractkeys(&keys, key, keylen);
568                 if (rc)
569                         goto badkey;
570                 enckey = keys.enckey;
571                 authkey = keys.authkey;
572                 ctx->enc_keylen = keys.enckeylen;
573                 ctx->auth_keylen = keys.authkeylen;
574
575                 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
576                         /* the nonce is stored in bytes at end of key */
577                         rc = -EINVAL;
578                         if (ctx->enc_keylen <
579                             (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
580                                 goto badkey;
581                         /* Copy nonce from last 4 bytes in CTR key to
582                          *  first 4 bytes in CTR IV
583                          */
584                         memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
585                                CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
586                         /* Set CTR key size */
587                         ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
588                 }
589         } else { /* non-authenc - has just one key */
590                 enckey = key;
591                 authkey = NULL;
592                 ctx->enc_keylen = keylen;
593                 ctx->auth_keylen = 0;
594         }
595
596         rc = validate_keys_sizes(ctx);
597         if (rc)
598                 goto badkey;
599
600         /* STAT_PHASE_1: Copy key to ctx */
601
602         /* Get key material */
603         memcpy(ctx->enckey, enckey, ctx->enc_keylen);
604         if (ctx->enc_keylen == 24)
605                 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
606         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
607                 memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
608                        ctx->auth_keylen);
609         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
610                 rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
611                 if (rc)
612                         goto badkey;
613         }
614
615         /* STAT_PHASE_2: Create sequence */
616
617         switch (ctx->auth_mode) {
618         case DRV_HASH_SHA1:
619         case DRV_HASH_SHA256:
620                 seq_len = hmac_setkey(desc, ctx);
621                 break;
622         case DRV_HASH_XCBC_MAC:
623                 seq_len = xcbc_setkey(desc, ctx);
624                 break;
625         case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
626                 break; /* No auth. key setup */
627         default:
628                 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
629                 rc = -ENOTSUPP;
630                 goto badkey;
631         }
632
633         /* STAT_PHASE_3: Submit sequence to HW */
634
635         if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
636                 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
637                 if (rc) {
638                         dev_err(dev, "send_request() failed (rc=%d)\n", rc);
639                         goto setkey_error;
640                 }
641         }
642
643         /* Update STAT_PHASE_3 */
644         return rc;
645
646 badkey:
647         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
648
649 setkey_error:
650         return rc;
651 }
652
653 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
654                                  unsigned int keylen)
655 {
656         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
657
658         if (keylen < 3)
659                 return -EINVAL;
660
661         keylen -= 3;
662         memcpy(ctx->ctr_nonce, key + keylen, 3);
663
664         return cc_aead_setkey(tfm, key, keylen);
665 }
666
667 static int cc_aead_setauthsize(struct crypto_aead *authenc,
668                                unsigned int authsize)
669 {
670         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
671         struct device *dev = drvdata_to_dev(ctx->drvdata);
672
673         /* Unsupported auth. sizes */
674         if (authsize == 0 ||
675             authsize > crypto_aead_maxauthsize(authenc)) {
676                 return -ENOTSUPP;
677         }
678
679         ctx->authsize = authsize;
680         dev_dbg(dev, "authlen=%d\n", ctx->authsize);
681
682         return 0;
683 }
684
685 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
686                                       unsigned int authsize)
687 {
688         switch (authsize) {
689         case 8:
690         case 12:
691         case 16:
692                 break;
693         default:
694                 return -EINVAL;
695         }
696
697         return cc_aead_setauthsize(authenc, authsize);
698 }
699
700 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
701                               unsigned int authsize)
702 {
703         switch (authsize) {
704         case 4:
705         case 6:
706         case 8:
707         case 10:
708         case 12:
709         case 14:
710         case 16:
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         return cc_aead_setauthsize(authenc, authsize);
717 }
718
719 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
720                               struct cc_hw_desc desc[], unsigned int *seq_size)
721 {
722         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
723         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
724         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
725         enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
726         unsigned int idx = *seq_size;
727         struct device *dev = drvdata_to_dev(ctx->drvdata);
728
729         switch (assoc_dma_type) {
730         case CC_DMA_BUF_DLLI:
731                 dev_dbg(dev, "ASSOC buffer type DLLI\n");
732                 hw_desc_init(&desc[idx]);
733                 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
734                              areq_ctx->assoclen, NS_BIT);
735                 set_flow_mode(&desc[idx], flow_mode);
736                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
737                     areq_ctx->cryptlen > 0)
738                         set_din_not_last_indication(&desc[idx]);
739                 break;
740         case CC_DMA_BUF_MLLI:
741                 dev_dbg(dev, "ASSOC buffer type MLLI\n");
742                 hw_desc_init(&desc[idx]);
743                 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
744                              areq_ctx->assoc.mlli_nents, NS_BIT);
745                 set_flow_mode(&desc[idx], flow_mode);
746                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
747                     areq_ctx->cryptlen > 0)
748                         set_din_not_last_indication(&desc[idx]);
749                 break;
750         case CC_DMA_BUF_NULL:
751         default:
752                 dev_err(dev, "Invalid ASSOC buffer type\n");
753         }
754
755         *seq_size = (++idx);
756 }
757
758 static void cc_proc_authen_desc(struct aead_request *areq,
759                                 unsigned int flow_mode,
760                                 struct cc_hw_desc desc[],
761                                 unsigned int *seq_size, int direct)
762 {
763         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
764         enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
765         unsigned int idx = *seq_size;
766         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
767         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
768         struct device *dev = drvdata_to_dev(ctx->drvdata);
769
770         switch (data_dma_type) {
771         case CC_DMA_BUF_DLLI:
772         {
773                 struct scatterlist *cipher =
774                         (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
775                         areq_ctx->dst_sgl : areq_ctx->src_sgl;
776
777                 unsigned int offset =
778                         (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
779                         areq_ctx->dst_offset : areq_ctx->src_offset;
780                 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
781                 hw_desc_init(&desc[idx]);
782                 set_din_type(&desc[idx], DMA_DLLI,
783                              (sg_dma_address(cipher) + offset),
784                              areq_ctx->cryptlen, NS_BIT);
785                 set_flow_mode(&desc[idx], flow_mode);
786                 break;
787         }
788         case CC_DMA_BUF_MLLI:
789         {
790                 /* DOUBLE-PASS flow (as default)
791                  * assoc. + iv + data -compact in one table
792                  * if assoclen is ZERO only IV perform
793                  */
794                 cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
795                 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
796
797                 if (areq_ctx->is_single_pass) {
798                         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
799                                 mlli_addr = areq_ctx->dst.sram_addr;
800                                 mlli_nents = areq_ctx->dst.mlli_nents;
801                         } else {
802                                 mlli_addr = areq_ctx->src.sram_addr;
803                                 mlli_nents = areq_ctx->src.mlli_nents;
804                         }
805                 }
806
807                 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
808                 hw_desc_init(&desc[idx]);
809                 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
810                              NS_BIT);
811                 set_flow_mode(&desc[idx], flow_mode);
812                 break;
813         }
814         case CC_DMA_BUF_NULL:
815         default:
816                 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
817         }
818
819         *seq_size = (++idx);
820 }
821
822 static void cc_proc_cipher_desc(struct aead_request *areq,
823                                 unsigned int flow_mode,
824                                 struct cc_hw_desc desc[],
825                                 unsigned int *seq_size)
826 {
827         unsigned int idx = *seq_size;
828         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
829         enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
830         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
831         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
832         struct device *dev = drvdata_to_dev(ctx->drvdata);
833
834         if (areq_ctx->cryptlen == 0)
835                 return; /*null processing*/
836
837         switch (data_dma_type) {
838         case CC_DMA_BUF_DLLI:
839                 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
840                 hw_desc_init(&desc[idx]);
841                 set_din_type(&desc[idx], DMA_DLLI,
842                              (sg_dma_address(areq_ctx->src_sgl) +
843                               areq_ctx->src_offset), areq_ctx->cryptlen,
844                               NS_BIT);
845                 set_dout_dlli(&desc[idx],
846                               (sg_dma_address(areq_ctx->dst_sgl) +
847                                areq_ctx->dst_offset),
848                               areq_ctx->cryptlen, NS_BIT, 0);
849                 set_flow_mode(&desc[idx], flow_mode);
850                 break;
851         case CC_DMA_BUF_MLLI:
852                 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
853                 hw_desc_init(&desc[idx]);
854                 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
855                              areq_ctx->src.mlli_nents, NS_BIT);
856                 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
857                               areq_ctx->dst.mlli_nents, NS_BIT, 0);
858                 set_flow_mode(&desc[idx], flow_mode);
859                 break;
860         case CC_DMA_BUF_NULL:
861         default:
862                 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
863         }
864
865         *seq_size = (++idx);
866 }
867
868 static void cc_proc_digest_desc(struct aead_request *req,
869                                 struct cc_hw_desc desc[],
870                                 unsigned int *seq_size)
871 {
872         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
873         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
874         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
875         unsigned int idx = *seq_size;
876         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
877                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
878         int direct = req_ctx->gen_ctx.op_type;
879
880         /* Get final ICV result */
881         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
882                 hw_desc_init(&desc[idx]);
883                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
884                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
885                 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
886                               NS_BIT, 1);
887                 set_queue_last_ind(ctx->drvdata, &desc[idx]);
888                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
889                         set_aes_not_hash_mode(&desc[idx]);
890                         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
891                 } else {
892                         set_cipher_config0(&desc[idx],
893                                            HASH_DIGEST_RESULT_LITTLE_ENDIAN);
894                         set_cipher_mode(&desc[idx], hash_mode);
895                 }
896         } else { /*Decrypt*/
897                 /* Get ICV out from hardware */
898                 hw_desc_init(&desc[idx]);
899                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
900                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
901                 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
902                               ctx->authsize, NS_BIT, 1);
903                 set_queue_last_ind(ctx->drvdata, &desc[idx]);
904                 set_cipher_config0(&desc[idx],
905                                    HASH_DIGEST_RESULT_LITTLE_ENDIAN);
906                 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
907                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
908                         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
909                         set_aes_not_hash_mode(&desc[idx]);
910                 } else {
911                         set_cipher_mode(&desc[idx], hash_mode);
912                 }
913         }
914
915         *seq_size = (++idx);
916 }
917
918 static void cc_set_cipher_desc(struct aead_request *req,
919                                struct cc_hw_desc desc[],
920                                unsigned int *seq_size)
921 {
922         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
923         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
924         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
925         unsigned int hw_iv_size = req_ctx->hw_iv_size;
926         unsigned int idx = *seq_size;
927         int direct = req_ctx->gen_ctx.op_type;
928
929         /* Setup cipher state */
930         hw_desc_init(&desc[idx]);
931         set_cipher_config0(&desc[idx], direct);
932         set_flow_mode(&desc[idx], ctx->flow_mode);
933         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
934                      hw_iv_size, NS_BIT);
935         if (ctx->cipher_mode == DRV_CIPHER_CTR)
936                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
937         else
938                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
939         set_cipher_mode(&desc[idx], ctx->cipher_mode);
940         idx++;
941
942         /* Setup enc. key */
943         hw_desc_init(&desc[idx]);
944         set_cipher_config0(&desc[idx], direct);
945         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
946         set_flow_mode(&desc[idx], ctx->flow_mode);
947         if (ctx->flow_mode == S_DIN_to_AES) {
948                 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
949                              ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
950                               ctx->enc_keylen), NS_BIT);
951                 set_key_size_aes(&desc[idx], ctx->enc_keylen);
952         } else {
953                 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
954                              ctx->enc_keylen, NS_BIT);
955                 set_key_size_des(&desc[idx], ctx->enc_keylen);
956         }
957         set_cipher_mode(&desc[idx], ctx->cipher_mode);
958         idx++;
959
960         *seq_size = idx;
961 }
962
963 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
964                            unsigned int *seq_size, unsigned int data_flow_mode)
965 {
966         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
967         int direct = req_ctx->gen_ctx.op_type;
968         unsigned int idx = *seq_size;
969
970         if (req_ctx->cryptlen == 0)
971                 return; /*null processing*/
972
973         cc_set_cipher_desc(req, desc, &idx);
974         cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
975         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
976                 /* We must wait for DMA to write all cipher */
977                 hw_desc_init(&desc[idx]);
978                 set_din_no_dma(&desc[idx], 0, 0xfffff0);
979                 set_dout_no_dma(&desc[idx], 0, 0, 1);
980                 idx++;
981         }
982
983         *seq_size = idx;
984 }
985
986 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
987                              unsigned int *seq_size)
988 {
989         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
990         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
991         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
992                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
993         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
994                                 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
995         unsigned int idx = *seq_size;
996
997         /* Loading hash ipad xor key state */
998         hw_desc_init(&desc[idx]);
999         set_cipher_mode(&desc[idx], hash_mode);
1000         set_din_type(&desc[idx], DMA_DLLI,
1001                      ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1002                      NS_BIT);
1003         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1004         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1005         idx++;
1006
1007         /* Load init. digest len (64 bytes) */
1008         hw_desc_init(&desc[idx]);
1009         set_cipher_mode(&desc[idx], hash_mode);
1010         set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1011                      ctx->drvdata->hash_len_sz);
1012         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1013         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1014         idx++;
1015
1016         *seq_size = idx;
1017 }
1018
1019 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1020                              unsigned int *seq_size)
1021 {
1022         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1023         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1024         unsigned int idx = *seq_size;
1025
1026         /* Loading MAC state */
1027         hw_desc_init(&desc[idx]);
1028         set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1029         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1030         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1031         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1032         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1033         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1034         set_aes_not_hash_mode(&desc[idx]);
1035         idx++;
1036
1037         /* Setup XCBC MAC K1 */
1038         hw_desc_init(&desc[idx]);
1039         set_din_type(&desc[idx], DMA_DLLI,
1040                      ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1041                      AES_KEYSIZE_128, NS_BIT);
1042         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1043         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1044         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1045         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1046         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1047         set_aes_not_hash_mode(&desc[idx]);
1048         idx++;
1049
1050         /* Setup XCBC MAC K2 */
1051         hw_desc_init(&desc[idx]);
1052         set_din_type(&desc[idx], DMA_DLLI,
1053                      (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1054                       AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1055         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1056         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1057         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1058         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1059         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1060         set_aes_not_hash_mode(&desc[idx]);
1061         idx++;
1062
1063         /* Setup XCBC MAC K3 */
1064         hw_desc_init(&desc[idx]);
1065         set_din_type(&desc[idx], DMA_DLLI,
1066                      (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1067                       2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1068         set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1069         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1070         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1071         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1072         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1073         set_aes_not_hash_mode(&desc[idx]);
1074         idx++;
1075
1076         *seq_size = idx;
1077 }
1078
1079 static void cc_proc_header_desc(struct aead_request *req,
1080                                 struct cc_hw_desc desc[],
1081                                 unsigned int *seq_size)
1082 {
1083         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1084         unsigned int idx = *seq_size;
1085
1086         /* Hash associated data */
1087         if (areq_ctx->assoclen > 0)
1088                 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1089
1090         /* Hash IV */
1091         *seq_size = idx;
1092 }
1093
1094 static void cc_proc_scheme_desc(struct aead_request *req,
1095                                 struct cc_hw_desc desc[],
1096                                 unsigned int *seq_size)
1097 {
1098         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1099         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1100         struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1101         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1102                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1103         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104                                 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1105         unsigned int idx = *seq_size;
1106
1107         hw_desc_init(&desc[idx]);
1108         set_cipher_mode(&desc[idx], hash_mode);
1109         set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1110                       ctx->drvdata->hash_len_sz);
1111         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1112         set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1113         set_cipher_do(&desc[idx], DO_PAD);
1114         idx++;
1115
1116         /* Get final ICV result */
1117         hw_desc_init(&desc[idx]);
1118         set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1119                       digest_size);
1120         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1121         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1122         set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1123         set_cipher_mode(&desc[idx], hash_mode);
1124         idx++;
1125
1126         /* Loading hash opad xor key state */
1127         hw_desc_init(&desc[idx]);
1128         set_cipher_mode(&desc[idx], hash_mode);
1129         set_din_type(&desc[idx], DMA_DLLI,
1130                      (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1131                      digest_size, NS_BIT);
1132         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1133         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1134         idx++;
1135
1136         /* Load init. digest len (64 bytes) */
1137         hw_desc_init(&desc[idx]);
1138         set_cipher_mode(&desc[idx], hash_mode);
1139         set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1140                      ctx->drvdata->hash_len_sz);
1141         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1142         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1143         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1144         idx++;
1145
1146         /* Perform HASH update */
1147         hw_desc_init(&desc[idx]);
1148         set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1149                      digest_size);
1150         set_flow_mode(&desc[idx], DIN_HASH);
1151         idx++;
1152
1153         *seq_size = idx;
1154 }
1155
1156 static void cc_mlli_to_sram(struct aead_request *req,
1157                             struct cc_hw_desc desc[], unsigned int *seq_size)
1158 {
1159         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1160         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1161         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1162         struct device *dev = drvdata_to_dev(ctx->drvdata);
1163
1164         if (req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1165             req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1166             !req_ctx->is_single_pass) {
1167                 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1168                         (unsigned int)ctx->drvdata->mlli_sram_addr,
1169                         req_ctx->mlli_params.mlli_len);
1170                 /* Copy MLLI table host-to-sram */
1171                 hw_desc_init(&desc[*seq_size]);
1172                 set_din_type(&desc[*seq_size], DMA_DLLI,
1173                              req_ctx->mlli_params.mlli_dma_addr,
1174                              req_ctx->mlli_params.mlli_len, NS_BIT);
1175                 set_dout_sram(&desc[*seq_size],
1176                               ctx->drvdata->mlli_sram_addr,
1177                               req_ctx->mlli_params.mlli_len);
1178                 set_flow_mode(&desc[*seq_size], BYPASS);
1179                 (*seq_size)++;
1180         }
1181 }
1182
1183 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1184                                           enum cc_flow_mode setup_flow_mode,
1185                                           bool is_single_pass)
1186 {
1187         enum cc_flow_mode data_flow_mode;
1188
1189         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1190                 if (setup_flow_mode == S_DIN_to_AES)
1191                         data_flow_mode = is_single_pass ?
1192                                 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1193                 else
1194                         data_flow_mode = is_single_pass ?
1195                                 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1196         } else { /* Decrypt */
1197                 if (setup_flow_mode == S_DIN_to_AES)
1198                         data_flow_mode = is_single_pass ?
1199                                 AES_and_HASH : DIN_AES_DOUT;
1200                 else
1201                         data_flow_mode = is_single_pass ?
1202                                 DES_and_HASH : DIN_DES_DOUT;
1203         }
1204
1205         return data_flow_mode;
1206 }
1207
1208 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1209                             unsigned int *seq_size)
1210 {
1211         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1212         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1213         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1214         int direct = req_ctx->gen_ctx.op_type;
1215         unsigned int data_flow_mode =
1216                 cc_get_data_flow(direct, ctx->flow_mode,
1217                                  req_ctx->is_single_pass);
1218
1219         if (req_ctx->is_single_pass) {
1220                 /**
1221                  * Single-pass flow
1222                  */
1223                 cc_set_hmac_desc(req, desc, seq_size);
1224                 cc_set_cipher_desc(req, desc, seq_size);
1225                 cc_proc_header_desc(req, desc, seq_size);
1226                 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1227                 cc_proc_scheme_desc(req, desc, seq_size);
1228                 cc_proc_digest_desc(req, desc, seq_size);
1229                 return;
1230         }
1231
1232         /**
1233          * Double-pass flow
1234          * Fallback for unsupported single-pass modes,
1235          * i.e. using assoc. data of non-word-multiple
1236          */
1237         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1238                 /* encrypt first.. */
1239                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1240                 /* authenc after..*/
1241                 cc_set_hmac_desc(req, desc, seq_size);
1242                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1243                 cc_proc_scheme_desc(req, desc, seq_size);
1244                 cc_proc_digest_desc(req, desc, seq_size);
1245
1246         } else { /*DECRYPT*/
1247                 /* authenc first..*/
1248                 cc_set_hmac_desc(req, desc, seq_size);
1249                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1250                 cc_proc_scheme_desc(req, desc, seq_size);
1251                 /* decrypt after.. */
1252                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1253                 /* read the digest result with setting the completion bit
1254                  * must be after the cipher operation
1255                  */
1256                 cc_proc_digest_desc(req, desc, seq_size);
1257         }
1258 }
1259
1260 static void
1261 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1262                 unsigned int *seq_size)
1263 {
1264         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1265         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1266         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1267         int direct = req_ctx->gen_ctx.op_type;
1268         unsigned int data_flow_mode =
1269                 cc_get_data_flow(direct, ctx->flow_mode,
1270                                  req_ctx->is_single_pass);
1271
1272         if (req_ctx->is_single_pass) {
1273                 /**
1274                  * Single-pass flow
1275                  */
1276                 cc_set_xcbc_desc(req, desc, seq_size);
1277                 cc_set_cipher_desc(req, desc, seq_size);
1278                 cc_proc_header_desc(req, desc, seq_size);
1279                 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1280                 cc_proc_digest_desc(req, desc, seq_size);
1281                 return;
1282         }
1283
1284         /**
1285          * Double-pass flow
1286          * Fallback for unsupported single-pass modes,
1287          * i.e. using assoc. data of non-word-multiple
1288          */
1289         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1290                 /* encrypt first.. */
1291                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1292                 /* authenc after.. */
1293                 cc_set_xcbc_desc(req, desc, seq_size);
1294                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1295                 cc_proc_digest_desc(req, desc, seq_size);
1296         } else { /*DECRYPT*/
1297                 /* authenc first.. */
1298                 cc_set_xcbc_desc(req, desc, seq_size);
1299                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1300                 /* decrypt after..*/
1301                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1302                 /* read the digest result with setting the completion bit
1303                  * must be after the cipher operation
1304                  */
1305                 cc_proc_digest_desc(req, desc, seq_size);
1306         }
1307 }
1308
1309 static int validate_data_size(struct cc_aead_ctx *ctx,
1310                               enum drv_crypto_direction direct,
1311                               struct aead_request *req)
1312 {
1313         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1314         struct device *dev = drvdata_to_dev(ctx->drvdata);
1315         unsigned int assoclen = areq_ctx->assoclen;
1316         unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1317                         (req->cryptlen - ctx->authsize) : req->cryptlen;
1318
1319         if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1320             req->cryptlen < ctx->authsize)
1321                 goto data_size_err;
1322
1323         areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1324
1325         switch (ctx->flow_mode) {
1326         case S_DIN_to_AES:
1327                 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1328                     !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1329                         goto data_size_err;
1330                 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1331                         break;
1332                 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1333                         if (areq_ctx->plaintext_authenticate_only)
1334                                 areq_ctx->is_single_pass = false;
1335                         break;
1336                 }
1337
1338                 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1339                         areq_ctx->is_single_pass = false;
1340
1341                 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1342                     !IS_ALIGNED(cipherlen, sizeof(u32)))
1343                         areq_ctx->is_single_pass = false;
1344
1345                 break;
1346         case S_DIN_to_DES:
1347                 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1348                         goto data_size_err;
1349                 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1350                         areq_ctx->is_single_pass = false;
1351                 break;
1352         default:
1353                 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1354                 goto data_size_err;
1355         }
1356
1357         return 0;
1358
1359 data_size_err:
1360         return -EINVAL;
1361 }
1362
1363 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1364 {
1365         unsigned int len = 0;
1366
1367         if (header_size == 0)
1368                 return 0;
1369
1370         if (header_size < ((1UL << 16) - (1UL << 8))) {
1371                 len = 2;
1372
1373                 pa0_buff[0] = (header_size >> 8) & 0xFF;
1374                 pa0_buff[1] = header_size & 0xFF;
1375         } else {
1376                 len = 6;
1377
1378                 pa0_buff[0] = 0xFF;
1379                 pa0_buff[1] = 0xFE;
1380                 pa0_buff[2] = (header_size >> 24) & 0xFF;
1381                 pa0_buff[3] = (header_size >> 16) & 0xFF;
1382                 pa0_buff[4] = (header_size >> 8) & 0xFF;
1383                 pa0_buff[5] = header_size & 0xFF;
1384         }
1385
1386         return len;
1387 }
1388
1389 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1390 {
1391         __be32 data;
1392
1393         memset(block, 0, csize);
1394         block += csize;
1395
1396         if (csize >= 4)
1397                 csize = 4;
1398         else if (msglen > (1 << (8 * csize)))
1399                 return -EOVERFLOW;
1400
1401         data = cpu_to_be32(msglen);
1402         memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1403
1404         return 0;
1405 }
1406
1407 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1408                   unsigned int *seq_size)
1409 {
1410         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1411         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1412         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1413         unsigned int idx = *seq_size;
1414         unsigned int cipher_flow_mode;
1415         dma_addr_t mac_result;
1416
1417         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1418                 cipher_flow_mode = AES_to_HASH_and_DOUT;
1419                 mac_result = req_ctx->mac_buf_dma_addr;
1420         } else { /* Encrypt */
1421                 cipher_flow_mode = AES_and_HASH;
1422                 mac_result = req_ctx->icv_dma_addr;
1423         }
1424
1425         /* load key */
1426         hw_desc_init(&desc[idx]);
1427         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1428         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1429                      ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1430                       ctx->enc_keylen), NS_BIT);
1431         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1432         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1433         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1434         set_flow_mode(&desc[idx], S_DIN_to_AES);
1435         idx++;
1436
1437         /* load ctr state */
1438         hw_desc_init(&desc[idx]);
1439         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1440         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1441         set_din_type(&desc[idx], DMA_DLLI,
1442                      req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1443         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1444         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1445         set_flow_mode(&desc[idx], S_DIN_to_AES);
1446         idx++;
1447
1448         /* load MAC key */
1449         hw_desc_init(&desc[idx]);
1450         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1451         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1452                      ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1453                       ctx->enc_keylen), NS_BIT);
1454         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1455         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1456         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1457         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1458         set_aes_not_hash_mode(&desc[idx]);
1459         idx++;
1460
1461         /* load MAC state */
1462         hw_desc_init(&desc[idx]);
1463         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1464         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1465         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1466                      AES_BLOCK_SIZE, NS_BIT);
1467         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1468         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1469         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1470         set_aes_not_hash_mode(&desc[idx]);
1471         idx++;
1472
1473         /* process assoc data */
1474         if (req_ctx->assoclen > 0) {
1475                 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1476         } else {
1477                 hw_desc_init(&desc[idx]);
1478                 set_din_type(&desc[idx], DMA_DLLI,
1479                              sg_dma_address(&req_ctx->ccm_adata_sg),
1480                              AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1481                 set_flow_mode(&desc[idx], DIN_HASH);
1482                 idx++;
1483         }
1484
1485         /* process the cipher */
1486         if (req_ctx->cryptlen)
1487                 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1488
1489         /* Read temporal MAC */
1490         hw_desc_init(&desc[idx]);
1491         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1492         set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1493                       NS_BIT, 0);
1494         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1495         set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1496         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1497         set_aes_not_hash_mode(&desc[idx]);
1498         idx++;
1499
1500         /* load AES-CTR state (for last MAC calculation)*/
1501         hw_desc_init(&desc[idx]);
1502         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1503         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1504         set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1505                      AES_BLOCK_SIZE, NS_BIT);
1506         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1507         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1508         set_flow_mode(&desc[idx], S_DIN_to_AES);
1509         idx++;
1510
1511         hw_desc_init(&desc[idx]);
1512         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1513         set_dout_no_dma(&desc[idx], 0, 0, 1);
1514         idx++;
1515
1516         /* encrypt the "T" value and store MAC in mac_state */
1517         hw_desc_init(&desc[idx]);
1518         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1519                      ctx->authsize, NS_BIT);
1520         set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1521         set_queue_last_ind(ctx->drvdata, &desc[idx]);
1522         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1523         idx++;
1524
1525         *seq_size = idx;
1526         return 0;
1527 }
1528
1529 static int config_ccm_adata(struct aead_request *req)
1530 {
1531         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1532         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1533         struct device *dev = drvdata_to_dev(ctx->drvdata);
1534         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1535         //unsigned int size_of_a = 0, rem_a_size = 0;
1536         unsigned int lp = req->iv[0];
1537         /* Note: The code assume that req->iv[0] already contains the value
1538          * of L' of RFC3610
1539          */
1540         unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1541         unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1542         u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1543         u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1544         u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1545         unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1546                                  DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1547                                 req->cryptlen :
1548                                 (req->cryptlen - ctx->authsize);
1549         int rc;
1550
1551         memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1552         memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1553
1554         /* taken from crypto/ccm.c */
1555         /* 2 <= L <= 8, so 1 <= L' <= 7. */
1556         if (l < 2 || l > 8) {
1557                 dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1558                 return -EINVAL;
1559         }
1560         memcpy(b0, req->iv, AES_BLOCK_SIZE);
1561
1562         /* format control info per RFC 3610 and
1563          * NIST Special Publication 800-38C
1564          */
1565         *b0 |= (8 * ((m - 2) / 2));
1566         if (req_ctx->assoclen > 0)
1567                 *b0 |= 64;  /* Enable bit 6 if Adata exists. */
1568
1569         rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1570         if (rc) {
1571                 dev_err(dev, "message len overflow detected");
1572                 return rc;
1573         }
1574          /* END of "taken from crypto/ccm.c" */
1575
1576         /* l(a) - size of associated data. */
1577         req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1578
1579         memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1580         req->iv[15] = 1;
1581
1582         memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1583         ctr_count_0[15] = 0;
1584
1585         return 0;
1586 }
1587
1588 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1589 {
1590         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1591         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1592         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1593
1594         /* L' */
1595         memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1596         /* For RFC 4309, always use 4 bytes for message length
1597          * (at most 2^32-1 bytes).
1598          */
1599         areq_ctx->ctr_iv[0] = 3;
1600
1601         /* In RFC 4309 there is an 11-bytes nonce+IV part,
1602          * that we build here.
1603          */
1604         memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1605                CCM_BLOCK_NONCE_SIZE);
1606         memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1607                CCM_BLOCK_IV_SIZE);
1608         req->iv = areq_ctx->ctr_iv;
1609         areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE;
1610 }
1611
1612 static void cc_set_ghash_desc(struct aead_request *req,
1613                               struct cc_hw_desc desc[], unsigned int *seq_size)
1614 {
1615         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1616         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1617         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1618         unsigned int idx = *seq_size;
1619
1620         /* load key to AES*/
1621         hw_desc_init(&desc[idx]);
1622         set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1623         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1624         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1625                      ctx->enc_keylen, NS_BIT);
1626         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1627         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1628         set_flow_mode(&desc[idx], S_DIN_to_AES);
1629         idx++;
1630
1631         /* process one zero block to generate hkey */
1632         hw_desc_init(&desc[idx]);
1633         set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1634         set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1635                       NS_BIT, 0);
1636         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1637         idx++;
1638
1639         /* Memory Barrier */
1640         hw_desc_init(&desc[idx]);
1641         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1642         set_dout_no_dma(&desc[idx], 0, 0, 1);
1643         idx++;
1644
1645         /* Load GHASH subkey */
1646         hw_desc_init(&desc[idx]);
1647         set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1648                      AES_BLOCK_SIZE, NS_BIT);
1649         set_dout_no_dma(&desc[idx], 0, 0, 1);
1650         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1651         set_aes_not_hash_mode(&desc[idx]);
1652         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1653         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1654         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1655         idx++;
1656
1657         /* Configure Hash Engine to work with GHASH.
1658          * Since it was not possible to extend HASH submodes to add GHASH,
1659          * The following command is necessary in order to
1660          * select GHASH (according to HW designers)
1661          */
1662         hw_desc_init(&desc[idx]);
1663         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1664         set_dout_no_dma(&desc[idx], 0, 0, 1);
1665         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1666         set_aes_not_hash_mode(&desc[idx]);
1667         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1668         set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1669         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1670         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1671         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1672         idx++;
1673
1674         /* Load GHASH initial STATE (which is 0). (for any hash there is an
1675          * initial state)
1676          */
1677         hw_desc_init(&desc[idx]);
1678         set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1679         set_dout_no_dma(&desc[idx], 0, 0, 1);
1680         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1681         set_aes_not_hash_mode(&desc[idx]);
1682         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1683         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1684         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1685         idx++;
1686
1687         *seq_size = idx;
1688 }
1689
1690 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1691                              unsigned int *seq_size)
1692 {
1693         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1694         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1695         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1696         unsigned int idx = *seq_size;
1697
1698         /* load key to AES*/
1699         hw_desc_init(&desc[idx]);
1700         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1701         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1702         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1703                      ctx->enc_keylen, NS_BIT);
1704         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1705         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1706         set_flow_mode(&desc[idx], S_DIN_to_AES);
1707         idx++;
1708
1709         if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1710                 /* load AES/CTR initial CTR value inc by 2*/
1711                 hw_desc_init(&desc[idx]);
1712                 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1713                 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1714                 set_din_type(&desc[idx], DMA_DLLI,
1715                              req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1716                              NS_BIT);
1717                 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1718                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1719                 set_flow_mode(&desc[idx], S_DIN_to_AES);
1720                 idx++;
1721         }
1722
1723         *seq_size = idx;
1724 }
1725
1726 static void cc_proc_gcm_result(struct aead_request *req,
1727                                struct cc_hw_desc desc[],
1728                                unsigned int *seq_size)
1729 {
1730         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1731         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1732         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1733         dma_addr_t mac_result;
1734         unsigned int idx = *seq_size;
1735
1736         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1737                 mac_result = req_ctx->mac_buf_dma_addr;
1738         } else { /* Encrypt */
1739                 mac_result = req_ctx->icv_dma_addr;
1740         }
1741
1742         /* process(ghash) gcm_block_len */
1743         hw_desc_init(&desc[idx]);
1744         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1745                      AES_BLOCK_SIZE, NS_BIT);
1746         set_flow_mode(&desc[idx], DIN_HASH);
1747         idx++;
1748
1749         /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1750         hw_desc_init(&desc[idx]);
1751         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1752         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1753         set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1754                       NS_BIT, 0);
1755         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1756         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1757         set_aes_not_hash_mode(&desc[idx]);
1758
1759         idx++;
1760
1761         /* load AES/CTR initial CTR value inc by 1*/
1762         hw_desc_init(&desc[idx]);
1763         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1764         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1765         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1766                      AES_BLOCK_SIZE, NS_BIT);
1767         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1768         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1769         set_flow_mode(&desc[idx], S_DIN_to_AES);
1770         idx++;
1771
1772         /* Memory Barrier */
1773         hw_desc_init(&desc[idx]);
1774         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1775         set_dout_no_dma(&desc[idx], 0, 0, 1);
1776         idx++;
1777
1778         /* process GCTR on stored GHASH and store MAC in mac_state*/
1779         hw_desc_init(&desc[idx]);
1780         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1781         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1782                      AES_BLOCK_SIZE, NS_BIT);
1783         set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1784         set_queue_last_ind(ctx->drvdata, &desc[idx]);
1785         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1786         idx++;
1787
1788         *seq_size = idx;
1789 }
1790
1791 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1792                   unsigned int *seq_size)
1793 {
1794         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1795         unsigned int cipher_flow_mode;
1796
1797         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1798                 cipher_flow_mode = AES_and_HASH;
1799         } else { /* Encrypt */
1800                 cipher_flow_mode = AES_to_HASH_and_DOUT;
1801         }
1802
1803         //in RFC4543 no data to encrypt. just copy data from src to dest.
1804         if (req_ctx->plaintext_authenticate_only) {
1805                 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1806                 cc_set_ghash_desc(req, desc, seq_size);
1807                 /* process(ghash) assoc data */
1808                 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1809                 cc_set_gctr_desc(req, desc, seq_size);
1810                 cc_proc_gcm_result(req, desc, seq_size);
1811                 return 0;
1812         }
1813
1814         // for gcm and rfc4106.
1815         cc_set_ghash_desc(req, desc, seq_size);
1816         /* process(ghash) assoc data */
1817         if (req_ctx->assoclen > 0)
1818                 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1819         cc_set_gctr_desc(req, desc, seq_size);
1820         /* process(gctr+ghash) */
1821         if (req_ctx->cryptlen)
1822                 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1823         cc_proc_gcm_result(req, desc, seq_size);
1824
1825         return 0;
1826 }
1827
1828 static int config_gcm_context(struct aead_request *req)
1829 {
1830         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1831         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1832         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1833         struct device *dev = drvdata_to_dev(ctx->drvdata);
1834
1835         unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1836                                  DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1837                                 req->cryptlen :
1838                                 (req->cryptlen - ctx->authsize);
1839         __be32 counter = cpu_to_be32(2);
1840
1841         dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1842                 __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1843
1844         memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1845
1846         memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1847
1848         memcpy(req->iv + 12, &counter, 4);
1849         memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1850
1851         counter = cpu_to_be32(1);
1852         memcpy(req->iv + 12, &counter, 4);
1853         memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1854
1855         if (!req_ctx->plaintext_authenticate_only) {
1856                 __be64 temp64;
1857
1858                 temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1859                 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1860                 temp64 = cpu_to_be64(cryptlen * 8);
1861                 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1862         } else {
1863                 /* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1864                  * data that is nothing is encrypted.
1865                  */
1866                 __be64 temp64;
1867
1868                 temp64 = cpu_to_be64((req_ctx->assoclen +
1869                                       GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8);
1870                 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871                 temp64 = 0;
1872                 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873         }
1874
1875         return 0;
1876 }
1877
1878 static void cc_proc_rfc4_gcm(struct aead_request *req)
1879 {
1880         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1883
1884         memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885                ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886         memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887                GCM_BLOCK_RFC4_IV_SIZE);
1888         req->iv = areq_ctx->ctr_iv;
1889         areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1890 }
1891
1892 static int cc_proc_aead(struct aead_request *req,
1893                         enum drv_crypto_direction direct)
1894 {
1895         int rc = 0;
1896         int seq_len = 0;
1897         struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1898         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1899         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1900         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1901         struct device *dev = drvdata_to_dev(ctx->drvdata);
1902         struct cc_crypto_req cc_req = {};
1903
1904         dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1905                 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1906                 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1907                 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1908
1909         /* STAT_PHASE_0: Init and sanity checks */
1910
1911         /* Check data length according to mode */
1912         if (validate_data_size(ctx, direct, req)) {
1913                 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1914                         req->cryptlen, areq_ctx->assoclen);
1915                 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1916                 return -EINVAL;
1917         }
1918
1919         /* Setup request structure */
1920         cc_req.user_cb = (void *)cc_aead_complete;
1921         cc_req.user_arg = (void *)req;
1922
1923         /* Setup request context */
1924         areq_ctx->gen_ctx.op_type = direct;
1925         areq_ctx->req_authsize = ctx->authsize;
1926         areq_ctx->cipher_mode = ctx->cipher_mode;
1927
1928         /* STAT_PHASE_1: Map buffers */
1929
1930         if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1931                 /* Build CTR IV - Copy nonce from last 4 bytes in
1932                  * CTR key to first 4 bytes in CTR IV
1933                  */
1934                 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1935                        CTR_RFC3686_NONCE_SIZE);
1936                 if (!areq_ctx->backup_giv) /*User none-generated IV*/
1937                         memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE,
1938                                req->iv, CTR_RFC3686_IV_SIZE);
1939                 /* Initialize counter portion of counter block */
1940                 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1941                             CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1942
1943                 /* Replace with counter iv */
1944                 req->iv = areq_ctx->ctr_iv;
1945                 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1946         } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1947                    (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1948                 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1949                 if (areq_ctx->ctr_iv != req->iv) {
1950                         memcpy(areq_ctx->ctr_iv, req->iv,
1951                                crypto_aead_ivsize(tfm));
1952                         req->iv = areq_ctx->ctr_iv;
1953                 }
1954         }  else {
1955                 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1956         }
1957
1958         if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1959                 rc = config_ccm_adata(req);
1960                 if (rc) {
1961                         dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1962                                 rc);
1963                         goto exit;
1964                 }
1965         } else {
1966                 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1967         }
1968
1969         if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1970                 rc = config_gcm_context(req);
1971                 if (rc) {
1972                         dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1973                                 rc);
1974                         goto exit;
1975                 }
1976         }
1977
1978         rc = cc_map_aead_request(ctx->drvdata, req);
1979         if (rc) {
1980                 dev_err(dev, "map_request() failed\n");
1981                 goto exit;
1982         }
1983
1984         /* do we need to generate IV? */
1985         if (areq_ctx->backup_giv) {
1986                 /* set the DMA mapped IV address*/
1987                 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1988                         cc_req.ivgen_dma_addr[0] =
1989                                 areq_ctx->gen_ctx.iv_dma_addr +
1990                                 CTR_RFC3686_NONCE_SIZE;
1991                         cc_req.ivgen_dma_addr_len = 1;
1992                 } else if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1993                         /* In ccm, the IV needs to exist both inside B0 and
1994                          * inside the counter.It is also copied to iv_dma_addr
1995                          * for other reasons (like returning it to the user).
1996                          * So, using 3 (identical) IV outputs.
1997                          */
1998                         cc_req.ivgen_dma_addr[0] =
1999                                 areq_ctx->gen_ctx.iv_dma_addr +
2000                                 CCM_BLOCK_IV_OFFSET;
2001                         cc_req.ivgen_dma_addr[1] =
2002                                 sg_dma_address(&areq_ctx->ccm_adata_sg) +
2003                                 CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET;
2004                         cc_req.ivgen_dma_addr[2] =
2005                                 sg_dma_address(&areq_ctx->ccm_adata_sg) +
2006                                 CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET;
2007                         cc_req.ivgen_dma_addr_len = 3;
2008                 } else {
2009                         cc_req.ivgen_dma_addr[0] =
2010                                 areq_ctx->gen_ctx.iv_dma_addr;
2011                         cc_req.ivgen_dma_addr_len = 1;
2012                 }
2013
2014                 /* set the IV size (8/16 B long)*/
2015                 cc_req.ivgen_size = crypto_aead_ivsize(tfm);
2016         }
2017
2018         /* STAT_PHASE_2: Create sequence */
2019
2020         /* Load MLLI tables to SRAM if necessary */
2021         cc_mlli_to_sram(req, desc, &seq_len);
2022
2023         /*TODO: move seq len by reference */
2024         switch (ctx->auth_mode) {
2025         case DRV_HASH_SHA1:
2026         case DRV_HASH_SHA256:
2027                 cc_hmac_authenc(req, desc, &seq_len);
2028                 break;
2029         case DRV_HASH_XCBC_MAC:
2030                 cc_xcbc_authenc(req, desc, &seq_len);
2031                 break;
2032         case DRV_HASH_NULL:
2033                 if (ctx->cipher_mode == DRV_CIPHER_CCM)
2034                         cc_ccm(req, desc, &seq_len);
2035                 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2036                         cc_gcm(req, desc, &seq_len);
2037                 break;
2038         default:
2039                 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2040                 cc_unmap_aead_request(dev, req);
2041                 rc = -ENOTSUPP;
2042                 goto exit;
2043         }
2044
2045         /* STAT_PHASE_3: Lock HW and push sequence */
2046
2047         rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2048
2049         if (rc != -EINPROGRESS && rc != -EBUSY) {
2050                 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2051                 cc_unmap_aead_request(dev, req);
2052         }
2053
2054 exit:
2055         return rc;
2056 }
2057
2058 static int cc_aead_encrypt(struct aead_request *req)
2059 {
2060         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2061         int rc;
2062
2063         memset(areq_ctx, 0, sizeof(*areq_ctx));
2064
2065         /* No generated IV required */
2066         areq_ctx->backup_iv = req->iv;
2067         areq_ctx->assoclen = req->assoclen;
2068         areq_ctx->backup_giv = NULL;
2069         areq_ctx->is_gcm4543 = false;
2070
2071         areq_ctx->plaintext_authenticate_only = false;
2072
2073         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2074         if (rc != -EINPROGRESS && rc != -EBUSY)
2075                 req->iv = areq_ctx->backup_iv;
2076
2077         return rc;
2078 }
2079
2080 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2081 {
2082         /* Very similar to cc_aead_encrypt() above. */
2083
2084         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2085         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2086         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2087         struct device *dev = drvdata_to_dev(ctx->drvdata);
2088         int rc = -EINVAL;
2089
2090         if (!valid_assoclen(req)) {
2091                 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2092                 goto out;
2093         }
2094
2095         memset(areq_ctx, 0, sizeof(*areq_ctx));
2096
2097         /* No generated IV required */
2098         areq_ctx->backup_iv = req->iv;
2099         areq_ctx->assoclen = req->assoclen;
2100         areq_ctx->backup_giv = NULL;
2101         areq_ctx->is_gcm4543 = true;
2102
2103         cc_proc_rfc4309_ccm(req);
2104
2105         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2106         if (rc != -EINPROGRESS && rc != -EBUSY)
2107                 req->iv = areq_ctx->backup_iv;
2108 out:
2109         return rc;
2110 }
2111
2112 static int cc_aead_decrypt(struct aead_request *req)
2113 {
2114         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2115         int rc;
2116
2117         memset(areq_ctx, 0, sizeof(*areq_ctx));
2118
2119         /* No generated IV required */
2120         areq_ctx->backup_iv = req->iv;
2121         areq_ctx->assoclen = req->assoclen;
2122         areq_ctx->backup_giv = NULL;
2123         areq_ctx->is_gcm4543 = false;
2124
2125         areq_ctx->plaintext_authenticate_only = false;
2126
2127         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2128         if (rc != -EINPROGRESS && rc != -EBUSY)
2129                 req->iv = areq_ctx->backup_iv;
2130
2131         return rc;
2132 }
2133
2134 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2135 {
2136         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2137         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2138         struct device *dev = drvdata_to_dev(ctx->drvdata);
2139         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2140         int rc = -EINVAL;
2141
2142         if (!valid_assoclen(req)) {
2143                 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2144                 goto out;
2145         }
2146
2147         memset(areq_ctx, 0, sizeof(*areq_ctx));
2148
2149         /* No generated IV required */
2150         areq_ctx->backup_iv = req->iv;
2151         areq_ctx->assoclen = req->assoclen;
2152         areq_ctx->backup_giv = NULL;
2153
2154         areq_ctx->is_gcm4543 = true;
2155         cc_proc_rfc4309_ccm(req);
2156
2157         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2158         if (rc != -EINPROGRESS && rc != -EBUSY)
2159                 req->iv = areq_ctx->backup_iv;
2160
2161 out:
2162         return rc;
2163 }
2164
2165 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2166                                  unsigned int keylen)
2167 {
2168         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2169         struct device *dev = drvdata_to_dev(ctx->drvdata);
2170
2171         dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2172
2173         if (keylen < 4)
2174                 return -EINVAL;
2175
2176         keylen -= 4;
2177         memcpy(ctx->ctr_nonce, key + keylen, 4);
2178
2179         return cc_aead_setkey(tfm, key, keylen);
2180 }
2181
2182 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2183                                  unsigned int keylen)
2184 {
2185         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2186         struct device *dev = drvdata_to_dev(ctx->drvdata);
2187
2188         dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2189
2190         if (keylen < 4)
2191                 return -EINVAL;
2192
2193         keylen -= 4;
2194         memcpy(ctx->ctr_nonce, key + keylen, 4);
2195
2196         return cc_aead_setkey(tfm, key, keylen);
2197 }
2198
2199 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2200                               unsigned int authsize)
2201 {
2202         switch (authsize) {
2203         case 4:
2204         case 8:
2205         case 12:
2206         case 13:
2207         case 14:
2208         case 15:
2209         case 16:
2210                 break;
2211         default:
2212                 return -EINVAL;
2213         }
2214
2215         return cc_aead_setauthsize(authenc, authsize);
2216 }
2217
2218 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2219                                       unsigned int authsize)
2220 {
2221         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2222         struct device *dev = drvdata_to_dev(ctx->drvdata);
2223
2224         dev_dbg(dev, "authsize %d\n", authsize);
2225
2226         switch (authsize) {
2227         case 8:
2228         case 12:
2229         case 16:
2230                 break;
2231         default:
2232                 return -EINVAL;
2233         }
2234
2235         return cc_aead_setauthsize(authenc, authsize);
2236 }
2237
2238 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2239                                       unsigned int authsize)
2240 {
2241         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2242         struct device *dev = drvdata_to_dev(ctx->drvdata);
2243
2244         dev_dbg(dev, "authsize %d\n", authsize);
2245
2246         if (authsize != 16)
2247                 return -EINVAL;
2248
2249         return cc_aead_setauthsize(authenc, authsize);
2250 }
2251
2252 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2253 {
2254         /* Very similar to cc_aead_encrypt() above. */
2255
2256         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2257         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2258         struct device *dev = drvdata_to_dev(ctx->drvdata);
2259         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2260         int rc = -EINVAL;
2261
2262         if (!valid_assoclen(req)) {
2263                 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2264                 goto out;
2265         }
2266
2267         memset(areq_ctx, 0, sizeof(*areq_ctx));
2268
2269         /* No generated IV required */
2270         areq_ctx->backup_iv = req->iv;
2271         areq_ctx->assoclen = req->assoclen;
2272         areq_ctx->backup_giv = NULL;
2273
2274         areq_ctx->plaintext_authenticate_only = false;
2275
2276         cc_proc_rfc4_gcm(req);
2277         areq_ctx->is_gcm4543 = true;
2278
2279         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2280         if (rc != -EINPROGRESS && rc != -EBUSY)
2281                 req->iv = areq_ctx->backup_iv;
2282 out:
2283         return rc;
2284 }
2285
2286 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2287 {
2288         /* Very similar to cc_aead_encrypt() above. */
2289
2290         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2291         int rc;
2292
2293         memset(areq_ctx, 0, sizeof(*areq_ctx));
2294
2295         //plaintext is not encryped with rfc4543
2296         areq_ctx->plaintext_authenticate_only = true;
2297
2298         /* No generated IV required */
2299         areq_ctx->backup_iv = req->iv;
2300         areq_ctx->assoclen = req->assoclen;
2301         areq_ctx->backup_giv = NULL;
2302
2303         cc_proc_rfc4_gcm(req);
2304         areq_ctx->is_gcm4543 = true;
2305
2306         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2307         if (rc != -EINPROGRESS && rc != -EBUSY)
2308                 req->iv = areq_ctx->backup_iv;
2309
2310         return rc;
2311 }
2312
2313 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2314 {
2315         /* Very similar to cc_aead_decrypt() above. */
2316
2317         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2318         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2319         struct device *dev = drvdata_to_dev(ctx->drvdata);
2320         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2321         int rc = -EINVAL;
2322
2323         if (!valid_assoclen(req)) {
2324                 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2325                 goto out;
2326         }
2327
2328         memset(areq_ctx, 0, sizeof(*areq_ctx));
2329
2330         /* No generated IV required */
2331         areq_ctx->backup_iv = req->iv;
2332         areq_ctx->assoclen = req->assoclen;
2333         areq_ctx->backup_giv = NULL;
2334
2335         areq_ctx->plaintext_authenticate_only = false;
2336
2337         cc_proc_rfc4_gcm(req);
2338         areq_ctx->is_gcm4543 = true;
2339
2340         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2341         if (rc != -EINPROGRESS && rc != -EBUSY)
2342                 req->iv = areq_ctx->backup_iv;
2343 out:
2344         return rc;
2345 }
2346
2347 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2348 {
2349         /* Very similar to cc_aead_decrypt() above. */
2350
2351         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2352         int rc;
2353
2354         memset(areq_ctx, 0, sizeof(*areq_ctx));
2355
2356         //plaintext is not decryped with rfc4543
2357         areq_ctx->plaintext_authenticate_only = true;
2358
2359         /* No generated IV required */
2360         areq_ctx->backup_iv = req->iv;
2361         areq_ctx->assoclen = req->assoclen;
2362         areq_ctx->backup_giv = NULL;
2363
2364         cc_proc_rfc4_gcm(req);
2365         areq_ctx->is_gcm4543 = true;
2366
2367         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2368         if (rc != -EINPROGRESS && rc != -EBUSY)
2369                 req->iv = areq_ctx->backup_iv;
2370
2371         return rc;
2372 }
2373
2374 /* aead alg */
2375 static struct cc_alg_template aead_algs[] = {
2376         {
2377                 .name = "authenc(hmac(sha1),cbc(aes))",
2378                 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2379                 .blocksize = AES_BLOCK_SIZE,
2380                 .template_aead = {
2381                         .setkey = cc_aead_setkey,
2382                         .setauthsize = cc_aead_setauthsize,
2383                         .encrypt = cc_aead_encrypt,
2384                         .decrypt = cc_aead_decrypt,
2385                         .init = cc_aead_init,
2386                         .exit = cc_aead_exit,
2387                         .ivsize = AES_BLOCK_SIZE,
2388                         .maxauthsize = SHA1_DIGEST_SIZE,
2389                 },
2390                 .cipher_mode = DRV_CIPHER_CBC,
2391                 .flow_mode = S_DIN_to_AES,
2392                 .auth_mode = DRV_HASH_SHA1,
2393                 .min_hw_rev = CC_HW_REV_630,
2394         },
2395         {
2396                 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2397                 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2398                 .blocksize = DES3_EDE_BLOCK_SIZE,
2399                 .template_aead = {
2400                         .setkey = cc_aead_setkey,
2401                         .setauthsize = cc_aead_setauthsize,
2402                         .encrypt = cc_aead_encrypt,
2403                         .decrypt = cc_aead_decrypt,
2404                         .init = cc_aead_init,
2405                         .exit = cc_aead_exit,
2406                         .ivsize = DES3_EDE_BLOCK_SIZE,
2407                         .maxauthsize = SHA1_DIGEST_SIZE,
2408                 },
2409                 .cipher_mode = DRV_CIPHER_CBC,
2410                 .flow_mode = S_DIN_to_DES,
2411                 .auth_mode = DRV_HASH_SHA1,
2412                 .min_hw_rev = CC_HW_REV_630,
2413         },
2414         {
2415                 .name = "authenc(hmac(sha256),cbc(aes))",
2416                 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2417                 .blocksize = AES_BLOCK_SIZE,
2418                 .template_aead = {
2419                         .setkey = cc_aead_setkey,
2420                         .setauthsize = cc_aead_setauthsize,
2421                         .encrypt = cc_aead_encrypt,
2422                         .decrypt = cc_aead_decrypt,
2423                         .init = cc_aead_init,
2424                         .exit = cc_aead_exit,
2425                         .ivsize = AES_BLOCK_SIZE,
2426                         .maxauthsize = SHA256_DIGEST_SIZE,
2427                 },
2428                 .cipher_mode = DRV_CIPHER_CBC,
2429                 .flow_mode = S_DIN_to_AES,
2430                 .auth_mode = DRV_HASH_SHA256,
2431                 .min_hw_rev = CC_HW_REV_630,
2432         },
2433         {
2434                 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2435                 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2436                 .blocksize = DES3_EDE_BLOCK_SIZE,
2437                 .template_aead = {
2438                         .setkey = cc_aead_setkey,
2439                         .setauthsize = cc_aead_setauthsize,
2440                         .encrypt = cc_aead_encrypt,
2441                         .decrypt = cc_aead_decrypt,
2442                         .init = cc_aead_init,
2443                         .exit = cc_aead_exit,
2444                         .ivsize = DES3_EDE_BLOCK_SIZE,
2445                         .maxauthsize = SHA256_DIGEST_SIZE,
2446                 },
2447                 .cipher_mode = DRV_CIPHER_CBC,
2448                 .flow_mode = S_DIN_to_DES,
2449                 .auth_mode = DRV_HASH_SHA256,
2450                 .min_hw_rev = CC_HW_REV_630,
2451         },
2452         {
2453                 .name = "authenc(xcbc(aes),cbc(aes))",
2454                 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2455                 .blocksize = AES_BLOCK_SIZE,
2456                 .template_aead = {
2457                         .setkey = cc_aead_setkey,
2458                         .setauthsize = cc_aead_setauthsize,
2459                         .encrypt = cc_aead_encrypt,
2460                         .decrypt = cc_aead_decrypt,
2461                         .init = cc_aead_init,
2462                         .exit = cc_aead_exit,
2463                         .ivsize = AES_BLOCK_SIZE,
2464                         .maxauthsize = AES_BLOCK_SIZE,
2465                 },
2466                 .cipher_mode = DRV_CIPHER_CBC,
2467                 .flow_mode = S_DIN_to_AES,
2468                 .auth_mode = DRV_HASH_XCBC_MAC,
2469                 .min_hw_rev = CC_HW_REV_630,
2470         },
2471         {
2472                 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2473                 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2474                 .blocksize = 1,
2475                 .template_aead = {
2476                         .setkey = cc_aead_setkey,
2477                         .setauthsize = cc_aead_setauthsize,
2478                         .encrypt = cc_aead_encrypt,
2479                         .decrypt = cc_aead_decrypt,
2480                         .init = cc_aead_init,
2481                         .exit = cc_aead_exit,
2482                         .ivsize = CTR_RFC3686_IV_SIZE,
2483                         .maxauthsize = SHA1_DIGEST_SIZE,
2484                 },
2485                 .cipher_mode = DRV_CIPHER_CTR,
2486                 .flow_mode = S_DIN_to_AES,
2487                 .auth_mode = DRV_HASH_SHA1,
2488                 .min_hw_rev = CC_HW_REV_630,
2489         },
2490         {
2491                 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2492                 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2493                 .blocksize = 1,
2494                 .template_aead = {
2495                         .setkey = cc_aead_setkey,
2496                         .setauthsize = cc_aead_setauthsize,
2497                         .encrypt = cc_aead_encrypt,
2498                         .decrypt = cc_aead_decrypt,
2499                         .init = cc_aead_init,
2500                         .exit = cc_aead_exit,
2501                         .ivsize = CTR_RFC3686_IV_SIZE,
2502                         .maxauthsize = SHA256_DIGEST_SIZE,
2503                 },
2504                 .cipher_mode = DRV_CIPHER_CTR,
2505                 .flow_mode = S_DIN_to_AES,
2506                 .auth_mode = DRV_HASH_SHA256,
2507                 .min_hw_rev = CC_HW_REV_630,
2508         },
2509         {
2510                 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2511                 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2512                 .blocksize = 1,
2513                 .template_aead = {
2514                         .setkey = cc_aead_setkey,
2515                         .setauthsize = cc_aead_setauthsize,
2516                         .encrypt = cc_aead_encrypt,
2517                         .decrypt = cc_aead_decrypt,
2518                         .init = cc_aead_init,
2519                         .exit = cc_aead_exit,
2520                         .ivsize = CTR_RFC3686_IV_SIZE,
2521                         .maxauthsize = AES_BLOCK_SIZE,
2522                 },
2523                 .cipher_mode = DRV_CIPHER_CTR,
2524                 .flow_mode = S_DIN_to_AES,
2525                 .auth_mode = DRV_HASH_XCBC_MAC,
2526                 .min_hw_rev = CC_HW_REV_630,
2527         },
2528         {
2529                 .name = "ccm(aes)",
2530                 .driver_name = "ccm-aes-ccree",
2531                 .blocksize = 1,
2532                 .template_aead = {
2533                         .setkey = cc_aead_setkey,
2534                         .setauthsize = cc_ccm_setauthsize,
2535                         .encrypt = cc_aead_encrypt,
2536                         .decrypt = cc_aead_decrypt,
2537                         .init = cc_aead_init,
2538                         .exit = cc_aead_exit,
2539                         .ivsize = AES_BLOCK_SIZE,
2540                         .maxauthsize = AES_BLOCK_SIZE,
2541                 },
2542                 .cipher_mode = DRV_CIPHER_CCM,
2543                 .flow_mode = S_DIN_to_AES,
2544                 .auth_mode = DRV_HASH_NULL,
2545                 .min_hw_rev = CC_HW_REV_630,
2546         },
2547         {
2548                 .name = "rfc4309(ccm(aes))",
2549                 .driver_name = "rfc4309-ccm-aes-ccree",
2550                 .blocksize = 1,
2551                 .template_aead = {
2552                         .setkey = cc_rfc4309_ccm_setkey,
2553                         .setauthsize = cc_rfc4309_ccm_setauthsize,
2554                         .encrypt = cc_rfc4309_ccm_encrypt,
2555                         .decrypt = cc_rfc4309_ccm_decrypt,
2556                         .init = cc_aead_init,
2557                         .exit = cc_aead_exit,
2558                         .ivsize = CCM_BLOCK_IV_SIZE,
2559                         .maxauthsize = AES_BLOCK_SIZE,
2560                 },
2561                 .cipher_mode = DRV_CIPHER_CCM,
2562                 .flow_mode = S_DIN_to_AES,
2563                 .auth_mode = DRV_HASH_NULL,
2564                 .min_hw_rev = CC_HW_REV_630,
2565         },
2566         {
2567                 .name = "gcm(aes)",
2568                 .driver_name = "gcm-aes-ccree",
2569                 .blocksize = 1,
2570                 .template_aead = {
2571                         .setkey = cc_aead_setkey,
2572                         .setauthsize = cc_gcm_setauthsize,
2573                         .encrypt = cc_aead_encrypt,
2574                         .decrypt = cc_aead_decrypt,
2575                         .init = cc_aead_init,
2576                         .exit = cc_aead_exit,
2577                         .ivsize = 12,
2578                         .maxauthsize = AES_BLOCK_SIZE,
2579                 },
2580                 .cipher_mode = DRV_CIPHER_GCTR,
2581                 .flow_mode = S_DIN_to_AES,
2582                 .auth_mode = DRV_HASH_NULL,
2583                 .min_hw_rev = CC_HW_REV_630,
2584         },
2585         {
2586                 .name = "rfc4106(gcm(aes))",
2587                 .driver_name = "rfc4106-gcm-aes-ccree",
2588                 .blocksize = 1,
2589                 .template_aead = {
2590                         .setkey = cc_rfc4106_gcm_setkey,
2591                         .setauthsize = cc_rfc4106_gcm_setauthsize,
2592                         .encrypt = cc_rfc4106_gcm_encrypt,
2593                         .decrypt = cc_rfc4106_gcm_decrypt,
2594                         .init = cc_aead_init,
2595                         .exit = cc_aead_exit,
2596                         .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2597                         .maxauthsize = AES_BLOCK_SIZE,
2598                 },
2599                 .cipher_mode = DRV_CIPHER_GCTR,
2600                 .flow_mode = S_DIN_to_AES,
2601                 .auth_mode = DRV_HASH_NULL,
2602                 .min_hw_rev = CC_HW_REV_630,
2603         },
2604         {
2605                 .name = "rfc4543(gcm(aes))",
2606                 .driver_name = "rfc4543-gcm-aes-ccree",
2607                 .blocksize = 1,
2608                 .template_aead = {
2609                         .setkey = cc_rfc4543_gcm_setkey,
2610                         .setauthsize = cc_rfc4543_gcm_setauthsize,
2611                         .encrypt = cc_rfc4543_gcm_encrypt,
2612                         .decrypt = cc_rfc4543_gcm_decrypt,
2613                         .init = cc_aead_init,
2614                         .exit = cc_aead_exit,
2615                         .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2616                         .maxauthsize = AES_BLOCK_SIZE,
2617                 },
2618                 .cipher_mode = DRV_CIPHER_GCTR,
2619                 .flow_mode = S_DIN_to_AES,
2620                 .auth_mode = DRV_HASH_NULL,
2621                 .min_hw_rev = CC_HW_REV_630,
2622         },
2623 };
2624
2625 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2626                                                 struct device *dev)
2627 {
2628         struct cc_crypto_alg *t_alg;
2629         struct aead_alg *alg;
2630
2631         t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2632         if (!t_alg)
2633                 return ERR_PTR(-ENOMEM);
2634
2635         alg = &tmpl->template_aead;
2636
2637         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2638         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2639                  tmpl->driver_name);
2640         alg->base.cra_module = THIS_MODULE;
2641         alg->base.cra_priority = CC_CRA_PRIO;
2642
2643         alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2644         alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2645         alg->init = cc_aead_init;
2646         alg->exit = cc_aead_exit;
2647
2648         t_alg->aead_alg = *alg;
2649
2650         t_alg->cipher_mode = tmpl->cipher_mode;
2651         t_alg->flow_mode = tmpl->flow_mode;
2652         t_alg->auth_mode = tmpl->auth_mode;
2653
2654         return t_alg;
2655 }
2656
2657 int cc_aead_free(struct cc_drvdata *drvdata)
2658 {
2659         struct cc_crypto_alg *t_alg, *n;
2660         struct cc_aead_handle *aead_handle =
2661                 (struct cc_aead_handle *)drvdata->aead_handle;
2662
2663         if (aead_handle) {
2664                 /* Remove registered algs */
2665                 list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2666                                          entry) {
2667                         crypto_unregister_aead(&t_alg->aead_alg);
2668                         list_del(&t_alg->entry);
2669                         kfree(t_alg);
2670                 }
2671                 kfree(aead_handle);
2672                 drvdata->aead_handle = NULL;
2673         }
2674
2675         return 0;
2676 }
2677
2678 int cc_aead_alloc(struct cc_drvdata *drvdata)
2679 {
2680         struct cc_aead_handle *aead_handle;
2681         struct cc_crypto_alg *t_alg;
2682         int rc = -ENOMEM;
2683         int alg;
2684         struct device *dev = drvdata_to_dev(drvdata);
2685
2686         aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2687         if (!aead_handle) {
2688                 rc = -ENOMEM;
2689                 goto fail0;
2690         }
2691
2692         INIT_LIST_HEAD(&aead_handle->aead_list);
2693         drvdata->aead_handle = aead_handle;
2694
2695         aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2696                                                          MAX_HMAC_DIGEST_SIZE);
2697
2698         if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2699                 dev_err(dev, "SRAM pool exhausted\n");
2700                 rc = -ENOMEM;
2701                 goto fail1;
2702         }
2703
2704         /* Linux crypto */
2705         for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2706                 if (aead_algs[alg].min_hw_rev > drvdata->hw_rev)
2707                         continue;
2708
2709                 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2710                 if (IS_ERR(t_alg)) {
2711                         rc = PTR_ERR(t_alg);
2712                         dev_err(dev, "%s alg allocation failed\n",
2713                                 aead_algs[alg].driver_name);
2714                         goto fail1;
2715                 }
2716                 t_alg->drvdata = drvdata;
2717                 rc = crypto_register_aead(&t_alg->aead_alg);
2718                 if (rc) {
2719                         dev_err(dev, "%s alg registration failed\n",
2720                                 t_alg->aead_alg.base.cra_driver_name);
2721                         goto fail2;
2722                 } else {
2723                         list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2724                         dev_dbg(dev, "Registered %s\n",
2725                                 t_alg->aead_alg.base.cra_driver_name);
2726                 }
2727         }
2728
2729         return 0;
2730
2731 fail2:
2732         kfree(t_alg);
2733 fail1:
2734         cc_aead_free(drvdata);
2735 fail0:
2736         return rc;
2737 }