GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / crypto / ux500 / cryp / cryp_core.c
1 /**
2  * Copyright (C) ST-Ericsson SA 2010
3  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7  * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9  * License terms: GNU General Public License (GPL) version 2
10  */
11
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/platform_device.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/semaphore.h>
27 #include <linux/platform_data/dma-ste-dma40.h>
28
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/ctr.h>
32 #include <crypto/des.h>
33 #include <crypto/scatterwalk.h>
34
35 #include <linux/platform_data/crypto-ux500.h>
36
37 #include "cryp_p.h"
38 #include "cryp.h"
39
40 #define CRYP_MAX_KEY_SIZE       32
41 #define BYTES_PER_WORD          4
42
43 static int cryp_mode;
44 static atomic_t session_id;
45
46 static struct stedma40_chan_cfg *mem_to_engine;
47 static struct stedma40_chan_cfg *engine_to_mem;
48
49 /**
50  * struct cryp_driver_data - data specific to the driver.
51  *
52  * @device_list: A list of registered devices to choose from.
53  * @device_allocation: A semaphore initialized with number of devices.
54  */
55 struct cryp_driver_data {
56         struct klist device_list;
57         struct semaphore device_allocation;
58 };
59
60 /**
61  * struct cryp_ctx - Crypto context
62  * @config: Crypto mode.
63  * @key[CRYP_MAX_KEY_SIZE]: Key.
64  * @keylen: Length of key.
65  * @iv: Pointer to initialization vector.
66  * @indata: Pointer to indata.
67  * @outdata: Pointer to outdata.
68  * @datalen: Length of indata.
69  * @outlen: Length of outdata.
70  * @blocksize: Size of blocks.
71  * @updated: Updated flag.
72  * @dev_ctx: Device dependent context.
73  * @device: Pointer to the device.
74  */
75 struct cryp_ctx {
76         struct cryp_config config;
77         u8 key[CRYP_MAX_KEY_SIZE];
78         u32 keylen;
79         u8 *iv;
80         const u8 *indata;
81         u8 *outdata;
82         u32 datalen;
83         u32 outlen;
84         u32 blocksize;
85         u8 updated;
86         struct cryp_device_context dev_ctx;
87         struct cryp_device_data *device;
88         u32 session_id;
89 };
90
91 static struct cryp_driver_data driver_data;
92
93 /**
94  * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
95  * @in: Data to convert.
96  */
97 static inline u32 uint8p_to_uint32_be(u8 *in)
98 {
99         u32 *data = (u32 *)in;
100
101         return cpu_to_be32p(data);
102 }
103
104 /**
105  * swap_bits_in_byte - mirror the bits in a byte
106  * @b: the byte to be mirrored
107  *
108  * The bits are swapped the following way:
109  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
110  *  nibble 2 (n2) bits 4-7.
111  *
112  *  Nibble 1 (n1):
113  *  (The "old" (moved) bit is replaced with a zero)
114  *  1. Move bit 6 and 7, 4 positions to the left.
115  *  2. Move bit 3 and 5, 2 positions to the left.
116  *  3. Move bit 1-4, 1 position to the left.
117  *
118  *  Nibble 2 (n2):
119  *  1. Move bit 0 and 1, 4 positions to the right.
120  *  2. Move bit 2 and 4, 2 positions to the right.
121  *  3. Move bit 3-6, 1 position to the right.
122  *
123  *  Combine the two nibbles to a complete and swapped byte.
124  */
125
126 static inline u8 swap_bits_in_byte(u8 b)
127 {
128 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
129 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
130                                   right shift 2 */
131 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
132                                   right shift 1 */
133 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
134 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
135                                   left shift 2 */
136 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
137                                   left shift 1 */
138
139         u8 n1;
140         u8 n2;
141
142         /* Swap most significant nibble */
143         /* Right shift 4, bits 6 and 7 */
144         n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
145         /* Right shift 2, bits 3 and 5 */
146         n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147         /* Right shift 1, bits 1-4 */
148         n1 = (n1  & R_SHIFT_1_MASK) >> 1;
149
150         /* Swap least significant nibble */
151         /* Left shift 4, bits 0 and 1 */
152         n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
153         /* Left shift 2, bits 2 and 4 */
154         n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155         /* Left shift 1, bits 3-6 */
156         n2 = (n2  & L_SHIFT_1_MASK) << 1;
157
158         return n1 | n2;
159 }
160
161 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162                                                       u8 *out, u32 len)
163 {
164         unsigned int i = 0;
165         int j;
166         int index = 0;
167
168         j = len - BYTES_PER_WORD;
169         while (j >= 0) {
170                 for (i = 0; i < BYTES_PER_WORD; i++) {
171                         index = len - j - BYTES_PER_WORD + i;
172                         out[j + i] =
173                                 swap_bits_in_byte(in[index]);
174                 }
175                 j -= BYTES_PER_WORD;
176         }
177 }
178
179 static void add_session_id(struct cryp_ctx *ctx)
180 {
181         /*
182          * We never want 0 to be a valid value, since this is the default value
183          * for the software context.
184          */
185         if (unlikely(atomic_inc_and_test(&session_id)))
186                 atomic_inc(&session_id);
187
188         ctx->session_id = atomic_read(&session_id);
189 }
190
191 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192 {
193         struct cryp_ctx *ctx;
194         int count;
195         struct cryp_device_data *device_data;
196
197         if (param == NULL) {
198                 BUG_ON(!param);
199                 return IRQ_HANDLED;
200         }
201
202         /* The device is coming from the one found in hw_crypt_noxts. */
203         device_data = (struct cryp_device_data *)param;
204
205         ctx = device_data->current_ctx;
206
207         if (ctx == NULL) {
208                 BUG_ON(!ctx);
209                 return IRQ_HANDLED;
210         }
211
212         dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213                 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214                 "out" : "in");
215
216         if (cryp_pending_irq_src(device_data,
217                                  CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218                 if (ctx->outlen / ctx->blocksize > 0) {
219                         count = ctx->blocksize / 4;
220
221                         readsl(&device_data->base->dout, ctx->outdata, count);
222                         ctx->outdata += count;
223                         ctx->outlen -= count;
224
225                         if (ctx->outlen == 0) {
226                                 cryp_disable_irq_src(device_data,
227                                                      CRYP_IRQ_SRC_OUTPUT_FIFO);
228                         }
229                 }
230         } else if (cryp_pending_irq_src(device_data,
231                                         CRYP_IRQ_SRC_INPUT_FIFO)) {
232                 if (ctx->datalen / ctx->blocksize > 0) {
233                         count = ctx->blocksize / 4;
234
235                         writesl(&device_data->base->din, ctx->indata, count);
236
237                         ctx->indata += count;
238                         ctx->datalen -= count;
239
240                         if (ctx->datalen == 0)
241                                 cryp_disable_irq_src(device_data,
242                                                    CRYP_IRQ_SRC_INPUT_FIFO);
243
244                         if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245                                 CRYP_PUT_BITS(&device_data->base->cr,
246                                               CRYP_START_ENABLE,
247                                               CRYP_CR_START_POS,
248                                               CRYP_CR_START_MASK);
249
250                                 cryp_wait_until_done(device_data);
251                         }
252                 }
253         }
254
255         return IRQ_HANDLED;
256 }
257
258 static int mode_is_aes(enum cryp_algo_mode mode)
259 {
260         return  CRYP_ALGO_AES_ECB == mode ||
261                 CRYP_ALGO_AES_CBC == mode ||
262                 CRYP_ALGO_AES_CTR == mode ||
263                 CRYP_ALGO_AES_XTS == mode;
264 }
265
266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267                   enum cryp_init_vector_index index)
268 {
269         struct cryp_init_vector_value vector_value;
270
271         dev_dbg(device_data->dev, "[%s]", __func__);
272
273         vector_value.init_value_left = left;
274         vector_value.init_value_right = right;
275
276         return cryp_configure_init_vector(device_data,
277                                           index,
278                                           vector_value);
279 }
280
281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
282 {
283         int i;
284         int status = 0;
285         int num_of_regs = ctx->blocksize / 8;
286         u32 iv[AES_BLOCK_SIZE / 4];
287
288         dev_dbg(device_data->dev, "[%s]", __func__);
289
290         /*
291          * Since we loop on num_of_regs we need to have a check in case
292          * someone provides an incorrect blocksize which would force calling
293          * cfg_iv with i greater than 2 which is an error.
294          */
295         if (num_of_regs > 2) {
296                 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297                         __func__, ctx->blocksize);
298                 return -EINVAL;
299         }
300
301         for (i = 0; i < ctx->blocksize / 4; i++)
302                 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
303
304         for (i = 0; i < num_of_regs; i++) {
305                 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306                                 (enum cryp_init_vector_index) i);
307                 if (status != 0)
308                         return status;
309         }
310         return status;
311 }
312
313 static int set_key(struct cryp_device_data *device_data,
314                    u32 left_key,
315                    u32 right_key,
316                    enum cryp_key_reg_index index)
317 {
318         struct cryp_key_value key_value;
319         int cryp_error;
320
321         dev_dbg(device_data->dev, "[%s]", __func__);
322
323         key_value.key_value_left = left_key;
324         key_value.key_value_right = right_key;
325
326         cryp_error = cryp_configure_key_values(device_data,
327                                                index,
328                                                key_value);
329         if (cryp_error != 0)
330                 dev_err(device_data->dev, "[%s]: "
331                         "cryp_configure_key_values() failed!", __func__);
332
333         return cryp_error;
334 }
335
336 static int cfg_keys(struct cryp_ctx *ctx)
337 {
338         int i;
339         int num_of_regs = ctx->keylen / 8;
340         u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341         int cryp_error = 0;
342
343         dev_dbg(ctx->device->dev, "[%s]", __func__);
344
345         if (mode_is_aes(ctx->config.algomode)) {
346                 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347                                                    (u8 *)swapped_key,
348                                                    ctx->keylen);
349         } else {
350                 for (i = 0; i < ctx->keylen / 4; i++)
351                         swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
352         }
353
354         for (i = 0; i < num_of_regs; i++) {
355                 cryp_error = set_key(ctx->device,
356                                      *(((u32 *)swapped_key)+i*2),
357                                      *(((u32 *)swapped_key)+i*2+1),
358                                      (enum cryp_key_reg_index) i);
359
360                 if (cryp_error != 0) {
361                         dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362                                         __func__);
363                         return cryp_error;
364                 }
365         }
366         return cryp_error;
367 }
368
369 static int cryp_setup_context(struct cryp_ctx *ctx,
370                               struct cryp_device_data *device_data)
371 {
372         u32 control_register = CRYP_CR_DEFAULT;
373
374         switch (cryp_mode) {
375         case CRYP_MODE_INTERRUPT:
376                 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377                 break;
378
379         case CRYP_MODE_DMA:
380                 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381                 break;
382
383         default:
384                 break;
385         }
386
387         if (ctx->updated == 0) {
388                 cryp_flush_inoutfifo(device_data);
389                 if (cfg_keys(ctx) != 0) {
390                         dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391                                 __func__);
392                         return -EINVAL;
393                 }
394
395                 if (ctx->iv &&
396                     CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397                     CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398                     CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399                         if (cfg_ivs(device_data, ctx) != 0)
400                                 return -EPERM;
401                 }
402
403                 cryp_set_configuration(device_data, &ctx->config,
404                                        &control_register);
405                 add_session_id(ctx);
406         } else if (ctx->updated == 1 &&
407                    ctx->session_id != atomic_read(&session_id)) {
408                 cryp_flush_inoutfifo(device_data);
409                 cryp_restore_device_context(device_data, &ctx->dev_ctx);
410
411                 add_session_id(ctx);
412                 control_register = ctx->dev_ctx.cr;
413         } else
414                 control_register = ctx->dev_ctx.cr;
415
416         writel(control_register |
417                (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418                &device_data->base->cr);
419
420         return 0;
421 }
422
423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424                                 struct cryp_device_data **device_data)
425 {
426         int ret;
427         struct klist_iter device_iterator;
428         struct klist_node *device_node;
429         struct cryp_device_data *local_device_data = NULL;
430         pr_debug(DEV_DBG_NAME " [%s]", __func__);
431
432         /* Wait until a device is available */
433         ret = down_interruptible(&driver_data.device_allocation);
434         if (ret)
435                 return ret;  /* Interrupted */
436
437         /* Select a device */
438         klist_iter_init(&driver_data.device_list, &device_iterator);
439
440         device_node = klist_next(&device_iterator);
441         while (device_node) {
442                 local_device_data = container_of(device_node,
443                                            struct cryp_device_data, list_node);
444                 spin_lock(&local_device_data->ctx_lock);
445                 /* current_ctx allocates a device, NULL = unallocated */
446                 if (local_device_data->current_ctx) {
447                         device_node = klist_next(&device_iterator);
448                 } else {
449                         local_device_data->current_ctx = ctx;
450                         ctx->device = local_device_data;
451                         spin_unlock(&local_device_data->ctx_lock);
452                         break;
453                 }
454                 spin_unlock(&local_device_data->ctx_lock);
455         }
456         klist_iter_exit(&device_iterator);
457
458         if (!device_node) {
459                 /**
460                  * No free device found.
461                  * Since we allocated a device with down_interruptible, this
462                  * should not be able to happen.
463                  * Number of available devices, which are contained in
464                  * device_allocation, is therefore decremented by not doing
465                  * an up(device_allocation).
466                  */
467                 return -EBUSY;
468         }
469
470         *device_data = local_device_data;
471
472         return 0;
473 }
474
475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476                                    struct device *dev)
477 {
478         struct dma_slave_config mem2cryp = {
479                 .direction = DMA_MEM_TO_DEV,
480                 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482                 .dst_maxburst = 4,
483         };
484         struct dma_slave_config cryp2mem = {
485                 .direction = DMA_DEV_TO_MEM,
486                 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487                 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488                 .src_maxburst = 4,
489         };
490
491         dma_cap_zero(device_data->dma.mask);
492         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
493
494         device_data->dma.cfg_mem2cryp = mem_to_engine;
495         device_data->dma.chan_mem2cryp =
496                 dma_request_channel(device_data->dma.mask,
497                                     stedma40_filter,
498                                     device_data->dma.cfg_mem2cryp);
499
500         device_data->dma.cfg_cryp2mem = engine_to_mem;
501         device_data->dma.chan_cryp2mem =
502                 dma_request_channel(device_data->dma.mask,
503                                     stedma40_filter,
504                                     device_data->dma.cfg_cryp2mem);
505
506         dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507         dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
508
509         init_completion(&device_data->dma.cryp_dma_complete);
510 }
511
512 static void cryp_dma_out_callback(void *data)
513 {
514         struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515         dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516
517         complete(&ctx->device->dma.cryp_dma_complete);
518 }
519
520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521                                  struct scatterlist *sg,
522                                  int len,
523                                  enum dma_data_direction direction)
524 {
525         struct dma_async_tx_descriptor *desc;
526         struct dma_chan *channel = NULL;
527         dma_cookie_t cookie;
528
529         dev_dbg(ctx->device->dev, "[%s]: ", __func__);
530
531         if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
532                 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533                         "aligned! Addr: 0x%08x", __func__, (u32)sg);
534                 return -EFAULT;
535         }
536
537         switch (direction) {
538         case DMA_TO_DEVICE:
539                 channel = ctx->device->dma.chan_mem2cryp;
540                 ctx->device->dma.sg_src = sg;
541                 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542                                                  ctx->device->dma.sg_src,
543                                                  ctx->device->dma.nents_src,
544                                                  direction);
545
546                 if (!ctx->device->dma.sg_src_len) {
547                         dev_dbg(ctx->device->dev,
548                                 "[%s]: Could not map the sg list (TO_DEVICE)",
549                                 __func__);
550                         return -EFAULT;
551                 }
552
553                 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554                         "(TO_DEVICE)", __func__);
555
556                 desc = dmaengine_prep_slave_sg(channel,
557                                 ctx->device->dma.sg_src,
558                                 ctx->device->dma.sg_src_len,
559                                 DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560                 break;
561
562         case DMA_FROM_DEVICE:
563                 channel = ctx->device->dma.chan_cryp2mem;
564                 ctx->device->dma.sg_dst = sg;
565                 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566                                                  ctx->device->dma.sg_dst,
567                                                  ctx->device->dma.nents_dst,
568                                                  direction);
569
570                 if (!ctx->device->dma.sg_dst_len) {
571                         dev_dbg(ctx->device->dev,
572                                 "[%s]: Could not map the sg list (FROM_DEVICE)",
573                                 __func__);
574                         return -EFAULT;
575                 }
576
577                 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578                         "(FROM_DEVICE)", __func__);
579
580                 desc = dmaengine_prep_slave_sg(channel,
581                                 ctx->device->dma.sg_dst,
582                                 ctx->device->dma.sg_dst_len,
583                                 DMA_DEV_TO_MEM,
584                                 DMA_CTRL_ACK |
585                                 DMA_PREP_INTERRUPT);
586
587                 desc->callback = cryp_dma_out_callback;
588                 desc->callback_param = ctx;
589                 break;
590
591         default:
592                 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593                         __func__);
594                 return -EFAULT;
595         }
596
597         cookie = dmaengine_submit(desc);
598         dma_async_issue_pending(channel);
599
600         return 0;
601 }
602
603 static void cryp_dma_done(struct cryp_ctx *ctx)
604 {
605         struct dma_chan *chan;
606
607         dev_dbg(ctx->device->dev, "[%s]: ", __func__);
608
609         chan = ctx->device->dma.chan_mem2cryp;
610         dmaengine_terminate_all(chan);
611         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
612                      ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
613
614         chan = ctx->device->dma.chan_cryp2mem;
615         dmaengine_terminate_all(chan);
616         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
617                      ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
618 }
619
620 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
621                           int len)
622 {
623         int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
624         dev_dbg(ctx->device->dev, "[%s]: ", __func__);
625
626         if (error) {
627                 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
628                         "failed", __func__);
629                 return error;
630         }
631
632         return len;
633 }
634
635 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
636 {
637         int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
638         if (error) {
639                 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
640                         "failed", __func__);
641                 return error;
642         }
643
644         return len;
645 }
646
647 static void cryp_polling_mode(struct cryp_ctx *ctx,
648                               struct cryp_device_data *device_data)
649 {
650         int len = ctx->blocksize / BYTES_PER_WORD;
651         int remaining_length = ctx->datalen;
652         u32 *indata = (u32 *)ctx->indata;
653         u32 *outdata = (u32 *)ctx->outdata;
654
655         while (remaining_length > 0) {
656                 writesl(&device_data->base->din, indata, len);
657                 indata += len;
658                 remaining_length -= (len * BYTES_PER_WORD);
659                 cryp_wait_until_done(device_data);
660
661                 readsl(&device_data->base->dout, outdata, len);
662                 outdata += len;
663                 cryp_wait_until_done(device_data);
664         }
665 }
666
667 static int cryp_disable_power(struct device *dev,
668                               struct cryp_device_data *device_data,
669                               bool save_device_context)
670 {
671         int ret = 0;
672
673         dev_dbg(dev, "[%s]", __func__);
674
675         spin_lock(&device_data->power_state_spinlock);
676         if (!device_data->power_state)
677                 goto out;
678
679         spin_lock(&device_data->ctx_lock);
680         if (save_device_context && device_data->current_ctx) {
681                 cryp_save_device_context(device_data,
682                                 &device_data->current_ctx->dev_ctx,
683                                 cryp_mode);
684                 device_data->restore_dev_ctx = true;
685         }
686         spin_unlock(&device_data->ctx_lock);
687
688         clk_disable(device_data->clk);
689         ret = regulator_disable(device_data->pwr_regulator);
690         if (ret)
691                 dev_err(dev, "[%s]: "
692                                 "regulator_disable() failed!",
693                                 __func__);
694
695         device_data->power_state = false;
696
697 out:
698         spin_unlock(&device_data->power_state_spinlock);
699
700         return ret;
701 }
702
703 static int cryp_enable_power(
704                 struct device *dev,
705                 struct cryp_device_data *device_data,
706                 bool restore_device_context)
707 {
708         int ret = 0;
709
710         dev_dbg(dev, "[%s]", __func__);
711
712         spin_lock(&device_data->power_state_spinlock);
713         if (!device_data->power_state) {
714                 ret = regulator_enable(device_data->pwr_regulator);
715                 if (ret) {
716                         dev_err(dev, "[%s]: regulator_enable() failed!",
717                                         __func__);
718                         goto out;
719                 }
720
721                 ret = clk_enable(device_data->clk);
722                 if (ret) {
723                         dev_err(dev, "[%s]: clk_enable() failed!",
724                                         __func__);
725                         regulator_disable(device_data->pwr_regulator);
726                         goto out;
727                 }
728                 device_data->power_state = true;
729         }
730
731         if (device_data->restore_dev_ctx) {
732                 spin_lock(&device_data->ctx_lock);
733                 if (restore_device_context && device_data->current_ctx) {
734                         device_data->restore_dev_ctx = false;
735                         cryp_restore_device_context(device_data,
736                                         &device_data->current_ctx->dev_ctx);
737                 }
738                 spin_unlock(&device_data->ctx_lock);
739         }
740 out:
741         spin_unlock(&device_data->power_state_spinlock);
742
743         return ret;
744 }
745
746 static int hw_crypt_noxts(struct cryp_ctx *ctx,
747                           struct cryp_device_data *device_data)
748 {
749         int ret = 0;
750
751         const u8 *indata = ctx->indata;
752         u8 *outdata = ctx->outdata;
753         u32 datalen = ctx->datalen;
754         u32 outlen = datalen;
755
756         pr_debug(DEV_DBG_NAME " [%s]", __func__);
757
758         ctx->outlen = ctx->datalen;
759
760         if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
761                 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
762                          "0x%08x", __func__, (u32)indata);
763                 return -EINVAL;
764         }
765
766         ret = cryp_setup_context(ctx, device_data);
767
768         if (ret)
769                 goto out;
770
771         if (cryp_mode == CRYP_MODE_INTERRUPT) {
772                 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
773                                     CRYP_IRQ_SRC_OUTPUT_FIFO);
774
775                 /*
776                  * ctx->outlen is decremented in the cryp_interrupt_handler
777                  * function. We had to add cpu_relax() (barrier) to make sure
778                  * that gcc didn't optimze away this variable.
779                  */
780                 while (ctx->outlen > 0)
781                         cpu_relax();
782         } else if (cryp_mode == CRYP_MODE_POLLING ||
783                    cryp_mode == CRYP_MODE_DMA) {
784                 /*
785                  * The reason for having DMA in this if case is that if we are
786                  * running cryp_mode = 2, then we separate DMA routines for
787                  * handling cipher/plaintext > blocksize, except when
788                  * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
789                  * the polling mode. Overhead of doing DMA setup eats up the
790                  * benefits using it.
791                  */
792                 cryp_polling_mode(ctx, device_data);
793         } else {
794                 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
795                         __func__);
796                 ret = -EPERM;
797                 goto out;
798         }
799
800         cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
801         ctx->updated = 1;
802
803 out:
804         ctx->indata = indata;
805         ctx->outdata = outdata;
806         ctx->datalen = datalen;
807         ctx->outlen = outlen;
808
809         return ret;
810 }
811
812 static int get_nents(struct scatterlist *sg, int nbytes)
813 {
814         int nents = 0;
815
816         while (nbytes > 0) {
817                 nbytes -= sg->length;
818                 sg = sg_next(sg);
819                 nents++;
820         }
821
822         return nents;
823 }
824
825 static int ablk_dma_crypt(struct ablkcipher_request *areq)
826 {
827         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
828         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
829         struct cryp_device_data *device_data;
830
831         int bytes_written = 0;
832         int bytes_read = 0;
833         int ret;
834
835         pr_debug(DEV_DBG_NAME " [%s]", __func__);
836
837         ctx->datalen = areq->nbytes;
838         ctx->outlen = areq->nbytes;
839
840         ret = cryp_get_device_data(ctx, &device_data);
841         if (ret)
842                 return ret;
843
844         ret = cryp_setup_context(ctx, device_data);
845         if (ret)
846                 goto out;
847
848         /* We have the device now, so store the nents in the dma struct. */
849         ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
850         ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
851
852         /* Enable DMA in- and output. */
853         cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
854
855         bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
856         bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
857
858         wait_for_completion(&ctx->device->dma.cryp_dma_complete);
859         cryp_dma_done(ctx);
860
861         cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
862         ctx->updated = 1;
863
864 out:
865         spin_lock(&device_data->ctx_lock);
866         device_data->current_ctx = NULL;
867         ctx->device = NULL;
868         spin_unlock(&device_data->ctx_lock);
869
870         /*
871          * The down_interruptible part for this semaphore is called in
872          * cryp_get_device_data.
873          */
874         up(&driver_data.device_allocation);
875
876         if (unlikely(bytes_written != bytes_read))
877                 return -EPERM;
878
879         return 0;
880 }
881
882 static int ablk_crypt(struct ablkcipher_request *areq)
883 {
884         struct ablkcipher_walk walk;
885         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
886         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
887         struct cryp_device_data *device_data;
888         unsigned long src_paddr;
889         unsigned long dst_paddr;
890         int ret;
891         int nbytes;
892
893         pr_debug(DEV_DBG_NAME " [%s]", __func__);
894
895         ret = cryp_get_device_data(ctx, &device_data);
896         if (ret)
897                 goto out;
898
899         ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
900         ret = ablkcipher_walk_phys(areq, &walk);
901
902         if (ret) {
903                 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
904                         __func__);
905                 goto out;
906         }
907
908         while ((nbytes = walk.nbytes) > 0) {
909                 ctx->iv = walk.iv;
910                 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
911                 ctx->indata = phys_to_virt(src_paddr);
912
913                 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
914                 ctx->outdata = phys_to_virt(dst_paddr);
915
916                 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
917
918                 ret = hw_crypt_noxts(ctx, device_data);
919                 if (ret)
920                         goto out;
921
922                 nbytes -= ctx->datalen;
923                 ret = ablkcipher_walk_done(areq, &walk, nbytes);
924                 if (ret)
925                         goto out;
926         }
927         ablkcipher_walk_complete(&walk);
928
929 out:
930         /* Release the device */
931         spin_lock(&device_data->ctx_lock);
932         device_data->current_ctx = NULL;
933         ctx->device = NULL;
934         spin_unlock(&device_data->ctx_lock);
935
936         /*
937          * The down_interruptible part for this semaphore is called in
938          * cryp_get_device_data.
939          */
940         up(&driver_data.device_allocation);
941
942         return ret;
943 }
944
945 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
946                                  const u8 *key, unsigned int keylen)
947 {
948         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
949         u32 *flags = &cipher->base.crt_flags;
950
951         pr_debug(DEV_DBG_NAME " [%s]", __func__);
952
953         switch (keylen) {
954         case AES_KEYSIZE_128:
955                 ctx->config.keysize = CRYP_KEY_SIZE_128;
956                 break;
957
958         case AES_KEYSIZE_192:
959                 ctx->config.keysize = CRYP_KEY_SIZE_192;
960                 break;
961
962         case AES_KEYSIZE_256:
963                 ctx->config.keysize = CRYP_KEY_SIZE_256;
964                 break;
965
966         default:
967                 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
968                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
969                 return -EINVAL;
970         }
971
972         memcpy(ctx->key, key, keylen);
973         ctx->keylen = keylen;
974
975         ctx->updated = 0;
976
977         return 0;
978 }
979
980 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
981                                  const u8 *key, unsigned int keylen)
982 {
983         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
984         u32 *flags = &cipher->base.crt_flags;
985         u32 tmp[DES_EXPKEY_WORDS];
986         int ret;
987
988         pr_debug(DEV_DBG_NAME " [%s]", __func__);
989         if (keylen != DES_KEY_SIZE) {
990                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
991                 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
992                                 __func__);
993                 return -EINVAL;
994         }
995
996         ret = des_ekey(tmp, key);
997         if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
998                 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
999                 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1000                                 __func__);
1001                 return -EINVAL;
1002         }
1003
1004         memcpy(ctx->key, key, keylen);
1005         ctx->keylen = keylen;
1006
1007         ctx->updated = 0;
1008         return 0;
1009 }
1010
1011 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1012                                   const u8 *key, unsigned int keylen)
1013 {
1014         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1015         u32 *flags = &cipher->base.crt_flags;
1016         const u32 *K = (const u32 *)key;
1017         u32 tmp[DES3_EDE_EXPKEY_WORDS];
1018         int i, ret;
1019
1020         pr_debug(DEV_DBG_NAME " [%s]", __func__);
1021         if (keylen != DES3_EDE_KEY_SIZE) {
1022                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
1023                 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
1024                                 __func__);
1025                 return -EINVAL;
1026         }
1027
1028         /* Checking key interdependency for weak key detection. */
1029         if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1030                                 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
1031                         (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1032                 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1033                 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1034                                 __func__);
1035                 return -EINVAL;
1036         }
1037         for (i = 0; i < 3; i++) {
1038                 ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
1039                 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1040                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1041                         pr_debug(DEV_DBG_NAME " [%s]: "
1042                                         "CRYPTO_TFM_REQ_WEAK_KEY", __func__);
1043                         return -EINVAL;
1044                 }
1045         }
1046
1047         memcpy(ctx->key, key, keylen);
1048         ctx->keylen = keylen;
1049
1050         ctx->updated = 0;
1051         return 0;
1052 }
1053
1054 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1055 {
1056         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1057         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1058
1059         pr_debug(DEV_DBG_NAME " [%s]", __func__);
1060
1061         ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1062
1063         /*
1064          * DMA does not work for DES due to a hw bug */
1065         if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1066                 return ablk_dma_crypt(areq);
1067
1068         /* For everything except DMA, we run the non DMA version. */
1069         return ablk_crypt(areq);
1070 }
1071
1072 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1073 {
1074         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1075         struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1076
1077         pr_debug(DEV_DBG_NAME " [%s]", __func__);
1078
1079         ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1080
1081         /* DMA does not work for DES due to a hw bug */
1082         if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1083                 return ablk_dma_crypt(areq);
1084
1085         /* For everything except DMA, we run the non DMA version. */
1086         return ablk_crypt(areq);
1087 }
1088
1089 struct cryp_algo_template {
1090         enum cryp_algo_mode algomode;
1091         struct crypto_alg crypto;
1092 };
1093
1094 static int cryp_cra_init(struct crypto_tfm *tfm)
1095 {
1096         struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1097         struct crypto_alg *alg = tfm->__crt_alg;
1098         struct cryp_algo_template *cryp_alg = container_of(alg,
1099                         struct cryp_algo_template,
1100                         crypto);
1101
1102         ctx->config.algomode = cryp_alg->algomode;
1103         ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1104
1105         return 0;
1106 }
1107
1108 static struct cryp_algo_template cryp_algs[] = {
1109         {
1110                 .algomode = CRYP_ALGO_AES_ECB,
1111                 .crypto = {
1112                         .cra_name = "aes",
1113                         .cra_driver_name = "aes-ux500",
1114                         .cra_priority = 300,
1115                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1116                                         CRYPTO_ALG_ASYNC,
1117                         .cra_blocksize = AES_BLOCK_SIZE,
1118                         .cra_ctxsize = sizeof(struct cryp_ctx),
1119                         .cra_alignmask = 3,
1120                         .cra_type = &crypto_ablkcipher_type,
1121                         .cra_init = cryp_cra_init,
1122                         .cra_module = THIS_MODULE,
1123                         .cra_u = {
1124                                 .ablkcipher = {
1125                                         .min_keysize = AES_MIN_KEY_SIZE,
1126                                         .max_keysize = AES_MAX_KEY_SIZE,
1127                                         .setkey = aes_ablkcipher_setkey,
1128                                         .encrypt = cryp_blk_encrypt,
1129                                         .decrypt = cryp_blk_decrypt
1130                                 }
1131                         }
1132                 }
1133         },
1134         {
1135                 .algomode = CRYP_ALGO_AES_ECB,
1136                 .crypto = {
1137                         .cra_name = "ecb(aes)",
1138                         .cra_driver_name = "ecb-aes-ux500",
1139                         .cra_priority = 300,
1140                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1141                                         CRYPTO_ALG_ASYNC,
1142                         .cra_blocksize = AES_BLOCK_SIZE,
1143                         .cra_ctxsize = sizeof(struct cryp_ctx),
1144                         .cra_alignmask = 3,
1145                         .cra_type = &crypto_ablkcipher_type,
1146                         .cra_init = cryp_cra_init,
1147                         .cra_module = THIS_MODULE,
1148                         .cra_u = {
1149                                 .ablkcipher = {
1150                                         .min_keysize = AES_MIN_KEY_SIZE,
1151                                         .max_keysize = AES_MAX_KEY_SIZE,
1152                                         .setkey = aes_ablkcipher_setkey,
1153                                         .encrypt = cryp_blk_encrypt,
1154                                         .decrypt = cryp_blk_decrypt,
1155                                 }
1156                         }
1157                 }
1158         },
1159         {
1160                 .algomode = CRYP_ALGO_AES_CBC,
1161                 .crypto = {
1162                         .cra_name = "cbc(aes)",
1163                         .cra_driver_name = "cbc-aes-ux500",
1164                         .cra_priority = 300,
1165                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1166                                         CRYPTO_ALG_ASYNC,
1167                         .cra_blocksize = AES_BLOCK_SIZE,
1168                         .cra_ctxsize = sizeof(struct cryp_ctx),
1169                         .cra_alignmask = 3,
1170                         .cra_type = &crypto_ablkcipher_type,
1171                         .cra_init = cryp_cra_init,
1172                         .cra_module = THIS_MODULE,
1173                         .cra_u = {
1174                                 .ablkcipher = {
1175                                         .min_keysize = AES_MIN_KEY_SIZE,
1176                                         .max_keysize = AES_MAX_KEY_SIZE,
1177                                         .setkey = aes_ablkcipher_setkey,
1178                                         .encrypt = cryp_blk_encrypt,
1179                                         .decrypt = cryp_blk_decrypt,
1180                                         .ivsize = AES_BLOCK_SIZE,
1181                                 }
1182                         }
1183                 }
1184         },
1185         {
1186                 .algomode = CRYP_ALGO_AES_CTR,
1187                 .crypto = {
1188                         .cra_name = "ctr(aes)",
1189                         .cra_driver_name = "ctr-aes-ux500",
1190                         .cra_priority = 300,
1191                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1192                                                 CRYPTO_ALG_ASYNC,
1193                         .cra_blocksize = AES_BLOCK_SIZE,
1194                         .cra_ctxsize = sizeof(struct cryp_ctx),
1195                         .cra_alignmask = 3,
1196                         .cra_type = &crypto_ablkcipher_type,
1197                         .cra_init = cryp_cra_init,
1198                         .cra_module = THIS_MODULE,
1199                         .cra_u = {
1200                                 .ablkcipher = {
1201                                         .min_keysize = AES_MIN_KEY_SIZE,
1202                                         .max_keysize = AES_MAX_KEY_SIZE,
1203                                         .setkey = aes_ablkcipher_setkey,
1204                                         .encrypt = cryp_blk_encrypt,
1205                                         .decrypt = cryp_blk_decrypt,
1206                                         .ivsize = AES_BLOCK_SIZE,
1207                                 }
1208                         }
1209                 }
1210         },
1211         {
1212                 .algomode = CRYP_ALGO_DES_ECB,
1213                 .crypto = {
1214                         .cra_name = "des",
1215                         .cra_driver_name = "des-ux500",
1216                         .cra_priority = 300,
1217                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1218                                                 CRYPTO_ALG_ASYNC,
1219                         .cra_blocksize = DES_BLOCK_SIZE,
1220                         .cra_ctxsize = sizeof(struct cryp_ctx),
1221                         .cra_alignmask = 3,
1222                         .cra_type = &crypto_ablkcipher_type,
1223                         .cra_init = cryp_cra_init,
1224                         .cra_module = THIS_MODULE,
1225                         .cra_u = {
1226                                 .ablkcipher = {
1227                                         .min_keysize = DES_KEY_SIZE,
1228                                         .max_keysize = DES_KEY_SIZE,
1229                                         .setkey = des_ablkcipher_setkey,
1230                                         .encrypt = cryp_blk_encrypt,
1231                                         .decrypt = cryp_blk_decrypt
1232                                 }
1233                         }
1234                 }
1235
1236         },
1237         {
1238                 .algomode = CRYP_ALGO_TDES_ECB,
1239                 .crypto = {
1240                         .cra_name = "des3_ede",
1241                         .cra_driver_name = "des3_ede-ux500",
1242                         .cra_priority = 300,
1243                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1244                                                 CRYPTO_ALG_ASYNC,
1245                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1246                         .cra_ctxsize = sizeof(struct cryp_ctx),
1247                         .cra_alignmask = 3,
1248                         .cra_type = &crypto_ablkcipher_type,
1249                         .cra_init = cryp_cra_init,
1250                         .cra_module = THIS_MODULE,
1251                         .cra_u = {
1252                                 .ablkcipher = {
1253                                         .min_keysize = DES3_EDE_KEY_SIZE,
1254                                         .max_keysize = DES3_EDE_KEY_SIZE,
1255                                         .setkey = des_ablkcipher_setkey,
1256                                         .encrypt = cryp_blk_encrypt,
1257                                         .decrypt = cryp_blk_decrypt
1258                                 }
1259                         }
1260                 }
1261         },
1262         {
1263                 .algomode = CRYP_ALGO_DES_ECB,
1264                 .crypto = {
1265                         .cra_name = "ecb(des)",
1266                         .cra_driver_name = "ecb-des-ux500",
1267                         .cra_priority = 300,
1268                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1269                                         CRYPTO_ALG_ASYNC,
1270                         .cra_blocksize = DES_BLOCK_SIZE,
1271                         .cra_ctxsize = sizeof(struct cryp_ctx),
1272                         .cra_alignmask = 3,
1273                         .cra_type = &crypto_ablkcipher_type,
1274                         .cra_init = cryp_cra_init,
1275                         .cra_module = THIS_MODULE,
1276                         .cra_u = {
1277                                 .ablkcipher = {
1278                                         .min_keysize = DES_KEY_SIZE,
1279                                         .max_keysize = DES_KEY_SIZE,
1280                                         .setkey = des_ablkcipher_setkey,
1281                                         .encrypt = cryp_blk_encrypt,
1282                                         .decrypt = cryp_blk_decrypt,
1283                                 }
1284                         }
1285                 }
1286         },
1287         {
1288                 .algomode = CRYP_ALGO_TDES_ECB,
1289                 .crypto = {
1290                         .cra_name = "ecb(des3_ede)",
1291                         .cra_driver_name = "ecb-des3_ede-ux500",
1292                         .cra_priority = 300,
1293                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294                                         CRYPTO_ALG_ASYNC,
1295                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1296                         .cra_ctxsize = sizeof(struct cryp_ctx),
1297                         .cra_alignmask = 3,
1298                         .cra_type = &crypto_ablkcipher_type,
1299                         .cra_init = cryp_cra_init,
1300                         .cra_module = THIS_MODULE,
1301                         .cra_u = {
1302                                 .ablkcipher = {
1303                                         .min_keysize = DES3_EDE_KEY_SIZE,
1304                                         .max_keysize = DES3_EDE_KEY_SIZE,
1305                                         .setkey = des3_ablkcipher_setkey,
1306                                         .encrypt = cryp_blk_encrypt,
1307                                         .decrypt = cryp_blk_decrypt,
1308                                 }
1309                         }
1310                 }
1311         },
1312         {
1313                 .algomode = CRYP_ALGO_DES_CBC,
1314                 .crypto = {
1315                         .cra_name = "cbc(des)",
1316                         .cra_driver_name = "cbc-des-ux500",
1317                         .cra_priority = 300,
1318                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1319                                         CRYPTO_ALG_ASYNC,
1320                         .cra_blocksize = DES_BLOCK_SIZE,
1321                         .cra_ctxsize = sizeof(struct cryp_ctx),
1322                         .cra_alignmask = 3,
1323                         .cra_type = &crypto_ablkcipher_type,
1324                         .cra_init = cryp_cra_init,
1325                         .cra_module = THIS_MODULE,
1326                         .cra_u = {
1327                                 .ablkcipher = {
1328                                         .min_keysize = DES_KEY_SIZE,
1329                                         .max_keysize = DES_KEY_SIZE,
1330                                         .setkey = des_ablkcipher_setkey,
1331                                         .encrypt = cryp_blk_encrypt,
1332                                         .decrypt = cryp_blk_decrypt,
1333                                 }
1334                         }
1335                 }
1336         },
1337         {
1338                 .algomode = CRYP_ALGO_TDES_CBC,
1339                 .crypto = {
1340                         .cra_name = "cbc(des3_ede)",
1341                         .cra_driver_name = "cbc-des3_ede-ux500",
1342                         .cra_priority = 300,
1343                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1344                                         CRYPTO_ALG_ASYNC,
1345                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1346                         .cra_ctxsize = sizeof(struct cryp_ctx),
1347                         .cra_alignmask = 3,
1348                         .cra_type = &crypto_ablkcipher_type,
1349                         .cra_init = cryp_cra_init,
1350                         .cra_module = THIS_MODULE,
1351                         .cra_u = {
1352                                 .ablkcipher = {
1353                                         .min_keysize = DES3_EDE_KEY_SIZE,
1354                                         .max_keysize = DES3_EDE_KEY_SIZE,
1355                                         .setkey = des3_ablkcipher_setkey,
1356                                         .encrypt = cryp_blk_encrypt,
1357                                         .decrypt = cryp_blk_decrypt,
1358                                         .ivsize = DES3_EDE_BLOCK_SIZE,
1359                                 }
1360                         }
1361                 }
1362         }
1363 };
1364
1365 /**
1366  * cryp_algs_register_all -
1367  */
1368 static int cryp_algs_register_all(void)
1369 {
1370         int ret;
1371         int i;
1372         int count;
1373
1374         pr_debug("[%s]", __func__);
1375
1376         for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1377                 ret = crypto_register_alg(&cryp_algs[i].crypto);
1378                 if (ret) {
1379                         count = i;
1380                         pr_err("[%s] alg registration failed",
1381                                         cryp_algs[i].crypto.cra_driver_name);
1382                         goto unreg;
1383                 }
1384         }
1385         return 0;
1386 unreg:
1387         for (i = 0; i < count; i++)
1388                 crypto_unregister_alg(&cryp_algs[i].crypto);
1389         return ret;
1390 }
1391
1392 /**
1393  * cryp_algs_unregister_all -
1394  */
1395 static void cryp_algs_unregister_all(void)
1396 {
1397         int i;
1398
1399         pr_debug(DEV_DBG_NAME " [%s]", __func__);
1400
1401         for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1402                 crypto_unregister_alg(&cryp_algs[i].crypto);
1403 }
1404
1405 static int ux500_cryp_probe(struct platform_device *pdev)
1406 {
1407         int ret;
1408         struct resource *res;
1409         struct resource *res_irq;
1410         struct cryp_device_data *device_data;
1411         struct cryp_protection_config prot = {
1412                 .privilege_access = CRYP_STATE_ENABLE
1413         };
1414         struct device *dev = &pdev->dev;
1415
1416         dev_dbg(dev, "[%s]", __func__);
1417         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1418         if (!device_data) {
1419                 ret = -ENOMEM;
1420                 goto out;
1421         }
1422
1423         device_data->dev = dev;
1424         device_data->current_ctx = NULL;
1425
1426         /* Grab the DMA configuration from platform data. */
1427         mem_to_engine = &((struct cryp_platform_data *)
1428                          dev->platform_data)->mem_to_engine;
1429         engine_to_mem = &((struct cryp_platform_data *)
1430                          dev->platform_data)->engine_to_mem;
1431
1432         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1433         if (!res) {
1434                 dev_err(dev, "[%s]: platform_get_resource() failed",
1435                                 __func__);
1436                 ret = -ENODEV;
1437                 goto out;
1438         }
1439
1440         device_data->phybase = res->start;
1441         device_data->base = devm_ioremap_resource(dev, res);
1442         if (IS_ERR(device_data->base)) {
1443                 dev_err(dev, "[%s]: ioremap failed!", __func__);
1444                 ret = PTR_ERR(device_data->base);
1445                 goto out;
1446         }
1447
1448         spin_lock_init(&device_data->ctx_lock);
1449         spin_lock_init(&device_data->power_state_spinlock);
1450
1451         /* Enable power for CRYP hardware block */
1452         device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1453         if (IS_ERR(device_data->pwr_regulator)) {
1454                 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1455                 ret = PTR_ERR(device_data->pwr_regulator);
1456                 device_data->pwr_regulator = NULL;
1457                 goto out;
1458         }
1459
1460         /* Enable the clk for CRYP hardware block */
1461         device_data->clk = devm_clk_get(&pdev->dev, NULL);
1462         if (IS_ERR(device_data->clk)) {
1463                 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1464                 ret = PTR_ERR(device_data->clk);
1465                 goto out_regulator;
1466         }
1467
1468         ret = clk_prepare(device_data->clk);
1469         if (ret) {
1470                 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1471                 goto out_regulator;
1472         }
1473
1474         /* Enable device power (and clock) */
1475         ret = cryp_enable_power(device_data->dev, device_data, false);
1476         if (ret) {
1477                 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1478                 goto out_clk_unprepare;
1479         }
1480
1481         if (cryp_check(device_data)) {
1482                 dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1483                 ret = -EINVAL;
1484                 goto out_power;
1485         }
1486
1487         if (cryp_configure_protection(device_data, &prot)) {
1488                 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1489                         __func__);
1490                 ret = -EINVAL;
1491                 goto out_power;
1492         }
1493
1494         res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1495         if (!res_irq) {
1496                 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1497                         __func__);
1498                 ret = -ENODEV;
1499                 goto out_power;
1500         }
1501
1502         ret = devm_request_irq(&pdev->dev, res_irq->start,
1503                                cryp_interrupt_handler, 0, "cryp1", device_data);
1504         if (ret) {
1505                 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1506                 goto out_power;
1507         }
1508
1509         if (cryp_mode == CRYP_MODE_DMA)
1510                 cryp_dma_setup_channel(device_data, dev);
1511
1512         platform_set_drvdata(pdev, device_data);
1513
1514         /* Put the new device into the device list... */
1515         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1516
1517         /* ... and signal that a new device is available. */
1518         up(&driver_data.device_allocation);
1519
1520         atomic_set(&session_id, 1);
1521
1522         ret = cryp_algs_register_all();
1523         if (ret) {
1524                 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1525                         __func__);
1526                 goto out_power;
1527         }
1528
1529         dev_info(dev, "successfully registered\n");
1530
1531         return 0;
1532
1533 out_power:
1534         cryp_disable_power(device_data->dev, device_data, false);
1535
1536 out_clk_unprepare:
1537         clk_unprepare(device_data->clk);
1538
1539 out_regulator:
1540         regulator_put(device_data->pwr_regulator);
1541
1542 out:
1543         return ret;
1544 }
1545
1546 static int ux500_cryp_remove(struct platform_device *pdev)
1547 {
1548         struct cryp_device_data *device_data;
1549
1550         dev_dbg(&pdev->dev, "[%s]", __func__);
1551         device_data = platform_get_drvdata(pdev);
1552         if (!device_data) {
1553                 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1554                         __func__);
1555                 return -ENOMEM;
1556         }
1557
1558         /* Try to decrease the number of available devices. */
1559         if (down_trylock(&driver_data.device_allocation))
1560                 return -EBUSY;
1561
1562         /* Check that the device is free */
1563         spin_lock(&device_data->ctx_lock);
1564         /* current_ctx allocates a device, NULL = unallocated */
1565         if (device_data->current_ctx) {
1566                 /* The device is busy */
1567                 spin_unlock(&device_data->ctx_lock);
1568                 /* Return the device to the pool. */
1569                 up(&driver_data.device_allocation);
1570                 return -EBUSY;
1571         }
1572
1573         spin_unlock(&device_data->ctx_lock);
1574
1575         /* Remove the device from the list */
1576         if (klist_node_attached(&device_data->list_node))
1577                 klist_remove(&device_data->list_node);
1578
1579         /* If this was the last device, remove the services */
1580         if (list_empty(&driver_data.device_list.k_list))
1581                 cryp_algs_unregister_all();
1582
1583         if (cryp_disable_power(&pdev->dev, device_data, false))
1584                 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1585                         __func__);
1586
1587         clk_unprepare(device_data->clk);
1588         regulator_put(device_data->pwr_regulator);
1589
1590         return 0;
1591 }
1592
1593 static void ux500_cryp_shutdown(struct platform_device *pdev)
1594 {
1595         struct cryp_device_data *device_data;
1596
1597         dev_dbg(&pdev->dev, "[%s]", __func__);
1598
1599         device_data = platform_get_drvdata(pdev);
1600         if (!device_data) {
1601                 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1602                         __func__);
1603                 return;
1604         }
1605
1606         /* Check that the device is free */
1607         spin_lock(&device_data->ctx_lock);
1608         /* current_ctx allocates a device, NULL = unallocated */
1609         if (!device_data->current_ctx) {
1610                 if (down_trylock(&driver_data.device_allocation))
1611                         dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1612                                 "Shutting down anyway...", __func__);
1613                 /**
1614                  * (Allocate the device)
1615                  * Need to set this to non-null (dummy) value,
1616                  * to avoid usage if context switching.
1617                  */
1618                 device_data->current_ctx++;
1619         }
1620         spin_unlock(&device_data->ctx_lock);
1621
1622         /* Remove the device from the list */
1623         if (klist_node_attached(&device_data->list_node))
1624                 klist_remove(&device_data->list_node);
1625
1626         /* If this was the last device, remove the services */
1627         if (list_empty(&driver_data.device_list.k_list))
1628                 cryp_algs_unregister_all();
1629
1630         if (cryp_disable_power(&pdev->dev, device_data, false))
1631                 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1632                         __func__);
1633
1634 }
1635
1636 #ifdef CONFIG_PM_SLEEP
1637 static int ux500_cryp_suspend(struct device *dev)
1638 {
1639         int ret;
1640         struct platform_device *pdev = to_platform_device(dev);
1641         struct cryp_device_data *device_data;
1642         struct resource *res_irq;
1643         struct cryp_ctx *temp_ctx = NULL;
1644
1645         dev_dbg(dev, "[%s]", __func__);
1646
1647         /* Handle state? */
1648         device_data = platform_get_drvdata(pdev);
1649         if (!device_data) {
1650                 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1651                 return -ENOMEM;
1652         }
1653
1654         res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1655         if (!res_irq)
1656                 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1657         else
1658                 disable_irq(res_irq->start);
1659
1660         spin_lock(&device_data->ctx_lock);
1661         if (!device_data->current_ctx)
1662                 device_data->current_ctx++;
1663         spin_unlock(&device_data->ctx_lock);
1664
1665         if (device_data->current_ctx == ++temp_ctx) {
1666                 if (down_interruptible(&driver_data.device_allocation))
1667                         dev_dbg(dev, "[%s]: down_interruptible() failed",
1668                                 __func__);
1669                 ret = cryp_disable_power(dev, device_data, false);
1670
1671         } else
1672                 ret = cryp_disable_power(dev, device_data, true);
1673
1674         if (ret)
1675                 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1676
1677         return ret;
1678 }
1679
1680 static int ux500_cryp_resume(struct device *dev)
1681 {
1682         int ret = 0;
1683         struct platform_device *pdev = to_platform_device(dev);
1684         struct cryp_device_data *device_data;
1685         struct resource *res_irq;
1686         struct cryp_ctx *temp_ctx = NULL;
1687
1688         dev_dbg(dev, "[%s]", __func__);
1689
1690         device_data = platform_get_drvdata(pdev);
1691         if (!device_data) {
1692                 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1693                 return -ENOMEM;
1694         }
1695
1696         spin_lock(&device_data->ctx_lock);
1697         if (device_data->current_ctx == ++temp_ctx)
1698                 device_data->current_ctx = NULL;
1699         spin_unlock(&device_data->ctx_lock);
1700
1701
1702         if (!device_data->current_ctx)
1703                 up(&driver_data.device_allocation);
1704         else
1705                 ret = cryp_enable_power(dev, device_data, true);
1706
1707         if (ret)
1708                 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1709         else {
1710                 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1711                 if (res_irq)
1712                         enable_irq(res_irq->start);
1713         }
1714
1715         return ret;
1716 }
1717 #endif
1718
1719 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1720
1721 static const struct of_device_id ux500_cryp_match[] = {
1722         { .compatible = "stericsson,ux500-cryp" },
1723         { },
1724 };
1725 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1726
1727 static struct platform_driver cryp_driver = {
1728         .probe  = ux500_cryp_probe,
1729         .remove = ux500_cryp_remove,
1730         .shutdown = ux500_cryp_shutdown,
1731         .driver = {
1732                 .name  = "cryp1",
1733                 .of_match_table = ux500_cryp_match,
1734                 .pm    = &ux500_cryp_pm,
1735         }
1736 };
1737
1738 static int __init ux500_cryp_mod_init(void)
1739 {
1740         pr_debug("[%s] is called!", __func__);
1741         klist_init(&driver_data.device_list, NULL, NULL);
1742         /* Initialize the semaphore to 0 devices (locked state) */
1743         sema_init(&driver_data.device_allocation, 0);
1744         return platform_driver_register(&cryp_driver);
1745 }
1746
1747 static void __exit ux500_cryp_mod_fini(void)
1748 {
1749         pr_debug("[%s] is called!", __func__);
1750         platform_driver_unregister(&cryp_driver);
1751 }
1752
1753 module_init(ux500_cryp_mod_init);
1754 module_exit(ux500_cryp_mod_fini);
1755
1756 module_param(cryp_mode, int, 0);
1757
1758 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1759 MODULE_ALIAS_CRYPTO("aes-all");
1760 MODULE_ALIAS_CRYPTO("des-all");
1761
1762 MODULE_LICENSE("GPL");