GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / dma / cppi41.c
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15
16 #define DESC_TYPE       27
17 #define DESC_TYPE_HOST  0x10
18 #define DESC_TYPE_TEARD 0x13
19
20 #define TD_DESC_IS_RX   (1 << 16)
21 #define TD_DESC_DMA_NUM 10
22
23 #define DESC_LENGTH_BITS_NUM    21
24
25 #define DESC_TYPE_USB   (5 << 26)
26 #define DESC_PD_COMPLETE        (1 << 31)
27
28 /* DMA engine */
29 #define DMA_TDFDQ       4
30 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
32 #define RXHPCRA0                4
33
34 #define GCR_CHAN_ENABLE         (1 << 31)
35 #define GCR_TEARDOWN            (1 << 30)
36 #define GCR_STARV_RETRY         (1 << 24)
37 #define GCR_DESC_TYPE_HOST      (1 << 14)
38
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL          0
41 #define DMA_SCHED_CTRL_EN       (1 << 31)
42 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
43
44 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX      (1 << 7)
46
47 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX      (1 << 15)
49
50 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX      (1 << 23)
52
53 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX      (1 << 31)
55
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM          128
59 #define DESCS_AREAS             1
60 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
62
63 #define QMGR_LRAM0_BASE         0x80
64 #define QMGR_LRAM_SIZE          0x84
65 #define QMGR_LRAM1_BASE         0x88
66 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH     16
69 #define QMGR_MEMCTRL_DESC_SH    8
70
71 #define QMGR_NUM_PEND   5
72 #define QMGR_PEND(x)    (0x90 + (x) * 4)
73
74 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
75 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
76
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81
82 /* Glue layer specific */
83 /* USBSS  / USB AM335x */
84 #define USBSS_IRQ_STATUS        0x28
85 #define USBSS_IRQ_ENABLER       0x2c
86 #define USBSS_IRQ_CLEARR        0x30
87
88 #define USBSS_IRQ_PD_COMP       (1 <<  2)
89
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH         (1 << 19)
92
93 struct cppi41_channel {
94         struct dma_chan chan;
95         struct dma_async_tx_descriptor txd;
96         struct cppi41_dd *cdd;
97         struct cppi41_desc *desc;
98         dma_addr_t desc_phys;
99         void __iomem *gcr_reg;
100         int is_tx;
101         u32 residue;
102
103         unsigned int q_num;
104         unsigned int q_comp_num;
105         unsigned int port_num;
106
107         unsigned td_retry;
108         unsigned td_queued:1;
109         unsigned td_seen:1;
110         unsigned td_desc_seen:1;
111
112         struct list_head node;          /* Node for pending list */
113 };
114
115 struct cppi41_desc {
116         u32 pd0;
117         u32 pd1;
118         u32 pd2;
119         u32 pd3;
120         u32 pd4;
121         u32 pd5;
122         u32 pd6;
123         u32 pd7;
124 } __aligned(32);
125
126 struct chan_queues {
127         u16 submit;
128         u16 complete;
129 };
130
131 struct cppi41_dd {
132         struct dma_device ddev;
133
134         void *qmgr_scratch;
135         dma_addr_t scratch_phys;
136
137         struct cppi41_desc *cd;
138         dma_addr_t descs_phys;
139         u32 first_td_desc;
140         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
141
142         void __iomem *usbss_mem;
143         void __iomem *ctrl_mem;
144         void __iomem *sched_mem;
145         void __iomem *qmgr_mem;
146         unsigned int irq;
147         const struct chan_queues *queues_rx;
148         const struct chan_queues *queues_tx;
149         struct chan_queues td_queue;
150
151         struct list_head pending;       /* Pending queued transfers */
152         spinlock_t lock;                /* Lock for pending list */
153
154         /* context for suspend/resume */
155         unsigned int dma_tdfdq;
156
157         bool is_suspended;
158 };
159
160 #define FIST_COMPLETION_QUEUE   93
161 static struct chan_queues usb_queues_tx[] = {
162         /* USB0 ENDP 1 */
163         [ 0] = { .submit = 32, .complete =  93},
164         [ 1] = { .submit = 34, .complete =  94},
165         [ 2] = { .submit = 36, .complete =  95},
166         [ 3] = { .submit = 38, .complete =  96},
167         [ 4] = { .submit = 40, .complete =  97},
168         [ 5] = { .submit = 42, .complete =  98},
169         [ 6] = { .submit = 44, .complete =  99},
170         [ 7] = { .submit = 46, .complete = 100},
171         [ 8] = { .submit = 48, .complete = 101},
172         [ 9] = { .submit = 50, .complete = 102},
173         [10] = { .submit = 52, .complete = 103},
174         [11] = { .submit = 54, .complete = 104},
175         [12] = { .submit = 56, .complete = 105},
176         [13] = { .submit = 58, .complete = 106},
177         [14] = { .submit = 60, .complete = 107},
178
179         /* USB1 ENDP1 */
180         [15] = { .submit = 62, .complete = 125},
181         [16] = { .submit = 64, .complete = 126},
182         [17] = { .submit = 66, .complete = 127},
183         [18] = { .submit = 68, .complete = 128},
184         [19] = { .submit = 70, .complete = 129},
185         [20] = { .submit = 72, .complete = 130},
186         [21] = { .submit = 74, .complete = 131},
187         [22] = { .submit = 76, .complete = 132},
188         [23] = { .submit = 78, .complete = 133},
189         [24] = { .submit = 80, .complete = 134},
190         [25] = { .submit = 82, .complete = 135},
191         [26] = { .submit = 84, .complete = 136},
192         [27] = { .submit = 86, .complete = 137},
193         [28] = { .submit = 88, .complete = 138},
194         [29] = { .submit = 90, .complete = 139},
195 };
196
197 static const struct chan_queues usb_queues_rx[] = {
198         /* USB0 ENDP 1 */
199         [ 0] = { .submit =  1, .complete = 109},
200         [ 1] = { .submit =  2, .complete = 110},
201         [ 2] = { .submit =  3, .complete = 111},
202         [ 3] = { .submit =  4, .complete = 112},
203         [ 4] = { .submit =  5, .complete = 113},
204         [ 5] = { .submit =  6, .complete = 114},
205         [ 6] = { .submit =  7, .complete = 115},
206         [ 7] = { .submit =  8, .complete = 116},
207         [ 8] = { .submit =  9, .complete = 117},
208         [ 9] = { .submit = 10, .complete = 118},
209         [10] = { .submit = 11, .complete = 119},
210         [11] = { .submit = 12, .complete = 120},
211         [12] = { .submit = 13, .complete = 121},
212         [13] = { .submit = 14, .complete = 122},
213         [14] = { .submit = 15, .complete = 123},
214
215         /* USB1 ENDP 1 */
216         [15] = { .submit = 16, .complete = 141},
217         [16] = { .submit = 17, .complete = 142},
218         [17] = { .submit = 18, .complete = 143},
219         [18] = { .submit = 19, .complete = 144},
220         [19] = { .submit = 20, .complete = 145},
221         [20] = { .submit = 21, .complete = 146},
222         [21] = { .submit = 22, .complete = 147},
223         [22] = { .submit = 23, .complete = 148},
224         [23] = { .submit = 24, .complete = 149},
225         [24] = { .submit = 25, .complete = 150},
226         [25] = { .submit = 26, .complete = 151},
227         [26] = { .submit = 27, .complete = 152},
228         [27] = { .submit = 28, .complete = 153},
229         [28] = { .submit = 29, .complete = 154},
230         [29] = { .submit = 30, .complete = 155},
231 };
232
233 struct cppi_glue_infos {
234         irqreturn_t (*isr)(int irq, void *data);
235         const struct chan_queues *queues_rx;
236         const struct chan_queues *queues_tx;
237         struct chan_queues td_queue;
238 };
239
240 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
241 {
242         return container_of(c, struct cppi41_channel, chan);
243 }
244
245 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
246 {
247         struct cppi41_channel *c;
248         u32 descs_size;
249         u32 desc_num;
250
251         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
252
253         if (!((desc >= cdd->descs_phys) &&
254                         (desc < (cdd->descs_phys + descs_size)))) {
255                 return NULL;
256         }
257
258         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
259         BUG_ON(desc_num >= ALLOC_DECS_NUM);
260         c = cdd->chan_busy[desc_num];
261         cdd->chan_busy[desc_num] = NULL;
262
263         /* Usecount for chan_busy[], paired with push_desc_queue() */
264         pm_runtime_put(cdd->ddev.dev);
265
266         return c;
267 }
268
269 static void cppi_writel(u32 val, void *__iomem *mem)
270 {
271         __raw_writel(val, mem);
272 }
273
274 static u32 cppi_readl(void *__iomem *mem)
275 {
276         return __raw_readl(mem);
277 }
278
279 static u32 pd_trans_len(u32 val)
280 {
281         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
282 }
283
284 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
285 {
286         u32 desc;
287
288         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
289         desc &= ~0x1f;
290         return desc;
291 }
292
293 static irqreturn_t cppi41_irq(int irq, void *data)
294 {
295         struct cppi41_dd *cdd = data;
296         struct cppi41_channel *c;
297         u32 status;
298         int i;
299
300         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
301         if (!(status & USBSS_IRQ_PD_COMP))
302                 return IRQ_NONE;
303         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
304
305         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
306                         i++) {
307                 u32 val;
308                 u32 q_num;
309
310                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
311                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
312                         u32 mask;
313                         /* set corresponding bit for completetion Q 93 */
314                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
315                         /* not set all bits for queues less than Q 93 */
316                         mask--;
317                         /* now invert and keep only Q 93+ set */
318                         val &= ~mask;
319                 }
320
321                 if (val)
322                         __iormb();
323
324                 while (val) {
325                         u32 desc, len;
326                         int error;
327
328                         error = pm_runtime_get(cdd->ddev.dev);
329                         if (error < 0)
330                                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
331                                         __func__, error);
332
333                         q_num = __fls(val);
334                         val &= ~(1 << q_num);
335                         q_num += 32 * i;
336                         desc = cppi41_pop_desc(cdd, q_num);
337                         c = desc_to_chan(cdd, desc);
338                         if (WARN_ON(!c)) {
339                                 pr_err("%s() q %d desc %08x\n", __func__,
340                                                 q_num, desc);
341                                 continue;
342                         }
343
344                         if (c->desc->pd2 & PD2_ZERO_LENGTH)
345                                 len = 0;
346                         else
347                                 len = pd_trans_len(c->desc->pd0);
348
349                         c->residue = pd_trans_len(c->desc->pd6) - len;
350                         dma_cookie_complete(&c->txd);
351                         dmaengine_desc_get_callback_invoke(&c->txd, NULL);
352
353                         pm_runtime_mark_last_busy(cdd->ddev.dev);
354                         pm_runtime_put_autosuspend(cdd->ddev.dev);
355                 }
356         }
357         return IRQ_HANDLED;
358 }
359
360 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
361 {
362         dma_cookie_t cookie;
363
364         cookie = dma_cookie_assign(tx);
365
366         return cookie;
367 }
368
369 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
370 {
371         struct cppi41_channel *c = to_cpp41_chan(chan);
372         struct cppi41_dd *cdd = c->cdd;
373         int error;
374
375         error = pm_runtime_get_sync(cdd->ddev.dev);
376         if (error < 0) {
377                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
378                         __func__, error);
379                 pm_runtime_put_noidle(cdd->ddev.dev);
380
381                 return error;
382         }
383
384         dma_cookie_init(chan);
385         dma_async_tx_descriptor_init(&c->txd, chan);
386         c->txd.tx_submit = cppi41_tx_submit;
387
388         if (!c->is_tx)
389                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
390
391         pm_runtime_mark_last_busy(cdd->ddev.dev);
392         pm_runtime_put_autosuspend(cdd->ddev.dev);
393
394         return 0;
395 }
396
397 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
398 {
399         struct cppi41_channel *c = to_cpp41_chan(chan);
400         struct cppi41_dd *cdd = c->cdd;
401         int error;
402
403         error = pm_runtime_get_sync(cdd->ddev.dev);
404         if (error < 0) {
405                 pm_runtime_put_noidle(cdd->ddev.dev);
406
407                 return;
408         }
409
410         WARN_ON(!list_empty(&cdd->pending));
411
412         pm_runtime_mark_last_busy(cdd->ddev.dev);
413         pm_runtime_put_autosuspend(cdd->ddev.dev);
414 }
415
416 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
417         dma_cookie_t cookie, struct dma_tx_state *txstate)
418 {
419         struct cppi41_channel *c = to_cpp41_chan(chan);
420         enum dma_status ret;
421
422         /* lock */
423         ret = dma_cookie_status(chan, cookie, txstate);
424         if (txstate && ret == DMA_COMPLETE)
425                 txstate->residue = c->residue;
426         /* unlock */
427
428         return ret;
429 }
430
431 static void push_desc_queue(struct cppi41_channel *c)
432 {
433         struct cppi41_dd *cdd = c->cdd;
434         u32 desc_num;
435         u32 desc_phys;
436         u32 reg;
437
438         c->residue = 0;
439
440         reg = GCR_CHAN_ENABLE;
441         if (!c->is_tx) {
442                 reg |= GCR_STARV_RETRY;
443                 reg |= GCR_DESC_TYPE_HOST;
444                 reg |= c->q_comp_num;
445         }
446
447         cppi_writel(reg, c->gcr_reg);
448
449         /*
450          * We don't use writel() but __raw_writel() so we have to make sure
451          * that the DMA descriptor in coherent memory made to the main memory
452          * before starting the dma engine.
453          */
454         __iowmb();
455
456         /*
457          * DMA transfers can take at least 200ms to complete with USB mass
458          * storage connected. To prevent autosuspend timeouts, we must use
459          * pm_runtime_get/put() when chan_busy[] is modified. This will get
460          * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
461          * outcome of the transfer.
462          */
463         pm_runtime_get(cdd->ddev.dev);
464
465         desc_phys = lower_32_bits(c->desc_phys);
466         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
467         WARN_ON(cdd->chan_busy[desc_num]);
468         cdd->chan_busy[desc_num] = c;
469
470         reg = (sizeof(struct cppi41_desc) - 24) / 4;
471         reg |= desc_phys;
472         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
473 }
474
475 /*
476  * Caller must hold cdd->lock to prevent push_desc_queue()
477  * getting called out of order. We have both cppi41_dma_issue_pending()
478  * and cppi41_runtime_resume() call this function.
479  */
480 static void cppi41_run_queue(struct cppi41_dd *cdd)
481 {
482         struct cppi41_channel *c, *_c;
483
484         list_for_each_entry_safe(c, _c, &cdd->pending, node) {
485                 push_desc_queue(c);
486                 list_del(&c->node);
487         }
488 }
489
490 static void cppi41_dma_issue_pending(struct dma_chan *chan)
491 {
492         struct cppi41_channel *c = to_cpp41_chan(chan);
493         struct cppi41_dd *cdd = c->cdd;
494         unsigned long flags;
495         int error;
496
497         error = pm_runtime_get(cdd->ddev.dev);
498         if ((error != -EINPROGRESS) && error < 0) {
499                 pm_runtime_put_noidle(cdd->ddev.dev);
500                 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
501                         error);
502
503                 return;
504         }
505
506         spin_lock_irqsave(&cdd->lock, flags);
507         list_add_tail(&c->node, &cdd->pending);
508         if (!cdd->is_suspended)
509                 cppi41_run_queue(cdd);
510         spin_unlock_irqrestore(&cdd->lock, flags);
511
512         pm_runtime_mark_last_busy(cdd->ddev.dev);
513         pm_runtime_put_autosuspend(cdd->ddev.dev);
514 }
515
516 static u32 get_host_pd0(u32 length)
517 {
518         u32 reg;
519
520         reg = DESC_TYPE_HOST << DESC_TYPE;
521         reg |= length;
522
523         return reg;
524 }
525
526 static u32 get_host_pd1(struct cppi41_channel *c)
527 {
528         u32 reg;
529
530         reg = 0;
531
532         return reg;
533 }
534
535 static u32 get_host_pd2(struct cppi41_channel *c)
536 {
537         u32 reg;
538
539         reg = DESC_TYPE_USB;
540         reg |= c->q_comp_num;
541
542         return reg;
543 }
544
545 static u32 get_host_pd3(u32 length)
546 {
547         u32 reg;
548
549         /* PD3 = packet size */
550         reg = length;
551
552         return reg;
553 }
554
555 static u32 get_host_pd6(u32 length)
556 {
557         u32 reg;
558
559         /* PD6 buffer size */
560         reg = DESC_PD_COMPLETE;
561         reg |= length;
562
563         return reg;
564 }
565
566 static u32 get_host_pd4_or_7(u32 addr)
567 {
568         u32 reg;
569
570         reg = addr;
571
572         return reg;
573 }
574
575 static u32 get_host_pd5(void)
576 {
577         u32 reg;
578
579         reg = 0;
580
581         return reg;
582 }
583
584 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
585         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
586         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
587 {
588         struct cppi41_channel *c = to_cpp41_chan(chan);
589         struct dma_async_tx_descriptor *txd = NULL;
590         struct cppi41_dd *cdd = c->cdd;
591         struct cppi41_desc *d;
592         struct scatterlist *sg;
593         unsigned int i;
594         int error;
595
596         error = pm_runtime_get(cdd->ddev.dev);
597         if (error < 0) {
598                 pm_runtime_put_noidle(cdd->ddev.dev);
599
600                 return NULL;
601         }
602
603         if (cdd->is_suspended)
604                 goto err_out_not_ready;
605
606         d = c->desc;
607         for_each_sg(sgl, sg, sg_len, i) {
608                 u32 addr;
609                 u32 len;
610
611                 /* We need to use more than one desc once musb supports sg */
612                 addr = lower_32_bits(sg_dma_address(sg));
613                 len = sg_dma_len(sg);
614
615                 d->pd0 = get_host_pd0(len);
616                 d->pd1 = get_host_pd1(c);
617                 d->pd2 = get_host_pd2(c);
618                 d->pd3 = get_host_pd3(len);
619                 d->pd4 = get_host_pd4_or_7(addr);
620                 d->pd5 = get_host_pd5();
621                 d->pd6 = get_host_pd6(len);
622                 d->pd7 = get_host_pd4_or_7(addr);
623
624                 d++;
625         }
626
627         txd = &c->txd;
628
629 err_out_not_ready:
630         pm_runtime_mark_last_busy(cdd->ddev.dev);
631         pm_runtime_put_autosuspend(cdd->ddev.dev);
632
633         return txd;
634 }
635
636 static void cppi41_compute_td_desc(struct cppi41_desc *d)
637 {
638         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
639 }
640
641 static int cppi41_tear_down_chan(struct cppi41_channel *c)
642 {
643         struct cppi41_dd *cdd = c->cdd;
644         struct cppi41_desc *td;
645         u32 reg;
646         u32 desc_phys;
647         u32 td_desc_phys;
648
649         td = cdd->cd;
650         td += cdd->first_td_desc;
651
652         td_desc_phys = cdd->descs_phys;
653         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
654
655         if (!c->td_queued) {
656                 cppi41_compute_td_desc(td);
657                 __iowmb();
658
659                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
660                 reg |= td_desc_phys;
661                 cppi_writel(reg, cdd->qmgr_mem +
662                                 QMGR_QUEUE_D(cdd->td_queue.submit));
663
664                 reg = GCR_CHAN_ENABLE;
665                 if (!c->is_tx) {
666                         reg |= GCR_STARV_RETRY;
667                         reg |= GCR_DESC_TYPE_HOST;
668                         reg |= c->q_comp_num;
669                 }
670                 reg |= GCR_TEARDOWN;
671                 cppi_writel(reg, c->gcr_reg);
672                 c->td_queued = 1;
673                 c->td_retry = 500;
674         }
675
676         if (!c->td_seen || !c->td_desc_seen) {
677
678                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
679                 if (!desc_phys)
680                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
681
682                 if (desc_phys == c->desc_phys) {
683                         c->td_desc_seen = 1;
684
685                 } else if (desc_phys == td_desc_phys) {
686                         u32 pd0;
687
688                         __iormb();
689                         pd0 = td->pd0;
690                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
691                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
692                         WARN_ON((pd0 & 0x1f) != c->port_num);
693                         c->td_seen = 1;
694                 } else if (desc_phys) {
695                         WARN_ON_ONCE(1);
696                 }
697         }
698         c->td_retry--;
699         /*
700          * If the TX descriptor / channel is in use, the caller needs to poke
701          * his TD bit multiple times. After that he hardware releases the
702          * transfer descriptor followed by TD descriptor. Waiting seems not to
703          * cause any difference.
704          * RX seems to be thrown out right away. However once the TearDown
705          * descriptor gets through we are done. If we have seens the transfer
706          * descriptor before the TD we fetch it from enqueue, it has to be
707          * there waiting for us.
708          */
709         if (!c->td_seen && c->td_retry) {
710                 udelay(1);
711                 return -EAGAIN;
712         }
713         WARN_ON(!c->td_retry);
714
715         if (!c->td_desc_seen) {
716                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
717                 if (!desc_phys)
718                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
719                 WARN_ON(!desc_phys);
720         }
721
722         c->td_queued = 0;
723         c->td_seen = 0;
724         c->td_desc_seen = 0;
725         cppi_writel(0, c->gcr_reg);
726         return 0;
727 }
728
729 static int cppi41_stop_chan(struct dma_chan *chan)
730 {
731         struct cppi41_channel *c = to_cpp41_chan(chan);
732         struct cppi41_dd *cdd = c->cdd;
733         u32 desc_num;
734         u32 desc_phys;
735         int ret;
736
737         desc_phys = lower_32_bits(c->desc_phys);
738         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
739         if (!cdd->chan_busy[desc_num]) {
740                 struct cppi41_channel *cc, *_ct;
741
742                 /*
743                  * channels might still be in the pendling list if
744                  * cppi41_dma_issue_pending() is called after
745                  * cppi41_runtime_suspend() is called
746                  */
747                 list_for_each_entry_safe(cc, _ct, &cdd->pending, node) {
748                         if (cc != c)
749                                 continue;
750                         list_del(&cc->node);
751                         break;
752                 }
753                 return 0;
754         }
755
756         ret = cppi41_tear_down_chan(c);
757         if (ret)
758                 return ret;
759
760         WARN_ON(!cdd->chan_busy[desc_num]);
761         cdd->chan_busy[desc_num] = NULL;
762
763         /* Usecount for chan_busy[], paired with push_desc_queue() */
764         pm_runtime_put(cdd->ddev.dev);
765
766         return 0;
767 }
768
769 static void cleanup_chans(struct cppi41_dd *cdd)
770 {
771         while (!list_empty(&cdd->ddev.channels)) {
772                 struct cppi41_channel *cchan;
773
774                 cchan = list_first_entry(&cdd->ddev.channels,
775                                 struct cppi41_channel, chan.device_node);
776                 list_del(&cchan->chan.device_node);
777                 kfree(cchan);
778         }
779 }
780
781 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
782 {
783         struct cppi41_channel *cchan;
784         int i;
785         int ret;
786         u32 n_chans;
787
788         ret = of_property_read_u32(dev->of_node, "#dma-channels",
789                         &n_chans);
790         if (ret)
791                 return ret;
792         /*
793          * The channels can only be used as TX or as RX. So we add twice
794          * that much dma channels because USB can only do RX or TX.
795          */
796         n_chans *= 2;
797
798         for (i = 0; i < n_chans; i++) {
799                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
800                 if (!cchan)
801                         goto err;
802
803                 cchan->cdd = cdd;
804                 if (i & 1) {
805                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
806                         cchan->is_tx = 1;
807                 } else {
808                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
809                         cchan->is_tx = 0;
810                 }
811                 cchan->port_num = i >> 1;
812                 cchan->desc = &cdd->cd[i];
813                 cchan->desc_phys = cdd->descs_phys;
814                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
815                 cchan->chan.device = &cdd->ddev;
816                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
817         }
818         cdd->first_td_desc = n_chans;
819
820         return 0;
821 err:
822         cleanup_chans(cdd);
823         return -ENOMEM;
824 }
825
826 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
827 {
828         unsigned int mem_decs;
829         int i;
830
831         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
832
833         for (i = 0; i < DESCS_AREAS; i++) {
834
835                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
836                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
837
838                 dma_free_coherent(dev, mem_decs, cdd->cd,
839                                 cdd->descs_phys);
840         }
841 }
842
843 static void disable_sched(struct cppi41_dd *cdd)
844 {
845         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
846 }
847
848 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
849 {
850         disable_sched(cdd);
851
852         purge_descs(dev, cdd);
853
854         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
855         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
856         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
857                         cdd->scratch_phys);
858 }
859
860 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
861 {
862         unsigned int desc_size;
863         unsigned int mem_decs;
864         int i;
865         u32 reg;
866         u32 idx;
867
868         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
869                         (sizeof(struct cppi41_desc) - 1));
870         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
871         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
872
873         desc_size = sizeof(struct cppi41_desc);
874         mem_decs = ALLOC_DECS_NUM * desc_size;
875
876         idx = 0;
877         for (i = 0; i < DESCS_AREAS; i++) {
878
879                 reg = idx << QMGR_MEMCTRL_IDX_SH;
880                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
881                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
882
883                 BUILD_BUG_ON(DESCS_AREAS != 1);
884                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
885                                 &cdd->descs_phys, GFP_KERNEL);
886                 if (!cdd->cd)
887                         return -ENOMEM;
888
889                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
890                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
891
892                 idx += ALLOC_DECS_NUM;
893         }
894         return 0;
895 }
896
897 static void init_sched(struct cppi41_dd *cdd)
898 {
899         unsigned ch;
900         unsigned word;
901         u32 reg;
902
903         word = 0;
904         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
905         for (ch = 0; ch < 15 * 2; ch += 2) {
906
907                 reg = SCHED_ENTRY0_CHAN(ch);
908                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
909
910                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
911                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
912                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
913                 word++;
914         }
915         reg = 15 * 2 * 2 - 1;
916         reg |= DMA_SCHED_CTRL_EN;
917         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
918 }
919
920 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
921 {
922         int ret;
923
924         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
925         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
926                         &cdd->scratch_phys, GFP_KERNEL);
927         if (!cdd->qmgr_scratch)
928                 return -ENOMEM;
929
930         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
931         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
932         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
933
934         ret = init_descs(dev, cdd);
935         if (ret)
936                 goto err_td;
937
938         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
939         init_sched(cdd);
940         return 0;
941 err_td:
942         deinit_cppi41(dev, cdd);
943         return ret;
944 }
945
946 static struct platform_driver cpp41_dma_driver;
947 /*
948  * The param format is:
949  * X Y
950  * X: Port
951  * Y: 0 = RX else TX
952  */
953 #define INFO_PORT       0
954 #define INFO_IS_TX      1
955
956 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
957 {
958         struct cppi41_channel *cchan;
959         struct cppi41_dd *cdd;
960         const struct chan_queues *queues;
961         u32 *num = param;
962
963         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
964                 return false;
965
966         cchan = to_cpp41_chan(chan);
967
968         if (cchan->port_num != num[INFO_PORT])
969                 return false;
970
971         if (cchan->is_tx && !num[INFO_IS_TX])
972                 return false;
973         cdd = cchan->cdd;
974         if (cchan->is_tx)
975                 queues = cdd->queues_tx;
976         else
977                 queues = cdd->queues_rx;
978
979         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
980         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
981                 return false;
982
983         cchan->q_num = queues[cchan->port_num].submit;
984         cchan->q_comp_num = queues[cchan->port_num].complete;
985         return true;
986 }
987
988 static struct of_dma_filter_info cpp41_dma_info = {
989         .filter_fn = cpp41_dma_filter_fn,
990 };
991
992 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
993                 struct of_dma *ofdma)
994 {
995         int count = dma_spec->args_count;
996         struct of_dma_filter_info *info = ofdma->of_dma_data;
997
998         if (!info || !info->filter_fn)
999                 return NULL;
1000
1001         if (count != 2)
1002                 return NULL;
1003
1004         return dma_request_channel(info->dma_cap, info->filter_fn,
1005                         &dma_spec->args[0]);
1006 }
1007
1008 static const struct cppi_glue_infos usb_infos = {
1009         .isr = cppi41_irq,
1010         .queues_rx = usb_queues_rx,
1011         .queues_tx = usb_queues_tx,
1012         .td_queue = { .submit = 31, .complete = 0 },
1013 };
1014
1015 static const struct of_device_id cppi41_dma_ids[] = {
1016         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
1017         {},
1018 };
1019 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
1020
1021 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
1022 {
1023         const struct of_device_id *of_id;
1024
1025         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
1026         if (!of_id)
1027                 return NULL;
1028         return of_id->data;
1029 }
1030
1031 #define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1032                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1033                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1034                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1035
1036 static int cppi41_dma_probe(struct platform_device *pdev)
1037 {
1038         struct cppi41_dd *cdd;
1039         struct device *dev = &pdev->dev;
1040         const struct cppi_glue_infos *glue_info;
1041         int irq;
1042         int ret;
1043
1044         glue_info = get_glue_info(dev);
1045         if (!glue_info)
1046                 return -EINVAL;
1047
1048         cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1049         if (!cdd)
1050                 return -ENOMEM;
1051
1052         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1053         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1054         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1055         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1056         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1057         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1058         cdd->ddev.device_terminate_all = cppi41_stop_chan;
1059         cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1060         cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1061         cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1062         cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1063         cdd->ddev.dev = dev;
1064         INIT_LIST_HEAD(&cdd->ddev.channels);
1065         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1066
1067         cdd->usbss_mem = of_iomap(dev->of_node, 0);
1068         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1069         cdd->sched_mem = of_iomap(dev->of_node, 2);
1070         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1071         spin_lock_init(&cdd->lock);
1072         INIT_LIST_HEAD(&cdd->pending);
1073
1074         platform_set_drvdata(pdev, cdd);
1075
1076         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1077                         !cdd->qmgr_mem)
1078                 return -ENXIO;
1079
1080         pm_runtime_enable(dev);
1081         pm_runtime_set_autosuspend_delay(dev, 100);
1082         pm_runtime_use_autosuspend(dev);
1083         ret = pm_runtime_get_sync(dev);
1084         if (ret < 0)
1085                 goto err_get_sync;
1086
1087         cdd->queues_rx = glue_info->queues_rx;
1088         cdd->queues_tx = glue_info->queues_tx;
1089         cdd->td_queue = glue_info->td_queue;
1090
1091         ret = init_cppi41(dev, cdd);
1092         if (ret)
1093                 goto err_init_cppi;
1094
1095         ret = cppi41_add_chans(dev, cdd);
1096         if (ret)
1097                 goto err_chans;
1098
1099         irq = irq_of_parse_and_map(dev->of_node, 0);
1100         if (!irq) {
1101                 ret = -EINVAL;
1102                 goto err_irq;
1103         }
1104
1105         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1106
1107         ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1108                         dev_name(dev), cdd);
1109         if (ret)
1110                 goto err_irq;
1111         cdd->irq = irq;
1112
1113         ret = dma_async_device_register(&cdd->ddev);
1114         if (ret)
1115                 goto err_dma_reg;
1116
1117         ret = of_dma_controller_register(dev->of_node,
1118                         cppi41_dma_xlate, &cpp41_dma_info);
1119         if (ret)
1120                 goto err_of;
1121
1122         pm_runtime_mark_last_busy(dev);
1123         pm_runtime_put_autosuspend(dev);
1124
1125         return 0;
1126 err_of:
1127         dma_async_device_unregister(&cdd->ddev);
1128 err_dma_reg:
1129 err_irq:
1130         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1131         cleanup_chans(cdd);
1132 err_chans:
1133         deinit_cppi41(dev, cdd);
1134 err_init_cppi:
1135         pm_runtime_dont_use_autosuspend(dev);
1136 err_get_sync:
1137         pm_runtime_put_sync(dev);
1138         pm_runtime_disable(dev);
1139         iounmap(cdd->usbss_mem);
1140         iounmap(cdd->ctrl_mem);
1141         iounmap(cdd->sched_mem);
1142         iounmap(cdd->qmgr_mem);
1143         return ret;
1144 }
1145
1146 static int cppi41_dma_remove(struct platform_device *pdev)
1147 {
1148         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1149         int error;
1150
1151         error = pm_runtime_get_sync(&pdev->dev);
1152         if (error < 0)
1153                 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1154                         __func__, error);
1155         of_dma_controller_free(pdev->dev.of_node);
1156         dma_async_device_unregister(&cdd->ddev);
1157
1158         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1159         devm_free_irq(&pdev->dev, cdd->irq, cdd);
1160         cleanup_chans(cdd);
1161         deinit_cppi41(&pdev->dev, cdd);
1162         iounmap(cdd->usbss_mem);
1163         iounmap(cdd->ctrl_mem);
1164         iounmap(cdd->sched_mem);
1165         iounmap(cdd->qmgr_mem);
1166         pm_runtime_dont_use_autosuspend(&pdev->dev);
1167         pm_runtime_put_sync(&pdev->dev);
1168         pm_runtime_disable(&pdev->dev);
1169         return 0;
1170 }
1171
1172 static int __maybe_unused cppi41_suspend(struct device *dev)
1173 {
1174         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1175
1176         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1177         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1178         disable_sched(cdd);
1179
1180         return 0;
1181 }
1182
1183 static int __maybe_unused cppi41_resume(struct device *dev)
1184 {
1185         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1186         struct cppi41_channel *c;
1187         int i;
1188
1189         for (i = 0; i < DESCS_AREAS; i++)
1190                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1191
1192         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1193                 if (!c->is_tx)
1194                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1195
1196         init_sched(cdd);
1197
1198         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1199         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1200         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1201         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1202
1203         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1204
1205         return 0;
1206 }
1207
1208 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1209 {
1210         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1211         unsigned long flags;
1212
1213         spin_lock_irqsave(&cdd->lock, flags);
1214         cdd->is_suspended = true;
1215         WARN_ON(!list_empty(&cdd->pending));
1216         spin_unlock_irqrestore(&cdd->lock, flags);
1217
1218         return 0;
1219 }
1220
1221 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1222 {
1223         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1224         unsigned long flags;
1225
1226         spin_lock_irqsave(&cdd->lock, flags);
1227         cdd->is_suspended = false;
1228         cppi41_run_queue(cdd);
1229         spin_unlock_irqrestore(&cdd->lock, flags);
1230
1231         return 0;
1232 }
1233
1234 static const struct dev_pm_ops cppi41_pm_ops = {
1235         SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1236         SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1237                            cppi41_runtime_resume,
1238                            NULL)
1239 };
1240
1241 static struct platform_driver cpp41_dma_driver = {
1242         .probe  = cppi41_dma_probe,
1243         .remove = cppi41_dma_remove,
1244         .driver = {
1245                 .name = "cppi41-dma-engine",
1246                 .pm = &cppi41_pm_ops,
1247                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1248         },
1249 };
1250
1251 module_platform_driver(cpp41_dma_driver);
1252 MODULE_LICENSE("GPL");
1253 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");