GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *      apei/ghes and i7core_edac to be used at the same time.
55  */
56 static void const *edac_mc_owner;
57
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59
60 int edac_get_report_status(void)
61 {
62         return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65
66 void edac_set_report_status(int new)
67 {
68         if (new == EDAC_REPORTING_ENABLED ||
69             new == EDAC_REPORTING_DISABLED ||
70             new == EDAC_REPORTING_FORCE)
71                 edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77         if (!str)
78                 return -EINVAL;
79
80         if (!strncmp(str, "on", 2))
81                 edac_report = EDAC_REPORTING_ENABLED;
82         else if (!strncmp(str, "off", 3))
83                 edac_report = EDAC_REPORTING_DISABLED;
84         else if (!strncmp(str, "force", 5))
85                 edac_report = EDAC_REPORTING_FORCE;
86
87         return 0;
88 }
89
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92         int ret = 0;
93
94         switch (edac_report) {
95         case EDAC_REPORTING_ENABLED:
96                 ret = sprintf(buffer, "on");
97                 break;
98         case EDAC_REPORTING_DISABLED:
99                 ret = sprintf(buffer, "off");
100                 break;
101         case EDAC_REPORTING_FORCE:
102                 ret = sprintf(buffer, "force");
103                 break;
104         default:
105                 ret = -EINVAL;
106                 break;
107         }
108
109         return ret;
110 }
111
112 static const struct kernel_param_ops edac_report_ops = {
113         .set = edac_report_set,
114         .get = edac_report_get,
115 };
116
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120                                  unsigned len)
121 {
122         struct mem_ctl_info *mci = dimm->mci;
123         int i, n, count = 0;
124         char *p = buf;
125
126         for (i = 0; i < mci->n_layers; i++) {
127                 n = snprintf(p, len, "%s %d ",
128                               edac_layer_name[mci->layers[i].type],
129                               dimm->location[i]);
130                 p += n;
131                 len -= n;
132                 count += n;
133                 if (!len)
134                         break;
135         }
136
137         return count;
138 }
139
140 #ifdef CONFIG_EDAC_DEBUG
141
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145         edac_dbg(4, "    channel = %p\n", chan);
146         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152         char location[80];
153
154         edac_dimm_info_location(dimm, location, sizeof(location));
155
156         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157                  dimm->mci->csbased ? "rank" : "dimm",
158                  number, location, dimm->csrow, dimm->cschannel);
159         edac_dbg(4, "  dimm = %p\n", dimm);
160         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169         edac_dbg(4, "  csrow = %p\n", csrow);
170         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180         edac_dbg(3, "\tmci = %p\n", mci);
181         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186                  mci->nr_csrows, mci->csrows);
187         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188                  mci->tot_dimms, mci->dimms);
189         edac_dbg(3, "\tdev = %p\n", mci->pdev);
190         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191                  mci->mod_name, mci->ctl_name);
192         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194
195 #endif                          /* CONFIG_EDAC_DEBUG */
196
197 const char * const edac_mem_types[] = {
198         [MEM_EMPTY]     = "Empty csrow",
199         [MEM_RESERVED]  = "Reserved csrow type",
200         [MEM_UNKNOWN]   = "Unknown csrow type",
201         [MEM_FPM]       = "Fast page mode RAM",
202         [MEM_EDO]       = "Extended data out RAM",
203         [MEM_BEDO]      = "Burst Extended data out RAM",
204         [MEM_SDR]       = "Single data rate SDRAM",
205         [MEM_RDR]       = "Registered single data rate SDRAM",
206         [MEM_DDR]       = "Double data rate SDRAM",
207         [MEM_RDDR]      = "Registered Double data rate SDRAM",
208         [MEM_RMBS]      = "Rambus DRAM",
209         [MEM_DDR2]      = "Unbuffered DDR2 RAM",
210         [MEM_FB_DDR2]   = "Fully buffered DDR2",
211         [MEM_RDDR2]     = "Registered DDR2 RAM",
212         [MEM_XDR]       = "Rambus XDR",
213         [MEM_DDR3]      = "Unbuffered DDR3 RAM",
214         [MEM_RDDR3]     = "Registered DDR3 RAM",
215         [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
216         [MEM_DDR4]      = "Unbuffered DDR4 RAM",
217         [MEM_RDDR4]     = "Registered DDR4 RAM",
218         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
219 };
220 EXPORT_SYMBOL_GPL(edac_mem_types);
221
222 /**
223  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224  * @p:          pointer to a pointer with the memory offset to be used. At
225  *              return, this will be incremented to point to the next offset
226  * @size:       Size of the data structure to be reserved
227  * @n_elems:    Number of elements that should be reserved
228  *
229  * If 'size' is a constant, the compiler will optimize this whole function
230  * down to either a no-op or the addition of a constant to the value of '*p'.
231  *
232  * The 'p' pointer is absolutely needed to keep the proper advancing
233  * further in memory to the proper offsets when allocating the struct along
234  * with its embedded structs, as edac_device_alloc_ctl_info() does it
235  * above, for example.
236  *
237  * At return, the pointer 'p' will be incremented to be used on a next call
238  * to this function.
239  */
240 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 {
242         unsigned align, r;
243         void *ptr = *p;
244
245         *p += size * n_elems;
246
247         /*
248          * 'p' can possibly be an unaligned item X such that sizeof(X) is
249          * 'size'.  Adjust 'p' so that its alignment is at least as
250          * stringent as what the compiler would provide for X and return
251          * the aligned result.
252          * Here we assume that the alignment of a "long long" is the most
253          * stringent alignment that the compiler will ever provide by default.
254          * As far as I know, this is a reasonable assumption.
255          */
256         if (size > sizeof(long))
257                 align = sizeof(long long);
258         else if (size > sizeof(int))
259                 align = sizeof(long);
260         else if (size > sizeof(short))
261                 align = sizeof(int);
262         else if (size > sizeof(char))
263                 align = sizeof(short);
264         else
265                 return (char *)ptr;
266
267         r = (unsigned long)ptr % align;
268
269         if (r == 0)
270                 return (char *)ptr;
271
272         *p += align - r;
273
274         return (void *)(((unsigned long)ptr) + align - r);
275 }
276
277 static void _edac_mc_free(struct mem_ctl_info *mci)
278 {
279         int i, chn, row;
280         struct csrow_info *csr;
281         const unsigned int tot_dimms = mci->tot_dimms;
282         const unsigned int tot_channels = mci->num_cschannel;
283         const unsigned int tot_csrows = mci->nr_csrows;
284
285         if (mci->dimms) {
286                 for (i = 0; i < tot_dimms; i++)
287                         kfree(mci->dimms[i]);
288                 kfree(mci->dimms);
289         }
290         if (mci->csrows) {
291                 for (row = 0; row < tot_csrows; row++) {
292                         csr = mci->csrows[row];
293                         if (csr) {
294                                 if (csr->channels) {
295                                         for (chn = 0; chn < tot_channels; chn++)
296                                                 kfree(csr->channels[chn]);
297                                         kfree(csr->channels);
298                                 }
299                                 kfree(csr);
300                         }
301                 }
302                 kfree(mci->csrows);
303         }
304         kfree(mci);
305 }
306
307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308                                    unsigned n_layers,
309                                    struct edac_mc_layer *layers,
310                                    unsigned sz_pvt)
311 {
312         struct mem_ctl_info *mci;
313         struct edac_mc_layer *layer;
314         struct csrow_info *csr;
315         struct rank_info *chan;
316         struct dimm_info *dimm;
317         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318         unsigned pos[EDAC_MAX_LAYERS];
319         unsigned size, tot_dimms = 1, count = 1;
320         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
321         void *pvt, *p, *ptr = NULL;
322         int i, j, row, chn, n, len, off;
323         bool per_rank = false;
324
325         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326         /*
327          * Calculate the total amount of dimms and csrows/cschannels while
328          * in the old API emulation mode
329          */
330         for (i = 0; i < n_layers; i++) {
331                 tot_dimms *= layers[i].size;
332                 if (layers[i].is_virt_csrow)
333                         tot_csrows *= layers[i].size;
334                 else
335                         tot_channels *= layers[i].size;
336
337                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338                         per_rank = true;
339         }
340
341         /* Figure out the offsets of the various items from the start of an mc
342          * structure.  We want the alignment of each item to be at least as
343          * stringent as what the compiler would provide if we could simply
344          * hardcode everything into a single struct.
345          */
346         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
347         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
348         for (i = 0; i < n_layers; i++) {
349                 count *= layers[i].size;
350                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
351                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353                 tot_errcount += 2 * count;
354         }
355
356         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
357         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
358         size = ((unsigned long)pvt) + sz_pvt;
359
360         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361                  size,
362                  tot_dimms,
363                  per_rank ? "ranks" : "dimms",
364                  tot_csrows * tot_channels);
365
366         mci = kzalloc(size, GFP_KERNEL);
367         if (mci == NULL)
368                 return NULL;
369
370         /* Adjust pointers so they point within the memory we just allocated
371          * rather than an imaginary chunk of memory located at address 0.
372          */
373         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
374         for (i = 0; i < n_layers; i++) {
375                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377         }
378         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379
380         /* setup index and various internal pointers */
381         mci->mc_idx = mc_num;
382         mci->tot_dimms = tot_dimms;
383         mci->pvt_info = pvt;
384         mci->n_layers = n_layers;
385         mci->layers = layer;
386         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387         mci->nr_csrows = tot_csrows;
388         mci->num_cschannel = tot_channels;
389         mci->csbased = per_rank;
390
391         /*
392          * Alocate and fill the csrow/channels structs
393          */
394         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
395         if (!mci->csrows)
396                 goto error;
397         for (row = 0; row < tot_csrows; row++) {
398                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399                 if (!csr)
400                         goto error;
401                 mci->csrows[row] = csr;
402                 csr->csrow_idx = row;
403                 csr->mci = mci;
404                 csr->nr_channels = tot_channels;
405                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
406                                         GFP_KERNEL);
407                 if (!csr->channels)
408                         goto error;
409
410                 for (chn = 0; chn < tot_channels; chn++) {
411                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412                         if (!chan)
413                                 goto error;
414                         csr->channels[chn] = chan;
415                         chan->chan_idx = chn;
416                         chan->csrow = csr;
417                 }
418         }
419
420         /*
421          * Allocate and fill the dimm structs
422          */
423         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
424         if (!mci->dimms)
425                 goto error;
426
427         memset(&pos, 0, sizeof(pos));
428         row = 0;
429         chn = 0;
430         for (i = 0; i < tot_dimms; i++) {
431                 chan = mci->csrows[row]->channels[chn];
432                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433                 if (off < 0 || off >= tot_dimms) {
434                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435                         goto error;
436                 }
437
438                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
439                 if (!dimm)
440                         goto error;
441                 mci->dimms[off] = dimm;
442                 dimm->mci = mci;
443
444                 /*
445                  * Copy DIMM location and initialize it.
446                  */
447                 len = sizeof(dimm->label);
448                 p = dimm->label;
449                 n = snprintf(p, len, "mc#%u", mc_num);
450                 p += n;
451                 len -= n;
452                 for (j = 0; j < n_layers; j++) {
453                         n = snprintf(p, len, "%s#%u",
454                                      edac_layer_name[layers[j].type],
455                                      pos[j]);
456                         p += n;
457                         len -= n;
458                         dimm->location[j] = pos[j];
459
460                         if (len <= 0)
461                                 break;
462                 }
463
464                 /* Link it to the csrows old API data */
465                 chan->dimm = dimm;
466                 dimm->csrow = row;
467                 dimm->cschannel = chn;
468
469                 /* Increment csrow location */
470                 if (layers[0].is_virt_csrow) {
471                         chn++;
472                         if (chn == tot_channels) {
473                                 chn = 0;
474                                 row++;
475                         }
476                 } else {
477                         row++;
478                         if (row == tot_csrows) {
479                                 row = 0;
480                                 chn++;
481                         }
482                 }
483
484                 /* Increment dimm location */
485                 for (j = n_layers - 1; j >= 0; j--) {
486                         pos[j]++;
487                         if (pos[j] < layers[j].size)
488                                 break;
489                         pos[j] = 0;
490                 }
491         }
492
493         mci->op_state = OP_ALLOC;
494
495         return mci;
496
497 error:
498         _edac_mc_free(mci);
499
500         return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503
504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506         edac_dbg(1, "\n");
507
508         /* If we're not yet registered with sysfs free only what was allocated
509          * in edac_mc_alloc().
510          */
511         if (!device_is_registered(&mci->dev)) {
512                 _edac_mc_free(mci);
513                 return;
514         }
515
516         /* the mci instance is freed here, when the sysfs object is dropped */
517         edac_unregister_sysfs(mci);
518 }
519 EXPORT_SYMBOL_GPL(edac_mc_free);
520
521 bool edac_has_mcs(void)
522 {
523         bool ret;
524
525         mutex_lock(&mem_ctls_mutex);
526
527         ret = list_empty(&mc_devices);
528
529         mutex_unlock(&mem_ctls_mutex);
530
531         return !ret;
532 }
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
534
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 {
538         struct mem_ctl_info *mci;
539         struct list_head *item;
540
541         edac_dbg(3, "\n");
542
543         list_for_each(item, &mc_devices) {
544                 mci = list_entry(item, struct mem_ctl_info, link);
545
546                 if (mci->pdev == dev)
547                         return mci;
548         }
549
550         return NULL;
551 }
552
553 /**
554  * find_mci_by_dev
555  *
556  *      scan list of controllers looking for the one that manages
557  *      the 'dev' device
558  * @dev: pointer to a struct device related with the MCI
559  */
560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 {
562         struct mem_ctl_info *ret;
563
564         mutex_lock(&mem_ctls_mutex);
565         ret = __find_mci_by_dev(dev);
566         mutex_unlock(&mem_ctls_mutex);
567
568         return ret;
569 }
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
571
572 /*
573  * edac_mc_workq_function
574  *      performs the operation scheduled by a workq request
575  */
576 static void edac_mc_workq_function(struct work_struct *work_req)
577 {
578         struct delayed_work *d_work = to_delayed_work(work_req);
579         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580
581         mutex_lock(&mem_ctls_mutex);
582
583         if (mci->op_state != OP_RUNNING_POLL) {
584                 mutex_unlock(&mem_ctls_mutex);
585                 return;
586         }
587
588         if (edac_op_state == EDAC_OPSTATE_POLL)
589                 mci->edac_check(mci);
590
591         mutex_unlock(&mem_ctls_mutex);
592
593         /* Queue ourselves again. */
594         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
595 }
596
597 /*
598  * edac_mc_reset_delay_period(unsigned long value)
599  *
600  *      user space has updated our poll period value, need to
601  *      reset our workq delays
602  */
603 void edac_mc_reset_delay_period(unsigned long value)
604 {
605         struct mem_ctl_info *mci;
606         struct list_head *item;
607
608         mutex_lock(&mem_ctls_mutex);
609
610         list_for_each(item, &mc_devices) {
611                 mci = list_entry(item, struct mem_ctl_info, link);
612
613                 if (mci->op_state == OP_RUNNING_POLL)
614                         edac_mod_work(&mci->work, value);
615         }
616         mutex_unlock(&mem_ctls_mutex);
617 }
618
619
620
621 /* Return 0 on success, 1 on failure.
622  * Before calling this function, caller must
623  * assign a unique value to mci->mc_idx.
624  *
625  *      locking model:
626  *
627  *              called with the mem_ctls_mutex lock held
628  */
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631         struct list_head *item, *insert_before;
632         struct mem_ctl_info *p;
633
634         insert_before = &mc_devices;
635
636         p = __find_mci_by_dev(mci->pdev);
637         if (unlikely(p != NULL))
638                 goto fail0;
639
640         list_for_each(item, &mc_devices) {
641                 p = list_entry(item, struct mem_ctl_info, link);
642
643                 if (p->mc_idx >= mci->mc_idx) {
644                         if (unlikely(p->mc_idx == mci->mc_idx))
645                                 goto fail1;
646
647                         insert_before = item;
648                         break;
649                 }
650         }
651
652         list_add_tail_rcu(&mci->link, insert_before);
653         return 0;
654
655 fail0:
656         edac_printk(KERN_WARNING, EDAC_MC,
657                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659         return 1;
660
661 fail1:
662         edac_printk(KERN_WARNING, EDAC_MC,
663                 "bug in low-level driver: attempt to assign\n"
664                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665         return 1;
666 }
667
668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 {
670         list_del_rcu(&mci->link);
671
672         /* these are for safe removal of devices from global list while
673          * NMI handlers may be traversing list
674          */
675         synchronize_rcu();
676         INIT_LIST_HEAD(&mci->link);
677
678         return list_empty(&mc_devices);
679 }
680
681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683         struct mem_ctl_info *mci;
684         struct list_head *item;
685
686         mutex_lock(&mem_ctls_mutex);
687
688         list_for_each(item, &mc_devices) {
689                 mci = list_entry(item, struct mem_ctl_info, link);
690                 if (mci->mc_idx == idx)
691                         goto unlock;
692         }
693
694         mci = NULL;
695 unlock:
696         mutex_unlock(&mem_ctls_mutex);
697         return mci;
698 }
699 EXPORT_SYMBOL(edac_mc_find);
700
701
702 /* FIXME - should a warning be printed if no error detection? correction? */
703 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
704                                const struct attribute_group **groups)
705 {
706         int ret = -EINVAL;
707         edac_dbg(0, "\n");
708
709         if (mci->mc_idx >= EDAC_MAX_MCS) {
710                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
711                 return -ENODEV;
712         }
713
714 #ifdef CONFIG_EDAC_DEBUG
715         if (edac_debug_level >= 3)
716                 edac_mc_dump_mci(mci);
717
718         if (edac_debug_level >= 4) {
719                 int i;
720
721                 for (i = 0; i < mci->nr_csrows; i++) {
722                         struct csrow_info *csrow = mci->csrows[i];
723                         u32 nr_pages = 0;
724                         int j;
725
726                         for (j = 0; j < csrow->nr_channels; j++)
727                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
728                         if (!nr_pages)
729                                 continue;
730                         edac_mc_dump_csrow(csrow);
731                         for (j = 0; j < csrow->nr_channels; j++)
732                                 if (csrow->channels[j]->dimm->nr_pages)
733                                         edac_mc_dump_channel(csrow->channels[j]);
734                 }
735                 for (i = 0; i < mci->tot_dimms; i++)
736                         if (mci->dimms[i]->nr_pages)
737                                 edac_mc_dump_dimm(mci->dimms[i], i);
738         }
739 #endif
740         mutex_lock(&mem_ctls_mutex);
741
742         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
743                 ret = -EPERM;
744                 goto fail0;
745         }
746
747         if (add_mc_to_global_list(mci))
748                 goto fail0;
749
750         /* set load time so that error rate can be tracked */
751         mci->start_time = jiffies;
752
753         mci->bus = &mc_bus[mci->mc_idx];
754
755         if (edac_create_sysfs_mci_device(mci, groups)) {
756                 edac_mc_printk(mci, KERN_WARNING,
757                         "failed to create sysfs device\n");
758                 goto fail1;
759         }
760
761         if (mci->edac_check) {
762                 mci->op_state = OP_RUNNING_POLL;
763
764                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
765                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
766
767         } else {
768                 mci->op_state = OP_RUNNING_INTERRUPT;
769         }
770
771         /* Report action taken */
772         edac_mc_printk(mci, KERN_INFO,
773                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
774                 mci->mod_name, mci->ctl_name, mci->dev_name,
775                 edac_op_state_to_string(mci->op_state));
776
777         edac_mc_owner = mci->mod_name;
778
779         mutex_unlock(&mem_ctls_mutex);
780         return 0;
781
782 fail1:
783         del_mc_from_global_list(mci);
784
785 fail0:
786         mutex_unlock(&mem_ctls_mutex);
787         return ret;
788 }
789 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
790
791 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
792 {
793         struct mem_ctl_info *mci;
794
795         edac_dbg(0, "\n");
796
797         mutex_lock(&mem_ctls_mutex);
798
799         /* find the requested mci struct in the global list */
800         mci = __find_mci_by_dev(dev);
801         if (mci == NULL) {
802                 mutex_unlock(&mem_ctls_mutex);
803                 return NULL;
804         }
805
806         /* mark MCI offline: */
807         mci->op_state = OP_OFFLINE;
808
809         if (del_mc_from_global_list(mci))
810                 edac_mc_owner = NULL;
811
812         mutex_unlock(&mem_ctls_mutex);
813
814         if (mci->edac_check)
815                 edac_stop_work(&mci->work);
816
817         /* remove from sysfs */
818         edac_remove_sysfs_mci_device(mci);
819
820         edac_printk(KERN_INFO, EDAC_MC,
821                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
822                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
823
824         return mci;
825 }
826 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
827
828 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
829                                 u32 size)
830 {
831         struct page *pg;
832         void *virt_addr;
833         unsigned long flags = 0;
834
835         edac_dbg(3, "\n");
836
837         /* ECC error page was not in our memory. Ignore it. */
838         if (!pfn_valid(page))
839                 return;
840
841         /* Find the actual page structure then map it and fix */
842         pg = pfn_to_page(page);
843
844         if (PageHighMem(pg))
845                 local_irq_save(flags);
846
847         virt_addr = kmap_atomic(pg);
848
849         /* Perform architecture specific atomic scrub operation */
850         edac_atomic_scrub(virt_addr + offset, size);
851
852         /* Unmap and complete */
853         kunmap_atomic(virt_addr);
854
855         if (PageHighMem(pg))
856                 local_irq_restore(flags);
857 }
858
859 /* FIXME - should return -1 */
860 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
861 {
862         struct csrow_info **csrows = mci->csrows;
863         int row, i, j, n;
864
865         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
866         row = -1;
867
868         for (i = 0; i < mci->nr_csrows; i++) {
869                 struct csrow_info *csrow = csrows[i];
870                 n = 0;
871                 for (j = 0; j < csrow->nr_channels; j++) {
872                         struct dimm_info *dimm = csrow->channels[j]->dimm;
873                         n += dimm->nr_pages;
874                 }
875                 if (n == 0)
876                         continue;
877
878                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
879                          mci->mc_idx,
880                          csrow->first_page, page, csrow->last_page,
881                          csrow->page_mask);
882
883                 if ((page >= csrow->first_page) &&
884                     (page <= csrow->last_page) &&
885                     ((page & csrow->page_mask) ==
886                      (csrow->first_page & csrow->page_mask))) {
887                         row = i;
888                         break;
889                 }
890         }
891
892         if (row == -1)
893                 edac_mc_printk(mci, KERN_ERR,
894                         "could not look up page error address %lx\n",
895                         (unsigned long)page);
896
897         return row;
898 }
899 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
900
901 const char *edac_layer_name[] = {
902         [EDAC_MC_LAYER_BRANCH] = "branch",
903         [EDAC_MC_LAYER_CHANNEL] = "channel",
904         [EDAC_MC_LAYER_SLOT] = "slot",
905         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
906         [EDAC_MC_LAYER_ALL_MEM] = "memory",
907 };
908 EXPORT_SYMBOL_GPL(edac_layer_name);
909
910 static void edac_inc_ce_error(struct mem_ctl_info *mci,
911                               bool enable_per_layer_report,
912                               const int pos[EDAC_MAX_LAYERS],
913                               const u16 count)
914 {
915         int i, index = 0;
916
917         mci->ce_mc += count;
918
919         if (!enable_per_layer_report) {
920                 mci->ce_noinfo_count += count;
921                 return;
922         }
923
924         for (i = 0; i < mci->n_layers; i++) {
925                 if (pos[i] < 0)
926                         break;
927                 index += pos[i];
928                 mci->ce_per_layer[i][index] += count;
929
930                 if (i < mci->n_layers - 1)
931                         index *= mci->layers[i + 1].size;
932         }
933 }
934
935 static void edac_inc_ue_error(struct mem_ctl_info *mci,
936                                     bool enable_per_layer_report,
937                                     const int pos[EDAC_MAX_LAYERS],
938                                     const u16 count)
939 {
940         int i, index = 0;
941
942         mci->ue_mc += count;
943
944         if (!enable_per_layer_report) {
945                 mci->ue_noinfo_count += count;
946                 return;
947         }
948
949         for (i = 0; i < mci->n_layers; i++) {
950                 if (pos[i] < 0)
951                         break;
952                 index += pos[i];
953                 mci->ue_per_layer[i][index] += count;
954
955                 if (i < mci->n_layers - 1)
956                         index *= mci->layers[i + 1].size;
957         }
958 }
959
960 static void edac_ce_error(struct mem_ctl_info *mci,
961                           const u16 error_count,
962                           const int pos[EDAC_MAX_LAYERS],
963                           const char *msg,
964                           const char *location,
965                           const char *label,
966                           const char *detail,
967                           const char *other_detail,
968                           const bool enable_per_layer_report,
969                           const unsigned long page_frame_number,
970                           const unsigned long offset_in_page,
971                           long grain)
972 {
973         unsigned long remapped_page;
974         char *msg_aux = "";
975
976         if (*msg)
977                 msg_aux = " ";
978
979         if (edac_mc_get_log_ce()) {
980                 if (other_detail && *other_detail)
981                         edac_mc_printk(mci, KERN_WARNING,
982                                        "%d CE %s%son %s (%s %s - %s)\n",
983                                        error_count, msg, msg_aux, label,
984                                        location, detail, other_detail);
985                 else
986                         edac_mc_printk(mci, KERN_WARNING,
987                                        "%d CE %s%son %s (%s %s)\n",
988                                        error_count, msg, msg_aux, label,
989                                        location, detail);
990         }
991         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
992
993         if (mci->scrub_mode == SCRUB_SW_SRC) {
994                 /*
995                         * Some memory controllers (called MCs below) can remap
996                         * memory so that it is still available at a different
997                         * address when PCI devices map into memory.
998                         * MC's that can't do this, lose the memory where PCI
999                         * devices are mapped. This mapping is MC-dependent
1000                         * and so we call back into the MC driver for it to
1001                         * map the MC page to a physical (CPU) page which can
1002                         * then be mapped to a virtual page - which can then
1003                         * be scrubbed.
1004                         */
1005                 remapped_page = mci->ctl_page_to_phys ?
1006                         mci->ctl_page_to_phys(mci, page_frame_number) :
1007                         page_frame_number;
1008
1009                 edac_mc_scrub_block(remapped_page,
1010                                         offset_in_page, grain);
1011         }
1012 }
1013
1014 static void edac_ue_error(struct mem_ctl_info *mci,
1015                           const u16 error_count,
1016                           const int pos[EDAC_MAX_LAYERS],
1017                           const char *msg,
1018                           const char *location,
1019                           const char *label,
1020                           const char *detail,
1021                           const char *other_detail,
1022                           const bool enable_per_layer_report)
1023 {
1024         char *msg_aux = "";
1025
1026         if (*msg)
1027                 msg_aux = " ";
1028
1029         if (edac_mc_get_log_ue()) {
1030                 if (other_detail && *other_detail)
1031                         edac_mc_printk(mci, KERN_WARNING,
1032                                        "%d UE %s%son %s (%s %s - %s)\n",
1033                                        error_count, msg, msg_aux, label,
1034                                        location, detail, other_detail);
1035                 else
1036                         edac_mc_printk(mci, KERN_WARNING,
1037                                        "%d UE %s%son %s (%s %s)\n",
1038                                        error_count, msg, msg_aux, label,
1039                                        location, detail);
1040         }
1041
1042         if (edac_mc_get_panic_on_ue()) {
1043                 if (other_detail && *other_detail)
1044                         panic("UE %s%son %s (%s%s - %s)\n",
1045                               msg, msg_aux, label, location, detail, other_detail);
1046                 else
1047                         panic("UE %s%son %s (%s%s)\n",
1048                               msg, msg_aux, label, location, detail);
1049         }
1050
1051         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1052 }
1053
1054 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1055                               struct mem_ctl_info *mci,
1056                               struct edac_raw_error_desc *e)
1057 {
1058         char detail[80];
1059         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1060
1061         /* Memory type dependent details about the error */
1062         if (type == HW_EVENT_ERR_CORRECTED) {
1063                 snprintf(detail, sizeof(detail),
1064                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1065                         e->page_frame_number, e->offset_in_page,
1066                         e->grain, e->syndrome);
1067                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1068                               detail, e->other_detail, e->enable_per_layer_report,
1069                               e->page_frame_number, e->offset_in_page, e->grain);
1070         } else {
1071                 snprintf(detail, sizeof(detail),
1072                         "page:0x%lx offset:0x%lx grain:%ld",
1073                         e->page_frame_number, e->offset_in_page, e->grain);
1074
1075                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1076                               detail, e->other_detail, e->enable_per_layer_report);
1077         }
1078
1079
1080 }
1081 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1082
1083 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1084                           struct mem_ctl_info *mci,
1085                           const u16 error_count,
1086                           const unsigned long page_frame_number,
1087                           const unsigned long offset_in_page,
1088                           const unsigned long syndrome,
1089                           const int top_layer,
1090                           const int mid_layer,
1091                           const int low_layer,
1092                           const char *msg,
1093                           const char *other_detail)
1094 {
1095         char *p;
1096         int row = -1, chan = -1;
1097         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1098         int i, n_labels = 0;
1099         u8 grain_bits;
1100         struct edac_raw_error_desc *e = &mci->error_desc;
1101
1102         edac_dbg(3, "MC%d\n", mci->mc_idx);
1103
1104         /* Fills the error report buffer */
1105         memset(e, 0, sizeof (*e));
1106         e->error_count = error_count;
1107         e->top_layer = top_layer;
1108         e->mid_layer = mid_layer;
1109         e->low_layer = low_layer;
1110         e->page_frame_number = page_frame_number;
1111         e->offset_in_page = offset_in_page;
1112         e->syndrome = syndrome;
1113         e->msg = msg;
1114         e->other_detail = other_detail;
1115
1116         /*
1117          * Check if the event report is consistent and if the memory
1118          * location is known. If it is known, enable_per_layer_report will be
1119          * true, the DIMM(s) label info will be filled and the per-layer
1120          * error counters will be incremented.
1121          */
1122         for (i = 0; i < mci->n_layers; i++) {
1123                 if (pos[i] >= (int)mci->layers[i].size) {
1124
1125                         edac_mc_printk(mci, KERN_ERR,
1126                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1127                                        edac_layer_name[mci->layers[i].type],
1128                                        pos[i], mci->layers[i].size);
1129                         /*
1130                          * Instead of just returning it, let's use what's
1131                          * known about the error. The increment routines and
1132                          * the DIMM filter logic will do the right thing by
1133                          * pointing the likely damaged DIMMs.
1134                          */
1135                         pos[i] = -1;
1136                 }
1137                 if (pos[i] >= 0)
1138                         e->enable_per_layer_report = true;
1139         }
1140
1141         /*
1142          * Get the dimm label/grain that applies to the match criteria.
1143          * As the error algorithm may not be able to point to just one memory
1144          * stick, the logic here will get all possible labels that could
1145          * pottentially be affected by the error.
1146          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1147          * to have only the MC channel and the MC dimm (also called "branch")
1148          * but the channel is not known, as the memory is arranged in pairs,
1149          * where each memory belongs to a separate channel within the same
1150          * branch.
1151          */
1152         p = e->label;
1153         *p = '\0';
1154
1155         for (i = 0; i < mci->tot_dimms; i++) {
1156                 struct dimm_info *dimm = mci->dimms[i];
1157
1158                 if (top_layer >= 0 && top_layer != dimm->location[0])
1159                         continue;
1160                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1161                         continue;
1162                 if (low_layer >= 0 && low_layer != dimm->location[2])
1163                         continue;
1164
1165                 /* get the max grain, over the error match range */
1166                 if (dimm->grain > e->grain)
1167                         e->grain = dimm->grain;
1168
1169                 /*
1170                  * If the error is memory-controller wide, there's no need to
1171                  * seek for the affected DIMMs because the whole
1172                  * channel/memory controller/...  may be affected.
1173                  * Also, don't show errors for empty DIMM slots.
1174                  */
1175                 if (e->enable_per_layer_report && dimm->nr_pages) {
1176                         if (n_labels >= EDAC_MAX_LABELS) {
1177                                 e->enable_per_layer_report = false;
1178                                 break;
1179                         }
1180                         n_labels++;
1181                         if (p != e->label) {
1182                                 strcpy(p, OTHER_LABEL);
1183                                 p += strlen(OTHER_LABEL);
1184                         }
1185                         strcpy(p, dimm->label);
1186                         p += strlen(p);
1187                         *p = '\0';
1188
1189                         /*
1190                          * get csrow/channel of the DIMM, in order to allow
1191                          * incrementing the compat API counters
1192                          */
1193                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1194                                  mci->csbased ? "rank" : "dimm",
1195                                  dimm->csrow, dimm->cschannel);
1196                         if (row == -1)
1197                                 row = dimm->csrow;
1198                         else if (row >= 0 && row != dimm->csrow)
1199                                 row = -2;
1200
1201                         if (chan == -1)
1202                                 chan = dimm->cschannel;
1203                         else if (chan >= 0 && chan != dimm->cschannel)
1204                                 chan = -2;
1205                 }
1206         }
1207
1208         if (!e->enable_per_layer_report) {
1209                 strcpy(e->label, "any memory");
1210         } else {
1211                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1212                 if (p == e->label)
1213                         strcpy(e->label, "unknown memory");
1214                 if (type == HW_EVENT_ERR_CORRECTED) {
1215                         if (row >= 0) {
1216                                 mci->csrows[row]->ce_count += error_count;
1217                                 if (chan >= 0)
1218                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1219                         }
1220                 } else
1221                         if (row >= 0)
1222                                 mci->csrows[row]->ue_count += error_count;
1223         }
1224
1225         /* Fill the RAM location data */
1226         p = e->location;
1227
1228         for (i = 0; i < mci->n_layers; i++) {
1229                 if (pos[i] < 0)
1230                         continue;
1231
1232                 p += sprintf(p, "%s:%d ",
1233                              edac_layer_name[mci->layers[i].type],
1234                              pos[i]);
1235         }
1236         if (p > e->location)
1237                 *(p - 1) = '\0';
1238
1239         /* Sanity-check driver-supplied grain value. */
1240         if (WARN_ON_ONCE(!e->grain))
1241                 e->grain = 1;
1242
1243         grain_bits = fls_long(e->grain - 1);
1244
1245         /* Report the error via the trace interface */
1246         if (IS_ENABLED(CONFIG_RAS))
1247                 trace_mc_event(type, e->msg, e->label, e->error_count,
1248                                mci->mc_idx, e->top_layer, e->mid_layer,
1249                                e->low_layer,
1250                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1251                                grain_bits, e->syndrome, e->other_detail);
1252
1253         edac_raw_mc_handle_error(type, mci, e);
1254 }
1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error);