GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *      apei/ghes and i7core_edac to be used at the same time.
55  */
56 static const char *edac_mc_owner;
57
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59
60 int edac_get_report_status(void)
61 {
62         return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65
66 void edac_set_report_status(int new)
67 {
68         if (new == EDAC_REPORTING_ENABLED ||
69             new == EDAC_REPORTING_DISABLED ||
70             new == EDAC_REPORTING_FORCE)
71                 edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77         if (!str)
78                 return -EINVAL;
79
80         if (!strncmp(str, "on", 2))
81                 edac_report = EDAC_REPORTING_ENABLED;
82         else if (!strncmp(str, "off", 3))
83                 edac_report = EDAC_REPORTING_DISABLED;
84         else if (!strncmp(str, "force", 5))
85                 edac_report = EDAC_REPORTING_FORCE;
86
87         return 0;
88 }
89
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92         int ret = 0;
93
94         switch (edac_report) {
95         case EDAC_REPORTING_ENABLED:
96                 ret = sprintf(buffer, "on");
97                 break;
98         case EDAC_REPORTING_DISABLED:
99                 ret = sprintf(buffer, "off");
100                 break;
101         case EDAC_REPORTING_FORCE:
102                 ret = sprintf(buffer, "force");
103                 break;
104         default:
105                 ret = -EINVAL;
106                 break;
107         }
108
109         return ret;
110 }
111
112 static const struct kernel_param_ops edac_report_ops = {
113         .set = edac_report_set,
114         .get = edac_report_get,
115 };
116
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120                                  unsigned len)
121 {
122         struct mem_ctl_info *mci = dimm->mci;
123         int i, n, count = 0;
124         char *p = buf;
125
126         for (i = 0; i < mci->n_layers; i++) {
127                 n = snprintf(p, len, "%s %d ",
128                               edac_layer_name[mci->layers[i].type],
129                               dimm->location[i]);
130                 p += n;
131                 len -= n;
132                 count += n;
133                 if (!len)
134                         break;
135         }
136
137         return count;
138 }
139
140 #ifdef CONFIG_EDAC_DEBUG
141
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145         edac_dbg(4, "    channel = %p\n", chan);
146         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152         char location[80];
153
154         edac_dimm_info_location(dimm, location, sizeof(location));
155
156         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157                  dimm->mci->csbased ? "rank" : "dimm",
158                  number, location, dimm->csrow, dimm->cschannel);
159         edac_dbg(4, "  dimm = %p\n", dimm);
160         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169         edac_dbg(4, "  csrow = %p\n", csrow);
170         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180         edac_dbg(3, "\tmci = %p\n", mci);
181         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186                  mci->nr_csrows, mci->csrows);
187         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188                  mci->tot_dimms, mci->dimms);
189         edac_dbg(3, "\tdev = %p\n", mci->pdev);
190         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191                  mci->mod_name, mci->ctl_name);
192         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194
195 #endif                          /* CONFIG_EDAC_DEBUG */
196
197 const char * const edac_mem_types[] = {
198         [MEM_EMPTY]     = "Empty",
199         [MEM_RESERVED]  = "Reserved",
200         [MEM_UNKNOWN]   = "Unknown",
201         [MEM_FPM]       = "FPM",
202         [MEM_EDO]       = "EDO",
203         [MEM_BEDO]      = "BEDO",
204         [MEM_SDR]       = "Unbuffered-SDR",
205         [MEM_RDR]       = "Registered-SDR",
206         [MEM_DDR]       = "Unbuffered-DDR",
207         [MEM_RDDR]      = "Registered-DDR",
208         [MEM_RMBS]      = "RMBS",
209         [MEM_DDR2]      = "Unbuffered-DDR2",
210         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
211         [MEM_RDDR2]     = "Registered-DDR2",
212         [MEM_XDR]       = "XDR",
213         [MEM_DDR3]      = "Unbuffered-DDR3",
214         [MEM_RDDR3]     = "Registered-DDR3",
215         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
216         [MEM_DDR4]      = "Unbuffered-DDR4",
217         [MEM_RDDR4]     = "Registered-DDR4",
218         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
219         [MEM_NVDIMM]    = "Non-volatile-RAM",
220 };
221 EXPORT_SYMBOL_GPL(edac_mem_types);
222
223 /**
224  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
225  * @p:          pointer to a pointer with the memory offset to be used. At
226  *              return, this will be incremented to point to the next offset
227  * @size:       Size of the data structure to be reserved
228  * @n_elems:    Number of elements that should be reserved
229  *
230  * If 'size' is a constant, the compiler will optimize this whole function
231  * down to either a no-op or the addition of a constant to the value of '*p'.
232  *
233  * The 'p' pointer is absolutely needed to keep the proper advancing
234  * further in memory to the proper offsets when allocating the struct along
235  * with its embedded structs, as edac_device_alloc_ctl_info() does it
236  * above, for example.
237  *
238  * At return, the pointer 'p' will be incremented to be used on a next call
239  * to this function.
240  */
241 void *edac_align_ptr(void **p, unsigned size, int n_elems)
242 {
243         unsigned align, r;
244         void *ptr = *p;
245
246         *p += size * n_elems;
247
248         /*
249          * 'p' can possibly be an unaligned item X such that sizeof(X) is
250          * 'size'.  Adjust 'p' so that its alignment is at least as
251          * stringent as what the compiler would provide for X and return
252          * the aligned result.
253          * Here we assume that the alignment of a "long long" is the most
254          * stringent alignment that the compiler will ever provide by default.
255          * As far as I know, this is a reasonable assumption.
256          */
257         if (size > sizeof(long))
258                 align = sizeof(long long);
259         else if (size > sizeof(int))
260                 align = sizeof(long);
261         else if (size > sizeof(short))
262                 align = sizeof(int);
263         else if (size > sizeof(char))
264                 align = sizeof(short);
265         else
266                 return (char *)ptr;
267
268         r = (unsigned long)ptr % align;
269
270         if (r == 0)
271                 return (char *)ptr;
272
273         *p += align - r;
274
275         return (void *)(((unsigned long)ptr) + align - r);
276 }
277
278 static void _edac_mc_free(struct mem_ctl_info *mci)
279 {
280         int i, chn, row;
281         struct csrow_info *csr;
282         const unsigned int tot_dimms = mci->tot_dimms;
283         const unsigned int tot_channels = mci->num_cschannel;
284         const unsigned int tot_csrows = mci->nr_csrows;
285
286         if (mci->dimms) {
287                 for (i = 0; i < tot_dimms; i++)
288                         kfree(mci->dimms[i]);
289                 kfree(mci->dimms);
290         }
291         if (mci->csrows) {
292                 for (row = 0; row < tot_csrows; row++) {
293                         csr = mci->csrows[row];
294                         if (csr) {
295                                 if (csr->channels) {
296                                         for (chn = 0; chn < tot_channels; chn++)
297                                                 kfree(csr->channels[chn]);
298                                         kfree(csr->channels);
299                                 }
300                                 kfree(csr);
301                         }
302                 }
303                 kfree(mci->csrows);
304         }
305         kfree(mci);
306 }
307
308 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
309                                    unsigned n_layers,
310                                    struct edac_mc_layer *layers,
311                                    unsigned sz_pvt)
312 {
313         struct mem_ctl_info *mci;
314         struct edac_mc_layer *layer;
315         struct csrow_info *csr;
316         struct rank_info *chan;
317         struct dimm_info *dimm;
318         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
319         unsigned pos[EDAC_MAX_LAYERS];
320         unsigned size, tot_dimms = 1, count = 1;
321         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
322         void *pvt, *p, *ptr = NULL;
323         int i, j, row, chn, n, len, off;
324         bool per_rank = false;
325
326         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
327         /*
328          * Calculate the total amount of dimms and csrows/cschannels while
329          * in the old API emulation mode
330          */
331         for (i = 0; i < n_layers; i++) {
332                 tot_dimms *= layers[i].size;
333                 if (layers[i].is_virt_csrow)
334                         tot_csrows *= layers[i].size;
335                 else
336                         tot_channels *= layers[i].size;
337
338                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
339                         per_rank = true;
340         }
341
342         /* Figure out the offsets of the various items from the start of an mc
343          * structure.  We want the alignment of each item to be at least as
344          * stringent as what the compiler would provide if we could simply
345          * hardcode everything into a single struct.
346          */
347         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
348         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
349         for (i = 0; i < n_layers; i++) {
350                 count *= layers[i].size;
351                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
352                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
354                 tot_errcount += 2 * count;
355         }
356
357         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
358         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
359         size = ((unsigned long)pvt) + sz_pvt;
360
361         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
362                  size,
363                  tot_dimms,
364                  per_rank ? "ranks" : "dimms",
365                  tot_csrows * tot_channels);
366
367         mci = kzalloc(size, GFP_KERNEL);
368         if (mci == NULL)
369                 return NULL;
370
371         /* Adjust pointers so they point within the memory we just allocated
372          * rather than an imaginary chunk of memory located at address 0.
373          */
374         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
375         for (i = 0; i < n_layers; i++) {
376                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
377                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
378         }
379         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
380
381         /* setup index and various internal pointers */
382         mci->mc_idx = mc_num;
383         mci->tot_dimms = tot_dimms;
384         mci->pvt_info = pvt;
385         mci->n_layers = n_layers;
386         mci->layers = layer;
387         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
388         mci->nr_csrows = tot_csrows;
389         mci->num_cschannel = tot_channels;
390         mci->csbased = per_rank;
391
392         /*
393          * Alocate and fill the csrow/channels structs
394          */
395         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
396         if (!mci->csrows)
397                 goto error;
398         for (row = 0; row < tot_csrows; row++) {
399                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
400                 if (!csr)
401                         goto error;
402                 mci->csrows[row] = csr;
403                 csr->csrow_idx = row;
404                 csr->mci = mci;
405                 csr->nr_channels = tot_channels;
406                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
407                                         GFP_KERNEL);
408                 if (!csr->channels)
409                         goto error;
410
411                 for (chn = 0; chn < tot_channels; chn++) {
412                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
413                         if (!chan)
414                                 goto error;
415                         csr->channels[chn] = chan;
416                         chan->chan_idx = chn;
417                         chan->csrow = csr;
418                 }
419         }
420
421         /*
422          * Allocate and fill the dimm structs
423          */
424         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
425         if (!mci->dimms)
426                 goto error;
427
428         memset(&pos, 0, sizeof(pos));
429         row = 0;
430         chn = 0;
431         for (i = 0; i < tot_dimms; i++) {
432                 chan = mci->csrows[row]->channels[chn];
433                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
434                 if (off < 0 || off >= tot_dimms) {
435                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
436                         goto error;
437                 }
438
439                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
440                 if (!dimm)
441                         goto error;
442                 mci->dimms[off] = dimm;
443                 dimm->mci = mci;
444
445                 /*
446                  * Copy DIMM location and initialize it.
447                  */
448                 len = sizeof(dimm->label);
449                 p = dimm->label;
450                 n = snprintf(p, len, "mc#%u", mc_num);
451                 p += n;
452                 len -= n;
453                 for (j = 0; j < n_layers; j++) {
454                         n = snprintf(p, len, "%s#%u",
455                                      edac_layer_name[layers[j].type],
456                                      pos[j]);
457                         p += n;
458                         len -= n;
459                         dimm->location[j] = pos[j];
460
461                         if (len <= 0)
462                                 break;
463                 }
464
465                 /* Link it to the csrows old API data */
466                 chan->dimm = dimm;
467                 dimm->csrow = row;
468                 dimm->cschannel = chn;
469
470                 /* Increment csrow location */
471                 if (layers[0].is_virt_csrow) {
472                         chn++;
473                         if (chn == tot_channels) {
474                                 chn = 0;
475                                 row++;
476                         }
477                 } else {
478                         row++;
479                         if (row == tot_csrows) {
480                                 row = 0;
481                                 chn++;
482                         }
483                 }
484
485                 /* Increment dimm location */
486                 for (j = n_layers - 1; j >= 0; j--) {
487                         pos[j]++;
488                         if (pos[j] < layers[j].size)
489                                 break;
490                         pos[j] = 0;
491                 }
492         }
493
494         mci->op_state = OP_ALLOC;
495
496         return mci;
497
498 error:
499         _edac_mc_free(mci);
500
501         return NULL;
502 }
503 EXPORT_SYMBOL_GPL(edac_mc_alloc);
504
505 void edac_mc_free(struct mem_ctl_info *mci)
506 {
507         edac_dbg(1, "\n");
508
509         /* If we're not yet registered with sysfs free only what was allocated
510          * in edac_mc_alloc().
511          */
512         if (!device_is_registered(&mci->dev)) {
513                 _edac_mc_free(mci);
514                 return;
515         }
516
517         /* the mci instance is freed here, when the sysfs object is dropped */
518         edac_unregister_sysfs(mci);
519 }
520 EXPORT_SYMBOL_GPL(edac_mc_free);
521
522 bool edac_has_mcs(void)
523 {
524         bool ret;
525
526         mutex_lock(&mem_ctls_mutex);
527
528         ret = list_empty(&mc_devices);
529
530         mutex_unlock(&mem_ctls_mutex);
531
532         return !ret;
533 }
534 EXPORT_SYMBOL_GPL(edac_has_mcs);
535
536 /* Caller must hold mem_ctls_mutex */
537 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
538 {
539         struct mem_ctl_info *mci;
540         struct list_head *item;
541
542         edac_dbg(3, "\n");
543
544         list_for_each(item, &mc_devices) {
545                 mci = list_entry(item, struct mem_ctl_info, link);
546
547                 if (mci->pdev == dev)
548                         return mci;
549         }
550
551         return NULL;
552 }
553
554 /**
555  * find_mci_by_dev
556  *
557  *      scan list of controllers looking for the one that manages
558  *      the 'dev' device
559  * @dev: pointer to a struct device related with the MCI
560  */
561 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
562 {
563         struct mem_ctl_info *ret;
564
565         mutex_lock(&mem_ctls_mutex);
566         ret = __find_mci_by_dev(dev);
567         mutex_unlock(&mem_ctls_mutex);
568
569         return ret;
570 }
571 EXPORT_SYMBOL_GPL(find_mci_by_dev);
572
573 /*
574  * edac_mc_workq_function
575  *      performs the operation scheduled by a workq request
576  */
577 static void edac_mc_workq_function(struct work_struct *work_req)
578 {
579         struct delayed_work *d_work = to_delayed_work(work_req);
580         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
581
582         mutex_lock(&mem_ctls_mutex);
583
584         if (mci->op_state != OP_RUNNING_POLL) {
585                 mutex_unlock(&mem_ctls_mutex);
586                 return;
587         }
588
589         if (edac_op_state == EDAC_OPSTATE_POLL)
590                 mci->edac_check(mci);
591
592         mutex_unlock(&mem_ctls_mutex);
593
594         /* Queue ourselves again. */
595         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
596 }
597
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *      user space has updated our poll period value, need to
602  *      reset our workq delays
603  */
604 void edac_mc_reset_delay_period(unsigned long value)
605 {
606         struct mem_ctl_info *mci;
607         struct list_head *item;
608
609         mutex_lock(&mem_ctls_mutex);
610
611         list_for_each(item, &mc_devices) {
612                 mci = list_entry(item, struct mem_ctl_info, link);
613
614                 if (mci->op_state == OP_RUNNING_POLL)
615                         edac_mod_work(&mci->work, value);
616         }
617         mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *      locking model:
627  *
628  *              called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632         struct list_head *item, *insert_before;
633         struct mem_ctl_info *p;
634
635         insert_before = &mc_devices;
636
637         p = __find_mci_by_dev(mci->pdev);
638         if (unlikely(p != NULL))
639                 goto fail0;
640
641         list_for_each(item, &mc_devices) {
642                 p = list_entry(item, struct mem_ctl_info, link);
643
644                 if (p->mc_idx >= mci->mc_idx) {
645                         if (unlikely(p->mc_idx == mci->mc_idx))
646                                 goto fail1;
647
648                         insert_before = item;
649                         break;
650                 }
651         }
652
653         list_add_tail_rcu(&mci->link, insert_before);
654         return 0;
655
656 fail0:
657         edac_printk(KERN_WARNING, EDAC_MC,
658                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
659                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
660         return 1;
661
662 fail1:
663         edac_printk(KERN_WARNING, EDAC_MC,
664                 "bug in low-level driver: attempt to assign\n"
665                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
666         return 1;
667 }
668
669 static int del_mc_from_global_list(struct mem_ctl_info *mci)
670 {
671         list_del_rcu(&mci->link);
672
673         /* these are for safe removal of devices from global list while
674          * NMI handlers may be traversing list
675          */
676         synchronize_rcu();
677         INIT_LIST_HEAD(&mci->link);
678
679         return list_empty(&mc_devices);
680 }
681
682 struct mem_ctl_info *edac_mc_find(int idx)
683 {
684         struct mem_ctl_info *mci;
685         struct list_head *item;
686
687         mutex_lock(&mem_ctls_mutex);
688
689         list_for_each(item, &mc_devices) {
690                 mci = list_entry(item, struct mem_ctl_info, link);
691                 if (mci->mc_idx == idx)
692                         goto unlock;
693         }
694
695         mci = NULL;
696 unlock:
697         mutex_unlock(&mem_ctls_mutex);
698         return mci;
699 }
700 EXPORT_SYMBOL(edac_mc_find);
701
702 const char *edac_get_owner(void)
703 {
704         return edac_mc_owner;
705 }
706 EXPORT_SYMBOL_GPL(edac_get_owner);
707
708 /* FIXME - should a warning be printed if no error detection? correction? */
709 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
710                                const struct attribute_group **groups)
711 {
712         int ret = -EINVAL;
713         edac_dbg(0, "\n");
714
715         if (mci->mc_idx >= EDAC_MAX_MCS) {
716                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
717                 return -ENODEV;
718         }
719
720 #ifdef CONFIG_EDAC_DEBUG
721         if (edac_debug_level >= 3)
722                 edac_mc_dump_mci(mci);
723
724         if (edac_debug_level >= 4) {
725                 int i;
726
727                 for (i = 0; i < mci->nr_csrows; i++) {
728                         struct csrow_info *csrow = mci->csrows[i];
729                         u32 nr_pages = 0;
730                         int j;
731
732                         for (j = 0; j < csrow->nr_channels; j++)
733                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
734                         if (!nr_pages)
735                                 continue;
736                         edac_mc_dump_csrow(csrow);
737                         for (j = 0; j < csrow->nr_channels; j++)
738                                 if (csrow->channels[j]->dimm->nr_pages)
739                                         edac_mc_dump_channel(csrow->channels[j]);
740                 }
741                 for (i = 0; i < mci->tot_dimms; i++)
742                         if (mci->dimms[i]->nr_pages)
743                                 edac_mc_dump_dimm(mci->dimms[i], i);
744         }
745 #endif
746         mutex_lock(&mem_ctls_mutex);
747
748         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
749                 ret = -EPERM;
750                 goto fail0;
751         }
752
753         if (add_mc_to_global_list(mci))
754                 goto fail0;
755
756         /* set load time so that error rate can be tracked */
757         mci->start_time = jiffies;
758
759         mci->bus = &mc_bus[mci->mc_idx];
760
761         if (edac_create_sysfs_mci_device(mci, groups)) {
762                 edac_mc_printk(mci, KERN_WARNING,
763                         "failed to create sysfs device\n");
764                 goto fail1;
765         }
766
767         if (mci->edac_check) {
768                 mci->op_state = OP_RUNNING_POLL;
769
770                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
771                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
772
773         } else {
774                 mci->op_state = OP_RUNNING_INTERRUPT;
775         }
776
777         /* Report action taken */
778         edac_mc_printk(mci, KERN_INFO,
779                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
780                 mci->mod_name, mci->ctl_name, mci->dev_name,
781                 edac_op_state_to_string(mci->op_state));
782
783         edac_mc_owner = mci->mod_name;
784
785         mutex_unlock(&mem_ctls_mutex);
786         return 0;
787
788 fail1:
789         del_mc_from_global_list(mci);
790
791 fail0:
792         mutex_unlock(&mem_ctls_mutex);
793         return ret;
794 }
795 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
796
797 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
798 {
799         struct mem_ctl_info *mci;
800
801         edac_dbg(0, "\n");
802
803         mutex_lock(&mem_ctls_mutex);
804
805         /* find the requested mci struct in the global list */
806         mci = __find_mci_by_dev(dev);
807         if (mci == NULL) {
808                 mutex_unlock(&mem_ctls_mutex);
809                 return NULL;
810         }
811
812         /* mark MCI offline: */
813         mci->op_state = OP_OFFLINE;
814
815         if (del_mc_from_global_list(mci))
816                 edac_mc_owner = NULL;
817
818         mutex_unlock(&mem_ctls_mutex);
819
820         if (mci->edac_check)
821                 edac_stop_work(&mci->work);
822
823         /* remove from sysfs */
824         edac_remove_sysfs_mci_device(mci);
825
826         edac_printk(KERN_INFO, EDAC_MC,
827                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
828                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
829
830         return mci;
831 }
832 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
833
834 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
835                                 u32 size)
836 {
837         struct page *pg;
838         void *virt_addr;
839         unsigned long flags = 0;
840
841         edac_dbg(3, "\n");
842
843         /* ECC error page was not in our memory. Ignore it. */
844         if (!pfn_valid(page))
845                 return;
846
847         /* Find the actual page structure then map it and fix */
848         pg = pfn_to_page(page);
849
850         if (PageHighMem(pg))
851                 local_irq_save(flags);
852
853         virt_addr = kmap_atomic(pg);
854
855         /* Perform architecture specific atomic scrub operation */
856         edac_atomic_scrub(virt_addr + offset, size);
857
858         /* Unmap and complete */
859         kunmap_atomic(virt_addr);
860
861         if (PageHighMem(pg))
862                 local_irq_restore(flags);
863 }
864
865 /* FIXME - should return -1 */
866 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
867 {
868         struct csrow_info **csrows = mci->csrows;
869         int row, i, j, n;
870
871         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
872         row = -1;
873
874         for (i = 0; i < mci->nr_csrows; i++) {
875                 struct csrow_info *csrow = csrows[i];
876                 n = 0;
877                 for (j = 0; j < csrow->nr_channels; j++) {
878                         struct dimm_info *dimm = csrow->channels[j]->dimm;
879                         n += dimm->nr_pages;
880                 }
881                 if (n == 0)
882                         continue;
883
884                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
885                          mci->mc_idx,
886                          csrow->first_page, page, csrow->last_page,
887                          csrow->page_mask);
888
889                 if ((page >= csrow->first_page) &&
890                     (page <= csrow->last_page) &&
891                     ((page & csrow->page_mask) ==
892                      (csrow->first_page & csrow->page_mask))) {
893                         row = i;
894                         break;
895                 }
896         }
897
898         if (row == -1)
899                 edac_mc_printk(mci, KERN_ERR,
900                         "could not look up page error address %lx\n",
901                         (unsigned long)page);
902
903         return row;
904 }
905 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
906
907 const char *edac_layer_name[] = {
908         [EDAC_MC_LAYER_BRANCH] = "branch",
909         [EDAC_MC_LAYER_CHANNEL] = "channel",
910         [EDAC_MC_LAYER_SLOT] = "slot",
911         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
912         [EDAC_MC_LAYER_ALL_MEM] = "memory",
913 };
914 EXPORT_SYMBOL_GPL(edac_layer_name);
915
916 static void edac_inc_ce_error(struct mem_ctl_info *mci,
917                               bool enable_per_layer_report,
918                               const int pos[EDAC_MAX_LAYERS],
919                               const u16 count)
920 {
921         int i, index = 0;
922
923         mci->ce_mc += count;
924
925         if (!enable_per_layer_report) {
926                 mci->ce_noinfo_count += count;
927                 return;
928         }
929
930         for (i = 0; i < mci->n_layers; i++) {
931                 if (pos[i] < 0)
932                         break;
933                 index += pos[i];
934                 mci->ce_per_layer[i][index] += count;
935
936                 if (i < mci->n_layers - 1)
937                         index *= mci->layers[i + 1].size;
938         }
939 }
940
941 static void edac_inc_ue_error(struct mem_ctl_info *mci,
942                                     bool enable_per_layer_report,
943                                     const int pos[EDAC_MAX_LAYERS],
944                                     const u16 count)
945 {
946         int i, index = 0;
947
948         mci->ue_mc += count;
949
950         if (!enable_per_layer_report) {
951                 mci->ue_noinfo_count += count;
952                 return;
953         }
954
955         for (i = 0; i < mci->n_layers; i++) {
956                 if (pos[i] < 0)
957                         break;
958                 index += pos[i];
959                 mci->ue_per_layer[i][index] += count;
960
961                 if (i < mci->n_layers - 1)
962                         index *= mci->layers[i + 1].size;
963         }
964 }
965
966 static void edac_ce_error(struct mem_ctl_info *mci,
967                           const u16 error_count,
968                           const int pos[EDAC_MAX_LAYERS],
969                           const char *msg,
970                           const char *location,
971                           const char *label,
972                           const char *detail,
973                           const char *other_detail,
974                           const bool enable_per_layer_report,
975                           const unsigned long page_frame_number,
976                           const unsigned long offset_in_page,
977                           long grain)
978 {
979         unsigned long remapped_page;
980         char *msg_aux = "";
981
982         if (*msg)
983                 msg_aux = " ";
984
985         if (edac_mc_get_log_ce()) {
986                 if (other_detail && *other_detail)
987                         edac_mc_printk(mci, KERN_WARNING,
988                                        "%d CE %s%son %s (%s %s - %s)\n",
989                                        error_count, msg, msg_aux, label,
990                                        location, detail, other_detail);
991                 else
992                         edac_mc_printk(mci, KERN_WARNING,
993                                        "%d CE %s%son %s (%s %s)\n",
994                                        error_count, msg, msg_aux, label,
995                                        location, detail);
996         }
997         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
998
999         if (mci->scrub_mode == SCRUB_SW_SRC) {
1000                 /*
1001                         * Some memory controllers (called MCs below) can remap
1002                         * memory so that it is still available at a different
1003                         * address when PCI devices map into memory.
1004                         * MC's that can't do this, lose the memory where PCI
1005                         * devices are mapped. This mapping is MC-dependent
1006                         * and so we call back into the MC driver for it to
1007                         * map the MC page to a physical (CPU) page which can
1008                         * then be mapped to a virtual page - which can then
1009                         * be scrubbed.
1010                         */
1011                 remapped_page = mci->ctl_page_to_phys ?
1012                         mci->ctl_page_to_phys(mci, page_frame_number) :
1013                         page_frame_number;
1014
1015                 edac_mc_scrub_block(remapped_page,
1016                                         offset_in_page, grain);
1017         }
1018 }
1019
1020 static void edac_ue_error(struct mem_ctl_info *mci,
1021                           const u16 error_count,
1022                           const int pos[EDAC_MAX_LAYERS],
1023                           const char *msg,
1024                           const char *location,
1025                           const char *label,
1026                           const char *detail,
1027                           const char *other_detail,
1028                           const bool enable_per_layer_report)
1029 {
1030         char *msg_aux = "";
1031
1032         if (*msg)
1033                 msg_aux = " ";
1034
1035         if (edac_mc_get_log_ue()) {
1036                 if (other_detail && *other_detail)
1037                         edac_mc_printk(mci, KERN_WARNING,
1038                                        "%d UE %s%son %s (%s %s - %s)\n",
1039                                        error_count, msg, msg_aux, label,
1040                                        location, detail, other_detail);
1041                 else
1042                         edac_mc_printk(mci, KERN_WARNING,
1043                                        "%d UE %s%son %s (%s %s)\n",
1044                                        error_count, msg, msg_aux, label,
1045                                        location, detail);
1046         }
1047
1048         if (edac_mc_get_panic_on_ue()) {
1049                 if (other_detail && *other_detail)
1050                         panic("UE %s%son %s (%s%s - %s)\n",
1051                               msg, msg_aux, label, location, detail, other_detail);
1052                 else
1053                         panic("UE %s%son %s (%s%s)\n",
1054                               msg, msg_aux, label, location, detail);
1055         }
1056
1057         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1058 }
1059
1060 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1061                               struct mem_ctl_info *mci,
1062                               struct edac_raw_error_desc *e)
1063 {
1064         char detail[80];
1065         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1066
1067         /* Memory type dependent details about the error */
1068         if (type == HW_EVENT_ERR_CORRECTED) {
1069                 snprintf(detail, sizeof(detail),
1070                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1071                         e->page_frame_number, e->offset_in_page,
1072                         e->grain, e->syndrome);
1073                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1074                               detail, e->other_detail, e->enable_per_layer_report,
1075                               e->page_frame_number, e->offset_in_page, e->grain);
1076         } else {
1077                 snprintf(detail, sizeof(detail),
1078                         "page:0x%lx offset:0x%lx grain:%ld",
1079                         e->page_frame_number, e->offset_in_page, e->grain);
1080
1081                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1082                               detail, e->other_detail, e->enable_per_layer_report);
1083         }
1084
1085
1086 }
1087 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1088
1089 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1090                           struct mem_ctl_info *mci,
1091                           const u16 error_count,
1092                           const unsigned long page_frame_number,
1093                           const unsigned long offset_in_page,
1094                           const unsigned long syndrome,
1095                           const int top_layer,
1096                           const int mid_layer,
1097                           const int low_layer,
1098                           const char *msg,
1099                           const char *other_detail)
1100 {
1101         char *p;
1102         int row = -1, chan = -1;
1103         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1104         int i, n_labels = 0;
1105         u8 grain_bits;
1106         struct edac_raw_error_desc *e = &mci->error_desc;
1107
1108         edac_dbg(3, "MC%d\n", mci->mc_idx);
1109
1110         /* Fills the error report buffer */
1111         memset(e, 0, sizeof (*e));
1112         e->error_count = error_count;
1113         e->top_layer = top_layer;
1114         e->mid_layer = mid_layer;
1115         e->low_layer = low_layer;
1116         e->page_frame_number = page_frame_number;
1117         e->offset_in_page = offset_in_page;
1118         e->syndrome = syndrome;
1119         e->msg = msg;
1120         e->other_detail = other_detail;
1121
1122         /*
1123          * Check if the event report is consistent and if the memory
1124          * location is known. If it is known, enable_per_layer_report will be
1125          * true, the DIMM(s) label info will be filled and the per-layer
1126          * error counters will be incremented.
1127          */
1128         for (i = 0; i < mci->n_layers; i++) {
1129                 if (pos[i] >= (int)mci->layers[i].size) {
1130
1131                         edac_mc_printk(mci, KERN_ERR,
1132                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1133                                        edac_layer_name[mci->layers[i].type],
1134                                        pos[i], mci->layers[i].size);
1135                         /*
1136                          * Instead of just returning it, let's use what's
1137                          * known about the error. The increment routines and
1138                          * the DIMM filter logic will do the right thing by
1139                          * pointing the likely damaged DIMMs.
1140                          */
1141                         pos[i] = -1;
1142                 }
1143                 if (pos[i] >= 0)
1144                         e->enable_per_layer_report = true;
1145         }
1146
1147         /*
1148          * Get the dimm label/grain that applies to the match criteria.
1149          * As the error algorithm may not be able to point to just one memory
1150          * stick, the logic here will get all possible labels that could
1151          * pottentially be affected by the error.
1152          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1153          * to have only the MC channel and the MC dimm (also called "branch")
1154          * but the channel is not known, as the memory is arranged in pairs,
1155          * where each memory belongs to a separate channel within the same
1156          * branch.
1157          */
1158         p = e->label;
1159         *p = '\0';
1160
1161         for (i = 0; i < mci->tot_dimms; i++) {
1162                 struct dimm_info *dimm = mci->dimms[i];
1163
1164                 if (top_layer >= 0 && top_layer != dimm->location[0])
1165                         continue;
1166                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1167                         continue;
1168                 if (low_layer >= 0 && low_layer != dimm->location[2])
1169                         continue;
1170
1171                 /* get the max grain, over the error match range */
1172                 if (dimm->grain > e->grain)
1173                         e->grain = dimm->grain;
1174
1175                 /*
1176                  * If the error is memory-controller wide, there's no need to
1177                  * seek for the affected DIMMs because the whole
1178                  * channel/memory controller/...  may be affected.
1179                  * Also, don't show errors for empty DIMM slots.
1180                  */
1181                 if (e->enable_per_layer_report && dimm->nr_pages) {
1182                         if (n_labels >= EDAC_MAX_LABELS) {
1183                                 e->enable_per_layer_report = false;
1184                                 break;
1185                         }
1186                         n_labels++;
1187                         if (p != e->label) {
1188                                 strcpy(p, OTHER_LABEL);
1189                                 p += strlen(OTHER_LABEL);
1190                         }
1191                         strcpy(p, dimm->label);
1192                         p += strlen(p);
1193                         *p = '\0';
1194
1195                         /*
1196                          * get csrow/channel of the DIMM, in order to allow
1197                          * incrementing the compat API counters
1198                          */
1199                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1200                                  mci->csbased ? "rank" : "dimm",
1201                                  dimm->csrow, dimm->cschannel);
1202                         if (row == -1)
1203                                 row = dimm->csrow;
1204                         else if (row >= 0 && row != dimm->csrow)
1205                                 row = -2;
1206
1207                         if (chan == -1)
1208                                 chan = dimm->cschannel;
1209                         else if (chan >= 0 && chan != dimm->cschannel)
1210                                 chan = -2;
1211                 }
1212         }
1213
1214         if (!e->enable_per_layer_report) {
1215                 strcpy(e->label, "any memory");
1216         } else {
1217                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1218                 if (p == e->label)
1219                         strcpy(e->label, "unknown memory");
1220                 if (type == HW_EVENT_ERR_CORRECTED) {
1221                         if (row >= 0) {
1222                                 mci->csrows[row]->ce_count += error_count;
1223                                 if (chan >= 0)
1224                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1225                         }
1226                 } else
1227                         if (row >= 0)
1228                                 mci->csrows[row]->ue_count += error_count;
1229         }
1230
1231         /* Fill the RAM location data */
1232         p = e->location;
1233
1234         for (i = 0; i < mci->n_layers; i++) {
1235                 if (pos[i] < 0)
1236                         continue;
1237
1238                 p += sprintf(p, "%s:%d ",
1239                              edac_layer_name[mci->layers[i].type],
1240                              pos[i]);
1241         }
1242         if (p > e->location)
1243                 *(p - 1) = '\0';
1244
1245         /* Sanity-check driver-supplied grain value. */
1246         if (WARN_ON_ONCE(!e->grain))
1247                 e->grain = 1;
1248
1249         grain_bits = fls_long(e->grain - 1);
1250
1251         /* Report the error via the trace interface */
1252         if (IS_ENABLED(CONFIG_RAS))
1253                 trace_mc_event(type, e->msg, e->label, e->error_count,
1254                                mci->mc_idx, e->top_layer, e->mid_layer,
1255                                e->low_layer,
1256                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1257                                grain_bits, e->syndrome, e->other_detail);
1258
1259         edac_raw_mc_handle_error(type, mci, e);
1260 }
1261 EXPORT_SYMBOL_GPL(edac_mc_handle_error);