GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE          0
62 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
65 #define DESCRIPTOR_STATUS               (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
67 #define DESCRIPTOR_PING                 (1 << 7)
68 #define DESCRIPTOR_YY                   (1 << 6)
69 #define DESCRIPTOR_NO_IRQ               (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
73 #define DESCRIPTOR_WAIT                 (3 << 0)
74
75 #define DESCRIPTOR_CMD                  (0xf << 12)
76
77 struct descriptor {
78         __le16 req_count;
79         __le16 control;
80         __le32 data_address;
81         __le32 branch_address;
82         __le16 res_count;
83         __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs)       (regs)
87 #define CONTROL_CLEAR(regs)     ((regs) + 4)
88 #define COMMAND_PTR(regs)       ((regs) + 12)
89 #define CONTEXT_MATCH(regs)     ((regs) + 16)
90
91 #define AR_BUFFER_SIZE  (32*1024)
92 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD       4096
97 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101         struct fw_ohci *ohci;
102         struct page *pages[AR_BUFFERS];
103         void *buffer;
104         struct descriptor *descriptors;
105         dma_addr_t descriptors_bus;
106         void *pointer;
107         unsigned int last_buffer_index;
108         u32 regs;
109         struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115                                      struct descriptor *d,
116                                      struct descriptor *last);
117
118 /*
119  * A buffer that contains a block of DMA-able coherent memory used for
120  * storing a portion of a DMA descriptor program.
121  */
122 struct descriptor_buffer {
123         struct list_head list;
124         dma_addr_t buffer_bus;
125         size_t buffer_size;
126         size_t used;
127         struct descriptor buffer[0];
128 };
129
130 struct context {
131         struct fw_ohci *ohci;
132         u32 regs;
133         int total_allocation;
134         u32 current_bus;
135         bool running;
136         bool flushing;
137
138         /*
139          * List of page-sized buffers for storing DMA descriptors.
140          * Head of list contains buffers in use and tail of list contains
141          * free buffers.
142          */
143         struct list_head buffer_list;
144
145         /*
146          * Pointer to a buffer inside buffer_list that contains the tail
147          * end of the current DMA program.
148          */
149         struct descriptor_buffer *buffer_tail;
150
151         /*
152          * The descriptor containing the branch address of the first
153          * descriptor that has not yet been filled by the device.
154          */
155         struct descriptor *last;
156
157         /*
158          * The last descriptor block in the DMA program. It contains the branch
159          * address that must be updated upon appending a new descriptor.
160          */
161         struct descriptor *prev;
162         int prev_z;
163
164         descriptor_callback_t callback;
165
166         struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v)          ((v) <<  0)
170 #define IT_HEADER_TCODE(v)       ((v) <<  4)
171 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
172 #define IT_HEADER_TAG(v)         ((v) << 14)
173 #define IT_HEADER_SPEED(v)       ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177         struct fw_iso_context base;
178         struct context context;
179         void *header;
180         size_t header_length;
181         unsigned long flushing_completions;
182         u32 mc_buffer_bus;
183         u16 mc_completed;
184         u16 last_timestamp;
185         u8 sync;
186         u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192         struct fw_card card;
193
194         __iomem char *registers;
195         int node_id;
196         int generation;
197         int request_generation; /* for timestamping incoming requests */
198         unsigned quirks;
199         unsigned int pri_req_max;
200         u32 bus_time;
201         bool bus_time_running;
202         bool is_root;
203         bool csr_state_setclear_abdicate;
204         int n_ir;
205         int n_it;
206         /*
207          * Spinlock for accessing fw_ohci data.  Never call out of
208          * this driver with this lock held.
209          */
210         spinlock_t lock;
211
212         struct mutex phy_reg_mutex;
213
214         void *misc_buffer;
215         dma_addr_t misc_buffer_bus;
216
217         struct ar_context ar_request_ctx;
218         struct ar_context ar_response_ctx;
219         struct context at_request_ctx;
220         struct context at_response_ctx;
221
222         u32 it_context_support;
223         u32 it_context_mask;     /* unoccupied IT contexts */
224         struct iso_context *it_context_list;
225         u64 ir_context_channels; /* unoccupied channels */
226         u32 ir_context_support;
227         u32 ir_context_mask;     /* unoccupied IR contexts */
228         struct iso_context *ir_context_list;
229         u64 mc_channels; /* channels in use by the multichannel IR context */
230         bool mc_allocated;
231
232         __be32    *config_rom;
233         dma_addr_t config_rom_bus;
234         __be32    *next_config_rom;
235         dma_addr_t next_config_rom_bus;
236         __be32     next_header;
237
238         __le32    *self_id;
239         dma_addr_t self_id_bus;
240         struct work_struct bus_reset_work;
241
242         u32 self_id_buffer[512];
243 };
244
245 static struct workqueue_struct *selfid_workqueue;
246
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248 {
249         return container_of(card, struct fw_ohci, card);
250 }
251
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
253 #define IR_CONTEXT_BUFFER_FILL          0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
258
259 #define CONTEXT_RUN     0x8000
260 #define CONTEXT_WAKE    0x1000
261 #define CONTEXT_DEAD    0x0800
262 #define CONTEXT_ACTIVE  0x0400
263
264 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
267
268 #define OHCI1394_REGISTER_SIZE          0x800
269 #define OHCI1394_PCI_HCI_Control        0x40
270 #define SELF_ID_BUF_SIZE                0x800
271 #define OHCI_TCODE_PHY_PACKET           0x0e
272 #define OHCI_VERSION_1_1                0x010010
273
274 static char ohci_driver_name[] = KBUILD_MODNAME;
275
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
284 #define PCI_REV_ID_VIA_VT6306           0x46
285 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
286
287 #define QUIRK_CYCLE_TIMER               0x1
288 #define QUIRK_RESET_PACKET              0x2
289 #define QUIRK_BE_HEADERS                0x4
290 #define QUIRK_NO_1394A                  0x8
291 #define QUIRK_NO_MSI                    0x10
292 #define QUIRK_TI_SLLZ059                0x20
293 #define QUIRK_IR_WAKE                   0x40
294
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297         unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300                 QUIRK_CYCLE_TIMER},
301
302         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303                 QUIRK_BE_HEADERS},
304
305         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306                 QUIRK_NO_MSI},
307
308         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
309                 QUIRK_RESET_PACKET},
310
311         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
312                 QUIRK_NO_MSI},
313
314         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
315                 QUIRK_CYCLE_TIMER},
316
317         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
318                 QUIRK_NO_MSI},
319
320         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
321                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
322
323         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
324                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
325
326         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
327                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
328
329         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
330                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
333                 QUIRK_RESET_PACKET},
334
335         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
336                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
337
338         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
339                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
340
341         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
342                 QUIRK_NO_MSI},
343
344         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
345                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
346 };
347
348 /* This overrides anything that was found in ohci_quirks[]. */
349 static int param_quirks;
350 module_param_named(quirks, param_quirks, int, 0644);
351 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
352         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
353         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
354         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
355         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
356         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
357         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
358         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
359         ")");
360
361 #define OHCI_PARAM_DEBUG_AT_AR          1
362 #define OHCI_PARAM_DEBUG_SELFIDS        2
363 #define OHCI_PARAM_DEBUG_IRQS           4
364 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
365
366 static int param_debug;
367 module_param_named(debug, param_debug, int, 0644);
368 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
369         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
370         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
371         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
372         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
373         ", or a combination, or all = -1)");
374
375 static bool param_remote_dma;
376 module_param_named(remote_dma, param_remote_dma, bool, 0444);
377 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
378
379 static void log_irqs(struct fw_ohci *ohci, u32 evt)
380 {
381         if (likely(!(param_debug &
382                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
383                 return;
384
385         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
386             !(evt & OHCI1394_busReset))
387                 return;
388
389         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
390             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
391             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
392             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
393             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
394             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
395             evt & OHCI1394_isochRx              ? " IR"                 : "",
396             evt & OHCI1394_isochTx              ? " IT"                 : "",
397             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
398             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
399             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
400             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
401             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
402             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
403             evt & OHCI1394_busReset             ? " busReset"           : "",
404             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
405                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
406                     OHCI1394_respTxComplete | OHCI1394_isochRx |
407                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
408                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
409                     OHCI1394_cycleInconsistent |
410                     OHCI1394_regAccessFail | OHCI1394_busReset)
411                                                 ? " ?"                  : "");
412 }
413
414 static const char *speed[] = {
415         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
416 };
417 static const char *power[] = {
418         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
419         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
420 };
421 static const char port[] = { '.', '-', 'p', 'c', };
422
423 static char _p(u32 *s, int shift)
424 {
425         return port[*s >> shift & 3];
426 }
427
428 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
429 {
430         u32 *s;
431
432         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
433                 return;
434
435         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
436                     self_id_count, generation, ohci->node_id);
437
438         for (s = ohci->self_id_buffer; self_id_count--; ++s)
439                 if ((*s & 1 << 23) == 0)
440                         ohci_notice(ohci,
441                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
442                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
443                             speed[*s >> 14 & 3], *s >> 16 & 63,
444                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
445                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
446                 else
447                         ohci_notice(ohci,
448                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
449                             *s, *s >> 24 & 63,
450                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
451                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
452 }
453
454 static const char *evts[] = {
455         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
456         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
457         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
458         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
459         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
460         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
461         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
462         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
463         [0x10] = "-reserved-",          [0x11] = "ack_complete",
464         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
465         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
466         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
467         [0x18] = "-reserved-",          [0x19] = "-reserved-",
468         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
469         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
470         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
471         [0x20] = "pending/cancelled",
472 };
473 static const char *tcodes[] = {
474         [0x0] = "QW req",               [0x1] = "BW req",
475         [0x2] = "W resp",               [0x3] = "-reserved-",
476         [0x4] = "QR req",               [0x5] = "BR req",
477         [0x6] = "QR resp",              [0x7] = "BR resp",
478         [0x8] = "cycle start",          [0x9] = "Lk req",
479         [0xa] = "async stream packet",  [0xb] = "Lk resp",
480         [0xc] = "-reserved-",           [0xd] = "-reserved-",
481         [0xe] = "link internal",        [0xf] = "-reserved-",
482 };
483
484 static void log_ar_at_event(struct fw_ohci *ohci,
485                             char dir, int speed, u32 *header, int evt)
486 {
487         int tcode = header[0] >> 4 & 0xf;
488         char specific[12];
489
490         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
491                 return;
492
493         if (unlikely(evt >= ARRAY_SIZE(evts)))
494                         evt = 0x1f;
495
496         if (evt == OHCI1394_evt_bus_reset) {
497                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
498                             dir, (header[2] >> 16) & 0xff);
499                 return;
500         }
501
502         switch (tcode) {
503         case 0x0: case 0x6: case 0x8:
504                 snprintf(specific, sizeof(specific), " = %08x",
505                          be32_to_cpu((__force __be32)header[3]));
506                 break;
507         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
508                 snprintf(specific, sizeof(specific), " %x,%x",
509                          header[3] >> 16, header[3] & 0xffff);
510                 break;
511         default:
512                 specific[0] = '\0';
513         }
514
515         switch (tcode) {
516         case 0xa:
517                 ohci_notice(ohci, "A%c %s, %s\n",
518                             dir, evts[evt], tcodes[tcode]);
519                 break;
520         case 0xe:
521                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
522                             dir, evts[evt], header[1], header[2]);
523                 break;
524         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
525                 ohci_notice(ohci,
526                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
527                             dir, speed, header[0] >> 10 & 0x3f,
528                             header[1] >> 16, header[0] >> 16, evts[evt],
529                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
530                 break;
531         default:
532                 ohci_notice(ohci,
533                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
534                             dir, speed, header[0] >> 10 & 0x3f,
535                             header[1] >> 16, header[0] >> 16, evts[evt],
536                             tcodes[tcode], specific);
537         }
538 }
539
540 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
541 {
542         writel(data, ohci->registers + offset);
543 }
544
545 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
546 {
547         return readl(ohci->registers + offset);
548 }
549
550 static inline void flush_writes(const struct fw_ohci *ohci)
551 {
552         /* Do a dummy read to flush writes. */
553         reg_read(ohci, OHCI1394_Version);
554 }
555
556 /*
557  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
558  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
559  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
560  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
561  */
562 static int read_phy_reg(struct fw_ohci *ohci, int addr)
563 {
564         u32 val;
565         int i;
566
567         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
568         for (i = 0; i < 3 + 100; i++) {
569                 val = reg_read(ohci, OHCI1394_PhyControl);
570                 if (!~val)
571                         return -ENODEV; /* Card was ejected. */
572
573                 if (val & OHCI1394_PhyControl_ReadDone)
574                         return OHCI1394_PhyControl_ReadData(val);
575
576                 /*
577                  * Try a few times without waiting.  Sleeping is necessary
578                  * only when the link/PHY interface is busy.
579                  */
580                 if (i >= 3)
581                         msleep(1);
582         }
583         ohci_err(ohci, "failed to read phy reg %d\n", addr);
584         dump_stack();
585
586         return -EBUSY;
587 }
588
589 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
590 {
591         int i;
592
593         reg_write(ohci, OHCI1394_PhyControl,
594                   OHCI1394_PhyControl_Write(addr, val));
595         for (i = 0; i < 3 + 100; i++) {
596                 val = reg_read(ohci, OHCI1394_PhyControl);
597                 if (!~val)
598                         return -ENODEV; /* Card was ejected. */
599
600                 if (!(val & OHCI1394_PhyControl_WritePending))
601                         return 0;
602
603                 if (i >= 3)
604                         msleep(1);
605         }
606         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
607         dump_stack();
608
609         return -EBUSY;
610 }
611
612 static int update_phy_reg(struct fw_ohci *ohci, int addr,
613                           int clear_bits, int set_bits)
614 {
615         int ret = read_phy_reg(ohci, addr);
616         if (ret < 0)
617                 return ret;
618
619         /*
620          * The interrupt status bits are cleared by writing a one bit.
621          * Avoid clearing them unless explicitly requested in set_bits.
622          */
623         if (addr == 5)
624                 clear_bits |= PHY_INT_STATUS_BITS;
625
626         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
627 }
628
629 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
630 {
631         int ret;
632
633         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
634         if (ret < 0)
635                 return ret;
636
637         return read_phy_reg(ohci, addr);
638 }
639
640 static int ohci_read_phy_reg(struct fw_card *card, int addr)
641 {
642         struct fw_ohci *ohci = fw_ohci(card);
643         int ret;
644
645         mutex_lock(&ohci->phy_reg_mutex);
646         ret = read_phy_reg(ohci, addr);
647         mutex_unlock(&ohci->phy_reg_mutex);
648
649         return ret;
650 }
651
652 static int ohci_update_phy_reg(struct fw_card *card, int addr,
653                                int clear_bits, int set_bits)
654 {
655         struct fw_ohci *ohci = fw_ohci(card);
656         int ret;
657
658         mutex_lock(&ohci->phy_reg_mutex);
659         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
660         mutex_unlock(&ohci->phy_reg_mutex);
661
662         return ret;
663 }
664
665 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
666 {
667         return page_private(ctx->pages[i]);
668 }
669
670 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
671 {
672         struct descriptor *d;
673
674         d = &ctx->descriptors[index];
675         d->branch_address  &= cpu_to_le32(~0xf);
676         d->res_count       =  cpu_to_le16(PAGE_SIZE);
677         d->transfer_status =  0;
678
679         wmb(); /* finish init of new descriptors before branch_address update */
680         d = &ctx->descriptors[ctx->last_buffer_index];
681         d->branch_address  |= cpu_to_le32(1);
682
683         ctx->last_buffer_index = index;
684
685         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
686 }
687
688 static void ar_context_release(struct ar_context *ctx)
689 {
690         unsigned int i;
691
692         vunmap(ctx->buffer);
693
694         for (i = 0; i < AR_BUFFERS; i++)
695                 if (ctx->pages[i]) {
696                         dma_unmap_page(ctx->ohci->card.device,
697                                        ar_buffer_bus(ctx, i),
698                                        PAGE_SIZE, DMA_FROM_DEVICE);
699                         __free_page(ctx->pages[i]);
700                 }
701 }
702
703 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
704 {
705         struct fw_ohci *ohci = ctx->ohci;
706
707         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
708                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
709                 flush_writes(ohci);
710
711                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
712         }
713         /* FIXME: restart? */
714 }
715
716 static inline unsigned int ar_next_buffer_index(unsigned int index)
717 {
718         return (index + 1) % AR_BUFFERS;
719 }
720
721 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
722 {
723         return ar_next_buffer_index(ctx->last_buffer_index);
724 }
725
726 /*
727  * We search for the buffer that contains the last AR packet DMA data written
728  * by the controller.
729  */
730 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
731                                                  unsigned int *buffer_offset)
732 {
733         unsigned int i, next_i, last = ctx->last_buffer_index;
734         __le16 res_count, next_res_count;
735
736         i = ar_first_buffer_index(ctx);
737         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
738
739         /* A buffer that is not yet completely filled must be the last one. */
740         while (i != last && res_count == 0) {
741
742                 /* Peek at the next descriptor. */
743                 next_i = ar_next_buffer_index(i);
744                 rmb(); /* read descriptors in order */
745                 next_res_count = ACCESS_ONCE(
746                                 ctx->descriptors[next_i].res_count);
747                 /*
748                  * If the next descriptor is still empty, we must stop at this
749                  * descriptor.
750                  */
751                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
752                         /*
753                          * The exception is when the DMA data for one packet is
754                          * split over three buffers; in this case, the middle
755                          * buffer's descriptor might be never updated by the
756                          * controller and look still empty, and we have to peek
757                          * at the third one.
758                          */
759                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
760                                 next_i = ar_next_buffer_index(next_i);
761                                 rmb();
762                                 next_res_count = ACCESS_ONCE(
763                                         ctx->descriptors[next_i].res_count);
764                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
765                                         goto next_buffer_is_active;
766                         }
767
768                         break;
769                 }
770
771 next_buffer_is_active:
772                 i = next_i;
773                 res_count = next_res_count;
774         }
775
776         rmb(); /* read res_count before the DMA data */
777
778         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
779         if (*buffer_offset > PAGE_SIZE) {
780                 *buffer_offset = 0;
781                 ar_context_abort(ctx, "corrupted descriptor");
782         }
783
784         return i;
785 }
786
787 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
788                                     unsigned int end_buffer_index,
789                                     unsigned int end_buffer_offset)
790 {
791         unsigned int i;
792
793         i = ar_first_buffer_index(ctx);
794         while (i != end_buffer_index) {
795                 dma_sync_single_for_cpu(ctx->ohci->card.device,
796                                         ar_buffer_bus(ctx, i),
797                                         PAGE_SIZE, DMA_FROM_DEVICE);
798                 i = ar_next_buffer_index(i);
799         }
800         if (end_buffer_offset > 0)
801                 dma_sync_single_for_cpu(ctx->ohci->card.device,
802                                         ar_buffer_bus(ctx, i),
803                                         end_buffer_offset, DMA_FROM_DEVICE);
804 }
805
806 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
807 #define cond_le32_to_cpu(v) \
808         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
809 #else
810 #define cond_le32_to_cpu(v) le32_to_cpu(v)
811 #endif
812
813 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
814 {
815         struct fw_ohci *ohci = ctx->ohci;
816         struct fw_packet p;
817         u32 status, length, tcode;
818         int evt;
819
820         p.header[0] = cond_le32_to_cpu(buffer[0]);
821         p.header[1] = cond_le32_to_cpu(buffer[1]);
822         p.header[2] = cond_le32_to_cpu(buffer[2]);
823
824         tcode = (p.header[0] >> 4) & 0x0f;
825         switch (tcode) {
826         case TCODE_WRITE_QUADLET_REQUEST:
827         case TCODE_READ_QUADLET_RESPONSE:
828                 p.header[3] = (__force __u32) buffer[3];
829                 p.header_length = 16;
830                 p.payload_length = 0;
831                 break;
832
833         case TCODE_READ_BLOCK_REQUEST :
834                 p.header[3] = cond_le32_to_cpu(buffer[3]);
835                 p.header_length = 16;
836                 p.payload_length = 0;
837                 break;
838
839         case TCODE_WRITE_BLOCK_REQUEST:
840         case TCODE_READ_BLOCK_RESPONSE:
841         case TCODE_LOCK_REQUEST:
842         case TCODE_LOCK_RESPONSE:
843                 p.header[3] = cond_le32_to_cpu(buffer[3]);
844                 p.header_length = 16;
845                 p.payload_length = p.header[3] >> 16;
846                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
847                         ar_context_abort(ctx, "invalid packet length");
848                         return NULL;
849                 }
850                 break;
851
852         case TCODE_WRITE_RESPONSE:
853         case TCODE_READ_QUADLET_REQUEST:
854         case OHCI_TCODE_PHY_PACKET:
855                 p.header_length = 12;
856                 p.payload_length = 0;
857                 break;
858
859         default:
860                 ar_context_abort(ctx, "invalid tcode");
861                 return NULL;
862         }
863
864         p.payload = (void *) buffer + p.header_length;
865
866         /* FIXME: What to do about evt_* errors? */
867         length = (p.header_length + p.payload_length + 3) / 4;
868         status = cond_le32_to_cpu(buffer[length]);
869         evt    = (status >> 16) & 0x1f;
870
871         p.ack        = evt - 16;
872         p.speed      = (status >> 21) & 0x7;
873         p.timestamp  = status & 0xffff;
874         p.generation = ohci->request_generation;
875
876         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
877
878         /*
879          * Several controllers, notably from NEC and VIA, forget to
880          * write ack_complete status at PHY packet reception.
881          */
882         if (evt == OHCI1394_evt_no_status &&
883             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
884                 p.ack = ACK_COMPLETE;
885
886         /*
887          * The OHCI bus reset handler synthesizes a PHY packet with
888          * the new generation number when a bus reset happens (see
889          * section 8.4.2.3).  This helps us determine when a request
890          * was received and make sure we send the response in the same
891          * generation.  We only need this for requests; for responses
892          * we use the unique tlabel for finding the matching
893          * request.
894          *
895          * Alas some chips sometimes emit bus reset packets with a
896          * wrong generation.  We set the correct generation for these
897          * at a slightly incorrect time (in bus_reset_work).
898          */
899         if (evt == OHCI1394_evt_bus_reset) {
900                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
901                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
902         } else if (ctx == &ohci->ar_request_ctx) {
903                 fw_core_handle_request(&ohci->card, &p);
904         } else {
905                 fw_core_handle_response(&ohci->card, &p);
906         }
907
908         return buffer + length + 1;
909 }
910
911 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
912 {
913         void *next;
914
915         while (p < end) {
916                 next = handle_ar_packet(ctx, p);
917                 if (!next)
918                         return p;
919                 p = next;
920         }
921
922         return p;
923 }
924
925 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
926 {
927         unsigned int i;
928
929         i = ar_first_buffer_index(ctx);
930         while (i != end_buffer) {
931                 dma_sync_single_for_device(ctx->ohci->card.device,
932                                            ar_buffer_bus(ctx, i),
933                                            PAGE_SIZE, DMA_FROM_DEVICE);
934                 ar_context_link_page(ctx, i);
935                 i = ar_next_buffer_index(i);
936         }
937 }
938
939 static void ar_context_tasklet(unsigned long data)
940 {
941         struct ar_context *ctx = (struct ar_context *)data;
942         unsigned int end_buffer_index, end_buffer_offset;
943         void *p, *end;
944
945         p = ctx->pointer;
946         if (!p)
947                 return;
948
949         end_buffer_index = ar_search_last_active_buffer(ctx,
950                                                         &end_buffer_offset);
951         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
952         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
953
954         if (end_buffer_index < ar_first_buffer_index(ctx)) {
955                 /*
956                  * The filled part of the overall buffer wraps around; handle
957                  * all packets up to the buffer end here.  If the last packet
958                  * wraps around, its tail will be visible after the buffer end
959                  * because the buffer start pages are mapped there again.
960                  */
961                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
962                 p = handle_ar_packets(ctx, p, buffer_end);
963                 if (p < buffer_end)
964                         goto error;
965                 /* adjust p to point back into the actual buffer */
966                 p -= AR_BUFFERS * PAGE_SIZE;
967         }
968
969         p = handle_ar_packets(ctx, p, end);
970         if (p != end) {
971                 if (p > end)
972                         ar_context_abort(ctx, "inconsistent descriptor");
973                 goto error;
974         }
975
976         ctx->pointer = p;
977         ar_recycle_buffers(ctx, end_buffer_index);
978
979         return;
980
981 error:
982         ctx->pointer = NULL;
983 }
984
985 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
986                            unsigned int descriptors_offset, u32 regs)
987 {
988         unsigned int i;
989         dma_addr_t dma_addr;
990         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
991         struct descriptor *d;
992
993         ctx->regs        = regs;
994         ctx->ohci        = ohci;
995         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
996
997         for (i = 0; i < AR_BUFFERS; i++) {
998                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
999                 if (!ctx->pages[i])
1000                         goto out_of_memory;
1001                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
1003                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004                         __free_page(ctx->pages[i]);
1005                         ctx->pages[i] = NULL;
1006                         goto out_of_memory;
1007                 }
1008                 set_page_private(ctx->pages[i], dma_addr);
1009         }
1010
1011         for (i = 0; i < AR_BUFFERS; i++)
1012                 pages[i]              = ctx->pages[i];
1013         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014                 pages[AR_BUFFERS + i] = ctx->pages[i];
1015         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1016         if (!ctx->buffer)
1017                 goto out_of_memory;
1018
1019         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1020         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021
1022         for (i = 0; i < AR_BUFFERS; i++) {
1023                 d = &ctx->descriptors[i];
1024                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1025                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1026                                                 DESCRIPTOR_STATUS |
1027                                                 DESCRIPTOR_BRANCH_ALWAYS);
1028                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1029                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1030                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1031         }
1032
1033         return 0;
1034
1035 out_of_memory:
1036         ar_context_release(ctx);
1037
1038         return -ENOMEM;
1039 }
1040
1041 static void ar_context_run(struct ar_context *ctx)
1042 {
1043         unsigned int i;
1044
1045         for (i = 0; i < AR_BUFFERS; i++)
1046                 ar_context_link_page(ctx, i);
1047
1048         ctx->pointer = ctx->buffer;
1049
1050         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1051         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1052 }
1053
1054 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055 {
1056         __le16 branch;
1057
1058         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059
1060         /* figure out which descriptor the branch address goes in */
1061         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1062                 return d;
1063         else
1064                 return d + z - 1;
1065 }
1066
1067 static void context_tasklet(unsigned long data)
1068 {
1069         struct context *ctx = (struct context *) data;
1070         struct descriptor *d, *last;
1071         u32 address;
1072         int z;
1073         struct descriptor_buffer *desc;
1074
1075         desc = list_entry(ctx->buffer_list.next,
1076                         struct descriptor_buffer, list);
1077         last = ctx->last;
1078         while (last->branch_address != 0) {
1079                 struct descriptor_buffer *old_desc = desc;
1080                 address = le32_to_cpu(last->branch_address);
1081                 z = address & 0xf;
1082                 address &= ~0xf;
1083                 ctx->current_bus = address;
1084
1085                 /* If the branch address points to a buffer outside of the
1086                  * current buffer, advance to the next buffer. */
1087                 if (address < desc->buffer_bus ||
1088                                 address >= desc->buffer_bus + desc->used)
1089                         desc = list_entry(desc->list.next,
1090                                         struct descriptor_buffer, list);
1091                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1092                 last = find_branch_descriptor(d, z);
1093
1094                 if (!ctx->callback(ctx, d, last))
1095                         break;
1096
1097                 if (old_desc != desc) {
1098                         /* If we've advanced to the next buffer, move the
1099                          * previous buffer to the free list. */
1100                         unsigned long flags;
1101                         old_desc->used = 0;
1102                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1103                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1104                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105                 }
1106                 ctx->last = last;
1107         }
1108 }
1109
1110 /*
1111  * Allocate a new buffer and add it to the list of free buffers for this
1112  * context.  Must be called with ohci->lock held.
1113  */
1114 static int context_add_buffer(struct context *ctx)
1115 {
1116         struct descriptor_buffer *desc;
1117         dma_addr_t uninitialized_var(bus_addr);
1118         int offset;
1119
1120         /*
1121          * 16MB of descriptors should be far more than enough for any DMA
1122          * program.  This will catch run-away userspace or DoS attacks.
1123          */
1124         if (ctx->total_allocation >= 16*1024*1024)
1125                 return -ENOMEM;
1126
1127         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1128                         &bus_addr, GFP_ATOMIC);
1129         if (!desc)
1130                 return -ENOMEM;
1131
1132         offset = (void *)&desc->buffer - (void *)desc;
1133         /*
1134          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1135          * for descriptors, even 0x10-byte ones. This can cause page faults when
1136          * an IOMMU is in use and the oversized read crosses a page boundary.
1137          * Work around this by always leaving at least 0x10 bytes of padding.
1138          */
1139         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1140         desc->buffer_bus = bus_addr + offset;
1141         desc->used = 0;
1142
1143         list_add_tail(&desc->list, &ctx->buffer_list);
1144         ctx->total_allocation += PAGE_SIZE;
1145
1146         return 0;
1147 }
1148
1149 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1150                         u32 regs, descriptor_callback_t callback)
1151 {
1152         ctx->ohci = ohci;
1153         ctx->regs = regs;
1154         ctx->total_allocation = 0;
1155
1156         INIT_LIST_HEAD(&ctx->buffer_list);
1157         if (context_add_buffer(ctx) < 0)
1158                 return -ENOMEM;
1159
1160         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1161                         struct descriptor_buffer, list);
1162
1163         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1164         ctx->callback = callback;
1165
1166         /*
1167          * We put a dummy descriptor in the buffer that has a NULL
1168          * branch address and looks like it's been sent.  That way we
1169          * have a descriptor to append DMA programs to.
1170          */
1171         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1172         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1173         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1174         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1175         ctx->last = ctx->buffer_tail->buffer;
1176         ctx->prev = ctx->buffer_tail->buffer;
1177         ctx->prev_z = 1;
1178
1179         return 0;
1180 }
1181
1182 static void context_release(struct context *ctx)
1183 {
1184         struct fw_card *card = &ctx->ohci->card;
1185         struct descriptor_buffer *desc, *tmp;
1186
1187         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1188                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1189                         desc->buffer_bus -
1190                         ((void *)&desc->buffer - (void *)desc));
1191 }
1192
1193 /* Must be called with ohci->lock held */
1194 static struct descriptor *context_get_descriptors(struct context *ctx,
1195                                                   int z, dma_addr_t *d_bus)
1196 {
1197         struct descriptor *d = NULL;
1198         struct descriptor_buffer *desc = ctx->buffer_tail;
1199
1200         if (z * sizeof(*d) > desc->buffer_size)
1201                 return NULL;
1202
1203         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1204                 /* No room for the descriptor in this buffer, so advance to the
1205                  * next one. */
1206
1207                 if (desc->list.next == &ctx->buffer_list) {
1208                         /* If there is no free buffer next in the list,
1209                          * allocate one. */
1210                         if (context_add_buffer(ctx) < 0)
1211                                 return NULL;
1212                 }
1213                 desc = list_entry(desc->list.next,
1214                                 struct descriptor_buffer, list);
1215                 ctx->buffer_tail = desc;
1216         }
1217
1218         d = desc->buffer + desc->used / sizeof(*d);
1219         memset(d, 0, z * sizeof(*d));
1220         *d_bus = desc->buffer_bus + desc->used;
1221
1222         return d;
1223 }
1224
1225 static void context_run(struct context *ctx, u32 extra)
1226 {
1227         struct fw_ohci *ohci = ctx->ohci;
1228
1229         reg_write(ohci, COMMAND_PTR(ctx->regs),
1230                   le32_to_cpu(ctx->last->branch_address));
1231         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1232         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1233         ctx->running = true;
1234         flush_writes(ohci);
1235 }
1236
1237 static void context_append(struct context *ctx,
1238                            struct descriptor *d, int z, int extra)
1239 {
1240         dma_addr_t d_bus;
1241         struct descriptor_buffer *desc = ctx->buffer_tail;
1242         struct descriptor *d_branch;
1243
1244         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1245
1246         desc->used += (z + extra) * sizeof(*d);
1247
1248         wmb(); /* finish init of new descriptors before branch_address update */
1249
1250         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1251         d_branch->branch_address = cpu_to_le32(d_bus | z);
1252
1253         /*
1254          * VT6306 incorrectly checks only the single descriptor at the
1255          * CommandPtr when the wake bit is written, so if it's a
1256          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1257          * the branch address in the first descriptor.
1258          *
1259          * Not doing this for transmit contexts since not sure how it interacts
1260          * with skip addresses.
1261          */
1262         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1263             d_branch != ctx->prev &&
1264             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1265              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1266                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1267         }
1268
1269         ctx->prev = d;
1270         ctx->prev_z = z;
1271 }
1272
1273 static void context_stop(struct context *ctx)
1274 {
1275         struct fw_ohci *ohci = ctx->ohci;
1276         u32 reg;
1277         int i;
1278
1279         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1280         ctx->running = false;
1281
1282         for (i = 0; i < 1000; i++) {
1283                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1284                 if ((reg & CONTEXT_ACTIVE) == 0)
1285                         return;
1286
1287                 if (i)
1288                         udelay(10);
1289         }
1290         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1291 }
1292
1293 struct driver_data {
1294         u8 inline_data[8];
1295         struct fw_packet *packet;
1296 };
1297
1298 /*
1299  * This function apppends a packet to the DMA queue for transmission.
1300  * Must always be called with the ochi->lock held to ensure proper
1301  * generation handling and locking around packet queue manipulation.
1302  */
1303 static int at_context_queue_packet(struct context *ctx,
1304                                    struct fw_packet *packet)
1305 {
1306         struct fw_ohci *ohci = ctx->ohci;
1307         dma_addr_t d_bus, uninitialized_var(payload_bus);
1308         struct driver_data *driver_data;
1309         struct descriptor *d, *last;
1310         __le32 *header;
1311         int z, tcode;
1312
1313         d = context_get_descriptors(ctx, 4, &d_bus);
1314         if (d == NULL) {
1315                 packet->ack = RCODE_SEND_ERROR;
1316                 return -1;
1317         }
1318
1319         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1320         d[0].res_count = cpu_to_le16(packet->timestamp);
1321
1322         /*
1323          * The DMA format for asynchronous link packets is different
1324          * from the IEEE1394 layout, so shift the fields around
1325          * accordingly.
1326          */
1327
1328         tcode = (packet->header[0] >> 4) & 0x0f;
1329         header = (__le32 *) &d[1];
1330         switch (tcode) {
1331         case TCODE_WRITE_QUADLET_REQUEST:
1332         case TCODE_WRITE_BLOCK_REQUEST:
1333         case TCODE_WRITE_RESPONSE:
1334         case TCODE_READ_QUADLET_REQUEST:
1335         case TCODE_READ_BLOCK_REQUEST:
1336         case TCODE_READ_QUADLET_RESPONSE:
1337         case TCODE_READ_BLOCK_RESPONSE:
1338         case TCODE_LOCK_REQUEST:
1339         case TCODE_LOCK_RESPONSE:
1340                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1341                                         (packet->speed << 16));
1342                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1343                                         (packet->header[0] & 0xffff0000));
1344                 header[2] = cpu_to_le32(packet->header[2]);
1345
1346                 if (TCODE_IS_BLOCK_PACKET(tcode))
1347                         header[3] = cpu_to_le32(packet->header[3]);
1348                 else
1349                         header[3] = (__force __le32) packet->header[3];
1350
1351                 d[0].req_count = cpu_to_le16(packet->header_length);
1352                 break;
1353
1354         case TCODE_LINK_INTERNAL:
1355                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1356                                         (packet->speed << 16));
1357                 header[1] = cpu_to_le32(packet->header[1]);
1358                 header[2] = cpu_to_le32(packet->header[2]);
1359                 d[0].req_count = cpu_to_le16(12);
1360
1361                 if (is_ping_packet(&packet->header[1]))
1362                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1363                 break;
1364
1365         case TCODE_STREAM_DATA:
1366                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1367                                         (packet->speed << 16));
1368                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1369                 d[0].req_count = cpu_to_le16(8);
1370                 break;
1371
1372         default:
1373                 /* BUG(); */
1374                 packet->ack = RCODE_SEND_ERROR;
1375                 return -1;
1376         }
1377
1378         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1379         driver_data = (struct driver_data *) &d[3];
1380         driver_data->packet = packet;
1381         packet->driver_data = driver_data;
1382
1383         if (packet->payload_length > 0) {
1384                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1385                         payload_bus = dma_map_single(ohci->card.device,
1386                                                      packet->payload,
1387                                                      packet->payload_length,
1388                                                      DMA_TO_DEVICE);
1389                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1390                                 packet->ack = RCODE_SEND_ERROR;
1391                                 return -1;
1392                         }
1393                         packet->payload_bus     = payload_bus;
1394                         packet->payload_mapped  = true;
1395                 } else {
1396                         memcpy(driver_data->inline_data, packet->payload,
1397                                packet->payload_length);
1398                         payload_bus = d_bus + 3 * sizeof(*d);
1399                 }
1400
1401                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1402                 d[2].data_address = cpu_to_le32(payload_bus);
1403                 last = &d[2];
1404                 z = 3;
1405         } else {
1406                 last = &d[0];
1407                 z = 2;
1408         }
1409
1410         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1411                                      DESCRIPTOR_IRQ_ALWAYS |
1412                                      DESCRIPTOR_BRANCH_ALWAYS);
1413
1414         /* FIXME: Document how the locking works. */
1415         if (ohci->generation != packet->generation) {
1416                 if (packet->payload_mapped)
1417                         dma_unmap_single(ohci->card.device, payload_bus,
1418                                          packet->payload_length, DMA_TO_DEVICE);
1419                 packet->ack = RCODE_GENERATION;
1420                 return -1;
1421         }
1422
1423         context_append(ctx, d, z, 4 - z);
1424
1425         if (ctx->running)
1426                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1427         else
1428                 context_run(ctx, 0);
1429
1430         return 0;
1431 }
1432
1433 static void at_context_flush(struct context *ctx)
1434 {
1435         tasklet_disable(&ctx->tasklet);
1436
1437         ctx->flushing = true;
1438         context_tasklet((unsigned long)ctx);
1439         ctx->flushing = false;
1440
1441         tasklet_enable(&ctx->tasklet);
1442 }
1443
1444 static int handle_at_packet(struct context *context,
1445                             struct descriptor *d,
1446                             struct descriptor *last)
1447 {
1448         struct driver_data *driver_data;
1449         struct fw_packet *packet;
1450         struct fw_ohci *ohci = context->ohci;
1451         int evt;
1452
1453         if (last->transfer_status == 0 && !context->flushing)
1454                 /* This descriptor isn't done yet, stop iteration. */
1455                 return 0;
1456
1457         driver_data = (struct driver_data *) &d[3];
1458         packet = driver_data->packet;
1459         if (packet == NULL)
1460                 /* This packet was cancelled, just continue. */
1461                 return 1;
1462
1463         if (packet->payload_mapped)
1464                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1465                                  packet->payload_length, DMA_TO_DEVICE);
1466
1467         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1468         packet->timestamp = le16_to_cpu(last->res_count);
1469
1470         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1471
1472         switch (evt) {
1473         case OHCI1394_evt_timeout:
1474                 /* Async response transmit timed out. */
1475                 packet->ack = RCODE_CANCELLED;
1476                 break;
1477
1478         case OHCI1394_evt_flushed:
1479                 /*
1480                  * The packet was flushed should give same error as
1481                  * when we try to use a stale generation count.
1482                  */
1483                 packet->ack = RCODE_GENERATION;
1484                 break;
1485
1486         case OHCI1394_evt_missing_ack:
1487                 if (context->flushing)
1488                         packet->ack = RCODE_GENERATION;
1489                 else {
1490                         /*
1491                          * Using a valid (current) generation count, but the
1492                          * node is not on the bus or not sending acks.
1493                          */
1494                         packet->ack = RCODE_NO_ACK;
1495                 }
1496                 break;
1497
1498         case ACK_COMPLETE + 0x10:
1499         case ACK_PENDING + 0x10:
1500         case ACK_BUSY_X + 0x10:
1501         case ACK_BUSY_A + 0x10:
1502         case ACK_BUSY_B + 0x10:
1503         case ACK_DATA_ERROR + 0x10:
1504         case ACK_TYPE_ERROR + 0x10:
1505                 packet->ack = evt - 0x10;
1506                 break;
1507
1508         case OHCI1394_evt_no_status:
1509                 if (context->flushing) {
1510                         packet->ack = RCODE_GENERATION;
1511                         break;
1512                 }
1513                 /* fall through */
1514
1515         default:
1516                 packet->ack = RCODE_SEND_ERROR;
1517                 break;
1518         }
1519
1520         packet->callback(packet, &ohci->card, packet->ack);
1521
1522         return 1;
1523 }
1524
1525 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1526 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1527 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1528 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1529 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1530
1531 static void handle_local_rom(struct fw_ohci *ohci,
1532                              struct fw_packet *packet, u32 csr)
1533 {
1534         struct fw_packet response;
1535         int tcode, length, i;
1536
1537         tcode = HEADER_GET_TCODE(packet->header[0]);
1538         if (TCODE_IS_BLOCK_PACKET(tcode))
1539                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1540         else
1541                 length = 4;
1542
1543         i = csr - CSR_CONFIG_ROM;
1544         if (i + length > CONFIG_ROM_SIZE) {
1545                 fw_fill_response(&response, packet->header,
1546                                  RCODE_ADDRESS_ERROR, NULL, 0);
1547         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1548                 fw_fill_response(&response, packet->header,
1549                                  RCODE_TYPE_ERROR, NULL, 0);
1550         } else {
1551                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1552                                  (void *) ohci->config_rom + i, length);
1553         }
1554
1555         fw_core_handle_response(&ohci->card, &response);
1556 }
1557
1558 static void handle_local_lock(struct fw_ohci *ohci,
1559                               struct fw_packet *packet, u32 csr)
1560 {
1561         struct fw_packet response;
1562         int tcode, length, ext_tcode, sel, try;
1563         __be32 *payload, lock_old;
1564         u32 lock_arg, lock_data;
1565
1566         tcode = HEADER_GET_TCODE(packet->header[0]);
1567         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1568         payload = packet->payload;
1569         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1570
1571         if (tcode == TCODE_LOCK_REQUEST &&
1572             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1573                 lock_arg = be32_to_cpu(payload[0]);
1574                 lock_data = be32_to_cpu(payload[1]);
1575         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1576                 lock_arg = 0;
1577                 lock_data = 0;
1578         } else {
1579                 fw_fill_response(&response, packet->header,
1580                                  RCODE_TYPE_ERROR, NULL, 0);
1581                 goto out;
1582         }
1583
1584         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1585         reg_write(ohci, OHCI1394_CSRData, lock_data);
1586         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1587         reg_write(ohci, OHCI1394_CSRControl, sel);
1588
1589         for (try = 0; try < 20; try++)
1590                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1591                         lock_old = cpu_to_be32(reg_read(ohci,
1592                                                         OHCI1394_CSRData));
1593                         fw_fill_response(&response, packet->header,
1594                                          RCODE_COMPLETE,
1595                                          &lock_old, sizeof(lock_old));
1596                         goto out;
1597                 }
1598
1599         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1600         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1601
1602  out:
1603         fw_core_handle_response(&ohci->card, &response);
1604 }
1605
1606 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1607 {
1608         u64 offset, csr;
1609
1610         if (ctx == &ctx->ohci->at_request_ctx) {
1611                 packet->ack = ACK_PENDING;
1612                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1613         }
1614
1615         offset =
1616                 ((unsigned long long)
1617                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1618                 packet->header[2];
1619         csr = offset - CSR_REGISTER_BASE;
1620
1621         /* Handle config rom reads. */
1622         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1623                 handle_local_rom(ctx->ohci, packet, csr);
1624         else switch (csr) {
1625         case CSR_BUS_MANAGER_ID:
1626         case CSR_BANDWIDTH_AVAILABLE:
1627         case CSR_CHANNELS_AVAILABLE_HI:
1628         case CSR_CHANNELS_AVAILABLE_LO:
1629                 handle_local_lock(ctx->ohci, packet, csr);
1630                 break;
1631         default:
1632                 if (ctx == &ctx->ohci->at_request_ctx)
1633                         fw_core_handle_request(&ctx->ohci->card, packet);
1634                 else
1635                         fw_core_handle_response(&ctx->ohci->card, packet);
1636                 break;
1637         }
1638
1639         if (ctx == &ctx->ohci->at_response_ctx) {
1640                 packet->ack = ACK_COMPLETE;
1641                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1642         }
1643 }
1644
1645 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1646 {
1647         unsigned long flags;
1648         int ret;
1649
1650         spin_lock_irqsave(&ctx->ohci->lock, flags);
1651
1652         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1653             ctx->ohci->generation == packet->generation) {
1654                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655                 handle_local_request(ctx, packet);
1656                 return;
1657         }
1658
1659         ret = at_context_queue_packet(ctx, packet);
1660         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1661
1662         if (ret < 0)
1663                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1664
1665 }
1666
1667 static void detect_dead_context(struct fw_ohci *ohci,
1668                                 const char *name, unsigned int regs)
1669 {
1670         u32 ctl;
1671
1672         ctl = reg_read(ohci, CONTROL_SET(regs));
1673         if (ctl & CONTEXT_DEAD)
1674                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1675                         name, evts[ctl & 0x1f]);
1676 }
1677
1678 static void handle_dead_contexts(struct fw_ohci *ohci)
1679 {
1680         unsigned int i;
1681         char name[8];
1682
1683         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1684         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1685         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1686         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1687         for (i = 0; i < 32; ++i) {
1688                 if (!(ohci->it_context_support & (1 << i)))
1689                         continue;
1690                 sprintf(name, "IT%u", i);
1691                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1692         }
1693         for (i = 0; i < 32; ++i) {
1694                 if (!(ohci->ir_context_support & (1 << i)))
1695                         continue;
1696                 sprintf(name, "IR%u", i);
1697                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1698         }
1699         /* TODO: maybe try to flush and restart the dead contexts */
1700 }
1701
1702 static u32 cycle_timer_ticks(u32 cycle_timer)
1703 {
1704         u32 ticks;
1705
1706         ticks = cycle_timer & 0xfff;
1707         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1708         ticks += (3072 * 8000) * (cycle_timer >> 25);
1709
1710         return ticks;
1711 }
1712
1713 /*
1714  * Some controllers exhibit one or more of the following bugs when updating the
1715  * iso cycle timer register:
1716  *  - When the lowest six bits are wrapping around to zero, a read that happens
1717  *    at the same time will return garbage in the lowest ten bits.
1718  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1719  *    not incremented for about 60 ns.
1720  *  - Occasionally, the entire register reads zero.
1721  *
1722  * To catch these, we read the register three times and ensure that the
1723  * difference between each two consecutive reads is approximately the same, i.e.
1724  * less than twice the other.  Furthermore, any negative difference indicates an
1725  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1726  * execute, so we have enough precision to compute the ratio of the differences.)
1727  */
1728 static u32 get_cycle_time(struct fw_ohci *ohci)
1729 {
1730         u32 c0, c1, c2;
1731         u32 t0, t1, t2;
1732         s32 diff01, diff12;
1733         int i;
1734
1735         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1736
1737         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1738                 i = 0;
1739                 c1 = c2;
1740                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1741                 do {
1742                         c0 = c1;
1743                         c1 = c2;
1744                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1745                         t0 = cycle_timer_ticks(c0);
1746                         t1 = cycle_timer_ticks(c1);
1747                         t2 = cycle_timer_ticks(c2);
1748                         diff01 = t1 - t0;
1749                         diff12 = t2 - t1;
1750                 } while ((diff01 <= 0 || diff12 <= 0 ||
1751                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1752                          && i++ < 20);
1753         }
1754
1755         return c2;
1756 }
1757
1758 /*
1759  * This function has to be called at least every 64 seconds.  The bus_time
1760  * field stores not only the upper 25 bits of the BUS_TIME register but also
1761  * the most significant bit of the cycle timer in bit 6 so that we can detect
1762  * changes in this bit.
1763  */
1764 static u32 update_bus_time(struct fw_ohci *ohci)
1765 {
1766         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1767
1768         if (unlikely(!ohci->bus_time_running)) {
1769                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1770                 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1771                                  (cycle_time_seconds & 0x40);
1772                 ohci->bus_time_running = true;
1773         }
1774
1775         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1776                 ohci->bus_time += 0x40;
1777
1778         return ohci->bus_time | cycle_time_seconds;
1779 }
1780
1781 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1782 {
1783         int reg;
1784
1785         mutex_lock(&ohci->phy_reg_mutex);
1786         reg = write_phy_reg(ohci, 7, port_index);
1787         if (reg >= 0)
1788                 reg = read_phy_reg(ohci, 8);
1789         mutex_unlock(&ohci->phy_reg_mutex);
1790         if (reg < 0)
1791                 return reg;
1792
1793         switch (reg & 0x0f) {
1794         case 0x06:
1795                 return 2;       /* is child node (connected to parent node) */
1796         case 0x0e:
1797                 return 3;       /* is parent node (connected to child node) */
1798         }
1799         return 1;               /* not connected */
1800 }
1801
1802 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1803         int self_id_count)
1804 {
1805         int i;
1806         u32 entry;
1807
1808         for (i = 0; i < self_id_count; i++) {
1809                 entry = ohci->self_id_buffer[i];
1810                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1811                         return -1;
1812                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1813                         return i;
1814         }
1815         return i;
1816 }
1817
1818 static int initiated_reset(struct fw_ohci *ohci)
1819 {
1820         int reg;
1821         int ret = 0;
1822
1823         mutex_lock(&ohci->phy_reg_mutex);
1824         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1825         if (reg >= 0) {
1826                 reg = read_phy_reg(ohci, 8);
1827                 reg |= 0x40;
1828                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1829                 if (reg >= 0) {
1830                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1831                         if (reg >= 0) {
1832                                 if ((reg & 0x08) == 0x08) {
1833                                         /* bit 3 indicates "initiated reset" */
1834                                         ret = 0x2;
1835                                 }
1836                         }
1837                 }
1838         }
1839         mutex_unlock(&ohci->phy_reg_mutex);
1840         return ret;
1841 }
1842
1843 /*
1844  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1845  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1846  * Construct the selfID from phy register contents.
1847  */
1848 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1849 {
1850         int reg, i, pos, status;
1851         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1852         u32 self_id = 0x8040c800;
1853
1854         reg = reg_read(ohci, OHCI1394_NodeID);
1855         if (!(reg & OHCI1394_NodeID_idValid)) {
1856                 ohci_notice(ohci,
1857                             "node ID not valid, new bus reset in progress\n");
1858                 return -EBUSY;
1859         }
1860         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1861
1862         reg = ohci_read_phy_reg(&ohci->card, 4);
1863         if (reg < 0)
1864                 return reg;
1865         self_id |= ((reg & 0x07) << 8); /* power class */
1866
1867         reg = ohci_read_phy_reg(&ohci->card, 1);
1868         if (reg < 0)
1869                 return reg;
1870         self_id |= ((reg & 0x3f) << 16); /* gap count */
1871
1872         for (i = 0; i < 3; i++) {
1873                 status = get_status_for_port(ohci, i);
1874                 if (status < 0)
1875                         return status;
1876                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1877         }
1878
1879         self_id |= initiated_reset(ohci);
1880
1881         pos = get_self_id_pos(ohci, self_id, self_id_count);
1882         if (pos >= 0) {
1883                 memmove(&(ohci->self_id_buffer[pos+1]),
1884                         &(ohci->self_id_buffer[pos]),
1885                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1886                 ohci->self_id_buffer[pos] = self_id;
1887                 self_id_count++;
1888         }
1889         return self_id_count;
1890 }
1891
1892 static void bus_reset_work(struct work_struct *work)
1893 {
1894         struct fw_ohci *ohci =
1895                 container_of(work, struct fw_ohci, bus_reset_work);
1896         int self_id_count, generation, new_generation, i, j;
1897         u32 reg;
1898         void *free_rom = NULL;
1899         dma_addr_t free_rom_bus = 0;
1900         bool is_new_root;
1901
1902         reg = reg_read(ohci, OHCI1394_NodeID);
1903         if (!(reg & OHCI1394_NodeID_idValid)) {
1904                 ohci_notice(ohci,
1905                             "node ID not valid, new bus reset in progress\n");
1906                 return;
1907         }
1908         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1909                 ohci_notice(ohci, "malconfigured bus\n");
1910                 return;
1911         }
1912         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1913                                OHCI1394_NodeID_nodeNumber);
1914
1915         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1916         if (!(ohci->is_root && is_new_root))
1917                 reg_write(ohci, OHCI1394_LinkControlSet,
1918                           OHCI1394_LinkControl_cycleMaster);
1919         ohci->is_root = is_new_root;
1920
1921         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1922         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1923                 ohci_notice(ohci, "self ID receive error\n");
1924                 return;
1925         }
1926         /*
1927          * The count in the SelfIDCount register is the number of
1928          * bytes in the self ID receive buffer.  Since we also receive
1929          * the inverted quadlets and a header quadlet, we shift one
1930          * bit extra to get the actual number of self IDs.
1931          */
1932         self_id_count = (reg >> 3) & 0xff;
1933
1934         if (self_id_count > 252) {
1935                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1936                 return;
1937         }
1938
1939         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1940         rmb();
1941
1942         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1943                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1944                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1945
1946                 if (id != ~id2) {
1947                         /*
1948                          * If the invalid data looks like a cycle start packet,
1949                          * it's likely to be the result of the cycle master
1950                          * having a wrong gap count.  In this case, the self IDs
1951                          * so far are valid and should be processed so that the
1952                          * bus manager can then correct the gap count.
1953                          */
1954                         if (id == 0xffff008f) {
1955                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1956                                 self_id_count = j;
1957                                 break;
1958                         }
1959
1960                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1961                                     j, self_id_count, id, id2);
1962                         return;
1963                 }
1964                 ohci->self_id_buffer[j] = id;
1965         }
1966
1967         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1968                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1969                 if (self_id_count < 0) {
1970                         ohci_notice(ohci,
1971                                     "could not construct local self ID\n");
1972                         return;
1973                 }
1974         }
1975
1976         if (self_id_count == 0) {
1977                 ohci_notice(ohci, "no self IDs\n");
1978                 return;
1979         }
1980         rmb();
1981
1982         /*
1983          * Check the consistency of the self IDs we just read.  The
1984          * problem we face is that a new bus reset can start while we
1985          * read out the self IDs from the DMA buffer. If this happens,
1986          * the DMA buffer will be overwritten with new self IDs and we
1987          * will read out inconsistent data.  The OHCI specification
1988          * (section 11.2) recommends a technique similar to
1989          * linux/seqlock.h, where we remember the generation of the
1990          * self IDs in the buffer before reading them out and compare
1991          * it to the current generation after reading them out.  If
1992          * the two generations match we know we have a consistent set
1993          * of self IDs.
1994          */
1995
1996         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1997         if (new_generation != generation) {
1998                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1999                 return;
2000         }
2001
2002         /* FIXME: Document how the locking works. */
2003         spin_lock_irq(&ohci->lock);
2004
2005         ohci->generation = -1; /* prevent AT packet queueing */
2006         context_stop(&ohci->at_request_ctx);
2007         context_stop(&ohci->at_response_ctx);
2008
2009         spin_unlock_irq(&ohci->lock);
2010
2011         /*
2012          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2013          * packets in the AT queues and software needs to drain them.
2014          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2015          */
2016         at_context_flush(&ohci->at_request_ctx);
2017         at_context_flush(&ohci->at_response_ctx);
2018
2019         spin_lock_irq(&ohci->lock);
2020
2021         ohci->generation = generation;
2022         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2023
2024         if (ohci->quirks & QUIRK_RESET_PACKET)
2025                 ohci->request_generation = generation;
2026
2027         /*
2028          * This next bit is unrelated to the AT context stuff but we
2029          * have to do it under the spinlock also.  If a new config rom
2030          * was set up before this reset, the old one is now no longer
2031          * in use and we can free it. Update the config rom pointers
2032          * to point to the current config rom and clear the
2033          * next_config_rom pointer so a new update can take place.
2034          */
2035
2036         if (ohci->next_config_rom != NULL) {
2037                 if (ohci->next_config_rom != ohci->config_rom) {
2038                         free_rom      = ohci->config_rom;
2039                         free_rom_bus  = ohci->config_rom_bus;
2040                 }
2041                 ohci->config_rom      = ohci->next_config_rom;
2042                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2043                 ohci->next_config_rom = NULL;
2044
2045                 /*
2046                  * Restore config_rom image and manually update
2047                  * config_rom registers.  Writing the header quadlet
2048                  * will indicate that the config rom is ready, so we
2049                  * do that last.
2050                  */
2051                 reg_write(ohci, OHCI1394_BusOptions,
2052                           be32_to_cpu(ohci->config_rom[2]));
2053                 ohci->config_rom[0] = ohci->next_header;
2054                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2055                           be32_to_cpu(ohci->next_header));
2056         }
2057
2058         if (param_remote_dma) {
2059                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2060                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2061         }
2062
2063         spin_unlock_irq(&ohci->lock);
2064
2065         if (free_rom)
2066                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2067                                   free_rom, free_rom_bus);
2068
2069         log_selfids(ohci, generation, self_id_count);
2070
2071         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2072                                  self_id_count, ohci->self_id_buffer,
2073                                  ohci->csr_state_setclear_abdicate);
2074         ohci->csr_state_setclear_abdicate = false;
2075 }
2076
2077 static irqreturn_t irq_handler(int irq, void *data)
2078 {
2079         struct fw_ohci *ohci = data;
2080         u32 event, iso_event;
2081         int i;
2082
2083         event = reg_read(ohci, OHCI1394_IntEventClear);
2084
2085         if (!event || !~event)
2086                 return IRQ_NONE;
2087
2088         /*
2089          * busReset and postedWriteErr must not be cleared yet
2090          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2091          */
2092         reg_write(ohci, OHCI1394_IntEventClear,
2093                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2094         log_irqs(ohci, event);
2095
2096         if (event & OHCI1394_selfIDComplete)
2097                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2098
2099         if (event & OHCI1394_RQPkt)
2100                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2101
2102         if (event & OHCI1394_RSPkt)
2103                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2104
2105         if (event & OHCI1394_reqTxComplete)
2106                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2107
2108         if (event & OHCI1394_respTxComplete)
2109                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2110
2111         if (event & OHCI1394_isochRx) {
2112                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2113                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2114
2115                 while (iso_event) {
2116                         i = ffs(iso_event) - 1;
2117                         tasklet_schedule(
2118                                 &ohci->ir_context_list[i].context.tasklet);
2119                         iso_event &= ~(1 << i);
2120                 }
2121         }
2122
2123         if (event & OHCI1394_isochTx) {
2124                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2125                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2126
2127                 while (iso_event) {
2128                         i = ffs(iso_event) - 1;
2129                         tasklet_schedule(
2130                                 &ohci->it_context_list[i].context.tasklet);
2131                         iso_event &= ~(1 << i);
2132                 }
2133         }
2134
2135         if (unlikely(event & OHCI1394_regAccessFail))
2136                 ohci_err(ohci, "register access failure\n");
2137
2138         if (unlikely(event & OHCI1394_postedWriteErr)) {
2139                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2140                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2141                 reg_write(ohci, OHCI1394_IntEventClear,
2142                           OHCI1394_postedWriteErr);
2143                 if (printk_ratelimit())
2144                         ohci_err(ohci, "PCI posted write error\n");
2145         }
2146
2147         if (unlikely(event & OHCI1394_cycleTooLong)) {
2148                 if (printk_ratelimit())
2149                         ohci_notice(ohci, "isochronous cycle too long\n");
2150                 reg_write(ohci, OHCI1394_LinkControlSet,
2151                           OHCI1394_LinkControl_cycleMaster);
2152         }
2153
2154         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2155                 /*
2156                  * We need to clear this event bit in order to make
2157                  * cycleMatch isochronous I/O work.  In theory we should
2158                  * stop active cycleMatch iso contexts now and restart
2159                  * them at least two cycles later.  (FIXME?)
2160                  */
2161                 if (printk_ratelimit())
2162                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2163         }
2164
2165         if (unlikely(event & OHCI1394_unrecoverableError))
2166                 handle_dead_contexts(ohci);
2167
2168         if (event & OHCI1394_cycle64Seconds) {
2169                 spin_lock(&ohci->lock);
2170                 update_bus_time(ohci);
2171                 spin_unlock(&ohci->lock);
2172         } else
2173                 flush_writes(ohci);
2174
2175         return IRQ_HANDLED;
2176 }
2177
2178 static int software_reset(struct fw_ohci *ohci)
2179 {
2180         u32 val;
2181         int i;
2182
2183         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2184         for (i = 0; i < 500; i++) {
2185                 val = reg_read(ohci, OHCI1394_HCControlSet);
2186                 if (!~val)
2187                         return -ENODEV; /* Card was ejected. */
2188
2189                 if (!(val & OHCI1394_HCControl_softReset))
2190                         return 0;
2191
2192                 msleep(1);
2193         }
2194
2195         return -EBUSY;
2196 }
2197
2198 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2199 {
2200         size_t size = length * 4;
2201
2202         memcpy(dest, src, size);
2203         if (size < CONFIG_ROM_SIZE)
2204                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2205 }
2206
2207 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2208 {
2209         bool enable_1394a;
2210         int ret, clear, set, offset;
2211
2212         /* Check if the driver should configure link and PHY. */
2213         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2214               OHCI1394_HCControl_programPhyEnable))
2215                 return 0;
2216
2217         /* Paranoia: check whether the PHY supports 1394a, too. */
2218         enable_1394a = false;
2219         ret = read_phy_reg(ohci, 2);
2220         if (ret < 0)
2221                 return ret;
2222         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2223                 ret = read_paged_phy_reg(ohci, 1, 8);
2224                 if (ret < 0)
2225                         return ret;
2226                 if (ret >= 1)
2227                         enable_1394a = true;
2228         }
2229
2230         if (ohci->quirks & QUIRK_NO_1394A)
2231                 enable_1394a = false;
2232
2233         /* Configure PHY and link consistently. */
2234         if (enable_1394a) {
2235                 clear = 0;
2236                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2237         } else {
2238                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2239                 set = 0;
2240         }
2241         ret = update_phy_reg(ohci, 5, clear, set);
2242         if (ret < 0)
2243                 return ret;
2244
2245         if (enable_1394a)
2246                 offset = OHCI1394_HCControlSet;
2247         else
2248                 offset = OHCI1394_HCControlClear;
2249         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2250
2251         /* Clean up: configuration has been taken care of. */
2252         reg_write(ohci, OHCI1394_HCControlClear,
2253                   OHCI1394_HCControl_programPhyEnable);
2254
2255         return 0;
2256 }
2257
2258 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2259 {
2260         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2261         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2262         int reg, i;
2263
2264         reg = read_phy_reg(ohci, 2);
2265         if (reg < 0)
2266                 return reg;
2267         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2268                 return 0;
2269
2270         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2271                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2272                 if (reg < 0)
2273                         return reg;
2274                 if (reg != id[i])
2275                         return 0;
2276         }
2277         return 1;
2278 }
2279
2280 static int ohci_enable(struct fw_card *card,
2281                        const __be32 *config_rom, size_t length)
2282 {
2283         struct fw_ohci *ohci = fw_ohci(card);
2284         u32 lps, version, irqs;
2285         int i, ret;
2286
2287         if (software_reset(ohci)) {
2288                 ohci_err(ohci, "failed to reset ohci card\n");
2289                 return -EBUSY;
2290         }
2291
2292         /*
2293          * Now enable LPS, which we need in order to start accessing
2294          * most of the registers.  In fact, on some cards (ALI M5251),
2295          * accessing registers in the SClk domain without LPS enabled
2296          * will lock up the machine.  Wait 50msec to make sure we have
2297          * full link enabled.  However, with some cards (well, at least
2298          * a JMicron PCIe card), we have to try again sometimes.
2299          *
2300          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2301          * cannot actually use the phy at that time.  These need tens of
2302          * millisecods pause between LPS write and first phy access too.
2303          */
2304
2305         reg_write(ohci, OHCI1394_HCControlSet,
2306                   OHCI1394_HCControl_LPS |
2307                   OHCI1394_HCControl_postedWriteEnable);
2308         flush_writes(ohci);
2309
2310         for (lps = 0, i = 0; !lps && i < 3; i++) {
2311                 msleep(50);
2312                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2313                       OHCI1394_HCControl_LPS;
2314         }
2315
2316         if (!lps) {
2317                 ohci_err(ohci, "failed to set Link Power Status\n");
2318                 return -EIO;
2319         }
2320
2321         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2322                 ret = probe_tsb41ba3d(ohci);
2323                 if (ret < 0)
2324                         return ret;
2325                 if (ret)
2326                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2327                 else
2328                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2329         }
2330
2331         reg_write(ohci, OHCI1394_HCControlClear,
2332                   OHCI1394_HCControl_noByteSwapData);
2333
2334         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2335         reg_write(ohci, OHCI1394_LinkControlSet,
2336                   OHCI1394_LinkControl_cycleTimerEnable |
2337                   OHCI1394_LinkControl_cycleMaster);
2338
2339         reg_write(ohci, OHCI1394_ATRetries,
2340                   OHCI1394_MAX_AT_REQ_RETRIES |
2341                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2342                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2343                   (200 << 16));
2344
2345         ohci->bus_time_running = false;
2346
2347         for (i = 0; i < 32; i++)
2348                 if (ohci->ir_context_support & (1 << i))
2349                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2350                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2351
2352         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2353         if (version >= OHCI_VERSION_1_1) {
2354                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2355                           0xfffffffe);
2356                 card->broadcast_channel_auto_allocated = true;
2357         }
2358
2359         /* Get implemented bits of the priority arbitration request counter. */
2360         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2361         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2362         reg_write(ohci, OHCI1394_FairnessControl, 0);
2363         card->priority_budget_implemented = ohci->pri_req_max != 0;
2364
2365         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2366         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2367         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2368
2369         ret = configure_1394a_enhancements(ohci);
2370         if (ret < 0)
2371                 return ret;
2372
2373         /* Activate link_on bit and contender bit in our self ID packets.*/
2374         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2375         if (ret < 0)
2376                 return ret;
2377
2378         /*
2379          * When the link is not yet enabled, the atomic config rom
2380          * update mechanism described below in ohci_set_config_rom()
2381          * is not active.  We have to update ConfigRomHeader and
2382          * BusOptions manually, and the write to ConfigROMmap takes
2383          * effect immediately.  We tie this to the enabling of the
2384          * link, so we have a valid config rom before enabling - the
2385          * OHCI requires that ConfigROMhdr and BusOptions have valid
2386          * values before enabling.
2387          *
2388          * However, when the ConfigROMmap is written, some controllers
2389          * always read back quadlets 0 and 2 from the config rom to
2390          * the ConfigRomHeader and BusOptions registers on bus reset.
2391          * They shouldn't do that in this initial case where the link
2392          * isn't enabled.  This means we have to use the same
2393          * workaround here, setting the bus header to 0 and then write
2394          * the right values in the bus reset tasklet.
2395          */
2396
2397         if (config_rom) {
2398                 ohci->next_config_rom =
2399                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2400                                            &ohci->next_config_rom_bus,
2401                                            GFP_KERNEL);
2402                 if (ohci->next_config_rom == NULL)
2403                         return -ENOMEM;
2404
2405                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2406         } else {
2407                 /*
2408                  * In the suspend case, config_rom is NULL, which
2409                  * means that we just reuse the old config rom.
2410                  */
2411                 ohci->next_config_rom = ohci->config_rom;
2412                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2413         }
2414
2415         ohci->next_header = ohci->next_config_rom[0];
2416         ohci->next_config_rom[0] = 0;
2417         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2418         reg_write(ohci, OHCI1394_BusOptions,
2419                   be32_to_cpu(ohci->next_config_rom[2]));
2420         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2421
2422         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2423
2424         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2425                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2426                 OHCI1394_isochTx | OHCI1394_isochRx |
2427                 OHCI1394_postedWriteErr |
2428                 OHCI1394_selfIDComplete |
2429                 OHCI1394_regAccessFail |
2430                 OHCI1394_cycleInconsistent |
2431                 OHCI1394_unrecoverableError |
2432                 OHCI1394_cycleTooLong |
2433                 OHCI1394_masterIntEnable;
2434         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2435                 irqs |= OHCI1394_busReset;
2436         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2437
2438         reg_write(ohci, OHCI1394_HCControlSet,
2439                   OHCI1394_HCControl_linkEnable |
2440                   OHCI1394_HCControl_BIBimageValid);
2441
2442         reg_write(ohci, OHCI1394_LinkControlSet,
2443                   OHCI1394_LinkControl_rcvSelfID |
2444                   OHCI1394_LinkControl_rcvPhyPkt);
2445
2446         ar_context_run(&ohci->ar_request_ctx);
2447         ar_context_run(&ohci->ar_response_ctx);
2448
2449         flush_writes(ohci);
2450
2451         /* We are ready to go, reset bus to finish initialization. */
2452         fw_schedule_bus_reset(&ohci->card, false, true);
2453
2454         return 0;
2455 }
2456
2457 static int ohci_set_config_rom(struct fw_card *card,
2458                                const __be32 *config_rom, size_t length)
2459 {
2460         struct fw_ohci *ohci;
2461         __be32 *next_config_rom;
2462         dma_addr_t uninitialized_var(next_config_rom_bus);
2463
2464         ohci = fw_ohci(card);
2465
2466         /*
2467          * When the OHCI controller is enabled, the config rom update
2468          * mechanism is a bit tricky, but easy enough to use.  See
2469          * section 5.5.6 in the OHCI specification.
2470          *
2471          * The OHCI controller caches the new config rom address in a
2472          * shadow register (ConfigROMmapNext) and needs a bus reset
2473          * for the changes to take place.  When the bus reset is
2474          * detected, the controller loads the new values for the
2475          * ConfigRomHeader and BusOptions registers from the specified
2476          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2477          * shadow register. All automatically and atomically.
2478          *
2479          * Now, there's a twist to this story.  The automatic load of
2480          * ConfigRomHeader and BusOptions doesn't honor the
2481          * noByteSwapData bit, so with a be32 config rom, the
2482          * controller will load be32 values in to these registers
2483          * during the atomic update, even on litte endian
2484          * architectures.  The workaround we use is to put a 0 in the
2485          * header quadlet; 0 is endian agnostic and means that the
2486          * config rom isn't ready yet.  In the bus reset tasklet we
2487          * then set up the real values for the two registers.
2488          *
2489          * We use ohci->lock to avoid racing with the code that sets
2490          * ohci->next_config_rom to NULL (see bus_reset_work).
2491          */
2492
2493         next_config_rom =
2494                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2495                                    &next_config_rom_bus, GFP_KERNEL);
2496         if (next_config_rom == NULL)
2497                 return -ENOMEM;
2498
2499         spin_lock_irq(&ohci->lock);
2500
2501         /*
2502          * If there is not an already pending config_rom update,
2503          * push our new allocation into the ohci->next_config_rom
2504          * and then mark the local variable as null so that we
2505          * won't deallocate the new buffer.
2506          *
2507          * OTOH, if there is a pending config_rom update, just
2508          * use that buffer with the new config_rom data, and
2509          * let this routine free the unused DMA allocation.
2510          */
2511
2512         if (ohci->next_config_rom == NULL) {
2513                 ohci->next_config_rom = next_config_rom;
2514                 ohci->next_config_rom_bus = next_config_rom_bus;
2515                 next_config_rom = NULL;
2516         }
2517
2518         copy_config_rom(ohci->next_config_rom, config_rom, length);
2519
2520         ohci->next_header = config_rom[0];
2521         ohci->next_config_rom[0] = 0;
2522
2523         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2524
2525         spin_unlock_irq(&ohci->lock);
2526
2527         /* If we didn't use the DMA allocation, delete it. */
2528         if (next_config_rom != NULL)
2529                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2530                                   next_config_rom, next_config_rom_bus);
2531
2532         /*
2533          * Now initiate a bus reset to have the changes take
2534          * effect. We clean up the old config rom memory and DMA
2535          * mappings in the bus reset tasklet, since the OHCI
2536          * controller could need to access it before the bus reset
2537          * takes effect.
2538          */
2539
2540         fw_schedule_bus_reset(&ohci->card, true, true);
2541
2542         return 0;
2543 }
2544
2545 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2546 {
2547         struct fw_ohci *ohci = fw_ohci(card);
2548
2549         at_context_transmit(&ohci->at_request_ctx, packet);
2550 }
2551
2552 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2553 {
2554         struct fw_ohci *ohci = fw_ohci(card);
2555
2556         at_context_transmit(&ohci->at_response_ctx, packet);
2557 }
2558
2559 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2560 {
2561         struct fw_ohci *ohci = fw_ohci(card);
2562         struct context *ctx = &ohci->at_request_ctx;
2563         struct driver_data *driver_data = packet->driver_data;
2564         int ret = -ENOENT;
2565
2566         tasklet_disable(&ctx->tasklet);
2567
2568         if (packet->ack != 0)
2569                 goto out;
2570
2571         if (packet->payload_mapped)
2572                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2573                                  packet->payload_length, DMA_TO_DEVICE);
2574
2575         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2576         driver_data->packet = NULL;
2577         packet->ack = RCODE_CANCELLED;
2578         packet->callback(packet, &ohci->card, packet->ack);
2579         ret = 0;
2580  out:
2581         tasklet_enable(&ctx->tasklet);
2582
2583         return ret;
2584 }
2585
2586 static int ohci_enable_phys_dma(struct fw_card *card,
2587                                 int node_id, int generation)
2588 {
2589         struct fw_ohci *ohci = fw_ohci(card);
2590         unsigned long flags;
2591         int n, ret = 0;
2592
2593         if (param_remote_dma)
2594                 return 0;
2595
2596         /*
2597          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2598          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2599          */
2600
2601         spin_lock_irqsave(&ohci->lock, flags);
2602
2603         if (ohci->generation != generation) {
2604                 ret = -ESTALE;
2605                 goto out;
2606         }
2607
2608         /*
2609          * Note, if the node ID contains a non-local bus ID, physical DMA is
2610          * enabled for _all_ nodes on remote buses.
2611          */
2612
2613         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2614         if (n < 32)
2615                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2616         else
2617                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2618
2619         flush_writes(ohci);
2620  out:
2621         spin_unlock_irqrestore(&ohci->lock, flags);
2622
2623         return ret;
2624 }
2625
2626 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2627 {
2628         struct fw_ohci *ohci = fw_ohci(card);
2629         unsigned long flags;
2630         u32 value;
2631
2632         switch (csr_offset) {
2633         case CSR_STATE_CLEAR:
2634         case CSR_STATE_SET:
2635                 if (ohci->is_root &&
2636                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2637                      OHCI1394_LinkControl_cycleMaster))
2638                         value = CSR_STATE_BIT_CMSTR;
2639                 else
2640                         value = 0;
2641                 if (ohci->csr_state_setclear_abdicate)
2642                         value |= CSR_STATE_BIT_ABDICATE;
2643
2644                 return value;
2645
2646         case CSR_NODE_IDS:
2647                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2648
2649         case CSR_CYCLE_TIME:
2650                 return get_cycle_time(ohci);
2651
2652         case CSR_BUS_TIME:
2653                 /*
2654                  * We might be called just after the cycle timer has wrapped
2655                  * around but just before the cycle64Seconds handler, so we
2656                  * better check here, too, if the bus time needs to be updated.
2657                  */
2658                 spin_lock_irqsave(&ohci->lock, flags);
2659                 value = update_bus_time(ohci);
2660                 spin_unlock_irqrestore(&ohci->lock, flags);
2661                 return value;
2662
2663         case CSR_BUSY_TIMEOUT:
2664                 value = reg_read(ohci, OHCI1394_ATRetries);
2665                 return (value >> 4) & 0x0ffff00f;
2666
2667         case CSR_PRIORITY_BUDGET:
2668                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2669                         (ohci->pri_req_max << 8);
2670
2671         default:
2672                 WARN_ON(1);
2673                 return 0;
2674         }
2675 }
2676
2677 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2678 {
2679         struct fw_ohci *ohci = fw_ohci(card);
2680         unsigned long flags;
2681
2682         switch (csr_offset) {
2683         case CSR_STATE_CLEAR:
2684                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2685                         reg_write(ohci, OHCI1394_LinkControlClear,
2686                                   OHCI1394_LinkControl_cycleMaster);
2687                         flush_writes(ohci);
2688                 }
2689                 if (value & CSR_STATE_BIT_ABDICATE)
2690                         ohci->csr_state_setclear_abdicate = false;
2691                 break;
2692
2693         case CSR_STATE_SET:
2694                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2695                         reg_write(ohci, OHCI1394_LinkControlSet,
2696                                   OHCI1394_LinkControl_cycleMaster);
2697                         flush_writes(ohci);
2698                 }
2699                 if (value & CSR_STATE_BIT_ABDICATE)
2700                         ohci->csr_state_setclear_abdicate = true;
2701                 break;
2702
2703         case CSR_NODE_IDS:
2704                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2705                 flush_writes(ohci);
2706                 break;
2707
2708         case CSR_CYCLE_TIME:
2709                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2710                 reg_write(ohci, OHCI1394_IntEventSet,
2711                           OHCI1394_cycleInconsistent);
2712                 flush_writes(ohci);
2713                 break;
2714
2715         case CSR_BUS_TIME:
2716                 spin_lock_irqsave(&ohci->lock, flags);
2717                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2718                                  (value & ~0x7f);
2719                 spin_unlock_irqrestore(&ohci->lock, flags);
2720                 break;
2721
2722         case CSR_BUSY_TIMEOUT:
2723                 value = (value & 0xf) | ((value & 0xf) << 4) |
2724                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2725                 reg_write(ohci, OHCI1394_ATRetries, value);
2726                 flush_writes(ohci);
2727                 break;
2728
2729         case CSR_PRIORITY_BUDGET:
2730                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2731                 flush_writes(ohci);
2732                 break;
2733
2734         default:
2735                 WARN_ON(1);
2736                 break;
2737         }
2738 }
2739
2740 static void flush_iso_completions(struct iso_context *ctx)
2741 {
2742         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2743                               ctx->header_length, ctx->header,
2744                               ctx->base.callback_data);
2745         ctx->header_length = 0;
2746 }
2747
2748 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2749 {
2750         u32 *ctx_hdr;
2751
2752         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2753                 if (ctx->base.drop_overflow_headers)
2754                         return;
2755                 flush_iso_completions(ctx);
2756         }
2757
2758         ctx_hdr = ctx->header + ctx->header_length;
2759         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2760
2761         /*
2762          * The two iso header quadlets are byteswapped to little
2763          * endian by the controller, but we want to present them
2764          * as big endian for consistency with the bus endianness.
2765          */
2766         if (ctx->base.header_size > 0)
2767                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2768         if (ctx->base.header_size > 4)
2769                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2770         if (ctx->base.header_size > 8)
2771                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2772         ctx->header_length += ctx->base.header_size;
2773 }
2774
2775 static int handle_ir_packet_per_buffer(struct context *context,
2776                                        struct descriptor *d,
2777                                        struct descriptor *last)
2778 {
2779         struct iso_context *ctx =
2780                 container_of(context, struct iso_context, context);
2781         struct descriptor *pd;
2782         u32 buffer_dma;
2783
2784         for (pd = d; pd <= last; pd++)
2785                 if (pd->transfer_status)
2786                         break;
2787         if (pd > last)
2788                 /* Descriptor(s) not done yet, stop iteration */
2789                 return 0;
2790
2791         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2792                 d++;
2793                 buffer_dma = le32_to_cpu(d->data_address);
2794                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2795                                               buffer_dma & PAGE_MASK,
2796                                               buffer_dma & ~PAGE_MASK,
2797                                               le16_to_cpu(d->req_count),
2798                                               DMA_FROM_DEVICE);
2799         }
2800
2801         copy_iso_headers(ctx, (u32 *) (last + 1));
2802
2803         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2804                 flush_iso_completions(ctx);
2805
2806         return 1;
2807 }
2808
2809 /* d == last because each descriptor block is only a single descriptor. */
2810 static int handle_ir_buffer_fill(struct context *context,
2811                                  struct descriptor *d,
2812                                  struct descriptor *last)
2813 {
2814         struct iso_context *ctx =
2815                 container_of(context, struct iso_context, context);
2816         unsigned int req_count, res_count, completed;
2817         u32 buffer_dma;
2818
2819         req_count = le16_to_cpu(last->req_count);
2820         res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2821         completed = req_count - res_count;
2822         buffer_dma = le32_to_cpu(last->data_address);
2823
2824         if (completed > 0) {
2825                 ctx->mc_buffer_bus = buffer_dma;
2826                 ctx->mc_completed = completed;
2827         }
2828
2829         if (res_count != 0)
2830                 /* Descriptor(s) not done yet, stop iteration */
2831                 return 0;
2832
2833         dma_sync_single_range_for_cpu(context->ohci->card.device,
2834                                       buffer_dma & PAGE_MASK,
2835                                       buffer_dma & ~PAGE_MASK,
2836                                       completed, DMA_FROM_DEVICE);
2837
2838         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2839                 ctx->base.callback.mc(&ctx->base,
2840                                       buffer_dma + completed,
2841                                       ctx->base.callback_data);
2842                 ctx->mc_completed = 0;
2843         }
2844
2845         return 1;
2846 }
2847
2848 static void flush_ir_buffer_fill(struct iso_context *ctx)
2849 {
2850         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2851                                       ctx->mc_buffer_bus & PAGE_MASK,
2852                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2853                                       ctx->mc_completed, DMA_FROM_DEVICE);
2854
2855         ctx->base.callback.mc(&ctx->base,
2856                               ctx->mc_buffer_bus + ctx->mc_completed,
2857                               ctx->base.callback_data);
2858         ctx->mc_completed = 0;
2859 }
2860
2861 static inline void sync_it_packet_for_cpu(struct context *context,
2862                                           struct descriptor *pd)
2863 {
2864         __le16 control;
2865         u32 buffer_dma;
2866
2867         /* only packets beginning with OUTPUT_MORE* have data buffers */
2868         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2869                 return;
2870
2871         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2872         pd += 2;
2873
2874         /*
2875          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2876          * data buffer is in the context program's coherent page and must not
2877          * be synced.
2878          */
2879         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2880             (context->current_bus          & PAGE_MASK)) {
2881                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2882                         return;
2883                 pd++;
2884         }
2885
2886         do {
2887                 buffer_dma = le32_to_cpu(pd->data_address);
2888                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2889                                               buffer_dma & PAGE_MASK,
2890                                               buffer_dma & ~PAGE_MASK,
2891                                               le16_to_cpu(pd->req_count),
2892                                               DMA_TO_DEVICE);
2893                 control = pd->control;
2894                 pd++;
2895         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2896 }
2897
2898 static int handle_it_packet(struct context *context,
2899                             struct descriptor *d,
2900                             struct descriptor *last)
2901 {
2902         struct iso_context *ctx =
2903                 container_of(context, struct iso_context, context);
2904         struct descriptor *pd;
2905         __be32 *ctx_hdr;
2906
2907         for (pd = d; pd <= last; pd++)
2908                 if (pd->transfer_status)
2909                         break;
2910         if (pd > last)
2911                 /* Descriptor(s) not done yet, stop iteration */
2912                 return 0;
2913
2914         sync_it_packet_for_cpu(context, d);
2915
2916         if (ctx->header_length + 4 > PAGE_SIZE) {
2917                 if (ctx->base.drop_overflow_headers)
2918                         return 1;
2919                 flush_iso_completions(ctx);
2920         }
2921
2922         ctx_hdr = ctx->header + ctx->header_length;
2923         ctx->last_timestamp = le16_to_cpu(last->res_count);
2924         /* Present this value as big-endian to match the receive code */
2925         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2926                                le16_to_cpu(pd->res_count));
2927         ctx->header_length += 4;
2928
2929         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930                 flush_iso_completions(ctx);
2931
2932         return 1;
2933 }
2934
2935 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2936 {
2937         u32 hi = channels >> 32, lo = channels;
2938
2939         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2940         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2941         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2942         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2943         mmiowb();
2944         ohci->mc_channels = channels;
2945 }
2946
2947 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2948                                 int type, int channel, size_t header_size)
2949 {
2950         struct fw_ohci *ohci = fw_ohci(card);
2951         struct iso_context *uninitialized_var(ctx);
2952         descriptor_callback_t uninitialized_var(callback);
2953         u64 *uninitialized_var(channels);
2954         u32 *uninitialized_var(mask), uninitialized_var(regs);
2955         int index, ret = -EBUSY;
2956
2957         spin_lock_irq(&ohci->lock);
2958
2959         switch (type) {
2960         case FW_ISO_CONTEXT_TRANSMIT:
2961                 mask     = &ohci->it_context_mask;
2962                 callback = handle_it_packet;
2963                 index    = ffs(*mask) - 1;
2964                 if (index >= 0) {
2965                         *mask &= ~(1 << index);
2966                         regs = OHCI1394_IsoXmitContextBase(index);
2967                         ctx  = &ohci->it_context_list[index];
2968                 }
2969                 break;
2970
2971         case FW_ISO_CONTEXT_RECEIVE:
2972                 channels = &ohci->ir_context_channels;
2973                 mask     = &ohci->ir_context_mask;
2974                 callback = handle_ir_packet_per_buffer;
2975                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2976                 if (index >= 0) {
2977                         *channels &= ~(1ULL << channel);
2978                         *mask     &= ~(1 << index);
2979                         regs = OHCI1394_IsoRcvContextBase(index);
2980                         ctx  = &ohci->ir_context_list[index];
2981                 }
2982                 break;
2983
2984         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2985                 mask     = &ohci->ir_context_mask;
2986                 callback = handle_ir_buffer_fill;
2987                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2988                 if (index >= 0) {
2989                         ohci->mc_allocated = true;
2990                         *mask &= ~(1 << index);
2991                         regs = OHCI1394_IsoRcvContextBase(index);
2992                         ctx  = &ohci->ir_context_list[index];
2993                 }
2994                 break;
2995
2996         default:
2997                 index = -1;
2998                 ret = -ENOSYS;
2999         }
3000
3001         spin_unlock_irq(&ohci->lock);
3002
3003         if (index < 0)
3004                 return ERR_PTR(ret);
3005
3006         memset(ctx, 0, sizeof(*ctx));
3007         ctx->header_length = 0;
3008         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3009         if (ctx->header == NULL) {
3010                 ret = -ENOMEM;
3011                 goto out;
3012         }
3013         ret = context_init(&ctx->context, ohci, regs, callback);
3014         if (ret < 0)
3015                 goto out_with_header;
3016
3017         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3018                 set_multichannel_mask(ohci, 0);
3019                 ctx->mc_completed = 0;
3020         }
3021
3022         return &ctx->base;
3023
3024  out_with_header:
3025         free_page((unsigned long)ctx->header);
3026  out:
3027         spin_lock_irq(&ohci->lock);
3028
3029         switch (type) {
3030         case FW_ISO_CONTEXT_RECEIVE:
3031                 *channels |= 1ULL << channel;
3032                 break;
3033
3034         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3035                 ohci->mc_allocated = false;
3036                 break;
3037         }
3038         *mask |= 1 << index;
3039
3040         spin_unlock_irq(&ohci->lock);
3041
3042         return ERR_PTR(ret);
3043 }
3044
3045 static int ohci_start_iso(struct fw_iso_context *base,
3046                           s32 cycle, u32 sync, u32 tags)
3047 {
3048         struct iso_context *ctx = container_of(base, struct iso_context, base);
3049         struct fw_ohci *ohci = ctx->context.ohci;
3050         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3051         int index;
3052
3053         /* the controller cannot start without any queued packets */
3054         if (ctx->context.last->branch_address == 0)
3055                 return -ENODATA;
3056
3057         switch (ctx->base.type) {
3058         case FW_ISO_CONTEXT_TRANSMIT:
3059                 index = ctx - ohci->it_context_list;
3060                 match = 0;
3061                 if (cycle >= 0)
3062                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3063                                 (cycle & 0x7fff) << 16;
3064
3065                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3066                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3067                 context_run(&ctx->context, match);
3068                 break;
3069
3070         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3071                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3072                 /* fall through */
3073         case FW_ISO_CONTEXT_RECEIVE:
3074                 index = ctx - ohci->ir_context_list;
3075                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3076                 if (cycle >= 0) {
3077                         match |= (cycle & 0x07fff) << 12;
3078                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3079                 }
3080
3081                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3082                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3083                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3084                 context_run(&ctx->context, control);
3085
3086                 ctx->sync = sync;
3087                 ctx->tags = tags;
3088
3089                 break;
3090         }
3091
3092         return 0;
3093 }
3094
3095 static int ohci_stop_iso(struct fw_iso_context *base)
3096 {
3097         struct fw_ohci *ohci = fw_ohci(base->card);
3098         struct iso_context *ctx = container_of(base, struct iso_context, base);
3099         int index;
3100
3101         switch (ctx->base.type) {
3102         case FW_ISO_CONTEXT_TRANSMIT:
3103                 index = ctx - ohci->it_context_list;
3104                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3105                 break;
3106
3107         case FW_ISO_CONTEXT_RECEIVE:
3108         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3109                 index = ctx - ohci->ir_context_list;
3110                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3111                 break;
3112         }
3113         flush_writes(ohci);
3114         context_stop(&ctx->context);
3115         tasklet_kill(&ctx->context.tasklet);
3116
3117         return 0;
3118 }
3119
3120 static void ohci_free_iso_context(struct fw_iso_context *base)
3121 {
3122         struct fw_ohci *ohci = fw_ohci(base->card);
3123         struct iso_context *ctx = container_of(base, struct iso_context, base);
3124         unsigned long flags;
3125         int index;
3126
3127         ohci_stop_iso(base);
3128         context_release(&ctx->context);
3129         free_page((unsigned long)ctx->header);
3130
3131         spin_lock_irqsave(&ohci->lock, flags);
3132
3133         switch (base->type) {
3134         case FW_ISO_CONTEXT_TRANSMIT:
3135                 index = ctx - ohci->it_context_list;
3136                 ohci->it_context_mask |= 1 << index;
3137                 break;
3138
3139         case FW_ISO_CONTEXT_RECEIVE:
3140                 index = ctx - ohci->ir_context_list;
3141                 ohci->ir_context_mask |= 1 << index;
3142                 ohci->ir_context_channels |= 1ULL << base->channel;
3143                 break;
3144
3145         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146                 index = ctx - ohci->ir_context_list;
3147                 ohci->ir_context_mask |= 1 << index;
3148                 ohci->ir_context_channels |= ohci->mc_channels;
3149                 ohci->mc_channels = 0;
3150                 ohci->mc_allocated = false;
3151                 break;
3152         }
3153
3154         spin_unlock_irqrestore(&ohci->lock, flags);
3155 }
3156
3157 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3158 {
3159         struct fw_ohci *ohci = fw_ohci(base->card);
3160         unsigned long flags;
3161         int ret;
3162
3163         switch (base->type) {
3164         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3165
3166                 spin_lock_irqsave(&ohci->lock, flags);
3167
3168                 /* Don't allow multichannel to grab other contexts' channels. */
3169                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3170                         *channels = ohci->ir_context_channels;
3171                         ret = -EBUSY;
3172                 } else {
3173                         set_multichannel_mask(ohci, *channels);
3174                         ret = 0;
3175                 }
3176
3177                 spin_unlock_irqrestore(&ohci->lock, flags);
3178
3179                 break;
3180         default:
3181                 ret = -EINVAL;
3182         }
3183
3184         return ret;
3185 }
3186
3187 #ifdef CONFIG_PM
3188 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3189 {
3190         int i;
3191         struct iso_context *ctx;
3192
3193         for (i = 0 ; i < ohci->n_ir ; i++) {
3194                 ctx = &ohci->ir_context_list[i];
3195                 if (ctx->context.running)
3196                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3197         }
3198
3199         for (i = 0 ; i < ohci->n_it ; i++) {
3200                 ctx = &ohci->it_context_list[i];
3201                 if (ctx->context.running)
3202                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3203         }
3204 }
3205 #endif
3206
3207 static int queue_iso_transmit(struct iso_context *ctx,
3208                               struct fw_iso_packet *packet,
3209                               struct fw_iso_buffer *buffer,
3210                               unsigned long payload)
3211 {
3212         struct descriptor *d, *last, *pd;
3213         struct fw_iso_packet *p;
3214         __le32 *header;
3215         dma_addr_t d_bus, page_bus;
3216         u32 z, header_z, payload_z, irq;
3217         u32 payload_index, payload_end_index, next_page_index;
3218         int page, end_page, i, length, offset;
3219
3220         p = packet;
3221         payload_index = payload;
3222
3223         if (p->skip)
3224                 z = 1;
3225         else
3226                 z = 2;
3227         if (p->header_length > 0)
3228                 z++;
3229
3230         /* Determine the first page the payload isn't contained in. */
3231         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3232         if (p->payload_length > 0)
3233                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3234         else
3235                 payload_z = 0;
3236
3237         z += payload_z;
3238
3239         /* Get header size in number of descriptors. */
3240         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3241
3242         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3243         if (d == NULL)
3244                 return -ENOMEM;
3245
3246         if (!p->skip) {
3247                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3248                 d[0].req_count = cpu_to_le16(8);
3249                 /*
3250                  * Link the skip address to this descriptor itself.  This causes
3251                  * a context to skip a cycle whenever lost cycles or FIFO
3252                  * overruns occur, without dropping the data.  The application
3253                  * should then decide whether this is an error condition or not.
3254                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3255                  */
3256                 d[0].branch_address = cpu_to_le32(d_bus | z);
3257
3258                 header = (__le32 *) &d[1];
3259                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3260                                         IT_HEADER_TAG(p->tag) |
3261                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3262                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3263                                         IT_HEADER_SPEED(ctx->base.speed));
3264                 header[1] =
3265                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3266                                                           p->payload_length));
3267         }
3268
3269         if (p->header_length > 0) {
3270                 d[2].req_count    = cpu_to_le16(p->header_length);
3271                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3272                 memcpy(&d[z], p->header, p->header_length);
3273         }
3274
3275         pd = d + z - payload_z;
3276         payload_end_index = payload_index + p->payload_length;
3277         for (i = 0; i < payload_z; i++) {
3278                 page               = payload_index >> PAGE_SHIFT;
3279                 offset             = payload_index & ~PAGE_MASK;
3280                 next_page_index    = (page + 1) << PAGE_SHIFT;
3281                 length             =
3282                         min(next_page_index, payload_end_index) - payload_index;
3283                 pd[i].req_count    = cpu_to_le16(length);
3284
3285                 page_bus = page_private(buffer->pages[page]);
3286                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3287
3288                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3289                                                  page_bus, offset, length,
3290                                                  DMA_TO_DEVICE);
3291
3292                 payload_index += length;
3293         }
3294
3295         if (p->interrupt)
3296                 irq = DESCRIPTOR_IRQ_ALWAYS;
3297         else
3298                 irq = DESCRIPTOR_NO_IRQ;
3299
3300         last = z == 2 ? d : d + z - 1;
3301         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3302                                      DESCRIPTOR_STATUS |
3303                                      DESCRIPTOR_BRANCH_ALWAYS |
3304                                      irq);
3305
3306         context_append(&ctx->context, d, z, header_z);
3307
3308         return 0;
3309 }
3310
3311 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3312                                        struct fw_iso_packet *packet,
3313                                        struct fw_iso_buffer *buffer,
3314                                        unsigned long payload)
3315 {
3316         struct device *device = ctx->context.ohci->card.device;
3317         struct descriptor *d, *pd;
3318         dma_addr_t d_bus, page_bus;
3319         u32 z, header_z, rest;
3320         int i, j, length;
3321         int page, offset, packet_count, header_size, payload_per_buffer;
3322
3323         /*
3324          * The OHCI controller puts the isochronous header and trailer in the
3325          * buffer, so we need at least 8 bytes.
3326          */
3327         packet_count = packet->header_length / ctx->base.header_size;
3328         header_size  = max(ctx->base.header_size, (size_t)8);
3329
3330         /* Get header size in number of descriptors. */
3331         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3332         page     = payload >> PAGE_SHIFT;
3333         offset   = payload & ~PAGE_MASK;
3334         payload_per_buffer = packet->payload_length / packet_count;
3335
3336         for (i = 0; i < packet_count; i++) {
3337                 /* d points to the header descriptor */
3338                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3339                 d = context_get_descriptors(&ctx->context,
3340                                 z + header_z, &d_bus);
3341                 if (d == NULL)
3342                         return -ENOMEM;
3343
3344                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3345                                               DESCRIPTOR_INPUT_MORE);
3346                 if (packet->skip && i == 0)
3347                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3348                 d->req_count    = cpu_to_le16(header_size);
3349                 d->res_count    = d->req_count;
3350                 d->transfer_status = 0;
3351                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3352
3353                 rest = payload_per_buffer;
3354                 pd = d;
3355                 for (j = 1; j < z; j++) {
3356                         pd++;
3357                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3358                                                   DESCRIPTOR_INPUT_MORE);
3359
3360                         if (offset + rest < PAGE_SIZE)
3361                                 length = rest;
3362                         else
3363                                 length = PAGE_SIZE - offset;
3364                         pd->req_count = cpu_to_le16(length);
3365                         pd->res_count = pd->req_count;
3366                         pd->transfer_status = 0;
3367
3368                         page_bus = page_private(buffer->pages[page]);
3369                         pd->data_address = cpu_to_le32(page_bus + offset);
3370
3371                         dma_sync_single_range_for_device(device, page_bus,
3372                                                          offset, length,
3373                                                          DMA_FROM_DEVICE);
3374
3375                         offset = (offset + length) & ~PAGE_MASK;
3376                         rest -= length;
3377                         if (offset == 0)
3378                                 page++;
3379                 }
3380                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3381                                           DESCRIPTOR_INPUT_LAST |
3382                                           DESCRIPTOR_BRANCH_ALWAYS);
3383                 if (packet->interrupt && i == packet_count - 1)
3384                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3385
3386                 context_append(&ctx->context, d, z, header_z);
3387         }
3388
3389         return 0;
3390 }
3391
3392 static int queue_iso_buffer_fill(struct iso_context *ctx,
3393                                  struct fw_iso_packet *packet,
3394                                  struct fw_iso_buffer *buffer,
3395                                  unsigned long payload)
3396 {
3397         struct descriptor *d;
3398         dma_addr_t d_bus, page_bus;
3399         int page, offset, rest, z, i, length;
3400
3401         page   = payload >> PAGE_SHIFT;
3402         offset = payload & ~PAGE_MASK;
3403         rest   = packet->payload_length;
3404
3405         /* We need one descriptor for each page in the buffer. */
3406         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3407
3408         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3409                 return -EFAULT;
3410
3411         for (i = 0; i < z; i++) {
3412                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3413                 if (d == NULL)
3414                         return -ENOMEM;
3415
3416                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3417                                          DESCRIPTOR_BRANCH_ALWAYS);
3418                 if (packet->skip && i == 0)
3419                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3420                 if (packet->interrupt && i == z - 1)
3421                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3422
3423                 if (offset + rest < PAGE_SIZE)
3424                         length = rest;
3425                 else
3426                         length = PAGE_SIZE - offset;
3427                 d->req_count = cpu_to_le16(length);
3428                 d->res_count = d->req_count;
3429                 d->transfer_status = 0;
3430
3431                 page_bus = page_private(buffer->pages[page]);
3432                 d->data_address = cpu_to_le32(page_bus + offset);
3433
3434                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3435                                                  page_bus, offset, length,
3436                                                  DMA_FROM_DEVICE);
3437
3438                 rest -= length;
3439                 offset = 0;
3440                 page++;
3441
3442                 context_append(&ctx->context, d, 1, 0);
3443         }
3444
3445         return 0;
3446 }
3447
3448 static int ohci_queue_iso(struct fw_iso_context *base,
3449                           struct fw_iso_packet *packet,
3450                           struct fw_iso_buffer *buffer,
3451                           unsigned long payload)
3452 {
3453         struct iso_context *ctx = container_of(base, struct iso_context, base);
3454         unsigned long flags;
3455         int ret = -ENOSYS;
3456
3457         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3458         switch (base->type) {
3459         case FW_ISO_CONTEXT_TRANSMIT:
3460                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3461                 break;
3462         case FW_ISO_CONTEXT_RECEIVE:
3463                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3464                 break;
3465         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3466                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3467                 break;
3468         }
3469         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3470
3471         return ret;
3472 }
3473
3474 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3475 {
3476         struct context *ctx =
3477                         &container_of(base, struct iso_context, base)->context;
3478
3479         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3480 }
3481
3482 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3483 {
3484         struct iso_context *ctx = container_of(base, struct iso_context, base);
3485         int ret = 0;
3486
3487         tasklet_disable(&ctx->context.tasklet);
3488
3489         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3490                 context_tasklet((unsigned long)&ctx->context);
3491
3492                 switch (base->type) {
3493                 case FW_ISO_CONTEXT_TRANSMIT:
3494                 case FW_ISO_CONTEXT_RECEIVE:
3495                         if (ctx->header_length != 0)
3496                                 flush_iso_completions(ctx);
3497                         break;
3498                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3499                         if (ctx->mc_completed != 0)
3500                                 flush_ir_buffer_fill(ctx);
3501                         break;
3502                 default:
3503                         ret = -ENOSYS;
3504                 }
3505
3506                 clear_bit_unlock(0, &ctx->flushing_completions);
3507                 smp_mb__after_atomic();
3508         }
3509
3510         tasklet_enable(&ctx->context.tasklet);
3511
3512         return ret;
3513 }
3514
3515 static const struct fw_card_driver ohci_driver = {
3516         .enable                 = ohci_enable,
3517         .read_phy_reg           = ohci_read_phy_reg,
3518         .update_phy_reg         = ohci_update_phy_reg,
3519         .set_config_rom         = ohci_set_config_rom,
3520         .send_request           = ohci_send_request,
3521         .send_response          = ohci_send_response,
3522         .cancel_packet          = ohci_cancel_packet,
3523         .enable_phys_dma        = ohci_enable_phys_dma,
3524         .read_csr               = ohci_read_csr,
3525         .write_csr              = ohci_write_csr,
3526
3527         .allocate_iso_context   = ohci_allocate_iso_context,
3528         .free_iso_context       = ohci_free_iso_context,
3529         .set_iso_channels       = ohci_set_iso_channels,
3530         .queue_iso              = ohci_queue_iso,
3531         .flush_queue_iso        = ohci_flush_queue_iso,
3532         .flush_iso_completions  = ohci_flush_iso_completions,
3533         .start_iso              = ohci_start_iso,
3534         .stop_iso               = ohci_stop_iso,
3535 };
3536
3537 #ifdef CONFIG_PPC_PMAC
3538 static void pmac_ohci_on(struct pci_dev *dev)
3539 {
3540         if (machine_is(powermac)) {
3541                 struct device_node *ofn = pci_device_to_OF_node(dev);
3542
3543                 if (ofn) {
3544                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3545                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3546                 }
3547         }
3548 }
3549
3550 static void pmac_ohci_off(struct pci_dev *dev)
3551 {
3552         if (machine_is(powermac)) {
3553                 struct device_node *ofn = pci_device_to_OF_node(dev);
3554
3555                 if (ofn) {
3556                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3557                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3558                 }
3559         }
3560 }
3561 #else
3562 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3563 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3564 #endif /* CONFIG_PPC_PMAC */
3565
3566 static int pci_probe(struct pci_dev *dev,
3567                                const struct pci_device_id *ent)
3568 {
3569         struct fw_ohci *ohci;
3570         u32 bus_options, max_receive, link_speed, version;
3571         u64 guid;
3572         int i, err;
3573         size_t size;
3574
3575         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3576                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3577                 return -ENOSYS;
3578         }
3579
3580         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3581         if (ohci == NULL) {
3582                 err = -ENOMEM;
3583                 goto fail;
3584         }
3585
3586         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3587
3588         pmac_ohci_on(dev);
3589
3590         err = pci_enable_device(dev);
3591         if (err) {
3592                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3593                 goto fail_free;
3594         }
3595
3596         pci_set_master(dev);
3597         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3598         pci_set_drvdata(dev, ohci);
3599
3600         spin_lock_init(&ohci->lock);
3601         mutex_init(&ohci->phy_reg_mutex);
3602
3603         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3604
3605         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3606             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3607                 ohci_err(ohci, "invalid MMIO resource\n");
3608                 err = -ENXIO;
3609                 goto fail_disable;
3610         }
3611
3612         err = pci_request_region(dev, 0, ohci_driver_name);
3613         if (err) {
3614                 ohci_err(ohci, "MMIO resource unavailable\n");
3615                 goto fail_disable;
3616         }
3617
3618         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3619         if (ohci->registers == NULL) {
3620                 ohci_err(ohci, "failed to remap registers\n");
3621                 err = -ENXIO;
3622                 goto fail_iomem;
3623         }
3624
3625         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3626                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3627                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3628                      ohci_quirks[i].device == dev->device) &&
3629                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3630                      ohci_quirks[i].revision >= dev->revision)) {
3631                         ohci->quirks = ohci_quirks[i].flags;
3632                         break;
3633                 }
3634         if (param_quirks)
3635                 ohci->quirks = param_quirks;
3636
3637         /*
3638          * Because dma_alloc_coherent() allocates at least one page,
3639          * we save space by using a common buffer for the AR request/
3640          * response descriptors and the self IDs buffer.
3641          */
3642         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3643         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3644         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3645                                                PAGE_SIZE,
3646                                                &ohci->misc_buffer_bus,
3647                                                GFP_KERNEL);
3648         if (!ohci->misc_buffer) {
3649                 err = -ENOMEM;
3650                 goto fail_iounmap;
3651         }
3652
3653         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3654                               OHCI1394_AsReqRcvContextControlSet);
3655         if (err < 0)
3656                 goto fail_misc_buf;
3657
3658         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3659                               OHCI1394_AsRspRcvContextControlSet);
3660         if (err < 0)
3661                 goto fail_arreq_ctx;
3662
3663         err = context_init(&ohci->at_request_ctx, ohci,
3664                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3665         if (err < 0)
3666                 goto fail_arrsp_ctx;
3667
3668         err = context_init(&ohci->at_response_ctx, ohci,
3669                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3670         if (err < 0)
3671                 goto fail_atreq_ctx;
3672
3673         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3674         ohci->ir_context_channels = ~0ULL;
3675         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3676         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3677         ohci->ir_context_mask = ohci->ir_context_support;
3678         ohci->n_ir = hweight32(ohci->ir_context_mask);
3679         size = sizeof(struct iso_context) * ohci->n_ir;
3680         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3681
3682         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3683         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3684         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3685         if (!ohci->it_context_support) {
3686                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3687                 ohci->it_context_support = 0xf;
3688         }
3689         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3690         ohci->it_context_mask = ohci->it_context_support;
3691         ohci->n_it = hweight32(ohci->it_context_mask);
3692         size = sizeof(struct iso_context) * ohci->n_it;
3693         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3694
3695         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3696                 err = -ENOMEM;
3697                 goto fail_contexts;
3698         }
3699
3700         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3701         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3702
3703         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3704         max_receive = (bus_options >> 12) & 0xf;
3705         link_speed = bus_options & 0x7;
3706         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3707                 reg_read(ohci, OHCI1394_GUIDLo);
3708
3709         if (!(ohci->quirks & QUIRK_NO_MSI))
3710                 pci_enable_msi(dev);
3711         if (request_irq(dev->irq, irq_handler,
3712                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3713                         ohci_driver_name, ohci)) {
3714                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3715                 err = -EIO;
3716                 goto fail_msi;
3717         }
3718
3719         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3720         if (err)
3721                 goto fail_irq;
3722
3723         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3724         ohci_notice(ohci,
3725                     "added OHCI v%x.%x device as card %d, "
3726                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3727                     version >> 16, version & 0xff, ohci->card.index,
3728                     ohci->n_ir, ohci->n_it, ohci->quirks,
3729                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3730                         ", physUB" : "");
3731
3732         return 0;
3733
3734  fail_irq:
3735         free_irq(dev->irq, ohci);
3736  fail_msi:
3737         pci_disable_msi(dev);
3738  fail_contexts:
3739         kfree(ohci->ir_context_list);
3740         kfree(ohci->it_context_list);
3741         context_release(&ohci->at_response_ctx);
3742  fail_atreq_ctx:
3743         context_release(&ohci->at_request_ctx);
3744  fail_arrsp_ctx:
3745         ar_context_release(&ohci->ar_response_ctx);
3746  fail_arreq_ctx:
3747         ar_context_release(&ohci->ar_request_ctx);
3748  fail_misc_buf:
3749         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3750                           ohci->misc_buffer, ohci->misc_buffer_bus);
3751  fail_iounmap:
3752         pci_iounmap(dev, ohci->registers);
3753  fail_iomem:
3754         pci_release_region(dev, 0);
3755  fail_disable:
3756         pci_disable_device(dev);
3757  fail_free:
3758         kfree(ohci);
3759         pmac_ohci_off(dev);
3760  fail:
3761         return err;
3762 }
3763
3764 static void pci_remove(struct pci_dev *dev)
3765 {
3766         struct fw_ohci *ohci = pci_get_drvdata(dev);
3767
3768         /*
3769          * If the removal is happening from the suspend state, LPS won't be
3770          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3771          */
3772         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3773                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3774                 flush_writes(ohci);
3775         }
3776         cancel_work_sync(&ohci->bus_reset_work);
3777         fw_core_remove_card(&ohci->card);
3778
3779         /*
3780          * FIXME: Fail all pending packets here, now that the upper
3781          * layers can't queue any more.
3782          */
3783
3784         software_reset(ohci);
3785         free_irq(dev->irq, ohci);
3786
3787         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3788                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3789                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3790         if (ohci->config_rom)
3791                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3792                                   ohci->config_rom, ohci->config_rom_bus);
3793         ar_context_release(&ohci->ar_request_ctx);
3794         ar_context_release(&ohci->ar_response_ctx);
3795         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3796                           ohci->misc_buffer, ohci->misc_buffer_bus);
3797         context_release(&ohci->at_request_ctx);
3798         context_release(&ohci->at_response_ctx);
3799         kfree(ohci->it_context_list);
3800         kfree(ohci->ir_context_list);
3801         pci_disable_msi(dev);
3802         pci_iounmap(dev, ohci->registers);
3803         pci_release_region(dev, 0);
3804         pci_disable_device(dev);
3805         kfree(ohci);
3806         pmac_ohci_off(dev);
3807
3808         dev_notice(&dev->dev, "removed fw-ohci device\n");
3809 }
3810
3811 #ifdef CONFIG_PM
3812 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3813 {
3814         struct fw_ohci *ohci = pci_get_drvdata(dev);
3815         int err;
3816
3817         software_reset(ohci);
3818         err = pci_save_state(dev);
3819         if (err) {
3820                 ohci_err(ohci, "pci_save_state failed\n");
3821                 return err;
3822         }
3823         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3824         if (err)
3825                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3826         pmac_ohci_off(dev);
3827
3828         return 0;
3829 }
3830
3831 static int pci_resume(struct pci_dev *dev)
3832 {
3833         struct fw_ohci *ohci = pci_get_drvdata(dev);
3834         int err;
3835
3836         pmac_ohci_on(dev);
3837         pci_set_power_state(dev, PCI_D0);
3838         pci_restore_state(dev);
3839         err = pci_enable_device(dev);
3840         if (err) {
3841                 ohci_err(ohci, "pci_enable_device failed\n");
3842                 return err;
3843         }
3844
3845         /* Some systems don't setup GUID register on resume from ram  */
3846         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3847                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3848                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3849                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3850         }
3851
3852         err = ohci_enable(&ohci->card, NULL, 0);
3853         if (err)
3854                 return err;
3855
3856         ohci_resume_iso_dma(ohci);
3857
3858         return 0;
3859 }
3860 #endif
3861
3862 static const struct pci_device_id pci_table[] = {
3863         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3864         { }
3865 };
3866
3867 MODULE_DEVICE_TABLE(pci, pci_table);
3868
3869 static struct pci_driver fw_ohci_pci_driver = {
3870         .name           = ohci_driver_name,
3871         .id_table       = pci_table,
3872         .probe          = pci_probe,
3873         .remove         = pci_remove,
3874 #ifdef CONFIG_PM
3875         .resume         = pci_resume,
3876         .suspend        = pci_suspend,
3877 #endif
3878 };
3879
3880 static int __init fw_ohci_init(void)
3881 {
3882         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3883         if (!selfid_workqueue)
3884                 return -ENOMEM;
3885
3886         return pci_register_driver(&fw_ohci_pci_driver);
3887 }
3888
3889 static void __exit fw_ohci_cleanup(void)
3890 {
3891         pci_unregister_driver(&fw_ohci_pci_driver);
3892         destroy_workqueue(selfid_workqueue);
3893 }
3894
3895 module_init(fw_ohci_init);
3896 module_exit(fw_ohci_cleanup);
3897
3898 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3899 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3900 MODULE_LICENSE("GPL");
3901
3902 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3903 MODULE_ALIAS("ohci1394");