GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41
42 enum hqd_dequeue_request_type {
43         NO_ACTION = 0,
44         DRAIN_PIPE,
45         RESET_WAVES
46 };
47
48 enum {
49         MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
50         MAX_WATCH_ADDRESSES = 4
51 };
52
53 enum {
54         ADDRESS_WATCH_REG_ADDR_HI = 0,
55         ADDRESS_WATCH_REG_ADDR_LO,
56         ADDRESS_WATCH_REG_CNTL,
57         ADDRESS_WATCH_REG_MAX
58 };
59
60 /*  not defined in the CI/KV reg file  */
61 enum {
62         ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63         ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64         ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65         /* extend the mask to 26 bits to match the low address field */
66         ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67         ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71         mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72         mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73         mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74         mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76
77 union TCP_WATCH_CNTL_BITS {
78         struct {
79                 uint32_t mask:24;
80                 uint32_t vmid:4;
81                 uint32_t atc:1;
82                 uint32_t mode:2;
83                 uint32_t valid:1;
84         } bitfields, bits;
85         uint32_t u32All;
86         signed int i32All;
87         float f32All;
88 };
89
90 /*
91  * Register access functions
92  */
93
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95                 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
96                 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99                                         unsigned int vmid);
100
101 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102                                 uint32_t hpd_size, uint64_t hpd_gpu_addr);
103 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105                         uint32_t queue_id, uint32_t __user *wptr,
106                         uint32_t wptr_shift, uint32_t wptr_mask,
107                         struct mm_struct *mm);
108 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
109 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
110                                 uint32_t pipe_id, uint32_t queue_id);
111
112 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
113                                 enum kfd_preempt_type reset_type,
114                                 unsigned int utimeout, uint32_t pipe_id,
115                                 uint32_t queue_id);
116 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
117 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
118                                 unsigned int utimeout);
119 static int kgd_address_watch_disable(struct kgd_dev *kgd);
120 static int kgd_address_watch_execute(struct kgd_dev *kgd,
121                                         unsigned int watch_point_id,
122                                         uint32_t cntl_val,
123                                         uint32_t addr_hi,
124                                         uint32_t addr_lo);
125 static int kgd_wave_control_execute(struct kgd_dev *kgd,
126                                         uint32_t gfx_index_val,
127                                         uint32_t sq_cmd);
128 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
129                                         unsigned int watch_point_id,
130                                         unsigned int reg_offset);
131
132 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
133 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
134                                                         uint8_t vmid);
135 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
136
137 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
138 static void set_scratch_backing_va(struct kgd_dev *kgd,
139                                         uint64_t va, uint32_t vmid);
140
141 /* Because of REG_GET_FIELD() being used, we put this function in the
142  * asic specific file.
143  */
144 static int get_tile_config(struct kgd_dev *kgd,
145                 struct tile_config *config)
146 {
147         struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
148
149         config->gb_addr_config = adev->gfx.config.gb_addr_config;
150         config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
151                                 MC_ARB_RAMCFG, NOOFBANK);
152         config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
153                                 MC_ARB_RAMCFG, NOOFRANKS);
154
155         config->tile_config_ptr = adev->gfx.config.tile_mode_array;
156         config->num_tile_configs =
157                         ARRAY_SIZE(adev->gfx.config.tile_mode_array);
158         config->macro_tile_config_ptr =
159                         adev->gfx.config.macrotile_mode_array;
160         config->num_macro_tile_configs =
161                         ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
162
163         return 0;
164 }
165
166 static const struct kfd2kgd_calls kfd2kgd = {
167         .init_gtt_mem_allocation = alloc_gtt_mem,
168         .free_gtt_mem = free_gtt_mem,
169         .get_vmem_size = get_vmem_size,
170         .get_gpu_clock_counter = get_gpu_clock_counter,
171         .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
172         .program_sh_mem_settings = kgd_program_sh_mem_settings,
173         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
174         .init_pipeline = kgd_init_pipeline,
175         .init_interrupts = kgd_init_interrupts,
176         .hqd_load = kgd_hqd_load,
177         .hqd_sdma_load = kgd_hqd_sdma_load,
178         .hqd_is_occupied = kgd_hqd_is_occupied,
179         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
180         .hqd_destroy = kgd_hqd_destroy,
181         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
182         .address_watch_disable = kgd_address_watch_disable,
183         .address_watch_execute = kgd_address_watch_execute,
184         .wave_control_execute = kgd_wave_control_execute,
185         .address_watch_get_offset = kgd_address_watch_get_offset,
186         .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
187         .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
188         .write_vmid_invalidate_request = write_vmid_invalidate_request,
189         .get_fw_version = get_fw_version,
190         .set_scratch_backing_va = set_scratch_backing_va,
191         .get_tile_config = get_tile_config,
192 };
193
194 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
195 {
196         return (struct kfd2kgd_calls *)&kfd2kgd;
197 }
198
199 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
200 {
201         return (struct amdgpu_device *)kgd;
202 }
203
204 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
205                         uint32_t queue, uint32_t vmid)
206 {
207         struct amdgpu_device *adev = get_amdgpu_device(kgd);
208         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
209
210         mutex_lock(&adev->srbm_mutex);
211         WREG32(mmSRBM_GFX_CNTL, value);
212 }
213
214 static void unlock_srbm(struct kgd_dev *kgd)
215 {
216         struct amdgpu_device *adev = get_amdgpu_device(kgd);
217
218         WREG32(mmSRBM_GFX_CNTL, 0);
219         mutex_unlock(&adev->srbm_mutex);
220 }
221
222 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
223                                 uint32_t queue_id)
224 {
225         struct amdgpu_device *adev = get_amdgpu_device(kgd);
226
227         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
228         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
229
230         lock_srbm(kgd, mec, pipe, queue_id, 0);
231 }
232
233 static void release_queue(struct kgd_dev *kgd)
234 {
235         unlock_srbm(kgd);
236 }
237
238 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
239                                         uint32_t sh_mem_config,
240                                         uint32_t sh_mem_ape1_base,
241                                         uint32_t sh_mem_ape1_limit,
242                                         uint32_t sh_mem_bases)
243 {
244         struct amdgpu_device *adev = get_amdgpu_device(kgd);
245
246         lock_srbm(kgd, 0, 0, 0, vmid);
247
248         WREG32(mmSH_MEM_CONFIG, sh_mem_config);
249         WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
250         WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
251         WREG32(mmSH_MEM_BASES, sh_mem_bases);
252
253         unlock_srbm(kgd);
254 }
255
256 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
257                                         unsigned int vmid)
258 {
259         struct amdgpu_device *adev = get_amdgpu_device(kgd);
260
261         /*
262          * We have to assume that there is no outstanding mapping.
263          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
264          * a mapping is in progress or because a mapping finished and the
265          * SW cleared it. So the protocol is to always wait & clear.
266          */
267         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
268                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
269
270         WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
271
272         while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
273                 cpu_relax();
274         WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
275
276         /* Mapping vmid to pasid also for IH block */
277         WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
278
279         return 0;
280 }
281
282 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
283                                 uint32_t hpd_size, uint64_t hpd_gpu_addr)
284 {
285         /* amdgpu owns the per-pipe state */
286         return 0;
287 }
288
289 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
290 {
291         struct amdgpu_device *adev = get_amdgpu_device(kgd);
292         uint32_t mec;
293         uint32_t pipe;
294
295         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
296         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
297
298         lock_srbm(kgd, mec, pipe, 0, 0);
299
300         WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
301                         CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
302
303         unlock_srbm(kgd);
304
305         return 0;
306 }
307
308 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
309 {
310         uint32_t retval;
311
312         retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
313                         m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
314
315         pr_debug("kfd: sdma base address: 0x%x\n", retval);
316
317         return retval;
318 }
319
320 static inline struct cik_mqd *get_mqd(void *mqd)
321 {
322         return (struct cik_mqd *)mqd;
323 }
324
325 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
326 {
327         return (struct cik_sdma_rlc_registers *)mqd;
328 }
329
330 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
331                         uint32_t queue_id, uint32_t __user *wptr,
332                         uint32_t wptr_shift, uint32_t wptr_mask,
333                         struct mm_struct *mm)
334 {
335         struct amdgpu_device *adev = get_amdgpu_device(kgd);
336         struct cik_mqd *m;
337         uint32_t *mqd_hqd;
338         uint32_t reg, wptr_val, data;
339
340         m = get_mqd(mqd);
341
342         acquire_queue(kgd, pipe_id, queue_id);
343
344         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
345         mqd_hqd = &m->cp_mqd_base_addr_lo;
346
347         for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
348                 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
349
350         /* Copy userspace write pointer value to register.
351          * Activate doorbell logic to monitor subsequent changes.
352          */
353         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
354                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
355         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
356
357         if (read_user_wptr(mm, wptr, wptr_val))
358                 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
359
360         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
361         WREG32(mmCP_HQD_ACTIVE, data);
362
363         release_queue(kgd);
364
365         return 0;
366 }
367
368 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
369 {
370         struct amdgpu_device *adev = get_amdgpu_device(kgd);
371         struct cik_sdma_rlc_registers *m;
372         unsigned long end_jiffies;
373         uint32_t sdma_base_addr;
374         uint32_t data;
375
376         m = get_sdma_mqd(mqd);
377         sdma_base_addr = get_sdma_base_addr(m);
378
379         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
380                 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
381
382         end_jiffies = msecs_to_jiffies(2000) + jiffies;
383         while (true) {
384                 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
385                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
386                         break;
387                 if (time_after(jiffies, end_jiffies))
388                         return -ETIME;
389                 usleep_range(500, 1000);
390         }
391         if (m->sdma_engine_id) {
392                 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
393                 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
394                                 RESUME_CTX, 0);
395                 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
396         } else {
397                 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
398                 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
399                                 RESUME_CTX, 0);
400                 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
401         }
402
403         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
404                                 m->sdma_rlc_doorbell);
405         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
406         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
407         WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
408                                 m->sdma_rlc_virtual_addr);
409         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
410         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
411                         m->sdma_rlc_rb_base_hi);
412         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
413                         m->sdma_rlc_rb_rptr_addr_lo);
414         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
415                         m->sdma_rlc_rb_rptr_addr_hi);
416         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
417                         m->sdma_rlc_rb_cntl);
418
419         return 0;
420 }
421
422 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
423                                 uint32_t pipe_id, uint32_t queue_id)
424 {
425         struct amdgpu_device *adev = get_amdgpu_device(kgd);
426         uint32_t act;
427         bool retval = false;
428         uint32_t low, high;
429
430         acquire_queue(kgd, pipe_id, queue_id);
431         act = RREG32(mmCP_HQD_ACTIVE);
432         if (act) {
433                 low = lower_32_bits(queue_address >> 8);
434                 high = upper_32_bits(queue_address >> 8);
435
436                 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
437                                 high == RREG32(mmCP_HQD_PQ_BASE_HI))
438                         retval = true;
439         }
440         release_queue(kgd);
441         return retval;
442 }
443
444 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
445 {
446         struct amdgpu_device *adev = get_amdgpu_device(kgd);
447         struct cik_sdma_rlc_registers *m;
448         uint32_t sdma_base_addr;
449         uint32_t sdma_rlc_rb_cntl;
450
451         m = get_sdma_mqd(mqd);
452         sdma_base_addr = get_sdma_base_addr(m);
453
454         sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
455
456         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
457                 return true;
458
459         return false;
460 }
461
462 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
463                                 enum kfd_preempt_type reset_type,
464                                 unsigned int utimeout, uint32_t pipe_id,
465                                 uint32_t queue_id)
466 {
467         struct amdgpu_device *adev = get_amdgpu_device(kgd);
468         uint32_t temp;
469         enum hqd_dequeue_request_type type;
470         unsigned long flags, end_jiffies;
471         int retry;
472
473         acquire_queue(kgd, pipe_id, queue_id);
474         WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
475
476         switch (reset_type) {
477         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
478                 type = DRAIN_PIPE;
479                 break;
480         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
481                 type = RESET_WAVES;
482                 break;
483         default:
484                 type = DRAIN_PIPE;
485                 break;
486         }
487
488         /* Workaround: If IQ timer is active and the wait time is close to or
489          * equal to 0, dequeueing is not safe. Wait until either the wait time
490          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
491          * cleared before continuing. Also, ensure wait times are set to at
492          * least 0x3.
493          */
494         local_irq_save(flags);
495         preempt_disable();
496         retry = 5000; /* wait for 500 usecs at maximum */
497         while (true) {
498                 temp = RREG32(mmCP_HQD_IQ_TIMER);
499                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
500                         pr_debug("HW is processing IQ\n");
501                         goto loop;
502                 }
503                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
504                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
505                                         == 3) /* SEM-rearm is safe */
506                                 break;
507                         /* Wait time 3 is safe for CP, but our MMIO read/write
508                          * time is close to 1 microsecond, so check for 10 to
509                          * leave more buffer room
510                          */
511                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
512                                         >= 10)
513                                 break;
514                         pr_debug("IQ timer is active\n");
515                 } else
516                         break;
517 loop:
518                 if (!retry) {
519                         pr_err("CP HQD IQ timer status time out\n");
520                         break;
521                 }
522                 ndelay(100);
523                 --retry;
524         }
525         retry = 1000;
526         while (true) {
527                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
528                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
529                         break;
530                 pr_debug("Dequeue request is pending\n");
531
532                 if (!retry) {
533                         pr_err("CP HQD dequeue request time out\n");
534                         break;
535                 }
536                 ndelay(100);
537                 --retry;
538         }
539         local_irq_restore(flags);
540         preempt_enable();
541
542         WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
543
544         end_jiffies = (utimeout * HZ / 1000) + jiffies;
545         while (true) {
546                 temp = RREG32(mmCP_HQD_ACTIVE);
547                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
548                         break;
549                 if (time_after(jiffies, end_jiffies)) {
550                         pr_err("cp queue preemption time out\n");
551                         release_queue(kgd);
552                         return -ETIME;
553                 }
554                 usleep_range(500, 1000);
555         }
556
557         release_queue(kgd);
558         return 0;
559 }
560
561 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
562                                 unsigned int utimeout)
563 {
564         struct amdgpu_device *adev = get_amdgpu_device(kgd);
565         struct cik_sdma_rlc_registers *m;
566         uint32_t sdma_base_addr;
567         uint32_t temp;
568         int timeout = utimeout;
569
570         m = get_sdma_mqd(mqd);
571         sdma_base_addr = get_sdma_base_addr(m);
572
573         temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
574         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
575         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
576
577         while (true) {
578                 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
579                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
580                         break;
581                 if (timeout <= 0)
582                         return -ETIME;
583                 msleep(20);
584                 timeout -= 20;
585         }
586
587         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
588         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
589                 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
590                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
591
592         return 0;
593 }
594
595 static int kgd_address_watch_disable(struct kgd_dev *kgd)
596 {
597         struct amdgpu_device *adev = get_amdgpu_device(kgd);
598         union TCP_WATCH_CNTL_BITS cntl;
599         unsigned int i;
600
601         cntl.u32All = 0;
602
603         cntl.bitfields.valid = 0;
604         cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
605         cntl.bitfields.atc = 1;
606
607         /* Turning off this address until we set all the registers */
608         for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
609                 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
610                         ADDRESS_WATCH_REG_CNTL], cntl.u32All);
611
612         return 0;
613 }
614
615 static int kgd_address_watch_execute(struct kgd_dev *kgd,
616                                         unsigned int watch_point_id,
617                                         uint32_t cntl_val,
618                                         uint32_t addr_hi,
619                                         uint32_t addr_lo)
620 {
621         struct amdgpu_device *adev = get_amdgpu_device(kgd);
622         union TCP_WATCH_CNTL_BITS cntl;
623
624         cntl.u32All = cntl_val;
625
626         /* Turning off this watch point until we set all the registers */
627         cntl.bitfields.valid = 0;
628         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
629                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
630
631         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
632                 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
633
634         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
635                 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
636
637         /* Enable the watch point */
638         cntl.bitfields.valid = 1;
639
640         WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
641                 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
642
643         return 0;
644 }
645
646 static int kgd_wave_control_execute(struct kgd_dev *kgd,
647                                         uint32_t gfx_index_val,
648                                         uint32_t sq_cmd)
649 {
650         struct amdgpu_device *adev = get_amdgpu_device(kgd);
651         uint32_t data;
652
653         mutex_lock(&adev->grbm_idx_mutex);
654
655         WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
656         WREG32(mmSQ_CMD, sq_cmd);
657
658         /*  Restore the GRBM_GFX_INDEX register  */
659
660         data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
661                 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
662                 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
663
664         WREG32(mmGRBM_GFX_INDEX, data);
665
666         mutex_unlock(&adev->grbm_idx_mutex);
667
668         return 0;
669 }
670
671 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
672                                         unsigned int watch_point_id,
673                                         unsigned int reg_offset)
674 {
675         return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
676 }
677
678 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
679                                                         uint8_t vmid)
680 {
681         uint32_t reg;
682         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
683
684         reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
685         return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
686 }
687
688 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
689                                                                 uint8_t vmid)
690 {
691         uint32_t reg;
692         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
693
694         reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
695         return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
696 }
697
698 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
699 {
700         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
701
702         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
703 }
704
705 static void set_scratch_backing_va(struct kgd_dev *kgd,
706                                         uint64_t va, uint32_t vmid)
707 {
708         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
709
710         lock_srbm(kgd, 0, 0, 0, vmid);
711         WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
712         unlock_srbm(kgd);
713 }
714
715 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
716 {
717         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
718         const union amdgpu_firmware_header *hdr;
719
720         BUG_ON(kgd == NULL);
721
722         switch (type) {
723         case KGD_ENGINE_PFP:
724                 hdr = (const union amdgpu_firmware_header *)
725                                                 adev->gfx.pfp_fw->data;
726                 break;
727
728         case KGD_ENGINE_ME:
729                 hdr = (const union amdgpu_firmware_header *)
730                                                 adev->gfx.me_fw->data;
731                 break;
732
733         case KGD_ENGINE_CE:
734                 hdr = (const union amdgpu_firmware_header *)
735                                                 adev->gfx.ce_fw->data;
736                 break;
737
738         case KGD_ENGINE_MEC1:
739                 hdr = (const union amdgpu_firmware_header *)
740                                                 adev->gfx.mec_fw->data;
741                 break;
742
743         case KGD_ENGINE_MEC2:
744                 hdr = (const union amdgpu_firmware_header *)
745                                                 adev->gfx.mec2_fw->data;
746                 break;
747
748         case KGD_ENGINE_RLC:
749                 hdr = (const union amdgpu_firmware_header *)
750                                                 adev->gfx.rlc_fw->data;
751                 break;
752
753         case KGD_ENGINE_SDMA1:
754                 hdr = (const union amdgpu_firmware_header *)
755                                                 adev->sdma.instance[0].fw->data;
756                 break;
757
758         case KGD_ENGINE_SDMA2:
759                 hdr = (const union amdgpu_firmware_header *)
760                                                 adev->sdma.instance[1].fw->data;
761                 break;
762
763         default:
764                 return 0;
765         }
766
767         if (hdr == NULL)
768                 return 0;
769
770         /* Only 12 bit in use*/
771         return hdr->common.ucode_version;
772 }
773