GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55                              struct ttm_mem_reg *mem, unsigned num_pages,
56                              uint64_t offset, unsigned window,
57                              struct amdgpu_ring *ring,
58                              uint64_t *addr);
59
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62
63 /*
64  * Global memory.
65  */
66
67 /**
68  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69  * memory object
70  *
71  * @ref: Object for initialization.
72  *
73  * This is called by drm_global_item_ref() when an object is being
74  * initialized.
75  */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78         return ttm_mem_global_init(ref->object);
79 }
80
81 /**
82  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83  *
84  * @ref: Object being removed
85  *
86  * This is called by drm_global_item_unref() when an object is being
87  * released.
88  */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91         ttm_mem_global_release(ref->object);
92 }
93
94 /**
95  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
96  *
97  * @adev: AMDGPU device for which the global structures need to be registered.
98  *
99  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
100  * during bring up.
101  */
102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
103 {
104         struct drm_global_reference *global_ref;
105         int r;
106
107         /* ensure reference is false in case init fails */
108         adev->mman.mem_global_referenced = false;
109
110         global_ref = &adev->mman.mem_global_ref;
111         global_ref->global_type = DRM_GLOBAL_TTM_MEM;
112         global_ref->size = sizeof(struct ttm_mem_global);
113         global_ref->init = &amdgpu_ttm_mem_global_init;
114         global_ref->release = &amdgpu_ttm_mem_global_release;
115         r = drm_global_item_ref(global_ref);
116         if (r) {
117                 DRM_ERROR("Failed setting up TTM memory accounting "
118                           "subsystem.\n");
119                 goto error_mem;
120         }
121
122         adev->mman.bo_global_ref.mem_glob =
123                 adev->mman.mem_global_ref.object;
124         global_ref = &adev->mman.bo_global_ref.ref;
125         global_ref->global_type = DRM_GLOBAL_TTM_BO;
126         global_ref->size = sizeof(struct ttm_bo_global);
127         global_ref->init = &ttm_bo_global_init;
128         global_ref->release = &ttm_bo_global_release;
129         r = drm_global_item_ref(global_ref);
130         if (r) {
131                 DRM_ERROR("Failed setting up TTM BO subsystem.\n");
132                 goto error_bo;
133         }
134
135         mutex_init(&adev->mman.gtt_window_lock);
136
137         adev->mman.mem_global_referenced = true;
138
139         return 0;
140
141 error_bo:
142         drm_global_item_unref(&adev->mman.mem_global_ref);
143 error_mem:
144         return r;
145 }
146
147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
148 {
149         if (adev->mman.mem_global_referenced) {
150                 mutex_destroy(&adev->mman.gtt_window_lock);
151                 drm_global_item_unref(&adev->mman.bo_global_ref.ref);
152                 drm_global_item_unref(&adev->mman.mem_global_ref);
153                 adev->mman.mem_global_referenced = false;
154         }
155 }
156
157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
158 {
159         return 0;
160 }
161
162 /**
163  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
164  * memory request.
165  *
166  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
167  * @type: The type of memory requested
168  * @man: The memory type manager for each domain
169  *
170  * This is called by ttm_bo_init_mm() when a buffer object is being
171  * initialized.
172  */
173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
174                                 struct ttm_mem_type_manager *man)
175 {
176         struct amdgpu_device *adev;
177
178         adev = amdgpu_ttm_adev(bdev);
179
180         switch (type) {
181         case TTM_PL_SYSTEM:
182                 /* System memory */
183                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
184                 man->available_caching = TTM_PL_MASK_CACHING;
185                 man->default_caching = TTM_PL_FLAG_CACHED;
186                 break;
187         case TTM_PL_TT:
188                 /* GTT memory  */
189                 man->func = &amdgpu_gtt_mgr_func;
190                 man->gpu_offset = adev->gmc.gart_start;
191                 man->available_caching = TTM_PL_MASK_CACHING;
192                 man->default_caching = TTM_PL_FLAG_CACHED;
193                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
194                 break;
195         case TTM_PL_VRAM:
196                 /* "On-card" video ram */
197                 man->func = &amdgpu_vram_mgr_func;
198                 man->gpu_offset = adev->gmc.vram_start;
199                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
200                              TTM_MEMTYPE_FLAG_MAPPABLE;
201                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
202                 man->default_caching = TTM_PL_FLAG_WC;
203                 break;
204         case AMDGPU_PL_GDS:
205         case AMDGPU_PL_GWS:
206         case AMDGPU_PL_OA:
207                 /* On-chip GDS memory*/
208                 man->func = &ttm_bo_manager_func;
209                 man->gpu_offset = 0;
210                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
211                 man->available_caching = TTM_PL_FLAG_UNCACHED;
212                 man->default_caching = TTM_PL_FLAG_UNCACHED;
213                 break;
214         default:
215                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
216                 return -EINVAL;
217         }
218         return 0;
219 }
220
221 /**
222  * amdgpu_evict_flags - Compute placement flags
223  *
224  * @bo: The buffer object to evict
225  * @placement: Possible destination(s) for evicted BO
226  *
227  * Fill in placement data when ttm_bo_evict() is called
228  */
229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
230                                 struct ttm_placement *placement)
231 {
232         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
233         struct amdgpu_bo *abo;
234         static const struct ttm_place placements = {
235                 .fpfn = 0,
236                 .lpfn = 0,
237                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
238         };
239
240         /* Don't handle scatter gather BOs */
241         if (bo->type == ttm_bo_type_sg) {
242                 placement->num_placement = 0;
243                 placement->num_busy_placement = 0;
244                 return;
245         }
246
247         /* Object isn't an AMDGPU object so ignore */
248         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
249                 placement->placement = &placements;
250                 placement->busy_placement = &placements;
251                 placement->num_placement = 1;
252                 placement->num_busy_placement = 1;
253                 return;
254         }
255
256         abo = ttm_to_amdgpu_bo(bo);
257         switch (bo->mem.mem_type) {
258         case TTM_PL_VRAM:
259                 if (!adev->mman.buffer_funcs_enabled) {
260                         /* Move to system memory */
261                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
262                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
263                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
264                            amdgpu_bo_in_cpu_visible_vram(abo)) {
265
266                         /* Try evicting to the CPU inaccessible part of VRAM
267                          * first, but only set GTT as busy placement, so this
268                          * BO will be evicted to GTT rather than causing other
269                          * BOs to be evicted from VRAM
270                          */
271                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
272                                                          AMDGPU_GEM_DOMAIN_GTT);
273                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
274                         abo->placements[0].lpfn = 0;
275                         abo->placement.busy_placement = &abo->placements[1];
276                         abo->placement.num_busy_placement = 1;
277                 } else {
278                         /* Move to GTT memory */
279                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
280                 }
281                 break;
282         case TTM_PL_TT:
283         default:
284                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
285         }
286         *placement = abo->placement;
287 }
288
289 /**
290  * amdgpu_verify_access - Verify access for a mmap call
291  *
292  * @bo: The buffer object to map
293  * @filp: The file pointer from the process performing the mmap
294  *
295  * This is called by ttm_bo_mmap() to verify whether a process
296  * has the right to mmap a BO to their process space.
297  */
298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
299 {
300         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
301
302         /*
303          * Don't verify access for KFD BOs. They don't have a GEM
304          * object associated with them.
305          */
306         if (abo->kfd_bo)
307                 return 0;
308
309         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
310                 return -EPERM;
311         return drm_vma_node_verify_access(&abo->gem_base.vma_node,
312                                           filp->private_data);
313 }
314
315 /**
316  * amdgpu_move_null - Register memory for a buffer object
317  *
318  * @bo: The bo to assign the memory to
319  * @new_mem: The memory to be assigned.
320  *
321  * Assign the memory from new_mem to the memory of the buffer object bo.
322  */
323 static void amdgpu_move_null(struct ttm_buffer_object *bo,
324                              struct ttm_mem_reg *new_mem)
325 {
326         struct ttm_mem_reg *old_mem = &bo->mem;
327
328         BUG_ON(old_mem->mm_node != NULL);
329         *old_mem = *new_mem;
330         new_mem->mm_node = NULL;
331 }
332
333 /**
334  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
335  *
336  * @bo: The bo to assign the memory to.
337  * @mm_node: Memory manager node for drm allocator.
338  * @mem: The region where the bo resides.
339  *
340  */
341 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
342                                     struct drm_mm_node *mm_node,
343                                     struct ttm_mem_reg *mem)
344 {
345         uint64_t addr = 0;
346
347         if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
348                 addr = mm_node->start << PAGE_SHIFT;
349                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
350         }
351         return addr;
352 }
353
354 /**
355  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
356  * @offset. It also modifies the offset to be within the drm_mm_node returned
357  *
358  * @mem: The region where the bo resides.
359  * @offset: The offset that drm_mm_node is used for finding.
360  *
361  */
362 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
363                                                unsigned long *offset)
364 {
365         struct drm_mm_node *mm_node = mem->mm_node;
366
367         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
368                 *offset -= (mm_node->size << PAGE_SHIFT);
369                 ++mm_node;
370         }
371         return mm_node;
372 }
373
374 /**
375  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
376  *
377  * The function copies @size bytes from {src->mem + src->offset} to
378  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
379  * move and different for a BO to BO copy.
380  *
381  * @f: Returns the last fence if multiple jobs are submitted.
382  */
383 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
384                                struct amdgpu_copy_mem *src,
385                                struct amdgpu_copy_mem *dst,
386                                uint64_t size,
387                                struct reservation_object *resv,
388                                struct dma_fence **f)
389 {
390         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
391         struct drm_mm_node *src_mm, *dst_mm;
392         uint64_t src_node_start, dst_node_start, src_node_size,
393                  dst_node_size, src_page_offset, dst_page_offset;
394         struct dma_fence *fence = NULL;
395         int r = 0;
396         const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
397                                         AMDGPU_GPU_PAGE_SIZE);
398
399         if (!adev->mman.buffer_funcs_enabled) {
400                 DRM_ERROR("Trying to move memory with ring turned off.\n");
401                 return -EINVAL;
402         }
403
404         src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
405         src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
406                                              src->offset;
407         src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
408         src_page_offset = src_node_start & (PAGE_SIZE - 1);
409
410         dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
411         dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
412                                              dst->offset;
413         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
414         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
415
416         mutex_lock(&adev->mman.gtt_window_lock);
417
418         while (size) {
419                 unsigned long cur_size;
420                 uint64_t from = src_node_start, to = dst_node_start;
421                 struct dma_fence *next;
422
423                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
424                  * begins at an offset, then adjust the size accordingly
425                  */
426                 cur_size = min3(min(src_node_size, dst_node_size), size,
427                                 GTT_MAX_BYTES);
428                 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
429                     cur_size + dst_page_offset > GTT_MAX_BYTES)
430                         cur_size -= max(src_page_offset, dst_page_offset);
431
432                 /* Map only what needs to be accessed. Map src to window 0 and
433                  * dst to window 1
434                  */
435                 if (src->mem->mem_type == TTM_PL_TT &&
436                     !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
437                         r = amdgpu_map_buffer(src->bo, src->mem,
438                                         PFN_UP(cur_size + src_page_offset),
439                                         src_node_start, 0, ring,
440                                         &from);
441                         if (r)
442                                 goto error;
443                         /* Adjust the offset because amdgpu_map_buffer returns
444                          * start of mapped page
445                          */
446                         from += src_page_offset;
447                 }
448
449                 if (dst->mem->mem_type == TTM_PL_TT &&
450                     !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
451                         r = amdgpu_map_buffer(dst->bo, dst->mem,
452                                         PFN_UP(cur_size + dst_page_offset),
453                                         dst_node_start, 1, ring,
454                                         &to);
455                         if (r)
456                                 goto error;
457                         to += dst_page_offset;
458                 }
459
460                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
461                                        resv, &next, false, true);
462                 if (r)
463                         goto error;
464
465                 dma_fence_put(fence);
466                 fence = next;
467
468                 size -= cur_size;
469                 if (!size)
470                         break;
471
472                 src_node_size -= cur_size;
473                 if (!src_node_size) {
474                         src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
475                                                              src->mem);
476                         src_node_size = (src_mm->size << PAGE_SHIFT);
477                 } else {
478                         src_node_start += cur_size;
479                         src_page_offset = src_node_start & (PAGE_SIZE - 1);
480                 }
481                 dst_node_size -= cur_size;
482                 if (!dst_node_size) {
483                         dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
484                                                              dst->mem);
485                         dst_node_size = (dst_mm->size << PAGE_SHIFT);
486                 } else {
487                         dst_node_start += cur_size;
488                         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
489                 }
490         }
491 error:
492         mutex_unlock(&adev->mman.gtt_window_lock);
493         if (f)
494                 *f = dma_fence_get(fence);
495         dma_fence_put(fence);
496         return r;
497 }
498
499 /**
500  * amdgpu_move_blit - Copy an entire buffer to another buffer
501  *
502  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
503  * help move buffers to and from VRAM.
504  */
505 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
506                             bool evict, bool no_wait_gpu,
507                             struct ttm_mem_reg *new_mem,
508                             struct ttm_mem_reg *old_mem)
509 {
510         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
511         struct amdgpu_copy_mem src, dst;
512         struct dma_fence *fence = NULL;
513         int r;
514
515         src.bo = bo;
516         dst.bo = bo;
517         src.mem = old_mem;
518         dst.mem = new_mem;
519         src.offset = 0;
520         dst.offset = 0;
521
522         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
523                                        new_mem->num_pages << PAGE_SHIFT,
524                                        bo->resv, &fence);
525         if (r)
526                 goto error;
527
528         r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
529         dma_fence_put(fence);
530         return r;
531
532 error:
533         if (fence)
534                 dma_fence_wait(fence, false);
535         dma_fence_put(fence);
536         return r;
537 }
538
539 /**
540  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
541  *
542  * Called by amdgpu_bo_move().
543  */
544 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
545                                 struct ttm_operation_ctx *ctx,
546                                 struct ttm_mem_reg *new_mem)
547 {
548         struct amdgpu_device *adev;
549         struct ttm_mem_reg *old_mem = &bo->mem;
550         struct ttm_mem_reg tmp_mem;
551         struct ttm_place placements;
552         struct ttm_placement placement;
553         int r;
554
555         adev = amdgpu_ttm_adev(bo->bdev);
556
557         /* create space/pages for new_mem in GTT space */
558         tmp_mem = *new_mem;
559         tmp_mem.mm_node = NULL;
560         placement.num_placement = 1;
561         placement.placement = &placements;
562         placement.num_busy_placement = 1;
563         placement.busy_placement = &placements;
564         placements.fpfn = 0;
565         placements.lpfn = 0;
566         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
567         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
568         if (unlikely(r)) {
569                 return r;
570         }
571
572         /* set caching flags */
573         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
574         if (unlikely(r)) {
575                 goto out_cleanup;
576         }
577
578         /* Bind the memory to the GTT space */
579         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
580         if (unlikely(r)) {
581                 goto out_cleanup;
582         }
583
584         /* blit VRAM to GTT */
585         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
586         if (unlikely(r)) {
587                 goto out_cleanup;
588         }
589
590         /* move BO (in tmp_mem) to new_mem */
591         r = ttm_bo_move_ttm(bo, ctx, new_mem);
592 out_cleanup:
593         ttm_bo_mem_put(bo, &tmp_mem);
594         return r;
595 }
596
597 /**
598  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
599  *
600  * Called by amdgpu_bo_move().
601  */
602 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
603                                 struct ttm_operation_ctx *ctx,
604                                 struct ttm_mem_reg *new_mem)
605 {
606         struct amdgpu_device *adev;
607         struct ttm_mem_reg *old_mem = &bo->mem;
608         struct ttm_mem_reg tmp_mem;
609         struct ttm_placement placement;
610         struct ttm_place placements;
611         int r;
612
613         adev = amdgpu_ttm_adev(bo->bdev);
614
615         /* make space in GTT for old_mem buffer */
616         tmp_mem = *new_mem;
617         tmp_mem.mm_node = NULL;
618         placement.num_placement = 1;
619         placement.placement = &placements;
620         placement.num_busy_placement = 1;
621         placement.busy_placement = &placements;
622         placements.fpfn = 0;
623         placements.lpfn = 0;
624         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
625         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
626         if (unlikely(r)) {
627                 return r;
628         }
629
630         /* move/bind old memory to GTT space */
631         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
632         if (unlikely(r)) {
633                 goto out_cleanup;
634         }
635
636         /* copy to VRAM */
637         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
638         if (unlikely(r)) {
639                 goto out_cleanup;
640         }
641 out_cleanup:
642         ttm_bo_mem_put(bo, &tmp_mem);
643         return r;
644 }
645
646 /**
647  * amdgpu_bo_move - Move a buffer object to a new memory location
648  *
649  * Called by ttm_bo_handle_move_mem()
650  */
651 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
652                           struct ttm_operation_ctx *ctx,
653                           struct ttm_mem_reg *new_mem)
654 {
655         struct amdgpu_device *adev;
656         struct amdgpu_bo *abo;
657         struct ttm_mem_reg *old_mem = &bo->mem;
658         int r;
659
660         /* Can't move a pinned BO */
661         abo = ttm_to_amdgpu_bo(bo);
662         if (WARN_ON_ONCE(abo->pin_count > 0))
663                 return -EINVAL;
664
665         adev = amdgpu_ttm_adev(bo->bdev);
666
667         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
668                 amdgpu_move_null(bo, new_mem);
669                 return 0;
670         }
671         if ((old_mem->mem_type == TTM_PL_TT &&
672              new_mem->mem_type == TTM_PL_SYSTEM) ||
673             (old_mem->mem_type == TTM_PL_SYSTEM &&
674              new_mem->mem_type == TTM_PL_TT)) {
675                 /* bind is enough */
676                 amdgpu_move_null(bo, new_mem);
677                 return 0;
678         }
679
680         if (!adev->mman.buffer_funcs_enabled)
681                 goto memcpy;
682
683         if (old_mem->mem_type == TTM_PL_VRAM &&
684             new_mem->mem_type == TTM_PL_SYSTEM) {
685                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
686         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
687                    new_mem->mem_type == TTM_PL_VRAM) {
688                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
689         } else {
690                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
691                                      new_mem, old_mem);
692         }
693
694         if (r) {
695 memcpy:
696                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
697                 if (r) {
698                         return r;
699                 }
700         }
701
702         if (bo->type == ttm_bo_type_device &&
703             new_mem->mem_type == TTM_PL_VRAM &&
704             old_mem->mem_type != TTM_PL_VRAM) {
705                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
706                  * accesses the BO after it's moved.
707                  */
708                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
709         }
710
711         /* update statistics */
712         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
713         return 0;
714 }
715
716 /**
717  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
718  *
719  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
720  */
721 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
722 {
723         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
724         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
725         struct drm_mm_node *mm_node = mem->mm_node;
726
727         mem->bus.addr = NULL;
728         mem->bus.offset = 0;
729         mem->bus.size = mem->num_pages << PAGE_SHIFT;
730         mem->bus.base = 0;
731         mem->bus.is_iomem = false;
732         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
733                 return -EINVAL;
734         switch (mem->mem_type) {
735         case TTM_PL_SYSTEM:
736                 /* system memory */
737                 return 0;
738         case TTM_PL_TT:
739                 break;
740         case TTM_PL_VRAM:
741                 mem->bus.offset = mem->start << PAGE_SHIFT;
742                 /* check if it's visible */
743                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
744                         return -EINVAL;
745                 /* Only physically contiguous buffers apply. In a contiguous
746                  * buffer, size of the first mm_node would match the number of
747                  * pages in ttm_mem_reg.
748                  */
749                 if (adev->mman.aper_base_kaddr &&
750                     (mm_node->size == mem->num_pages))
751                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
752                                         mem->bus.offset;
753
754                 mem->bus.base = adev->gmc.aper_base;
755                 mem->bus.is_iomem = true;
756                 break;
757         default:
758                 return -EINVAL;
759         }
760         return 0;
761 }
762
763 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
764 {
765 }
766
767 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
768                                            unsigned long page_offset)
769 {
770         struct drm_mm_node *mm;
771         unsigned long offset = (page_offset << PAGE_SHIFT);
772
773         mm = amdgpu_find_mm_node(&bo->mem, &offset);
774         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
775                 (offset >> PAGE_SHIFT);
776 }
777
778 /*
779  * TTM backend functions.
780  */
781 struct amdgpu_ttm_gup_task_list {
782         struct list_head        list;
783         struct task_struct      *task;
784 };
785
786 struct amdgpu_ttm_tt {
787         struct ttm_dma_tt       ttm;
788         u64                     offset;
789         uint64_t                userptr;
790         struct task_struct      *usertask;
791         uint32_t                userflags;
792         spinlock_t              guptasklock;
793         struct list_head        guptasks;
794         atomic_t                mmu_invalidations;
795         uint32_t                last_set_pages;
796 };
797
798 /**
799  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
800  * pointer to memory
801  *
802  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
803  * This provides a wrapper around the get_user_pages() call to provide
804  * device accessible pages that back user memory.
805  */
806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
807 {
808         struct amdgpu_ttm_tt *gtt = (void *)ttm;
809         struct mm_struct *mm = gtt->usertask->mm;
810         unsigned int flags = 0;
811         unsigned pinned = 0;
812         int r;
813
814         if (!mm) /* Happens during process shutdown */
815                 return -ESRCH;
816
817         if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
818                 flags |= FOLL_WRITE;
819
820         down_read(&mm->mmap_sem);
821
822         if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
823                 /*
824                  * check that we only use anonymous memory to prevent problems
825                  * with writeback
826                  */
827                 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
828                 struct vm_area_struct *vma;
829
830                 vma = find_vma(mm, gtt->userptr);
831                 if (!vma || vma->vm_file || vma->vm_end < end) {
832                         up_read(&mm->mmap_sem);
833                         return -EPERM;
834                 }
835         }
836
837         /* loop enough times using contiguous pages of memory */
838         do {
839                 unsigned num_pages = ttm->num_pages - pinned;
840                 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
841                 struct page **p = pages + pinned;
842                 struct amdgpu_ttm_gup_task_list guptask;
843
844                 guptask.task = current;
845                 spin_lock(&gtt->guptasklock);
846                 list_add(&guptask.list, &gtt->guptasks);
847                 spin_unlock(&gtt->guptasklock);
848
849                 if (mm == current->mm)
850                         r = get_user_pages(userptr, num_pages, flags, p, NULL);
851                 else
852                         r = get_user_pages_remote(gtt->usertask,
853                                         mm, userptr, num_pages,
854                                         flags, p, NULL, NULL);
855
856                 spin_lock(&gtt->guptasklock);
857                 list_del(&guptask.list);
858                 spin_unlock(&gtt->guptasklock);
859
860                 if (r < 0)
861                         goto release_pages;
862
863                 pinned += r;
864
865         } while (pinned < ttm->num_pages);
866
867         up_read(&mm->mmap_sem);
868         return 0;
869
870 release_pages:
871         release_pages(pages, pinned);
872         up_read(&mm->mmap_sem);
873         return r;
874 }
875
876 /**
877  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
878  *
879  * Called by amdgpu_cs_list_validate(). This creates the page list
880  * that backs user memory and will ultimately be mapped into the device
881  * address space.
882  */
883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
884 {
885         struct amdgpu_ttm_tt *gtt = (void *)ttm;
886         unsigned i;
887
888         gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
889         for (i = 0; i < ttm->num_pages; ++i) {
890                 if (ttm->pages[i])
891                         put_page(ttm->pages[i]);
892
893                 ttm->pages[i] = pages ? pages[i] : NULL;
894         }
895 }
896
897 /**
898  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
899  *
900  * Called while unpinning userptr pages
901  */
902 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
903 {
904         struct amdgpu_ttm_tt *gtt = (void *)ttm;
905         unsigned i;
906
907         for (i = 0; i < ttm->num_pages; ++i) {
908                 struct page *page = ttm->pages[i];
909
910                 if (!page)
911                         continue;
912
913                 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
914                         set_page_dirty(page);
915
916                 mark_page_accessed(page);
917         }
918 }
919
920 /**
921  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
922  *
923  * Called by amdgpu_ttm_backend_bind()
924  **/
925 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
926 {
927         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
928         struct amdgpu_ttm_tt *gtt = (void *)ttm;
929         unsigned nents;
930         int r;
931
932         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
933         enum dma_data_direction direction = write ?
934                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
935
936         /* Allocate an SG array and squash pages into it */
937         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
938                                       ttm->num_pages << PAGE_SHIFT,
939                                       GFP_KERNEL);
940         if (r)
941                 goto release_sg;
942
943         /* Map SG to device */
944         r = -ENOMEM;
945         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
946         if (nents != ttm->sg->nents)
947                 goto release_sg;
948
949         /* convert SG to linear array of pages and dma addresses */
950         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
951                                          gtt->ttm.dma_address, ttm->num_pages);
952
953         return 0;
954
955 release_sg:
956         kfree(ttm->sg);
957         ttm->sg = NULL;
958         return r;
959 }
960
961 /**
962  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
963  */
964 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
965 {
966         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
967         struct amdgpu_ttm_tt *gtt = (void *)ttm;
968
969         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
970         enum dma_data_direction direction = write ?
971                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
972
973         /* double check that we don't free the table twice */
974         if (!ttm->sg || !ttm->sg->sgl)
975                 return;
976
977         /* unmap the pages mapped to the device */
978         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
979
980         /* mark the pages as dirty */
981         amdgpu_ttm_tt_mark_user_pages(ttm);
982
983         sg_free_table(ttm->sg);
984 }
985
986 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
987                                 struct ttm_buffer_object *tbo,
988                                 uint64_t flags)
989 {
990         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
991         struct ttm_tt *ttm = tbo->ttm;
992         struct amdgpu_ttm_tt *gtt = (void *)ttm;
993         int r;
994
995         if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
996                 uint64_t page_idx = 1;
997
998                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
999                                 ttm->pages, gtt->ttm.dma_address, flags);
1000                 if (r)
1001                         goto gart_bind_fail;
1002
1003                 /* Patch mtype of the second part BO */
1004                 flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1005                 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1006
1007                 r = amdgpu_gart_bind(adev,
1008                                 gtt->offset + (page_idx << PAGE_SHIFT),
1009                                 ttm->num_pages - page_idx,
1010                                 &ttm->pages[page_idx],
1011                                 &(gtt->ttm.dma_address[page_idx]), flags);
1012         } else {
1013                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1014                                      ttm->pages, gtt->ttm.dma_address, flags);
1015         }
1016
1017 gart_bind_fail:
1018         if (r)
1019                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1020                           ttm->num_pages, gtt->offset);
1021
1022         return r;
1023 }
1024
1025 /**
1026  * amdgpu_ttm_backend_bind - Bind GTT memory
1027  *
1028  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1029  * This handles binding GTT memory to the device address space.
1030  */
1031 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1032                                    struct ttm_mem_reg *bo_mem)
1033 {
1034         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1035         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1036         uint64_t flags;
1037         int r = 0;
1038
1039         if (gtt->userptr) {
1040                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1041                 if (r) {
1042                         DRM_ERROR("failed to pin userptr\n");
1043                         return r;
1044                 }
1045         }
1046         if (!ttm->num_pages) {
1047                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1048                      ttm->num_pages, bo_mem, ttm);
1049         }
1050
1051         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1052             bo_mem->mem_type == AMDGPU_PL_GWS ||
1053             bo_mem->mem_type == AMDGPU_PL_OA)
1054                 return -EINVAL;
1055
1056         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1057                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1058                 return 0;
1059         }
1060
1061         /* compute PTE flags relevant to this BO memory */
1062         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1063
1064         /* bind pages into GART page tables */
1065         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1066         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1067                 ttm->pages, gtt->ttm.dma_address, flags);
1068
1069         if (r)
1070                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1071                           ttm->num_pages, gtt->offset);
1072         return r;
1073 }
1074
1075 /**
1076  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1077  */
1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1079 {
1080         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1081         struct ttm_operation_ctx ctx = { false, false };
1082         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1083         struct ttm_mem_reg tmp;
1084         struct ttm_placement placement;
1085         struct ttm_place placements;
1086         uint64_t flags;
1087         int r;
1088
1089         if (bo->mem.mem_type != TTM_PL_TT ||
1090             amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1091                 return 0;
1092
1093         /* allocate GTT space */
1094         tmp = bo->mem;
1095         tmp.mm_node = NULL;
1096         placement.num_placement = 1;
1097         placement.placement = &placements;
1098         placement.num_busy_placement = 1;
1099         placement.busy_placement = &placements;
1100         placements.fpfn = 0;
1101         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1102         placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1103                 TTM_PL_FLAG_TT;
1104
1105         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1106         if (unlikely(r))
1107                 return r;
1108
1109         /* compute PTE flags for this buffer object */
1110         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1111
1112         /* Bind pages */
1113         gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1114         r = amdgpu_ttm_gart_bind(adev, bo, flags);
1115         if (unlikely(r)) {
1116                 ttm_bo_mem_put(bo, &tmp);
1117                 return r;
1118         }
1119
1120         ttm_bo_mem_put(bo, &bo->mem);
1121         bo->mem = tmp;
1122         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1123                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1124
1125         return 0;
1126 }
1127
1128 /**
1129  * amdgpu_ttm_recover_gart - Rebind GTT pages
1130  *
1131  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1132  * rebind GTT pages during a GPU reset.
1133  */
1134 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1135 {
1136         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1137         uint64_t flags;
1138         int r;
1139
1140         if (!tbo->ttm)
1141                 return 0;
1142
1143         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1144         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1145
1146         return r;
1147 }
1148
1149 /**
1150  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1151  *
1152  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1153  * ttm_tt_destroy().
1154  */
1155 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1156 {
1157         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1158         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159         int r;
1160
1161         /* if the pages have userptr pinning then clear that first */
1162         if (gtt->userptr)
1163                 amdgpu_ttm_tt_unpin_userptr(ttm);
1164
1165         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1166                 return 0;
1167
1168         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1169         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1170         if (r)
1171                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1172                           gtt->ttm.ttm.num_pages, gtt->offset);
1173         return r;
1174 }
1175
1176 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1177 {
1178         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1179
1180         if (gtt->usertask)
1181                 put_task_struct(gtt->usertask);
1182
1183         ttm_dma_tt_fini(&gtt->ttm);
1184         kfree(gtt);
1185 }
1186
1187 static struct ttm_backend_func amdgpu_backend_func = {
1188         .bind = &amdgpu_ttm_backend_bind,
1189         .unbind = &amdgpu_ttm_backend_unbind,
1190         .destroy = &amdgpu_ttm_backend_destroy,
1191 };
1192
1193 /**
1194  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1195  *
1196  * @bo: The buffer object to create a GTT ttm_tt object around
1197  *
1198  * Called by ttm_tt_create().
1199  */
1200 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1201                                            uint32_t page_flags)
1202 {
1203         struct amdgpu_device *adev;
1204         struct amdgpu_ttm_tt *gtt;
1205
1206         adev = amdgpu_ttm_adev(bo->bdev);
1207
1208         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1209         if (gtt == NULL) {
1210                 return NULL;
1211         }
1212         gtt->ttm.ttm.func = &amdgpu_backend_func;
1213
1214         /* allocate space for the uninitialized page entries */
1215         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1216                 kfree(gtt);
1217                 return NULL;
1218         }
1219         return &gtt->ttm.ttm;
1220 }
1221
1222 /**
1223  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1224  *
1225  * Map the pages of a ttm_tt object to an address space visible
1226  * to the underlying device.
1227  */
1228 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1229                         struct ttm_operation_ctx *ctx)
1230 {
1231         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1232         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1234
1235         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1236         if (gtt && gtt->userptr) {
1237                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1238                 if (!ttm->sg)
1239                         return -ENOMEM;
1240
1241                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1242                 ttm->state = tt_unbound;
1243                 return 0;
1244         }
1245
1246         if (slave && ttm->sg) {
1247                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1248                                                  gtt->ttm.dma_address,
1249                                                  ttm->num_pages);
1250                 ttm->state = tt_unbound;
1251                 return 0;
1252         }
1253
1254 #ifdef CONFIG_SWIOTLB
1255         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1256                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1257         }
1258 #endif
1259
1260         /* fall back to generic helper to populate the page array
1261          * and map them to the device */
1262         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1263 }
1264
1265 /**
1266  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1267  *
1268  * Unmaps pages of a ttm_tt object from the device address space and
1269  * unpopulates the page array backing it.
1270  */
1271 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1272 {
1273         struct amdgpu_device *adev;
1274         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1275         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1276
1277         if (gtt && gtt->userptr) {
1278                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1279                 kfree(ttm->sg);
1280                 ttm->sg = NULL;
1281                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1282                 return;
1283         }
1284
1285         if (slave)
1286                 return;
1287
1288         adev = amdgpu_ttm_adev(ttm->bdev);
1289
1290 #ifdef CONFIG_SWIOTLB
1291         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1292                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1293                 return;
1294         }
1295 #endif
1296
1297         /* fall back to generic helper to unmap and unpopulate array */
1298         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1299 }
1300
1301 /**
1302  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1303  * task
1304  *
1305  * @ttm: The ttm_tt object to bind this userptr object to
1306  * @addr:  The address in the current tasks VM space to use
1307  * @flags: Requirements of userptr object.
1308  *
1309  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1310  * to current task
1311  */
1312 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1313                               uint32_t flags)
1314 {
1315         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1316
1317         if (gtt == NULL)
1318                 return -EINVAL;
1319
1320         gtt->userptr = addr;
1321         gtt->userflags = flags;
1322
1323         if (gtt->usertask)
1324                 put_task_struct(gtt->usertask);
1325         gtt->usertask = current->group_leader;
1326         get_task_struct(gtt->usertask);
1327
1328         spin_lock_init(&gtt->guptasklock);
1329         INIT_LIST_HEAD(&gtt->guptasks);
1330         atomic_set(&gtt->mmu_invalidations, 0);
1331         gtt->last_set_pages = 0;
1332
1333         return 0;
1334 }
1335
1336 /**
1337  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1338  */
1339 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1340 {
1341         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1342
1343         if (gtt == NULL)
1344                 return NULL;
1345
1346         if (gtt->usertask == NULL)
1347                 return NULL;
1348
1349         return gtt->usertask->mm;
1350 }
1351
1352 /**
1353  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1354  * address range for the current task.
1355  *
1356  */
1357 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1358                                   unsigned long end)
1359 {
1360         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1361         struct amdgpu_ttm_gup_task_list *entry;
1362         unsigned long size;
1363
1364         if (gtt == NULL || !gtt->userptr)
1365                 return false;
1366
1367         /* Return false if no part of the ttm_tt object lies within
1368          * the range
1369          */
1370         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1371         if (gtt->userptr > end || gtt->userptr + size <= start)
1372                 return false;
1373
1374         /* Search the lists of tasks that hold this mapping and see
1375          * if current is one of them.  If it is return false.
1376          */
1377         spin_lock(&gtt->guptasklock);
1378         list_for_each_entry(entry, &gtt->guptasks, list) {
1379                 if (entry->task == current) {
1380                         spin_unlock(&gtt->guptasklock);
1381                         return false;
1382                 }
1383         }
1384         spin_unlock(&gtt->guptasklock);
1385
1386         atomic_inc(&gtt->mmu_invalidations);
1387
1388         return true;
1389 }
1390
1391 /**
1392  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1393  */
1394 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1395                                        int *last_invalidated)
1396 {
1397         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1398         int prev_invalidated = *last_invalidated;
1399
1400         *last_invalidated = atomic_read(&gtt->mmu_invalidations);
1401         return prev_invalidated != *last_invalidated;
1402 }
1403
1404 /**
1405  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1406  * been invalidated since the last time they've been set?
1407  */
1408 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1409 {
1410         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1411
1412         if (gtt == NULL || !gtt->userptr)
1413                 return false;
1414
1415         return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1416 }
1417
1418 /**
1419  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1420  */
1421 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1422 {
1423         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1424
1425         if (gtt == NULL)
1426                 return false;
1427
1428         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1429 }
1430
1431 /**
1432  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1433  *
1434  * @ttm: The ttm_tt object to compute the flags for
1435  * @mem: The memory registry backing this ttm_tt object
1436  */
1437 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1438                                  struct ttm_mem_reg *mem)
1439 {
1440         uint64_t flags = 0;
1441
1442         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1443                 flags |= AMDGPU_PTE_VALID;
1444
1445         if (mem && mem->mem_type == TTM_PL_TT) {
1446                 flags |= AMDGPU_PTE_SYSTEM;
1447
1448                 if (ttm->caching_state == tt_cached)
1449                         flags |= AMDGPU_PTE_SNOOPED;
1450         }
1451
1452         flags |= adev->gart.gart_pte_flags;
1453         flags |= AMDGPU_PTE_READABLE;
1454
1455         if (!amdgpu_ttm_tt_is_readonly(ttm))
1456                 flags |= AMDGPU_PTE_WRITEABLE;
1457
1458         return flags;
1459 }
1460
1461 /**
1462  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1463  * object.
1464  *
1465  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1466  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1467  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1468  * used to clean out a memory space.
1469  */
1470 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1471                                             const struct ttm_place *place)
1472 {
1473         unsigned long num_pages = bo->mem.num_pages;
1474         struct drm_mm_node *node = bo->mem.mm_node;
1475         struct reservation_object_list *flist;
1476         struct dma_fence *f;
1477         int i;
1478
1479         /* If bo is a KFD BO, check if the bo belongs to the current process.
1480          * If true, then return false as any KFD process needs all its BOs to
1481          * be resident to run successfully
1482          */
1483         flist = reservation_object_get_list(bo->resv);
1484         if (flist) {
1485                 for (i = 0; i < flist->shared_count; ++i) {
1486                         f = rcu_dereference_protected(flist->shared[i],
1487                                 reservation_object_held(bo->resv));
1488                         if (amdkfd_fence_check_mm(f, current->mm))
1489                                 return false;
1490                 }
1491         }
1492
1493         switch (bo->mem.mem_type) {
1494         case TTM_PL_TT:
1495                 return true;
1496
1497         case TTM_PL_VRAM:
1498                 /* Check each drm MM node individually */
1499                 while (num_pages) {
1500                         if (place->fpfn < (node->start + node->size) &&
1501                             !(place->lpfn && place->lpfn <= node->start))
1502                                 return true;
1503
1504                         num_pages -= node->size;
1505                         ++node;
1506                 }
1507                 return false;
1508
1509         default:
1510                 break;
1511         }
1512
1513         return ttm_bo_eviction_valuable(bo, place);
1514 }
1515
1516 /**
1517  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1518  *
1519  * @bo:  The buffer object to read/write
1520  * @offset:  Offset into buffer object
1521  * @buf:  Secondary buffer to write/read from
1522  * @len: Length in bytes of access
1523  * @write:  true if writing
1524  *
1525  * This is used to access VRAM that backs a buffer object via MMIO
1526  * access for debugging purposes.
1527  */
1528 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1529                                     unsigned long offset,
1530                                     void *buf, int len, int write)
1531 {
1532         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1533         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1534         struct drm_mm_node *nodes;
1535         uint32_t value = 0;
1536         int ret = 0;
1537         uint64_t pos;
1538         unsigned long flags;
1539
1540         if (bo->mem.mem_type != TTM_PL_VRAM)
1541                 return -EIO;
1542
1543         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1544         pos = (nodes->start << PAGE_SHIFT) + offset;
1545
1546         while (len && pos < adev->gmc.mc_vram_size) {
1547                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1548                 uint32_t bytes = 4 - (pos & 3);
1549                 uint32_t shift = (pos & 3) * 8;
1550                 uint32_t mask = 0xffffffff << shift;
1551
1552                 if (len < bytes) {
1553                         mask &= 0xffffffff >> (bytes - len) * 8;
1554                         bytes = len;
1555                 }
1556
1557                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1558                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1559                 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1560                 if (!write || mask != 0xffffffff)
1561                         value = RREG32_NO_KIQ(mmMM_DATA);
1562                 if (write) {
1563                         value &= ~mask;
1564                         value |= (*(uint32_t *)buf << shift) & mask;
1565                         WREG32_NO_KIQ(mmMM_DATA, value);
1566                 }
1567                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1568                 if (!write) {
1569                         value = (value & mask) >> shift;
1570                         memcpy(buf, &value, bytes);
1571                 }
1572
1573                 ret += bytes;
1574                 buf = (uint8_t *)buf + bytes;
1575                 pos += bytes;
1576                 len -= bytes;
1577                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1578                         ++nodes;
1579                         pos = (nodes->start << PAGE_SHIFT);
1580                 }
1581         }
1582
1583         return ret;
1584 }
1585
1586 static struct ttm_bo_driver amdgpu_bo_driver = {
1587         .ttm_tt_create = &amdgpu_ttm_tt_create,
1588         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1589         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1590         .invalidate_caches = &amdgpu_invalidate_caches,
1591         .init_mem_type = &amdgpu_init_mem_type,
1592         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1593         .evict_flags = &amdgpu_evict_flags,
1594         .move = &amdgpu_bo_move,
1595         .verify_access = &amdgpu_verify_access,
1596         .move_notify = &amdgpu_bo_move_notify,
1597         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1598         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1599         .io_mem_free = &amdgpu_ttm_io_mem_free,
1600         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1601         .access_memory = &amdgpu_ttm_access_memory
1602 };
1603
1604 /*
1605  * Firmware Reservation functions
1606  */
1607 /**
1608  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1609  *
1610  * @adev: amdgpu_device pointer
1611  *
1612  * free fw reserved vram if it has been reserved.
1613  */
1614 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1615 {
1616         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1617                 NULL, &adev->fw_vram_usage.va);
1618 }
1619
1620 /**
1621  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1622  *
1623  * @adev: amdgpu_device pointer
1624  *
1625  * create bo vram reservation from fw.
1626  */
1627 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1628 {
1629         struct ttm_operation_ctx ctx = { false, false };
1630         struct amdgpu_bo_param bp;
1631         int r = 0;
1632         int i;
1633         u64 vram_size = adev->gmc.visible_vram_size;
1634         u64 offset = adev->fw_vram_usage.start_offset;
1635         u64 size = adev->fw_vram_usage.size;
1636         struct amdgpu_bo *bo;
1637
1638         memset(&bp, 0, sizeof(bp));
1639         bp.size = adev->fw_vram_usage.size;
1640         bp.byte_align = PAGE_SIZE;
1641         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1642         bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1643                 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1644         bp.type = ttm_bo_type_kernel;
1645         bp.resv = NULL;
1646         adev->fw_vram_usage.va = NULL;
1647         adev->fw_vram_usage.reserved_bo = NULL;
1648
1649         if (adev->fw_vram_usage.size > 0 &&
1650                 adev->fw_vram_usage.size <= vram_size) {
1651
1652                 r = amdgpu_bo_create(adev, &bp,
1653                                      &adev->fw_vram_usage.reserved_bo);
1654                 if (r)
1655                         goto error_create;
1656
1657                 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1658                 if (r)
1659                         goto error_reserve;
1660
1661                 /* remove the original mem node and create a new one at the
1662                  * request position
1663                  */
1664                 bo = adev->fw_vram_usage.reserved_bo;
1665                 offset = ALIGN(offset, PAGE_SIZE);
1666                 for (i = 0; i < bo->placement.num_placement; ++i) {
1667                         bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1668                         bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1669                 }
1670
1671                 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1672                 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1673                                      &bo->tbo.mem, &ctx);
1674                 if (r)
1675                         goto error_pin;
1676
1677                 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1678                         AMDGPU_GEM_DOMAIN_VRAM,
1679                         adev->fw_vram_usage.start_offset,
1680                         (adev->fw_vram_usage.start_offset +
1681                         adev->fw_vram_usage.size));
1682                 if (r)
1683                         goto error_pin;
1684                 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1685                         &adev->fw_vram_usage.va);
1686                 if (r)
1687                         goto error_kmap;
1688
1689                 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1690         }
1691         return r;
1692
1693 error_kmap:
1694         amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1695 error_pin:
1696         amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1697 error_reserve:
1698         amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1699 error_create:
1700         adev->fw_vram_usage.va = NULL;
1701         adev->fw_vram_usage.reserved_bo = NULL;
1702         return r;
1703 }
1704 /**
1705  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1706  * gtt/vram related fields.
1707  *
1708  * This initializes all of the memory space pools that the TTM layer
1709  * will need such as the GTT space (system memory mapped to the device),
1710  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1711  * can be mapped per VMID.
1712  */
1713 int amdgpu_ttm_init(struct amdgpu_device *adev)
1714 {
1715         uint64_t gtt_size;
1716         int r;
1717         u64 vis_vram_limit;
1718
1719         /* initialize global references for vram/gtt */
1720         r = amdgpu_ttm_global_init(adev);
1721         if (r) {
1722                 return r;
1723         }
1724         /* No others user of address space so set it to 0 */
1725         r = ttm_bo_device_init(&adev->mman.bdev,
1726                                adev->mman.bo_global_ref.ref.object,
1727                                &amdgpu_bo_driver,
1728                                adev->ddev->anon_inode->i_mapping,
1729                                DRM_FILE_PAGE_OFFSET,
1730                                adev->need_dma32);
1731         if (r) {
1732                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1733                 return r;
1734         }
1735         adev->mman.initialized = true;
1736
1737         /* We opt to avoid OOM on system pages allocations */
1738         adev->mman.bdev.no_retry = true;
1739
1740         /* Initialize VRAM pool with all of VRAM divided into pages */
1741         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1742                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1743         if (r) {
1744                 DRM_ERROR("Failed initializing VRAM heap.\n");
1745                 return r;
1746         }
1747
1748         /* Reduce size of CPU-visible VRAM if requested */
1749         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1750         if (amdgpu_vis_vram_limit > 0 &&
1751             vis_vram_limit <= adev->gmc.visible_vram_size)
1752                 adev->gmc.visible_vram_size = vis_vram_limit;
1753
1754         /* Change the size here instead of the init above so only lpfn is affected */
1755         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1756 #ifdef CONFIG_64BIT
1757         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1758                                                 adev->gmc.visible_vram_size);
1759 #endif
1760
1761         /*
1762          *The reserved vram for firmware must be pinned to the specified
1763          *place on the VRAM, so reserve it early.
1764          */
1765         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1766         if (r) {
1767                 return r;
1768         }
1769
1770         /* allocate memory as required for VGA
1771          * This is used for VGA emulation and pre-OS scanout buffers to
1772          * avoid display artifacts while transitioning between pre-OS
1773          * and driver.  */
1774         if (adev->gmc.stolen_size) {
1775                 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1776                                             AMDGPU_GEM_DOMAIN_VRAM,
1777                                             &adev->stolen_vga_memory,
1778                                             NULL, NULL);
1779                 if (r)
1780                         return r;
1781         }
1782         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1783                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1784
1785         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1786          * or whatever the user passed on module init */
1787         if (amdgpu_gtt_size == -1) {
1788                 struct sysinfo si;
1789
1790                 si_meminfo(&si);
1791                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1792                                adev->gmc.mc_vram_size),
1793                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1794         }
1795         else
1796                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1797
1798         /* Initialize GTT memory pool */
1799         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1800         if (r) {
1801                 DRM_ERROR("Failed initializing GTT heap.\n");
1802                 return r;
1803         }
1804         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1805                  (unsigned)(gtt_size / (1024 * 1024)));
1806
1807         /* Initialize various on-chip memory pools */
1808         adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1809         adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1810         adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1811         adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1812         adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1813         adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1814         adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1815         adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1816         adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1817         /* GDS Memory */
1818         if (adev->gds.mem.total_size) {
1819                 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1820                                    adev->gds.mem.total_size >> PAGE_SHIFT);
1821                 if (r) {
1822                         DRM_ERROR("Failed initializing GDS heap.\n");
1823                         return r;
1824                 }
1825         }
1826
1827         /* GWS */
1828         if (adev->gds.gws.total_size) {
1829                 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1830                                    adev->gds.gws.total_size >> PAGE_SHIFT);
1831                 if (r) {
1832                         DRM_ERROR("Failed initializing gws heap.\n");
1833                         return r;
1834                 }
1835         }
1836
1837         /* OA */
1838         if (adev->gds.oa.total_size) {
1839                 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1840                                    adev->gds.oa.total_size >> PAGE_SHIFT);
1841                 if (r) {
1842                         DRM_ERROR("Failed initializing oa heap.\n");
1843                         return r;
1844                 }
1845         }
1846
1847         /* Register debugfs entries for amdgpu_ttm */
1848         r = amdgpu_ttm_debugfs_init(adev);
1849         if (r) {
1850                 DRM_ERROR("Failed to init debugfs\n");
1851                 return r;
1852         }
1853         return 0;
1854 }
1855
1856 /**
1857  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1858  */
1859 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1860 {
1861         /* return the VGA stolen memory (if any) back to VRAM */
1862         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1863 }
1864
1865 /**
1866  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1867  */
1868 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1869 {
1870         if (!adev->mman.initialized)
1871                 return;
1872
1873         amdgpu_ttm_debugfs_fini(adev);
1874         amdgpu_ttm_fw_reserve_vram_fini(adev);
1875         if (adev->mman.aper_base_kaddr)
1876                 iounmap(adev->mman.aper_base_kaddr);
1877         adev->mman.aper_base_kaddr = NULL;
1878
1879         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1880         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1881         if (adev->gds.mem.total_size)
1882                 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1883         if (adev->gds.gws.total_size)
1884                 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1885         if (adev->gds.oa.total_size)
1886                 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1887         ttm_bo_device_release(&adev->mman.bdev);
1888         amdgpu_ttm_global_fini(adev);
1889         adev->mman.initialized = false;
1890         DRM_INFO("amdgpu: ttm finalized\n");
1891 }
1892
1893 /**
1894  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1895  *
1896  * @adev: amdgpu_device pointer
1897  * @enable: true when we can use buffer functions.
1898  *
1899  * Enable/disable use of buffer functions during suspend/resume. This should
1900  * only be called at bootup or when userspace isn't running.
1901  */
1902 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1903 {
1904         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1905         uint64_t size;
1906         int r;
1907
1908         if (!adev->mman.initialized || adev->in_gpu_reset ||
1909             adev->mman.buffer_funcs_enabled == enable)
1910                 return;
1911
1912         if (enable) {
1913                 struct amdgpu_ring *ring;
1914                 struct drm_sched_rq *rq;
1915
1916                 ring = adev->mman.buffer_funcs_ring;
1917                 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1918                 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1919                 if (r) {
1920                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1921                                   r);
1922                         return;
1923                 }
1924         } else {
1925                 drm_sched_entity_destroy(&adev->mman.entity);
1926                 dma_fence_put(man->move);
1927                 man->move = NULL;
1928         }
1929
1930         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1931         if (enable)
1932                 size = adev->gmc.real_vram_size;
1933         else
1934                 size = adev->gmc.visible_vram_size;
1935         man->size = size >> PAGE_SHIFT;
1936         adev->mman.buffer_funcs_enabled = enable;
1937 }
1938
1939 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1940 {
1941         struct drm_file *file_priv;
1942         struct amdgpu_device *adev;
1943
1944         if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1945                 return -EINVAL;
1946
1947         file_priv = filp->private_data;
1948         adev = file_priv->minor->dev->dev_private;
1949         if (adev == NULL)
1950                 return -EINVAL;
1951
1952         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1953 }
1954
1955 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1956                              struct ttm_mem_reg *mem, unsigned num_pages,
1957                              uint64_t offset, unsigned window,
1958                              struct amdgpu_ring *ring,
1959                              uint64_t *addr)
1960 {
1961         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1962         struct amdgpu_device *adev = ring->adev;
1963         struct ttm_tt *ttm = bo->ttm;
1964         struct amdgpu_job *job;
1965         unsigned num_dw, num_bytes;
1966         dma_addr_t *dma_address;
1967         struct dma_fence *fence;
1968         uint64_t src_addr, dst_addr;
1969         uint64_t flags;
1970         int r;
1971
1972         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1973                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1974
1975         *addr = adev->gmc.gart_start;
1976         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1977                 AMDGPU_GPU_PAGE_SIZE;
1978
1979         num_dw = adev->mman.buffer_funcs->copy_num_dw;
1980         while (num_dw & 0x7)
1981                 num_dw++;
1982
1983         num_bytes = num_pages * 8;
1984
1985         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1986         if (r)
1987                 return r;
1988
1989         src_addr = num_dw * 4;
1990         src_addr += job->ibs[0].gpu_addr;
1991
1992         dst_addr = adev->gart.table_addr;
1993         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1994         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1995                                 dst_addr, num_bytes);
1996
1997         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1998         WARN_ON(job->ibs[0].length_dw > num_dw);
1999
2000         dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2001         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2002         r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2003                             &job->ibs[0].ptr[num_dw]);
2004         if (r)
2005                 goto error_free;
2006
2007         r = amdgpu_job_submit(job, &adev->mman.entity,
2008                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2009         if (r)
2010                 goto error_free;
2011
2012         dma_fence_put(fence);
2013
2014         return r;
2015
2016 error_free:
2017         amdgpu_job_free(job);
2018         return r;
2019 }
2020
2021 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2022                        uint64_t dst_offset, uint32_t byte_count,
2023                        struct reservation_object *resv,
2024                        struct dma_fence **fence, bool direct_submit,
2025                        bool vm_needs_flush)
2026 {
2027         struct amdgpu_device *adev = ring->adev;
2028         struct amdgpu_job *job;
2029
2030         uint32_t max_bytes;
2031         unsigned num_loops, num_dw;
2032         unsigned i;
2033         int r;
2034
2035         if (direct_submit && !ring->ready) {
2036                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2037                 return -EINVAL;
2038         }
2039
2040         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2041         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2042         num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2043
2044         /* for IB padding */
2045         while (num_dw & 0x7)
2046                 num_dw++;
2047
2048         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2049         if (r)
2050                 return r;
2051
2052         job->vm_needs_flush = vm_needs_flush;
2053         if (resv) {
2054                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2055                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2056                                      false);
2057                 if (r) {
2058                         DRM_ERROR("sync failed (%d).\n", r);
2059                         goto error_free;
2060                 }
2061         }
2062
2063         for (i = 0; i < num_loops; i++) {
2064                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2065
2066                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2067                                         dst_offset, cur_size_in_bytes);
2068
2069                 src_offset += cur_size_in_bytes;
2070                 dst_offset += cur_size_in_bytes;
2071                 byte_count -= cur_size_in_bytes;
2072         }
2073
2074         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2075         WARN_ON(job->ibs[0].length_dw > num_dw);
2076         if (direct_submit)
2077                 r = amdgpu_job_submit_direct(job, ring, fence);
2078         else
2079                 r = amdgpu_job_submit(job, &adev->mman.entity,
2080                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2081         if (r)
2082                 goto error_free;
2083
2084         return r;
2085
2086 error_free:
2087         amdgpu_job_free(job);
2088         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2089         return r;
2090 }
2091
2092 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2093                        uint32_t src_data,
2094                        struct reservation_object *resv,
2095                        struct dma_fence **fence)
2096 {
2097         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2098         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2099         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2100
2101         struct drm_mm_node *mm_node;
2102         unsigned long num_pages;
2103         unsigned int num_loops, num_dw;
2104
2105         struct amdgpu_job *job;
2106         int r;
2107
2108         if (!adev->mman.buffer_funcs_enabled) {
2109                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2110                 return -EINVAL;
2111         }
2112
2113         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2114                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2115                 if (r)
2116                         return r;
2117         }
2118
2119         num_pages = bo->tbo.num_pages;
2120         mm_node = bo->tbo.mem.mm_node;
2121         num_loops = 0;
2122         while (num_pages) {
2123                 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2124
2125                 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2126                 num_pages -= mm_node->size;
2127                 ++mm_node;
2128         }
2129         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2130
2131         /* for IB padding */
2132         num_dw += 64;
2133
2134         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2135         if (r)
2136                 return r;
2137
2138         if (resv) {
2139                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2140                                      AMDGPU_FENCE_OWNER_UNDEFINED, false);
2141                 if (r) {
2142                         DRM_ERROR("sync failed (%d).\n", r);
2143                         goto error_free;
2144                 }
2145         }
2146
2147         num_pages = bo->tbo.num_pages;
2148         mm_node = bo->tbo.mem.mm_node;
2149
2150         while (num_pages) {
2151                 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2152                 uint64_t dst_addr;
2153
2154                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2155                 while (byte_count) {
2156                         uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2157
2158                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2159                                                 dst_addr, cur_size_in_bytes);
2160
2161                         dst_addr += cur_size_in_bytes;
2162                         byte_count -= cur_size_in_bytes;
2163                 }
2164
2165                 num_pages -= mm_node->size;
2166                 ++mm_node;
2167         }
2168
2169         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2170         WARN_ON(job->ibs[0].length_dw > num_dw);
2171         r = amdgpu_job_submit(job, &adev->mman.entity,
2172                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2173         if (r)
2174                 goto error_free;
2175
2176         return 0;
2177
2178 error_free:
2179         amdgpu_job_free(job);
2180         return r;
2181 }
2182
2183 #if defined(CONFIG_DEBUG_FS)
2184
2185 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2186 {
2187         struct drm_info_node *node = (struct drm_info_node *)m->private;
2188         unsigned ttm_pl = *(int *)node->info_ent->data;
2189         struct drm_device *dev = node->minor->dev;
2190         struct amdgpu_device *adev = dev->dev_private;
2191         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2192         struct drm_printer p = drm_seq_file_printer(m);
2193
2194         man->func->debug(man, &p);
2195         return 0;
2196 }
2197
2198 static int ttm_pl_vram = TTM_PL_VRAM;
2199 static int ttm_pl_tt = TTM_PL_TT;
2200
2201 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2202         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2203         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2204         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2205 #ifdef CONFIG_SWIOTLB
2206         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2207 #endif
2208 };
2209
2210 /**
2211  * amdgpu_ttm_vram_read - Linear read access to VRAM
2212  *
2213  * Accesses VRAM via MMIO for debugging purposes.
2214  */
2215 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2216                                     size_t size, loff_t *pos)
2217 {
2218         struct amdgpu_device *adev = file_inode(f)->i_private;
2219         ssize_t result = 0;
2220         int r;
2221
2222         if (size & 0x3 || *pos & 0x3)
2223                 return -EINVAL;
2224
2225         if (*pos >= adev->gmc.mc_vram_size)
2226                 return -ENXIO;
2227
2228         while (size) {
2229                 unsigned long flags;
2230                 uint32_t value;
2231
2232                 if (*pos >= adev->gmc.mc_vram_size)
2233                         return result;
2234
2235                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2236                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2237                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2238                 value = RREG32_NO_KIQ(mmMM_DATA);
2239                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2240
2241                 r = put_user(value, (uint32_t *)buf);
2242                 if (r)
2243                         return r;
2244
2245                 result += 4;
2246                 buf += 4;
2247                 *pos += 4;
2248                 size -= 4;
2249         }
2250
2251         return result;
2252 }
2253
2254 /**
2255  * amdgpu_ttm_vram_write - Linear write access to VRAM
2256  *
2257  * Accesses VRAM via MMIO for debugging purposes.
2258  */
2259 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2260                                     size_t size, loff_t *pos)
2261 {
2262         struct amdgpu_device *adev = file_inode(f)->i_private;
2263         ssize_t result = 0;
2264         int r;
2265
2266         if (size & 0x3 || *pos & 0x3)
2267                 return -EINVAL;
2268
2269         if (*pos >= adev->gmc.mc_vram_size)
2270                 return -ENXIO;
2271
2272         while (size) {
2273                 unsigned long flags;
2274                 uint32_t value;
2275
2276                 if (*pos >= adev->gmc.mc_vram_size)
2277                         return result;
2278
2279                 r = get_user(value, (uint32_t *)buf);
2280                 if (r)
2281                         return r;
2282
2283                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2284                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2285                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2286                 WREG32_NO_KIQ(mmMM_DATA, value);
2287                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2288
2289                 result += 4;
2290                 buf += 4;
2291                 *pos += 4;
2292                 size -= 4;
2293         }
2294
2295         return result;
2296 }
2297
2298 static const struct file_operations amdgpu_ttm_vram_fops = {
2299         .owner = THIS_MODULE,
2300         .read = amdgpu_ttm_vram_read,
2301         .write = amdgpu_ttm_vram_write,
2302         .llseek = default_llseek,
2303 };
2304
2305 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2306
2307 /**
2308  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2309  */
2310 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2311                                    size_t size, loff_t *pos)
2312 {
2313         struct amdgpu_device *adev = file_inode(f)->i_private;
2314         ssize_t result = 0;
2315         int r;
2316
2317         while (size) {
2318                 loff_t p = *pos / PAGE_SIZE;
2319                 unsigned off = *pos & ~PAGE_MASK;
2320                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2321                 struct page *page;
2322                 void *ptr;
2323
2324                 if (p >= adev->gart.num_cpu_pages)
2325                         return result;
2326
2327                 page = adev->gart.pages[p];
2328                 if (page) {
2329                         ptr = kmap(page);
2330                         ptr += off;
2331
2332                         r = copy_to_user(buf, ptr, cur_size);
2333                         kunmap(adev->gart.pages[p]);
2334                 } else
2335                         r = clear_user(buf, cur_size);
2336
2337                 if (r)
2338                         return -EFAULT;
2339
2340                 result += cur_size;
2341                 buf += cur_size;
2342                 *pos += cur_size;
2343                 size -= cur_size;
2344         }
2345
2346         return result;
2347 }
2348
2349 static const struct file_operations amdgpu_ttm_gtt_fops = {
2350         .owner = THIS_MODULE,
2351         .read = amdgpu_ttm_gtt_read,
2352         .llseek = default_llseek
2353 };
2354
2355 #endif
2356
2357 /**
2358  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2359  *
2360  * This function is used to read memory that has been mapped to the
2361  * GPU and the known addresses are not physical addresses but instead
2362  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2363  */
2364 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2365                                  size_t size, loff_t *pos)
2366 {
2367         struct amdgpu_device *adev = file_inode(f)->i_private;
2368         struct iommu_domain *dom;
2369         ssize_t result = 0;
2370         int r;
2371
2372         /* retrieve the IOMMU domain if any for this device */
2373         dom = iommu_get_domain_for_dev(adev->dev);
2374
2375         while (size) {
2376                 phys_addr_t addr = *pos & PAGE_MASK;
2377                 loff_t off = *pos & ~PAGE_MASK;
2378                 size_t bytes = PAGE_SIZE - off;
2379                 unsigned long pfn;
2380                 struct page *p;
2381                 void *ptr;
2382
2383                 bytes = bytes < size ? bytes : size;
2384
2385                 /* Translate the bus address to a physical address.  If
2386                  * the domain is NULL it means there is no IOMMU active
2387                  * and the address translation is the identity
2388                  */
2389                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2390
2391                 pfn = addr >> PAGE_SHIFT;
2392                 if (!pfn_valid(pfn))
2393                         return -EPERM;
2394
2395                 p = pfn_to_page(pfn);
2396                 if (p->mapping != adev->mman.bdev.dev_mapping)
2397                         return -EPERM;
2398
2399                 ptr = kmap(p);
2400                 r = copy_to_user(buf, ptr + off, bytes);
2401                 kunmap(p);
2402                 if (r)
2403                         return -EFAULT;
2404
2405                 size -= bytes;
2406                 *pos += bytes;
2407                 result += bytes;
2408         }
2409
2410         return result;
2411 }
2412
2413 /**
2414  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2415  *
2416  * This function is used to write memory that has been mapped to the
2417  * GPU and the known addresses are not physical addresses but instead
2418  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2419  */
2420 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2421                                  size_t size, loff_t *pos)
2422 {
2423         struct amdgpu_device *adev = file_inode(f)->i_private;
2424         struct iommu_domain *dom;
2425         ssize_t result = 0;
2426         int r;
2427
2428         dom = iommu_get_domain_for_dev(adev->dev);
2429
2430         while (size) {
2431                 phys_addr_t addr = *pos & PAGE_MASK;
2432                 loff_t off = *pos & ~PAGE_MASK;
2433                 size_t bytes = PAGE_SIZE - off;
2434                 unsigned long pfn;
2435                 struct page *p;
2436                 void *ptr;
2437
2438                 bytes = bytes < size ? bytes : size;
2439
2440                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2441
2442                 pfn = addr >> PAGE_SHIFT;
2443                 if (!pfn_valid(pfn))
2444                         return -EPERM;
2445
2446                 p = pfn_to_page(pfn);
2447                 if (p->mapping != adev->mman.bdev.dev_mapping)
2448                         return -EPERM;
2449
2450                 ptr = kmap(p);
2451                 r = copy_from_user(ptr + off, buf, bytes);
2452                 kunmap(p);
2453                 if (r)
2454                         return -EFAULT;
2455
2456                 size -= bytes;
2457                 *pos += bytes;
2458                 result += bytes;
2459         }
2460
2461         return result;
2462 }
2463
2464 static const struct file_operations amdgpu_ttm_iomem_fops = {
2465         .owner = THIS_MODULE,
2466         .read = amdgpu_iomem_read,
2467         .write = amdgpu_iomem_write,
2468         .llseek = default_llseek
2469 };
2470
2471 static const struct {
2472         char *name;
2473         const struct file_operations *fops;
2474         int domain;
2475 } ttm_debugfs_entries[] = {
2476         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2477 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2478         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2479 #endif
2480         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2481 };
2482
2483 #endif
2484
2485 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2486 {
2487 #if defined(CONFIG_DEBUG_FS)
2488         unsigned count;
2489
2490         struct drm_minor *minor = adev->ddev->primary;
2491         struct dentry *ent, *root = minor->debugfs_root;
2492
2493         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2494                 ent = debugfs_create_file(
2495                                 ttm_debugfs_entries[count].name,
2496                                 S_IFREG | S_IRUGO, root,
2497                                 adev,
2498                                 ttm_debugfs_entries[count].fops);
2499                 if (IS_ERR(ent))
2500                         return PTR_ERR(ent);
2501                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2502                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2503                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2504                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2505                 adev->mman.debugfs_entries[count] = ent;
2506         }
2507
2508         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2509
2510 #ifdef CONFIG_SWIOTLB
2511         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2512                 --count;
2513 #endif
2514
2515         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2516 #else
2517         return 0;
2518 #endif
2519 }
2520
2521 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2522 {
2523 #if defined(CONFIG_DEBUG_FS)
2524         unsigned i;
2525
2526         for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2527                 debugfs_remove(adev->mman.debugfs_entries[i]);
2528 #endif
2529 }