GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31
32 #define MQD_SIZE_ALIGNED 768
33
34 /*
35  * kfd_locked is used to lock the kfd driver during suspend or reset
36  * once locked, kfd driver will stop any further GPU execution.
37  * create process (open) will return -EAGAIN.
38  */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43         .asic_family = CHIP_KAVERI,
44         .max_pasid_bits = 16,
45         /* max num of queues for KV.TODO should be a dynamic value */
46         .max_no_of_hqd  = 24,
47         .doorbell_size  = 4,
48         .ih_ring_entry_size = 4 * sizeof(uint32_t),
49         .event_interrupt_class = &event_interrupt_class_cik,
50         .num_of_watch_points = 4,
51         .mqd_size_aligned = MQD_SIZE_ALIGNED,
52         .supports_cwsr = false,
53         .needs_iommu_device = true,
54         .needs_pci_atomics = false,
55         .num_sdma_engines = 2,
56 };
57
58 static const struct kfd_device_info carrizo_device_info = {
59         .asic_family = CHIP_CARRIZO,
60         .max_pasid_bits = 16,
61         /* max num of queues for CZ.TODO should be a dynamic value */
62         .max_no_of_hqd  = 24,
63         .doorbell_size  = 4,
64         .ih_ring_entry_size = 4 * sizeof(uint32_t),
65         .event_interrupt_class = &event_interrupt_class_cik,
66         .num_of_watch_points = 4,
67         .mqd_size_aligned = MQD_SIZE_ALIGNED,
68         .supports_cwsr = true,
69         .needs_iommu_device = true,
70         .needs_pci_atomics = false,
71         .num_sdma_engines = 2,
72 };
73
74 static const struct kfd_device_info raven_device_info = {
75         .asic_family = CHIP_RAVEN,
76         .max_pasid_bits = 16,
77         .max_no_of_hqd  = 24,
78         .doorbell_size  = 8,
79         .ih_ring_entry_size = 8 * sizeof(uint32_t),
80         .event_interrupt_class = &event_interrupt_class_v9,
81         .num_of_watch_points = 4,
82         .mqd_size_aligned = MQD_SIZE_ALIGNED,
83         .supports_cwsr = true,
84         .needs_iommu_device = true,
85         .needs_pci_atomics = true,
86         .num_sdma_engines = 1,
87 };
88 #endif
89
90 static const struct kfd_device_info hawaii_device_info = {
91         .asic_family = CHIP_HAWAII,
92         .max_pasid_bits = 16,
93         /* max num of queues for KV.TODO should be a dynamic value */
94         .max_no_of_hqd  = 24,
95         .doorbell_size  = 4,
96         .ih_ring_entry_size = 4 * sizeof(uint32_t),
97         .event_interrupt_class = &event_interrupt_class_cik,
98         .num_of_watch_points = 4,
99         .mqd_size_aligned = MQD_SIZE_ALIGNED,
100         .supports_cwsr = false,
101         .needs_iommu_device = false,
102         .needs_pci_atomics = false,
103         .num_sdma_engines = 2,
104 };
105
106 static const struct kfd_device_info tonga_device_info = {
107         .asic_family = CHIP_TONGA,
108         .max_pasid_bits = 16,
109         .max_no_of_hqd  = 24,
110         .doorbell_size  = 4,
111         .ih_ring_entry_size = 4 * sizeof(uint32_t),
112         .event_interrupt_class = &event_interrupt_class_cik,
113         .num_of_watch_points = 4,
114         .mqd_size_aligned = MQD_SIZE_ALIGNED,
115         .supports_cwsr = false,
116         .needs_iommu_device = false,
117         .needs_pci_atomics = true,
118         .num_sdma_engines = 2,
119 };
120
121 static const struct kfd_device_info tonga_vf_device_info = {
122         .asic_family = CHIP_TONGA,
123         .max_pasid_bits = 16,
124         .max_no_of_hqd  = 24,
125         .doorbell_size  = 4,
126         .ih_ring_entry_size = 4 * sizeof(uint32_t),
127         .event_interrupt_class = &event_interrupt_class_cik,
128         .num_of_watch_points = 4,
129         .mqd_size_aligned = MQD_SIZE_ALIGNED,
130         .supports_cwsr = false,
131         .needs_iommu_device = false,
132         .needs_pci_atomics = false,
133         .num_sdma_engines = 2,
134 };
135
136 static const struct kfd_device_info fiji_device_info = {
137         .asic_family = CHIP_FIJI,
138         .max_pasid_bits = 16,
139         .max_no_of_hqd  = 24,
140         .doorbell_size  = 4,
141         .ih_ring_entry_size = 4 * sizeof(uint32_t),
142         .event_interrupt_class = &event_interrupt_class_cik,
143         .num_of_watch_points = 4,
144         .mqd_size_aligned = MQD_SIZE_ALIGNED,
145         .supports_cwsr = true,
146         .needs_iommu_device = false,
147         .needs_pci_atomics = true,
148         .num_sdma_engines = 2,
149 };
150
151 static const struct kfd_device_info fiji_vf_device_info = {
152         .asic_family = CHIP_FIJI,
153         .max_pasid_bits = 16,
154         .max_no_of_hqd  = 24,
155         .doorbell_size  = 4,
156         .ih_ring_entry_size = 4 * sizeof(uint32_t),
157         .event_interrupt_class = &event_interrupt_class_cik,
158         .num_of_watch_points = 4,
159         .mqd_size_aligned = MQD_SIZE_ALIGNED,
160         .supports_cwsr = true,
161         .needs_iommu_device = false,
162         .needs_pci_atomics = false,
163         .num_sdma_engines = 2,
164 };
165
166
167 static const struct kfd_device_info polaris10_device_info = {
168         .asic_family = CHIP_POLARIS10,
169         .max_pasid_bits = 16,
170         .max_no_of_hqd  = 24,
171         .doorbell_size  = 4,
172         .ih_ring_entry_size = 4 * sizeof(uint32_t),
173         .event_interrupt_class = &event_interrupt_class_cik,
174         .num_of_watch_points = 4,
175         .mqd_size_aligned = MQD_SIZE_ALIGNED,
176         .supports_cwsr = true,
177         .needs_iommu_device = false,
178         .needs_pci_atomics = true,
179         .num_sdma_engines = 2,
180 };
181
182 static const struct kfd_device_info polaris10_vf_device_info = {
183         .asic_family = CHIP_POLARIS10,
184         .max_pasid_bits = 16,
185         .max_no_of_hqd  = 24,
186         .doorbell_size  = 4,
187         .ih_ring_entry_size = 4 * sizeof(uint32_t),
188         .event_interrupt_class = &event_interrupt_class_cik,
189         .num_of_watch_points = 4,
190         .mqd_size_aligned = MQD_SIZE_ALIGNED,
191         .supports_cwsr = true,
192         .needs_iommu_device = false,
193         .needs_pci_atomics = false,
194         .num_sdma_engines = 2,
195 };
196
197 static const struct kfd_device_info polaris11_device_info = {
198         .asic_family = CHIP_POLARIS11,
199         .max_pasid_bits = 16,
200         .max_no_of_hqd  = 24,
201         .doorbell_size  = 4,
202         .ih_ring_entry_size = 4 * sizeof(uint32_t),
203         .event_interrupt_class = &event_interrupt_class_cik,
204         .num_of_watch_points = 4,
205         .mqd_size_aligned = MQD_SIZE_ALIGNED,
206         .supports_cwsr = true,
207         .needs_iommu_device = false,
208         .needs_pci_atomics = true,
209         .num_sdma_engines = 2,
210 };
211
212 static const struct kfd_device_info vega10_device_info = {
213         .asic_family = CHIP_VEGA10,
214         .max_pasid_bits = 16,
215         .max_no_of_hqd  = 24,
216         .doorbell_size  = 8,
217         .ih_ring_entry_size = 8 * sizeof(uint32_t),
218         .event_interrupt_class = &event_interrupt_class_v9,
219         .num_of_watch_points = 4,
220         .mqd_size_aligned = MQD_SIZE_ALIGNED,
221         .supports_cwsr = true,
222         .needs_iommu_device = false,
223         .needs_pci_atomics = false,
224         .num_sdma_engines = 2,
225 };
226
227 static const struct kfd_device_info vega10_vf_device_info = {
228         .asic_family = CHIP_VEGA10,
229         .max_pasid_bits = 16,
230         .max_no_of_hqd  = 24,
231         .doorbell_size  = 8,
232         .ih_ring_entry_size = 8 * sizeof(uint32_t),
233         .event_interrupt_class = &event_interrupt_class_v9,
234         .num_of_watch_points = 4,
235         .mqd_size_aligned = MQD_SIZE_ALIGNED,
236         .supports_cwsr = true,
237         .needs_iommu_device = false,
238         .needs_pci_atomics = false,
239         .num_sdma_engines = 2,
240 };
241
242
243 struct kfd_deviceid {
244         unsigned short did;
245         const struct kfd_device_info *device_info;
246 };
247
248 static const struct kfd_deviceid supported_devices[] = {
249 #ifdef KFD_SUPPORT_IOMMU_V2
250         { 0x1304, &kaveri_device_info },        /* Kaveri */
251         { 0x1305, &kaveri_device_info },        /* Kaveri */
252         { 0x1306, &kaveri_device_info },        /* Kaveri */
253         { 0x1307, &kaveri_device_info },        /* Kaveri */
254         { 0x1309, &kaveri_device_info },        /* Kaveri */
255         { 0x130A, &kaveri_device_info },        /* Kaveri */
256         { 0x130B, &kaveri_device_info },        /* Kaveri */
257         { 0x130C, &kaveri_device_info },        /* Kaveri */
258         { 0x130D, &kaveri_device_info },        /* Kaveri */
259         { 0x130E, &kaveri_device_info },        /* Kaveri */
260         { 0x130F, &kaveri_device_info },        /* Kaveri */
261         { 0x1310, &kaveri_device_info },        /* Kaveri */
262         { 0x1311, &kaveri_device_info },        /* Kaveri */
263         { 0x1312, &kaveri_device_info },        /* Kaveri */
264         { 0x1313, &kaveri_device_info },        /* Kaveri */
265         { 0x1315, &kaveri_device_info },        /* Kaveri */
266         { 0x1316, &kaveri_device_info },        /* Kaveri */
267         { 0x1317, &kaveri_device_info },        /* Kaveri */
268         { 0x1318, &kaveri_device_info },        /* Kaveri */
269         { 0x131B, &kaveri_device_info },        /* Kaveri */
270         { 0x131C, &kaveri_device_info },        /* Kaveri */
271         { 0x131D, &kaveri_device_info },        /* Kaveri */
272         { 0x9870, &carrizo_device_info },       /* Carrizo */
273         { 0x9874, &carrizo_device_info },       /* Carrizo */
274         { 0x9875, &carrizo_device_info },       /* Carrizo */
275         { 0x9876, &carrizo_device_info },       /* Carrizo */
276         { 0x9877, &carrizo_device_info },       /* Carrizo */
277         { 0x15DD, &raven_device_info },         /* Raven */
278 #endif
279         { 0x67A0, &hawaii_device_info },        /* Hawaii */
280         { 0x67A1, &hawaii_device_info },        /* Hawaii */
281         { 0x67A2, &hawaii_device_info },        /* Hawaii */
282         { 0x67A8, &hawaii_device_info },        /* Hawaii */
283         { 0x67A9, &hawaii_device_info },        /* Hawaii */
284         { 0x67AA, &hawaii_device_info },        /* Hawaii */
285         { 0x67B0, &hawaii_device_info },        /* Hawaii */
286         { 0x67B1, &hawaii_device_info },        /* Hawaii */
287         { 0x67B8, &hawaii_device_info },        /* Hawaii */
288         { 0x67B9, &hawaii_device_info },        /* Hawaii */
289         { 0x67BA, &hawaii_device_info },        /* Hawaii */
290         { 0x67BE, &hawaii_device_info },        /* Hawaii */
291         { 0x6920, &tonga_device_info },         /* Tonga */
292         { 0x6921, &tonga_device_info },         /* Tonga */
293         { 0x6928, &tonga_device_info },         /* Tonga */
294         { 0x6929, &tonga_device_info },         /* Tonga */
295         { 0x692B, &tonga_device_info },         /* Tonga */
296         { 0x692F, &tonga_vf_device_info },      /* Tonga vf */
297         { 0x6938, &tonga_device_info },         /* Tonga */
298         { 0x6939, &tonga_device_info },         /* Tonga */
299         { 0x7300, &fiji_device_info },          /* Fiji */
300         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
301         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
302         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
303         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
304         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
305         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
306         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
307         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
308         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
309         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
310         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
311         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
312         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
313         { 0x6FDF, &polaris10_device_info },     /* Polaris10 */
314         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
315         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
316         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
317         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
318         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
319         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
320         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
321         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
322         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
323         { 0x6860, &vega10_device_info },        /* Vega10 */
324         { 0x6861, &vega10_device_info },        /* Vega10 */
325         { 0x6862, &vega10_device_info },        /* Vega10 */
326         { 0x6863, &vega10_device_info },        /* Vega10 */
327         { 0x6864, &vega10_device_info },        /* Vega10 */
328         { 0x6867, &vega10_device_info },        /* Vega10 */
329         { 0x6868, &vega10_device_info },        /* Vega10 */
330         { 0x6869, &vega10_device_info },        /* Vega10 */
331         { 0x686A, &vega10_device_info },        /* Vega10 */
332         { 0x686B, &vega10_device_info },        /* Vega10 */
333         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
334         { 0x686D, &vega10_device_info },        /* Vega10 */
335         { 0x686E, &vega10_device_info },        /* Vega10 */
336         { 0x686F, &vega10_device_info },        /* Vega10 */
337         { 0x687F, &vega10_device_info },        /* Vega10 */
338 };
339
340 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
341                                 unsigned int chunk_size);
342 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
343
344 static int kfd_resume(struct kfd_dev *kfd);
345
346 static const struct kfd_device_info *lookup_device_info(unsigned short did)
347 {
348         size_t i;
349
350         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
351                 if (supported_devices[i].did == did) {
352                         WARN_ON(!supported_devices[i].device_info);
353                         return supported_devices[i].device_info;
354                 }
355         }
356
357         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
358                  did);
359
360         return NULL;
361 }
362
363 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
364         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
365 {
366         struct kfd_dev *kfd;
367         int ret;
368         const struct kfd_device_info *device_info =
369                                         lookup_device_info(pdev->device);
370
371         if (!device_info) {
372                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
373                 return NULL;
374         }
375
376         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
377          * 32 and 64-bit requests are possible and must be
378          * supported.
379          */
380         ret = pci_enable_atomic_ops_to_root(pdev,
381                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
382                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
383         if (device_info->needs_pci_atomics && ret < 0) {
384                 dev_info(kfd_device,
385                          "skipped device %x:%x, PCI rejects atomics\n",
386                          pdev->vendor, pdev->device);
387                 return NULL;
388         }
389
390         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
391         if (!kfd)
392                 return NULL;
393
394         kfd->kgd = kgd;
395         kfd->device_info = device_info;
396         kfd->pdev = pdev;
397         kfd->init_complete = false;
398         kfd->kfd2kgd = f2g;
399
400         mutex_init(&kfd->doorbell_mutex);
401         memset(&kfd->doorbell_available_index, 0,
402                 sizeof(kfd->doorbell_available_index));
403
404         return kfd;
405 }
406
407 static void kfd_cwsr_init(struct kfd_dev *kfd)
408 {
409         if (cwsr_enable && kfd->device_info->supports_cwsr) {
410                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
411                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
412                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
413                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
414                 } else {
415                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
416                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
417                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
418                 }
419
420                 kfd->cwsr_enabled = true;
421         }
422 }
423
424 bool kgd2kfd_device_init(struct kfd_dev *kfd,
425                          const struct kgd2kfd_shared_resources *gpu_resources)
426 {
427         unsigned int size;
428
429         kfd->shared_resources = *gpu_resources;
430
431         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
432         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
433         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
434                         - kfd->vm_info.first_vmid_kfd + 1;
435
436         /* Verify module parameters regarding mapped process number*/
437         if ((hws_max_conc_proc < 0)
438                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
439                 dev_err(kfd_device,
440                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
441                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
442                         kfd->vm_info.vmid_num_kfd);
443                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
444         } else
445                 kfd->max_proc_per_quantum = hws_max_conc_proc;
446
447         /* calculate max size of mqds needed for queues */
448         size = max_num_of_queues_per_device *
449                         kfd->device_info->mqd_size_aligned;
450
451         /*
452          * calculate max size of runlist packet.
453          * There can be only 2 packets at once
454          */
455         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
456                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
457                 + sizeof(struct pm4_mes_runlist)) * 2;
458
459         /* Add size of HIQ & DIQ */
460         size += KFD_KERNEL_QUEUE_SIZE * 2;
461
462         /* add another 512KB for all other allocations on gart (HPD, fences) */
463         size += 512 * 1024;
464
465         if (kfd->kfd2kgd->init_gtt_mem_allocation(
466                         kfd->kgd, size, &kfd->gtt_mem,
467                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
468                         false)) {
469                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
470                 goto out;
471         }
472
473         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
474
475         /* Initialize GTT sa with 512 byte chunk size */
476         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
477                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
478                 goto kfd_gtt_sa_init_error;
479         }
480
481         if (kfd_doorbell_init(kfd)) {
482                 dev_err(kfd_device,
483                         "Error initializing doorbell aperture\n");
484                 goto kfd_doorbell_error;
485         }
486
487         if (kfd_topology_add_device(kfd)) {
488                 dev_err(kfd_device, "Error adding device to topology\n");
489                 goto kfd_topology_add_device_error;
490         }
491
492         if (kfd_interrupt_init(kfd)) {
493                 dev_err(kfd_device, "Error initializing interrupts\n");
494                 goto kfd_interrupt_error;
495         }
496
497         kfd->dqm = device_queue_manager_init(kfd);
498         if (!kfd->dqm) {
499                 dev_err(kfd_device, "Error initializing queue manager\n");
500                 goto device_queue_manager_error;
501         }
502
503         if (kfd_iommu_device_init(kfd)) {
504                 dev_err(kfd_device, "Error initializing iommuv2\n");
505                 goto device_iommu_error;
506         }
507
508         kfd_cwsr_init(kfd);
509
510         if (kfd_resume(kfd))
511                 goto kfd_resume_error;
512
513         kfd->dbgmgr = NULL;
514
515         kfd->init_complete = true;
516         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
517                  kfd->pdev->device);
518
519         pr_debug("Starting kfd with the following scheduling policy %d\n",
520                 kfd->dqm->sched_policy);
521
522         goto out;
523
524 kfd_resume_error:
525 device_iommu_error:
526         device_queue_manager_uninit(kfd->dqm);
527 device_queue_manager_error:
528         kfd_interrupt_exit(kfd);
529 kfd_interrupt_error:
530         kfd_topology_remove_device(kfd);
531 kfd_topology_add_device_error:
532         kfd_doorbell_fini(kfd);
533 kfd_doorbell_error:
534         kfd_gtt_sa_fini(kfd);
535 kfd_gtt_sa_init_error:
536         kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
537         dev_err(kfd_device,
538                 "device %x:%x NOT added due to errors\n",
539                 kfd->pdev->vendor, kfd->pdev->device);
540 out:
541         return kfd->init_complete;
542 }
543
544 void kgd2kfd_device_exit(struct kfd_dev *kfd)
545 {
546         if (kfd->init_complete) {
547                 kgd2kfd_suspend(kfd);
548                 device_queue_manager_uninit(kfd->dqm);
549                 kfd_interrupt_exit(kfd);
550                 kfd_topology_remove_device(kfd);
551                 kfd_doorbell_fini(kfd);
552                 kfd_gtt_sa_fini(kfd);
553                 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
554         }
555
556         kfree(kfd);
557 }
558
559 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
560 {
561         if (!kfd->init_complete)
562                 return 0;
563         kgd2kfd_suspend(kfd);
564
565         /* hold dqm->lock to prevent further execution*/
566         dqm_lock(kfd->dqm);
567
568         kfd_signal_reset_event(kfd);
569         return 0;
570 }
571
572 /*
573  * Fix me. KFD won't be able to resume existing process for now.
574  * We will keep all existing process in a evicted state and
575  * wait the process to be terminated.
576  */
577
578 int kgd2kfd_post_reset(struct kfd_dev *kfd)
579 {
580         int ret, count;
581
582         if (!kfd->init_complete)
583                 return 0;
584
585         dqm_unlock(kfd->dqm);
586
587         ret = kfd_resume(kfd);
588         if (ret)
589                 return ret;
590         count = atomic_dec_return(&kfd_locked);
591         WARN_ONCE(count != 0, "KFD reset ref. error");
592         return 0;
593 }
594
595 bool kfd_is_locked(void)
596 {
597         return  (atomic_read(&kfd_locked) > 0);
598 }
599
600 void kgd2kfd_suspend(struct kfd_dev *kfd)
601 {
602         if (!kfd->init_complete)
603                 return;
604
605         /* For first KFD device suspend all the KFD processes */
606         if (atomic_inc_return(&kfd_locked) == 1)
607                 kfd_suspend_all_processes();
608
609         kfd->dqm->ops.stop(kfd->dqm);
610
611         kfd_iommu_suspend(kfd);
612 }
613
614 int kgd2kfd_resume(struct kfd_dev *kfd)
615 {
616         int ret, count;
617
618         if (!kfd->init_complete)
619                 return 0;
620
621         ret = kfd_resume(kfd);
622         if (ret)
623                 return ret;
624
625         count = atomic_dec_return(&kfd_locked);
626         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
627         if (count == 0)
628                 ret = kfd_resume_all_processes();
629
630         return ret;
631 }
632
633 static int kfd_resume(struct kfd_dev *kfd)
634 {
635         int err = 0;
636
637         err = kfd_iommu_resume(kfd);
638         if (err) {
639                 dev_err(kfd_device,
640                         "Failed to resume IOMMU for device %x:%x\n",
641                         kfd->pdev->vendor, kfd->pdev->device);
642                 return err;
643         }
644
645         err = kfd->dqm->ops.start(kfd->dqm);
646         if (err) {
647                 dev_err(kfd_device,
648                         "Error starting queue manager for device %x:%x\n",
649                         kfd->pdev->vendor, kfd->pdev->device);
650                 goto dqm_start_error;
651         }
652
653         return err;
654
655 dqm_start_error:
656         kfd_iommu_suspend(kfd);
657         return err;
658 }
659
660 /* This is called directly from KGD at ISR. */
661 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
662 {
663         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
664         bool is_patched = false;
665         unsigned long flags;
666
667         if (!kfd->init_complete)
668                 return;
669
670         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
671                 dev_err_once(kfd_device, "Ring entry too small\n");
672                 return;
673         }
674
675         spin_lock_irqsave(&kfd->interrupt_lock, flags);
676
677         if (kfd->interrupts_active
678             && interrupt_is_wanted(kfd, ih_ring_entry,
679                                    patched_ihre, &is_patched)
680             && enqueue_ih_ring_entry(kfd,
681                                      is_patched ? patched_ihre : ih_ring_entry))
682                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
683
684         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
685 }
686
687 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
688 {
689         struct kfd_process *p;
690         int r;
691
692         /* Because we are called from arbitrary context (workqueue) as opposed
693          * to process context, kfd_process could attempt to exit while we are
694          * running so the lookup function increments the process ref count.
695          */
696         p = kfd_lookup_process_by_mm(mm);
697         if (!p)
698                 return -ESRCH;
699
700         r = kfd_process_evict_queues(p);
701
702         kfd_unref_process(p);
703         return r;
704 }
705
706 int kgd2kfd_resume_mm(struct mm_struct *mm)
707 {
708         struct kfd_process *p;
709         int r;
710
711         /* Because we are called from arbitrary context (workqueue) as opposed
712          * to process context, kfd_process could attempt to exit while we are
713          * running so the lookup function increments the process ref count.
714          */
715         p = kfd_lookup_process_by_mm(mm);
716         if (!p)
717                 return -ESRCH;
718
719         r = kfd_process_restore_queues(p);
720
721         kfd_unref_process(p);
722         return r;
723 }
724
725 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
726  *   prepare for safe eviction of KFD BOs that belong to the specified
727  *   process.
728  *
729  * @mm: mm_struct that identifies the specified KFD process
730  * @fence: eviction fence attached to KFD process BOs
731  *
732  */
733 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
734                                                struct dma_fence *fence)
735 {
736         struct kfd_process *p;
737         unsigned long active_time;
738         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
739
740         if (!fence)
741                 return -EINVAL;
742
743         if (dma_fence_is_signaled(fence))
744                 return 0;
745
746         p = kfd_lookup_process_by_mm(mm);
747         if (!p)
748                 return -ENODEV;
749
750         if (fence->seqno == p->last_eviction_seqno)
751                 goto out;
752
753         p->last_eviction_seqno = fence->seqno;
754
755         /* Avoid KFD process starvation. Wait for at least
756          * PROCESS_ACTIVE_TIME_MS before evicting the process again
757          */
758         active_time = get_jiffies_64() - p->last_restore_timestamp;
759         if (delay_jiffies > active_time)
760                 delay_jiffies -= active_time;
761         else
762                 delay_jiffies = 0;
763
764         /* During process initialization eviction_work.dwork is initialized
765          * to kfd_evict_bo_worker
766          */
767         schedule_delayed_work(&p->eviction_work, delay_jiffies);
768 out:
769         kfd_unref_process(p);
770         return 0;
771 }
772
773 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
774                                 unsigned int chunk_size)
775 {
776         unsigned int num_of_longs;
777
778         if (WARN_ON(buf_size < chunk_size))
779                 return -EINVAL;
780         if (WARN_ON(buf_size == 0))
781                 return -EINVAL;
782         if (WARN_ON(chunk_size == 0))
783                 return -EINVAL;
784
785         kfd->gtt_sa_chunk_size = chunk_size;
786         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
787
788         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
789                 BITS_PER_LONG;
790
791         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
792
793         if (!kfd->gtt_sa_bitmap)
794                 return -ENOMEM;
795
796         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
797                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
798
799         mutex_init(&kfd->gtt_sa_lock);
800
801         return 0;
802
803 }
804
805 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
806 {
807         mutex_destroy(&kfd->gtt_sa_lock);
808         kfree(kfd->gtt_sa_bitmap);
809 }
810
811 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
812                                                 unsigned int bit_num,
813                                                 unsigned int chunk_size)
814 {
815         return start_addr + bit_num * chunk_size;
816 }
817
818 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
819                                                 unsigned int bit_num,
820                                                 unsigned int chunk_size)
821 {
822         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
823 }
824
825 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
826                         struct kfd_mem_obj **mem_obj)
827 {
828         unsigned int found, start_search, cur_size;
829
830         if (size == 0)
831                 return -EINVAL;
832
833         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
834                 return -ENOMEM;
835
836         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
837         if (!(*mem_obj))
838                 return -ENOMEM;
839
840         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
841
842         start_search = 0;
843
844         mutex_lock(&kfd->gtt_sa_lock);
845
846 kfd_gtt_restart_search:
847         /* Find the first chunk that is free */
848         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
849                                         kfd->gtt_sa_num_of_chunks,
850                                         start_search);
851
852         pr_debug("Found = %d\n", found);
853
854         /* If there wasn't any free chunk, bail out */
855         if (found == kfd->gtt_sa_num_of_chunks)
856                 goto kfd_gtt_no_free_chunk;
857
858         /* Update fields of mem_obj */
859         (*mem_obj)->range_start = found;
860         (*mem_obj)->range_end = found;
861         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
862                                         kfd->gtt_start_gpu_addr,
863                                         found,
864                                         kfd->gtt_sa_chunk_size);
865         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
866                                         kfd->gtt_start_cpu_ptr,
867                                         found,
868                                         kfd->gtt_sa_chunk_size);
869
870         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
871                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
872
873         /* If we need only one chunk, mark it as allocated and get out */
874         if (size <= kfd->gtt_sa_chunk_size) {
875                 pr_debug("Single bit\n");
876                 set_bit(found, kfd->gtt_sa_bitmap);
877                 goto kfd_gtt_out;
878         }
879
880         /* Otherwise, try to see if we have enough contiguous chunks */
881         cur_size = size - kfd->gtt_sa_chunk_size;
882         do {
883                 (*mem_obj)->range_end =
884                         find_next_zero_bit(kfd->gtt_sa_bitmap,
885                                         kfd->gtt_sa_num_of_chunks, ++found);
886                 /*
887                  * If next free chunk is not contiguous than we need to
888                  * restart our search from the last free chunk we found (which
889                  * wasn't contiguous to the previous ones
890                  */
891                 if ((*mem_obj)->range_end != found) {
892                         start_search = found;
893                         goto kfd_gtt_restart_search;
894                 }
895
896                 /*
897                  * If we reached end of buffer, bail out with error
898                  */
899                 if (found == kfd->gtt_sa_num_of_chunks)
900                         goto kfd_gtt_no_free_chunk;
901
902                 /* Check if we don't need another chunk */
903                 if (cur_size <= kfd->gtt_sa_chunk_size)
904                         cur_size = 0;
905                 else
906                         cur_size -= kfd->gtt_sa_chunk_size;
907
908         } while (cur_size > 0);
909
910         pr_debug("range_start = %d, range_end = %d\n",
911                 (*mem_obj)->range_start, (*mem_obj)->range_end);
912
913         /* Mark the chunks as allocated */
914         for (found = (*mem_obj)->range_start;
915                 found <= (*mem_obj)->range_end;
916                 found++)
917                 set_bit(found, kfd->gtt_sa_bitmap);
918
919 kfd_gtt_out:
920         mutex_unlock(&kfd->gtt_sa_lock);
921         return 0;
922
923 kfd_gtt_no_free_chunk:
924         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
925         mutex_unlock(&kfd->gtt_sa_lock);
926         kfree(*mem_obj);
927         return -ENOMEM;
928 }
929
930 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
931 {
932         unsigned int bit;
933
934         /* Act like kfree when trying to free a NULL object */
935         if (!mem_obj)
936                 return 0;
937
938         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
939                         mem_obj, mem_obj->range_start, mem_obj->range_end);
940
941         mutex_lock(&kfd->gtt_sa_lock);
942
943         /* Mark the chunks as free */
944         for (bit = mem_obj->range_start;
945                 bit <= mem_obj->range_end;
946                 bit++)
947                 clear_bit(bit, kfd->gtt_sa_bitmap);
948
949         mutex_unlock(&kfd->gtt_sa_lock);
950
951         kfree(mem_obj);
952         return 0;
953 }
954
955 #if defined(CONFIG_DEBUG_FS)
956
957 /* This function will send a package to HIQ to hang the HWS
958  * which will trigger a GPU reset and bring the HWS back to normal state
959  */
960 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
961 {
962         int r = 0;
963
964         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
965                 pr_err("HWS is not enabled");
966                 return -EINVAL;
967         }
968
969         r = pm_debugfs_hang_hws(&dev->dqm->packets);
970         if (!r)
971                 r = dqm_debugfs_execute_queues(dev->dqm);
972
973         return r;
974 }
975
976 #endif