GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_timing_generator.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dm_services.h"
27
28 /* include DCE11 register header files */
29 #include "dce/dce_11_0_d.h"
30 #include "dce/dce_11_0_sh_mask.h"
31
32 #include "dc_types.h"
33 #include "dc_bios_types.h"
34 #include "dc.h"
35
36 #include "include/grph_object_id.h"
37 #include "include/logger_interface.h"
38 #include "dce110_timing_generator.h"
39
40 #include "timing_generator.h"
41
42
43 #define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
44
45 #define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
46 #define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
47
48 #define CRTC_REG(reg) (reg + tg110->offsets.crtc)
49 #define DCP_REG(reg) (reg + tg110->offsets.dcp)
50
51 /* Flowing register offsets are same in files of
52  * dce/dce_11_0_d.h
53  * dce/vi_polaris10_p/vi_polaris10_d.h
54  *
55  * So we can create dce110 timing generator to use it.
56  */
57
58
59 /*
60 * apply_front_porch_workaround
61 *
62 * This is a workaround for a bug that has existed since R5xx and has not been
63 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
64 */
65 static void dce110_timing_generator_apply_front_porch_workaround(
66         struct timing_generator *tg,
67         struct dc_crtc_timing *timing)
68 {
69         if (timing->flags.INTERLACE == 1) {
70                 if (timing->v_front_porch < 2)
71                         timing->v_front_porch = 2;
72         } else {
73                 if (timing->v_front_porch < 1)
74                         timing->v_front_porch = 1;
75         }
76 }
77
78 /**
79  *****************************************************************************
80  *  Function: is_in_vertical_blank
81  *
82  *  @brief
83  *     check the current status of CRTC to check if we are in Vertical Blank
84  *     regioneased" state
85  *
86  *  @return
87  *     true if currently in blank region, false otherwise
88  *
89  *****************************************************************************
90  */
91 static bool dce110_timing_generator_is_in_vertical_blank(
92                 struct timing_generator *tg)
93 {
94         uint32_t addr = 0;
95         uint32_t value = 0;
96         uint32_t field = 0;
97         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
98
99         addr = CRTC_REG(mmCRTC_STATUS);
100         value = dm_read_reg(tg->ctx, addr);
101         field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
102         return field == 1;
103 }
104
105 void dce110_timing_generator_set_early_control(
106                 struct timing_generator *tg,
107                 uint32_t early_cntl)
108 {
109         uint32_t regval;
110         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
111         uint32_t address = CRTC_REG(mmCRTC_CONTROL);
112
113         regval = dm_read_reg(tg->ctx, address);
114         set_reg_field_value(regval, early_cntl,
115                         CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
116         dm_write_reg(tg->ctx, address, regval);
117 }
118
119 /**
120  * Enable CRTC
121  * Enable CRTC - call ASIC Control Object to enable Timing generator.
122  */
123 bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
124 {
125         enum bp_result result;
126
127         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
128         uint32_t value = 0;
129
130         /*
131          * 3 is used to make sure V_UPDATE occurs at the beginning of the first
132          * line of vertical front porch
133          */
134         set_reg_field_value(
135                 value,
136                 0,
137                 CRTC_MASTER_UPDATE_MODE,
138                 MASTER_UPDATE_MODE);
139
140         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
141
142         /* TODO: may want this on to catch underflow */
143         value = 0;
144         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
145
146         result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
147
148         return result == BP_RESULT_OK;
149 }
150
151 void dce110_timing_generator_program_blank_color(
152                 struct timing_generator *tg,
153                 const struct tg_color *black_color)
154 {
155         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
156         uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
157         uint32_t value = dm_read_reg(tg->ctx, addr);
158
159         set_reg_field_value(
160                 value,
161                 black_color->color_b_cb,
162                 CRTC_BLACK_COLOR,
163                 CRTC_BLACK_COLOR_B_CB);
164         set_reg_field_value(
165                 value,
166                 black_color->color_g_y,
167                 CRTC_BLACK_COLOR,
168                 CRTC_BLACK_COLOR_G_Y);
169         set_reg_field_value(
170                 value,
171                 black_color->color_r_cr,
172                 CRTC_BLACK_COLOR,
173                 CRTC_BLACK_COLOR_R_CR);
174
175         dm_write_reg(tg->ctx, addr, value);
176 }
177
178 /**
179  *****************************************************************************
180  *  Function: disable_stereo
181  *
182  *  @brief
183  *     Disables active stereo on controller
184  *     Frame Packing need to be disabled in vBlank or when CRTC not running
185  *****************************************************************************
186  */
187 #if 0
188 @TODOSTEREO
189 static void disable_stereo(struct timing_generator *tg)
190 {
191         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
192         uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
193         uint32_t value = 0;
194         uint32_t test = 0;
195         uint32_t field = 0;
196         uint32_t struc_en = 0;
197         uint32_t struc_stereo_sel_ovr = 0;
198
199         value = dm_read_reg(tg->ctx, addr);
200         struc_en = get_reg_field_value(
201                         value,
202                         CRTC_3D_STRUCTURE_CONTROL,
203                         CRTC_3D_STRUCTURE_EN);
204
205         struc_stereo_sel_ovr = get_reg_field_value(
206                         value,
207                         CRTC_3D_STRUCTURE_CONTROL,
208                         CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
209
210         /*
211          * When disabling Frame Packing in 2 step mode, we need to program both
212          * registers at the same frame
213          * Programming it in the beginning of VActive makes sure we are ok
214          */
215
216         if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
217                 tg->funcs->wait_for_vblank(tg);
218                 tg->funcs->wait_for_vactive(tg);
219         }
220
221         value = 0;
222         dm_write_reg(tg->ctx, addr, value);
223
224         addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
225         dm_write_reg(tg->ctx, addr, value);
226 }
227 #endif
228
229 /**
230  * disable_crtc - call ASIC Control Object to disable Timing generator.
231  */
232 bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
233 {
234         enum bp_result result;
235
236         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
237
238         result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
239
240         /* Need to make sure stereo is disabled according to the DCE5.0 spec */
241
242         /*
243          * @TODOSTEREO call this when adding stereo support
244          * tg->funcs->disable_stereo(tg);
245          */
246
247         return result == BP_RESULT_OK;
248 }
249
250 /**
251 * program_horz_count_by_2
252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
253 *
254 */
255 static void program_horz_count_by_2(
256         struct timing_generator *tg,
257         const struct dc_crtc_timing *timing)
258 {
259         uint32_t regval;
260         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
261
262         regval = dm_read_reg(tg->ctx,
263                         CRTC_REG(mmCRTC_COUNT_CONTROL));
264
265         set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
266                         CRTC_HORZ_COUNT_BY2_EN);
267
268         if (timing->flags.HORZ_COUNT_BY_TWO)
269                 set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
270                                         CRTC_HORZ_COUNT_BY2_EN);
271
272         dm_write_reg(tg->ctx,
273                         CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
274 }
275
276 /**
277  * program_timing_generator
278  * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
279  * Call ASIC Control Object to program Timings.
280  */
281 bool dce110_timing_generator_program_timing_generator(
282         struct timing_generator *tg,
283         const struct dc_crtc_timing *dc_crtc_timing)
284 {
285         enum bp_result result;
286         struct bp_hw_crtc_timing_parameters bp_params;
287         struct dc_crtc_timing patched_crtc_timing;
288         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
289
290         uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
291                         dc_crtc_timing->v_front_porch;
292         uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
293
294         uint32_t hsync_offset = dc_crtc_timing->h_border_right +
295                         dc_crtc_timing->h_front_porch;
296         uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
297
298         memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
299
300         /* Due to an asic bug we need to apply the Front Porch workaround prior
301          * to programming the timing.
302          */
303
304         patched_crtc_timing = *dc_crtc_timing;
305
306         dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
307
308         bp_params.controller_id = tg110->controller_id;
309
310         bp_params.h_total = patched_crtc_timing.h_total;
311         bp_params.h_addressable =
312                 patched_crtc_timing.h_addressable;
313         bp_params.v_total = patched_crtc_timing.v_total;
314         bp_params.v_addressable = patched_crtc_timing.v_addressable;
315
316         bp_params.h_sync_start = h_sync_start;
317         bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
318         bp_params.v_sync_start = v_sync_start;
319         bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
320
321         /* Set overscan */
322         bp_params.h_overscan_left =
323                 patched_crtc_timing.h_border_left;
324         bp_params.h_overscan_right =
325                 patched_crtc_timing.h_border_right;
326         bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
327         bp_params.v_overscan_bottom =
328                 patched_crtc_timing.v_border_bottom;
329
330         /* Set flags */
331         if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
332                 bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
333
334         if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
335                 bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
336
337         if (patched_crtc_timing.flags.INTERLACE == 1)
338                 bp_params.flags.INTERLACE = 1;
339
340         if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
341                 bp_params.flags.HORZ_COUNT_BY_TWO = 1;
342
343         result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
344
345         program_horz_count_by_2(tg, &patched_crtc_timing);
346
347         tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
348
349         /* Enable stereo - only when we need to pack 3D frame. Other types
350          * of stereo handled in explicit call */
351
352         return result == BP_RESULT_OK;
353 }
354
355 /**
356  *****************************************************************************
357  *  Function: set_drr
358  *
359  *  @brief
360  *     Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
361  *
362  *  @param [in] pHwCrtcTiming: point to H
363  *  wCrtcTiming struct
364  *****************************************************************************
365  */
366 void dce110_timing_generator_set_drr(
367         struct timing_generator *tg,
368         const struct drr_params *params)
369 {
370         /* register values */
371         uint32_t v_total_min = 0;
372         uint32_t v_total_max = 0;
373         uint32_t v_total_cntl = 0;
374         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
375
376         uint32_t addr = 0;
377
378         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
379         v_total_min = dm_read_reg(tg->ctx, addr);
380
381         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
382         v_total_max = dm_read_reg(tg->ctx, addr);
383
384         addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
385         v_total_cntl = dm_read_reg(tg->ctx, addr);
386
387         if (params != NULL &&
388                 params->vertical_total_max > 0 &&
389                 params->vertical_total_min > 0) {
390
391                 set_reg_field_value(v_total_max,
392                                 params->vertical_total_max - 1,
393                                 CRTC_V_TOTAL_MAX,
394                                 CRTC_V_TOTAL_MAX);
395
396                 set_reg_field_value(v_total_min,
397                                 params->vertical_total_min - 1,
398                                 CRTC_V_TOTAL_MIN,
399                                 CRTC_V_TOTAL_MIN);
400
401                 set_reg_field_value(v_total_cntl,
402                                 1,
403                                 CRTC_V_TOTAL_CONTROL,
404                                 CRTC_V_TOTAL_MIN_SEL);
405
406                 set_reg_field_value(v_total_cntl,
407                                 1,
408                                 CRTC_V_TOTAL_CONTROL,
409                                 CRTC_V_TOTAL_MAX_SEL);
410
411                 set_reg_field_value(v_total_cntl,
412                                 0,
413                                 CRTC_V_TOTAL_CONTROL,
414                                 CRTC_FORCE_LOCK_ON_EVENT);
415                 set_reg_field_value(v_total_cntl,
416                                 0,
417                                 CRTC_V_TOTAL_CONTROL,
418                                 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
419
420                 set_reg_field_value(v_total_cntl,
421                                 0,
422                                 CRTC_V_TOTAL_CONTROL,
423                                 CRTC_SET_V_TOTAL_MIN_MASK_EN);
424
425                 set_reg_field_value(v_total_cntl,
426                                 0,
427                                 CRTC_V_TOTAL_CONTROL,
428                                 CRTC_SET_V_TOTAL_MIN_MASK);
429         } else {
430                 set_reg_field_value(v_total_cntl,
431                         0,
432                         CRTC_V_TOTAL_CONTROL,
433                         CRTC_SET_V_TOTAL_MIN_MASK);
434                 set_reg_field_value(v_total_cntl,
435                                 0,
436                                 CRTC_V_TOTAL_CONTROL,
437                                 CRTC_V_TOTAL_MIN_SEL);
438                 set_reg_field_value(v_total_cntl,
439                                 0,
440                                 CRTC_V_TOTAL_CONTROL,
441                                 CRTC_V_TOTAL_MAX_SEL);
442                 set_reg_field_value(v_total_min,
443                                 0,
444                                 CRTC_V_TOTAL_MIN,
445                                 CRTC_V_TOTAL_MIN);
446                 set_reg_field_value(v_total_max,
447                                 0,
448                                 CRTC_V_TOTAL_MAX,
449                                 CRTC_V_TOTAL_MAX);
450                 set_reg_field_value(v_total_cntl,
451                                 0,
452                                 CRTC_V_TOTAL_CONTROL,
453                                 CRTC_FORCE_LOCK_ON_EVENT);
454                 set_reg_field_value(v_total_cntl,
455                                 0,
456                                 CRTC_V_TOTAL_CONTROL,
457                                 CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
458         }
459
460         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
461         dm_write_reg(tg->ctx, addr, v_total_min);
462
463         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
464         dm_write_reg(tg->ctx, addr, v_total_max);
465
466         addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
467         dm_write_reg(tg->ctx, addr, v_total_cntl);
468 }
469
470 void dce110_timing_generator_set_static_screen_control(
471         struct timing_generator *tg,
472         uint32_t value)
473 {
474         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
475         uint32_t static_screen_cntl = 0;
476         uint32_t addr = 0;
477
478         addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
479         static_screen_cntl = dm_read_reg(tg->ctx, addr);
480
481         set_reg_field_value(static_screen_cntl,
482                                 value,
483                                 CRTC_STATIC_SCREEN_CONTROL,
484                                 CRTC_STATIC_SCREEN_EVENT_MASK);
485
486         set_reg_field_value(static_screen_cntl,
487                                 2,
488                                 CRTC_STATIC_SCREEN_CONTROL,
489                                 CRTC_STATIC_SCREEN_FRAME_COUNT);
490
491         dm_write_reg(tg->ctx, addr, static_screen_cntl);
492 }
493
494 /*
495  * get_vblank_counter
496  *
497  * @brief
498  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
499  * holds the counter of frames.
500  *
501  * @param
502  * struct timing_generator *tg - [in] timing generator which controls the
503  * desired CRTC
504  *
505  * @return
506  * Counter of frames, which should equal to number of vblanks.
507  */
508 uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
509 {
510         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
511         uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
512         uint32_t value = dm_read_reg(tg->ctx, addr);
513         uint32_t field = get_reg_field_value(
514                         value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
515
516         return field;
517 }
518
519 /**
520  *****************************************************************************
521  *  Function: dce110_timing_generator_get_position
522  *
523  *  @brief
524  *     Returns CRTC vertical/horizontal counters
525  *
526  *  @param [out] position
527  *****************************************************************************
528  */
529 void dce110_timing_generator_get_position(struct timing_generator *tg,
530         struct crtc_position *position)
531 {
532         uint32_t value;
533         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
534
535         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
536
537         position->horizontal_count = get_reg_field_value(
538                         value,
539                         CRTC_STATUS_POSITION,
540                         CRTC_HORZ_COUNT);
541
542         position->vertical_count = get_reg_field_value(
543                         value,
544                         CRTC_STATUS_POSITION,
545                         CRTC_VERT_COUNT);
546
547         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
548
549         position->nominal_vcount = get_reg_field_value(
550                         value,
551                         CRTC_NOM_VERT_POSITION,
552                         CRTC_VERT_COUNT_NOM);
553 }
554
555 /**
556  *****************************************************************************
557  *  Function: get_crtc_scanoutpos
558  *
559  *  @brief
560  *     Returns CRTC vertical/horizontal counters
561  *
562  *  @param [out] vpos, hpos
563  *****************************************************************************
564  */
565 void dce110_timing_generator_get_crtc_scanoutpos(
566         struct timing_generator *tg,
567         uint32_t *v_blank_start,
568         uint32_t *v_blank_end,
569         uint32_t *h_position,
570         uint32_t *v_position)
571 {
572         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
573         struct crtc_position position;
574
575         uint32_t value  = dm_read_reg(tg->ctx,
576                         CRTC_REG(mmCRTC_V_BLANK_START_END));
577
578         *v_blank_start = get_reg_field_value(value,
579                                              CRTC_V_BLANK_START_END,
580                                              CRTC_V_BLANK_START);
581         *v_blank_end = get_reg_field_value(value,
582                                            CRTC_V_BLANK_START_END,
583                                            CRTC_V_BLANK_END);
584
585         dce110_timing_generator_get_position(
586                         tg, &position);
587
588         *h_position = position.horizontal_count;
589         *v_position = position.vertical_count;
590 }
591
592 /* TODO: is it safe to assume that mask/shift of Primary and Underlay
593  * are the same?
594  * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
595  * guaranteed? */
596 void dce110_timing_generator_program_blanking(
597         struct timing_generator *tg,
598         const struct dc_crtc_timing *timing)
599 {
600         uint32_t vsync_offset = timing->v_border_bottom +
601                         timing->v_front_porch;
602         uint32_t v_sync_start =timing->v_addressable + vsync_offset;
603
604         uint32_t hsync_offset = timing->h_border_right +
605                         timing->h_front_porch;
606         uint32_t h_sync_start = timing->h_addressable + hsync_offset;
607         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
608
609         struct dc_context *ctx = tg->ctx;
610         uint32_t value = 0;
611         uint32_t addr = 0;
612         uint32_t tmp = 0;
613
614         addr = CRTC_REG(mmCRTC_H_TOTAL);
615         value = dm_read_reg(ctx, addr);
616         set_reg_field_value(
617                 value,
618                 timing->h_total - 1,
619                 CRTC_H_TOTAL,
620                 CRTC_H_TOTAL);
621         dm_write_reg(ctx, addr, value);
622
623         addr = CRTC_REG(mmCRTC_V_TOTAL);
624         value = dm_read_reg(ctx, addr);
625         set_reg_field_value(
626                 value,
627                 timing->v_total - 1,
628                 CRTC_V_TOTAL,
629                 CRTC_V_TOTAL);
630         dm_write_reg(ctx, addr, value);
631
632         /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
633          * V_TOTAL_MIN are equal to V_TOTAL.
634          */
635         addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
636         value = dm_read_reg(ctx, addr);
637         set_reg_field_value(
638                 value,
639                 timing->v_total - 1,
640                 CRTC_V_TOTAL_MAX,
641                 CRTC_V_TOTAL_MAX);
642         dm_write_reg(ctx, addr, value);
643
644         addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
645         value = dm_read_reg(ctx, addr);
646         set_reg_field_value(
647                 value,
648                 timing->v_total - 1,
649                 CRTC_V_TOTAL_MIN,
650                 CRTC_V_TOTAL_MIN);
651         dm_write_reg(ctx, addr, value);
652
653         addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
654         value = dm_read_reg(ctx, addr);
655
656         tmp = timing->h_total -
657                 (h_sync_start + timing->h_border_left);
658
659         set_reg_field_value(
660                 value,
661                 tmp,
662                 CRTC_H_BLANK_START_END,
663                 CRTC_H_BLANK_END);
664
665         tmp = tmp + timing->h_addressable +
666                 timing->h_border_left + timing->h_border_right;
667
668         set_reg_field_value(
669                 value,
670                 tmp,
671                 CRTC_H_BLANK_START_END,
672                 CRTC_H_BLANK_START);
673
674         dm_write_reg(ctx, addr, value);
675
676         addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
677         value = dm_read_reg(ctx, addr);
678
679         tmp = timing->v_total - (v_sync_start + timing->v_border_top);
680
681         set_reg_field_value(
682                 value,
683                 tmp,
684                 CRTC_V_BLANK_START_END,
685                 CRTC_V_BLANK_END);
686
687         tmp = tmp + timing->v_addressable + timing->v_border_top +
688                 timing->v_border_bottom;
689
690         set_reg_field_value(
691                 value,
692                 tmp,
693                 CRTC_V_BLANK_START_END,
694                 CRTC_V_BLANK_START);
695
696         dm_write_reg(ctx, addr, value);
697 }
698
699 void dce110_timing_generator_set_test_pattern(
700         struct timing_generator *tg,
701         /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
702          * because this is not DP-specific (which is probably somewhere in DP
703          * encoder) */
704         enum controller_dp_test_pattern test_pattern,
705         enum dc_color_depth color_depth)
706 {
707         struct dc_context *ctx = tg->ctx;
708         uint32_t value;
709         uint32_t addr;
710         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
711         enum test_pattern_color_format bit_depth;
712         enum test_pattern_dyn_range dyn_range;
713         enum test_pattern_mode mode;
714         /* color ramp generator mixes 16-bits color */
715         uint32_t src_bpc = 16;
716         /* requested bpc */
717         uint32_t dst_bpc;
718         uint32_t index;
719         /* RGB values of the color bars.
720          * Produce two RGB colors: RGB0 - white (all Fs)
721          * and RGB1 - black (all 0s)
722          * (three RGB components for two colors)
723          */
724         uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
725                                                 0x0000, 0x0000};
726         /* dest color (converted to the specified color format) */
727         uint16_t dst_color[6];
728         uint32_t inc_base;
729
730         /* translate to bit depth */
731         switch (color_depth) {
732         case COLOR_DEPTH_666:
733                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
734         break;
735         case COLOR_DEPTH_888:
736                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
737         break;
738         case COLOR_DEPTH_101010:
739                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
740         break;
741         case COLOR_DEPTH_121212:
742                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
743         break;
744         default:
745                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
746         break;
747         }
748
749         switch (test_pattern) {
750         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
751         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
752         {
753                 dyn_range = (test_pattern ==
754                                 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
755                                 TEST_PATTERN_DYN_RANGE_CEA :
756                                 TEST_PATTERN_DYN_RANGE_VESA);
757                 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
758                 value = 0;
759                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
760
761                 set_reg_field_value(
762                         value,
763                         6,
764                         CRTC_TEST_PATTERN_PARAMETERS,
765                         CRTC_TEST_PATTERN_VRES);
766                 set_reg_field_value(
767                         value,
768                         6,
769                         CRTC_TEST_PATTERN_PARAMETERS,
770                         CRTC_TEST_PATTERN_HRES);
771
772                 dm_write_reg(ctx, addr, value);
773
774                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
775                 value = 0;
776
777                 set_reg_field_value(
778                         value,
779                         1,
780                         CRTC_TEST_PATTERN_CONTROL,
781                         CRTC_TEST_PATTERN_EN);
782
783                 set_reg_field_value(
784                         value,
785                         mode,
786                         CRTC_TEST_PATTERN_CONTROL,
787                         CRTC_TEST_PATTERN_MODE);
788
789                 set_reg_field_value(
790                         value,
791                         dyn_range,
792                         CRTC_TEST_PATTERN_CONTROL,
793                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
794                 set_reg_field_value(
795                         value,
796                         bit_depth,
797                         CRTC_TEST_PATTERN_CONTROL,
798                         CRTC_TEST_PATTERN_COLOR_FORMAT);
799                 dm_write_reg(ctx, addr, value);
800         }
801         break;
802
803         case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
804         case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
805         {
806                 mode = (test_pattern ==
807                         CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
808                         TEST_PATTERN_MODE_VERTICALBARS :
809                         TEST_PATTERN_MODE_HORIZONTALBARS);
810
811                 switch (bit_depth) {
812                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
813                         dst_bpc = 6;
814                 break;
815                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
816                         dst_bpc = 8;
817                 break;
818                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
819                         dst_bpc = 10;
820                 break;
821                 default:
822                         dst_bpc = 8;
823                 break;
824                 }
825
826                 /* adjust color to the required colorFormat */
827                 for (index = 0; index < 6; index++) {
828                         /* dst = 2^dstBpc * src / 2^srcBpc = src >>
829                          * (srcBpc - dstBpc);
830                          */
831                         dst_color[index] =
832                                 src_color[index] >> (src_bpc - dst_bpc);
833                 /* CRTC_TEST_PATTERN_DATA has 16 bits,
834                  * lowest 6 are hardwired to ZERO
835                  * color bits should be left aligned aligned to MSB
836                  * XXXXXXXXXX000000 for 10 bit,
837                  * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
838                  */
839                         dst_color[index] <<= (16 - dst_bpc);
840                 }
841
842                 value = 0;
843                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
844                 dm_write_reg(ctx, addr, value);
845
846                 /* We have to write the mask before data, similar to pipeline.
847                  * For example, for 8 bpc, if we want RGB0 to be magenta,
848                  * and RGB1 to be cyan,
849                  * we need to make 7 writes:
850                  * MASK   DATA
851                  * 000001 00000000 00000000                     set mask to R0
852                  * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
853                  * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
854                  * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
855                  * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
856                  * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
857                  * 100000 11111111 00000000     B1 255, 0xFF00
858                  *
859                  * we will make a loop of 6 in which we prepare the mask,
860                  * then write, then prepare the color for next write.
861                  * first iteration will write mask only,
862                  * but each next iteration color prepared in
863                  * previous iteration will be written within new mask,
864                  * the last component will written separately,
865                  * mask is not changing between 6th and 7th write
866                  * and color will be prepared by last iteration
867                  */
868
869                 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
870                  * is B1, G1, R1, B0, G0, R0
871                  */
872                 value = 0;
873                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
874                 for (index = 0; index < 6; index++) {
875                         /* prepare color mask, first write PATTERN_DATA
876                          * will have all zeros
877                          */
878                         set_reg_field_value(
879                                 value,
880                                 (1 << index),
881                                 CRTC_TEST_PATTERN_COLOR,
882                                 CRTC_TEST_PATTERN_MASK);
883                         /* write color component */
884                         dm_write_reg(ctx, addr, value);
885                         /* prepare next color component,
886                          * will be written in the next iteration
887                          */
888                         set_reg_field_value(
889                                 value,
890                                 dst_color[index],
891                                 CRTC_TEST_PATTERN_COLOR,
892                                 CRTC_TEST_PATTERN_DATA);
893                 }
894                 /* write last color component,
895                  * it's been already prepared in the loop
896                  */
897                 dm_write_reg(ctx, addr, value);
898
899                 /* enable test pattern */
900                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
901                 value = 0;
902
903                 set_reg_field_value(
904                         value,
905                         1,
906                         CRTC_TEST_PATTERN_CONTROL,
907                         CRTC_TEST_PATTERN_EN);
908
909                 set_reg_field_value(
910                         value,
911                         mode,
912                         CRTC_TEST_PATTERN_CONTROL,
913                         CRTC_TEST_PATTERN_MODE);
914
915                 set_reg_field_value(
916                         value,
917                         0,
918                         CRTC_TEST_PATTERN_CONTROL,
919                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
920
921                 set_reg_field_value(
922                         value,
923                         bit_depth,
924                         CRTC_TEST_PATTERN_CONTROL,
925                         CRTC_TEST_PATTERN_COLOR_FORMAT);
926
927                 dm_write_reg(ctx, addr, value);
928         }
929         break;
930
931         case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
932         {
933                 mode = (bit_depth ==
934                         TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
935                         TEST_PATTERN_MODE_DUALRAMP_RGB :
936                         TEST_PATTERN_MODE_SINGLERAMP_RGB);
937
938                 switch (bit_depth) {
939                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
940                         dst_bpc = 6;
941                 break;
942                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
943                         dst_bpc = 8;
944                 break;
945                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
946                         dst_bpc = 10;
947                 break;
948                 default:
949                         dst_bpc = 8;
950                 break;
951                 }
952
953                 /* increment for the first ramp for one color gradation
954                  * 1 gradation for 6-bit color is 2^10
955                  * gradations in 16-bit color
956                  */
957                 inc_base = (src_bpc - dst_bpc);
958
959                 value = 0;
960                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
961
962                 switch (bit_depth) {
963                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
964                 {
965                         set_reg_field_value(
966                                 value,
967                                 inc_base,
968                                 CRTC_TEST_PATTERN_PARAMETERS,
969                                 CRTC_TEST_PATTERN_INC0);
970                         set_reg_field_value(
971                                 value,
972                                 0,
973                                 CRTC_TEST_PATTERN_PARAMETERS,
974                                 CRTC_TEST_PATTERN_INC1);
975                         set_reg_field_value(
976                                 value,
977                                 6,
978                                 CRTC_TEST_PATTERN_PARAMETERS,
979                                 CRTC_TEST_PATTERN_HRES);
980                         set_reg_field_value(
981                                 value,
982                                 6,
983                                 CRTC_TEST_PATTERN_PARAMETERS,
984                                 CRTC_TEST_PATTERN_VRES);
985                         set_reg_field_value(
986                                 value,
987                                 0,
988                                 CRTC_TEST_PATTERN_PARAMETERS,
989                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
990                 }
991                 break;
992                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
993                 {
994                         set_reg_field_value(
995                                 value,
996                                 inc_base,
997                                 CRTC_TEST_PATTERN_PARAMETERS,
998                                 CRTC_TEST_PATTERN_INC0);
999                         set_reg_field_value(
1000                                 value,
1001                                 0,
1002                                 CRTC_TEST_PATTERN_PARAMETERS,
1003                                 CRTC_TEST_PATTERN_INC1);
1004                         set_reg_field_value(
1005                                 value,
1006                                 8,
1007                                 CRTC_TEST_PATTERN_PARAMETERS,
1008                                 CRTC_TEST_PATTERN_HRES);
1009                         set_reg_field_value(
1010                                 value,
1011                                 6,
1012                                 CRTC_TEST_PATTERN_PARAMETERS,
1013                                 CRTC_TEST_PATTERN_VRES);
1014                         set_reg_field_value(
1015                                 value,
1016                                 0,
1017                                 CRTC_TEST_PATTERN_PARAMETERS,
1018                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1019                 }
1020                 break;
1021                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1022                 {
1023                         set_reg_field_value(
1024                                 value,
1025                                 inc_base,
1026                                 CRTC_TEST_PATTERN_PARAMETERS,
1027                                 CRTC_TEST_PATTERN_INC0);
1028                         set_reg_field_value(
1029                                 value,
1030                                 inc_base + 2,
1031                                 CRTC_TEST_PATTERN_PARAMETERS,
1032                                 CRTC_TEST_PATTERN_INC1);
1033                         set_reg_field_value(
1034                                 value,
1035                                 8,
1036                                 CRTC_TEST_PATTERN_PARAMETERS,
1037                                 CRTC_TEST_PATTERN_HRES);
1038                         set_reg_field_value(
1039                                 value,
1040                                 5,
1041                                 CRTC_TEST_PATTERN_PARAMETERS,
1042                                 CRTC_TEST_PATTERN_VRES);
1043                         set_reg_field_value(
1044                                 value,
1045                                 384 << 6,
1046                                 CRTC_TEST_PATTERN_PARAMETERS,
1047                                 CRTC_TEST_PATTERN_RAMP0_OFFSET);
1048                 }
1049                 break;
1050                 default:
1051                 break;
1052                 }
1053                 dm_write_reg(ctx, addr, value);
1054
1055                 value = 0;
1056                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
1057                 dm_write_reg(ctx, addr, value);
1058
1059                 /* enable test pattern */
1060                 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
1061                 value = 0;
1062
1063                 set_reg_field_value(
1064                         value,
1065                         1,
1066                         CRTC_TEST_PATTERN_CONTROL,
1067                         CRTC_TEST_PATTERN_EN);
1068
1069                 set_reg_field_value(
1070                         value,
1071                         mode,
1072                         CRTC_TEST_PATTERN_CONTROL,
1073                         CRTC_TEST_PATTERN_MODE);
1074
1075                 set_reg_field_value(
1076                         value,
1077                         0,
1078                         CRTC_TEST_PATTERN_CONTROL,
1079                         CRTC_TEST_PATTERN_DYNAMIC_RANGE);
1080                 /* add color depth translation here */
1081                 set_reg_field_value(
1082                         value,
1083                         bit_depth,
1084                         CRTC_TEST_PATTERN_CONTROL,
1085                         CRTC_TEST_PATTERN_COLOR_FORMAT);
1086
1087                 dm_write_reg(ctx, addr, value);
1088         }
1089         break;
1090         case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1091         {
1092                 value = 0;
1093                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
1094                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
1095                 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
1096                                 value);
1097         }
1098         break;
1099         default:
1100         break;
1101         }
1102 }
1103
1104 /**
1105 * dce110_timing_generator_validate_timing
1106 * The timing generators support a maximum display size of is 8192 x 8192 pixels,
1107 * including both active display and blanking periods. Check H Total and V Total.
1108 */
1109 bool dce110_timing_generator_validate_timing(
1110         struct timing_generator *tg,
1111         const struct dc_crtc_timing *timing,
1112         enum signal_type signal)
1113 {
1114         uint32_t h_blank;
1115         uint32_t h_back_porch, hsync_offset, h_sync_start;
1116
1117         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1118
1119         ASSERT(timing != NULL);
1120
1121         if (!timing)
1122                 return false;
1123
1124         hsync_offset = timing->h_border_right + timing->h_front_porch;
1125         h_sync_start = timing->h_addressable + hsync_offset;
1126
1127         /* Currently we don't support 3D, so block all 3D timings */
1128         if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
1129                 return false;
1130
1131         /* Temporarily blocking interlacing mode until it's supported */
1132         if (timing->flags.INTERLACE == 1)
1133                 return false;
1134
1135         /* Check maximum number of pixels supported by Timing Generator
1136          * (Currently will never fail, in order to fail needs display which
1137          * needs more than 8192 horizontal and
1138          * more than 8192 vertical total pixels)
1139          */
1140         if (timing->h_total > tg110->max_h_total ||
1141                 timing->v_total > tg110->max_v_total)
1142                 return false;
1143
1144         h_blank = (timing->h_total - timing->h_addressable -
1145                 timing->h_border_right -
1146                 timing->h_border_left);
1147
1148         if (h_blank < tg110->min_h_blank)
1149                 return false;
1150
1151         if (timing->h_front_porch < tg110->min_h_front_porch)
1152                 return false;
1153
1154         h_back_porch = h_blank - (h_sync_start -
1155                 timing->h_addressable -
1156                 timing->h_border_right -
1157                 timing->h_sync_width);
1158
1159         if (h_back_porch < tg110->min_h_back_porch)
1160                 return false;
1161
1162         return true;
1163 }
1164
1165 /**
1166 * Wait till we are at the beginning of VBlank.
1167 */
1168 void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
1169 {
1170         /* We want to catch beginning of VBlank here, so if the first try are
1171          * in VBlank, we might be very close to Active, in this case wait for
1172          * another frame
1173          */
1174         while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1175                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1176                         /* error - no point to wait if counter is not moving */
1177                         break;
1178                 }
1179         }
1180
1181         while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
1182                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1183                         /* error - no point to wait if counter is not moving */
1184                         break;
1185                 }
1186         }
1187 }
1188
1189 /**
1190 * Wait till we are in VActive (anywhere in VActive)
1191 */
1192 void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
1193 {
1194         while (dce110_timing_generator_is_in_vertical_blank(tg)) {
1195                 if (!dce110_timing_generator_is_counter_moving(tg)) {
1196                         /* error - no point to wait if counter is not moving */
1197                         break;
1198                 }
1199         }
1200 }
1201
1202 /**
1203  *****************************************************************************
1204  *  Function: dce110_timing_generator_setup_global_swap_lock
1205  *
1206  *  @brief
1207  *     Setups Global Swap Lock group for current pipe
1208  *     Pipe can join or leave GSL group, become a TimingServer or TimingClient
1209  *
1210  *  @param [in] gsl_params: setup data
1211  *****************************************************************************
1212  */
1213
1214 void dce110_timing_generator_setup_global_swap_lock(
1215         struct timing_generator *tg,
1216         const struct dcp_gsl_params *gsl_params)
1217 {
1218         uint32_t value;
1219         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1220         uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1221         uint32_t check_point = FLIP_READY_BACK_LOOKUP;
1222
1223         value = dm_read_reg(tg->ctx, address);
1224
1225         /* This pipe will belong to GSL Group zero. */
1226         set_reg_field_value(value,
1227                             1,
1228                             DCP_GSL_CONTROL,
1229                             DCP_GSL0_EN);
1230
1231         set_reg_field_value(value,
1232                             gsl_params->gsl_master == tg->inst,
1233                             DCP_GSL_CONTROL,
1234                             DCP_GSL_MASTER_EN);
1235
1236         set_reg_field_value(value,
1237                             HFLIP_READY_DELAY,
1238                             DCP_GSL_CONTROL,
1239                             DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1240
1241         /* Keep signal low (pending high) during 6 lines.
1242          * Also defines minimum interval before re-checking signal. */
1243         set_reg_field_value(value,
1244                             HFLIP_CHECK_DELAY,
1245                             DCP_GSL_CONTROL,
1246                             DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1247
1248         dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
1249         value = 0;
1250
1251         set_reg_field_value(value,
1252                             gsl_params->gsl_master,
1253                             DCIO_GSL0_CNTL,
1254                             DCIO_GSL0_VSYNC_SEL);
1255
1256         set_reg_field_value(value,
1257                             0,
1258                             DCIO_GSL0_CNTL,
1259                             DCIO_GSL0_TIMING_SYNC_SEL);
1260
1261         set_reg_field_value(value,
1262                             0,
1263                             DCIO_GSL0_CNTL,
1264                             DCIO_GSL0_GLOBAL_UNLOCK_SEL);
1265
1266         dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
1267
1268
1269         {
1270                 uint32_t value_crtc_vtotal;
1271
1272                 value_crtc_vtotal = dm_read_reg(tg->ctx,
1273                                 CRTC_REG(mmCRTC_V_TOTAL));
1274
1275                 set_reg_field_value(value,
1276                                     0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
1277                                     DCP_GSL_CONTROL,
1278                                     DCP_GSL_SYNC_SOURCE);
1279
1280                 /* Checkpoint relative to end of frame */
1281                 check_point = get_reg_field_value(value_crtc_vtotal,
1282                                                   CRTC_V_TOTAL,
1283                                                   CRTC_V_TOTAL);
1284
1285                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
1286         }
1287
1288         set_reg_field_value(value,
1289                             1,
1290                             DCP_GSL_CONTROL,
1291                             DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1292
1293         dm_write_reg(tg->ctx, address, value);
1294
1295         /********************************************************************/
1296         address = CRTC_REG(mmCRTC_GSL_CONTROL);
1297
1298         value = dm_read_reg(tg->ctx, address);
1299         set_reg_field_value(value,
1300                             check_point - FLIP_READY_BACK_LOOKUP,
1301                             CRTC_GSL_CONTROL,
1302                             CRTC_GSL_CHECK_LINE_NUM);
1303
1304         set_reg_field_value(value,
1305                             VFLIP_READY_DELAY,
1306                             CRTC_GSL_CONTROL,
1307                             CRTC_GSL_FORCE_DELAY);
1308
1309         dm_write_reg(tg->ctx, address, value);
1310 }
1311
1312 void dce110_timing_generator_tear_down_global_swap_lock(
1313         struct timing_generator *tg)
1314 {
1315         /* Clear all the register writes done by
1316          * dce110_timing_generator_setup_global_swap_lock
1317          */
1318
1319         uint32_t value;
1320         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1321         uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
1322
1323         value = 0;
1324
1325         /* This pipe will belong to GSL Group zero. */
1326         /* Settig HW default values from reg specs */
1327         set_reg_field_value(value,
1328                         0,
1329                         DCP_GSL_CONTROL,
1330                         DCP_GSL0_EN);
1331
1332         set_reg_field_value(value,
1333                         0,
1334                         DCP_GSL_CONTROL,
1335                         DCP_GSL_MASTER_EN);
1336
1337         set_reg_field_value(value,
1338                         0x2,
1339                         DCP_GSL_CONTROL,
1340                         DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
1341
1342         set_reg_field_value(value,
1343                         0x6,
1344                         DCP_GSL_CONTROL,
1345                         DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
1346
1347         /* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
1348         {
1349                 uint32_t value_crtc_vtotal;
1350
1351                 value_crtc_vtotal = dm_read_reg(tg->ctx,
1352                                 CRTC_REG(mmCRTC_V_TOTAL));
1353
1354                 set_reg_field_value(value,
1355                                 0,
1356                                 DCP_GSL_CONTROL,
1357                                 DCP_GSL_SYNC_SOURCE);
1358         }
1359
1360         set_reg_field_value(value,
1361                         0,
1362                         DCP_GSL_CONTROL,
1363                         DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
1364
1365         dm_write_reg(tg->ctx, address, value);
1366
1367         /********************************************************************/
1368         address = CRTC_REG(mmCRTC_GSL_CONTROL);
1369
1370         value = 0;
1371         set_reg_field_value(value,
1372                         0,
1373                         CRTC_GSL_CONTROL,
1374                         CRTC_GSL_CHECK_LINE_NUM);
1375
1376         set_reg_field_value(value,
1377                         0x2,
1378                         CRTC_GSL_CONTROL,
1379                         CRTC_GSL_FORCE_DELAY);
1380
1381         dm_write_reg(tg->ctx, address, value);
1382 }
1383 /**
1384  *****************************************************************************
1385  *  Function: is_counter_moving
1386  *
1387  *  @brief
1388  *     check if the timing generator is currently going
1389  *
1390  *  @return
1391  *     true if currently going, false if currently paused or stopped.
1392  *
1393  *****************************************************************************
1394  */
1395 bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
1396 {
1397         struct crtc_position position1, position2;
1398
1399         tg->funcs->get_position(tg, &position1);
1400         tg->funcs->get_position(tg, &position2);
1401
1402         if (position1.horizontal_count == position2.horizontal_count &&
1403                 position1.vertical_count == position2.vertical_count)
1404                 return false;
1405         else
1406                 return true;
1407 }
1408
1409 void dce110_timing_generator_enable_advanced_request(
1410         struct timing_generator *tg,
1411         bool enable,
1412         const struct dc_crtc_timing *timing)
1413 {
1414         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1415         uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
1416         uint32_t value = dm_read_reg(tg->ctx, addr);
1417
1418         if (enable) {
1419                 set_reg_field_value(
1420                         value,
1421                         0,
1422                         CRTC_START_LINE_CONTROL,
1423                         CRTC_LEGACY_REQUESTOR_EN);
1424         } else {
1425                 set_reg_field_value(
1426                         value,
1427                         1,
1428                         CRTC_START_LINE_CONTROL,
1429                         CRTC_LEGACY_REQUESTOR_EN);
1430         }
1431
1432         if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
1433                 set_reg_field_value(
1434                         value,
1435                         3,
1436                         CRTC_START_LINE_CONTROL,
1437                         CRTC_ADVANCED_START_LINE_POSITION);
1438                 set_reg_field_value(
1439                         value,
1440                         0,
1441                         CRTC_START_LINE_CONTROL,
1442                         CRTC_PREFETCH_EN);
1443         } else {
1444                 set_reg_field_value(
1445                         value,
1446                         4,
1447                         CRTC_START_LINE_CONTROL,
1448                         CRTC_ADVANCED_START_LINE_POSITION);
1449                 set_reg_field_value(
1450                         value,
1451                         1,
1452                         CRTC_START_LINE_CONTROL,
1453                         CRTC_PREFETCH_EN);
1454         }
1455
1456         set_reg_field_value(
1457                 value,
1458                 1,
1459                 CRTC_START_LINE_CONTROL,
1460                 CRTC_PROGRESSIVE_START_LINE_EARLY);
1461
1462         set_reg_field_value(
1463                 value,
1464                 1,
1465                 CRTC_START_LINE_CONTROL,
1466                 CRTC_INTERLACE_START_LINE_EARLY);
1467
1468         dm_write_reg(tg->ctx, addr, value);
1469 }
1470
1471 /*TODO: Figure out if we need this function. */
1472 void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
1473                 bool lock)
1474 {
1475         struct dc_context *ctx = tg->ctx;
1476         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1477         uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
1478         uint32_t value = dm_read_reg(ctx, addr);
1479
1480         set_reg_field_value(
1481                 value,
1482                 lock ? 1 : 0,
1483                 CRTC_MASTER_UPDATE_LOCK,
1484                 MASTER_UPDATE_LOCK);
1485
1486         dm_write_reg(ctx, addr, value);
1487 }
1488
1489 void dce110_timing_generator_enable_reset_trigger(
1490         struct timing_generator *tg,
1491         int source_tg_inst)
1492 {
1493         uint32_t value;
1494         uint32_t rising_edge = 0;
1495         uint32_t falling_edge = 0;
1496         enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
1497         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1498
1499         /* Setup trigger edge */
1500         {
1501                 uint32_t pol_value = dm_read_reg(tg->ctx,
1502                                 CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
1503
1504                 /* Register spec has reversed definition:
1505                  *      0 for positive, 1 for negative */
1506                 if (get_reg_field_value(pol_value,
1507                                 CRTC_V_SYNC_A_CNTL,
1508                                 CRTC_V_SYNC_A_POL) == 0) {
1509                         rising_edge = 1;
1510                 } else {
1511                         falling_edge = 1;
1512                 }
1513         }
1514
1515         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1516
1517         trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
1518
1519         set_reg_field_value(value,
1520                         trig_src_select,
1521                         CRTC_TRIGB_CNTL,
1522                         CRTC_TRIGB_SOURCE_SELECT);
1523
1524         set_reg_field_value(value,
1525                         TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1526                         CRTC_TRIGB_CNTL,
1527                         CRTC_TRIGB_POLARITY_SELECT);
1528
1529         set_reg_field_value(value,
1530                         rising_edge,
1531                         CRTC_TRIGB_CNTL,
1532                         CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1533
1534         set_reg_field_value(value,
1535                         falling_edge,
1536                         CRTC_TRIGB_CNTL,
1537                         CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1538
1539         set_reg_field_value(value,
1540                         0, /* send every signal */
1541                         CRTC_TRIGB_CNTL,
1542                         CRTC_TRIGB_FREQUENCY_SELECT);
1543
1544         set_reg_field_value(value,
1545                         0, /* no delay */
1546                         CRTC_TRIGB_CNTL,
1547                         CRTC_TRIGB_DELAY);
1548
1549         set_reg_field_value(value,
1550                         1, /* clear trigger status */
1551                         CRTC_TRIGB_CNTL,
1552                         CRTC_TRIGB_CLEAR);
1553
1554         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1555
1556         /**************************************************************/
1557
1558         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1559
1560         set_reg_field_value(value,
1561                         2, /* force H count to H_TOTAL and V count to V_TOTAL */
1562                         CRTC_FORCE_COUNT_NOW_CNTL,
1563                         CRTC_FORCE_COUNT_NOW_MODE);
1564
1565         set_reg_field_value(value,
1566                         1, /* TriggerB - we never use TriggerA */
1567                         CRTC_FORCE_COUNT_NOW_CNTL,
1568                         CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1569
1570         set_reg_field_value(value,
1571                         1, /* clear trigger status */
1572                         CRTC_FORCE_COUNT_NOW_CNTL,
1573                         CRTC_FORCE_COUNT_NOW_CLEAR);
1574
1575         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1576 }
1577
1578 void dce110_timing_generator_enable_crtc_reset(
1579                 struct timing_generator *tg,
1580                 int source_tg_inst,
1581                 struct crtc_trigger_info *crtc_tp)
1582 {
1583         uint32_t value = 0;
1584         uint32_t rising_edge = 0;
1585         uint32_t falling_edge = 0;
1586         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1587
1588         /* Setup trigger edge */
1589         switch (crtc_tp->event) {
1590         case CRTC_EVENT_VSYNC_RISING:
1591                         rising_edge = 1;
1592                         break;
1593
1594         case CRTC_EVENT_VSYNC_FALLING:
1595                 falling_edge = 1;
1596                 break;
1597         }
1598
1599         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1600
1601         set_reg_field_value(value,
1602                             source_tg_inst,
1603                             CRTC_TRIGB_CNTL,
1604                             CRTC_TRIGB_SOURCE_SELECT);
1605
1606         set_reg_field_value(value,
1607                             TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1608                             CRTC_TRIGB_CNTL,
1609                             CRTC_TRIGB_POLARITY_SELECT);
1610
1611         set_reg_field_value(value,
1612                             rising_edge,
1613                             CRTC_TRIGB_CNTL,
1614                             CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
1615
1616         set_reg_field_value(value,
1617                             falling_edge,
1618                             CRTC_TRIGB_CNTL,
1619                             CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
1620
1621         set_reg_field_value(value,
1622                             1, /* clear trigger status */
1623                             CRTC_TRIGB_CNTL,
1624                             CRTC_TRIGB_CLEAR);
1625
1626         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1627
1628         /**************************************************************/
1629
1630         switch (crtc_tp->delay) {
1631         case TRIGGER_DELAY_NEXT_LINE:
1632                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1633
1634                 set_reg_field_value(value,
1635                                     0, /* force H count to H_TOTAL and V count to V_TOTAL */
1636                                     CRTC_FORCE_COUNT_NOW_CNTL,
1637                                     CRTC_FORCE_COUNT_NOW_MODE);
1638
1639                 set_reg_field_value(value,
1640                                     0, /* TriggerB - we never use TriggerA */
1641                                     CRTC_FORCE_COUNT_NOW_CNTL,
1642                                     CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1643
1644                 set_reg_field_value(value,
1645                                     1, /* clear trigger status */
1646                                     CRTC_FORCE_COUNT_NOW_CNTL,
1647                                     CRTC_FORCE_COUNT_NOW_CLEAR);
1648
1649                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1650
1651                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1652
1653                 set_reg_field_value(value,
1654                                     1,
1655                                     CRTC_VERT_SYNC_CONTROL,
1656                                     CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1657
1658                 set_reg_field_value(value,
1659                                     2,
1660                                     CRTC_VERT_SYNC_CONTROL,
1661                                     CRTC_AUTO_FORCE_VSYNC_MODE);
1662
1663                 break;
1664
1665         case TRIGGER_DELAY_NEXT_PIXEL:
1666                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1667
1668                 set_reg_field_value(value,
1669                                     1,
1670                                     CRTC_VERT_SYNC_CONTROL,
1671                                     CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1672
1673                 set_reg_field_value(value,
1674                                     0,
1675                                     CRTC_VERT_SYNC_CONTROL,
1676                                     CRTC_AUTO_FORCE_VSYNC_MODE);
1677
1678                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1679
1680                 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1681
1682                 set_reg_field_value(value,
1683                                     2, /* force H count to H_TOTAL and V count to V_TOTAL */
1684                                     CRTC_FORCE_COUNT_NOW_CNTL,
1685                                     CRTC_FORCE_COUNT_NOW_MODE);
1686
1687                 set_reg_field_value(value,
1688                                     1, /* TriggerB - we never use TriggerA */
1689                                     CRTC_FORCE_COUNT_NOW_CNTL,
1690                                     CRTC_FORCE_COUNT_NOW_TRIG_SEL);
1691
1692                 set_reg_field_value(value,
1693                                     1, /* clear trigger status */
1694                                     CRTC_FORCE_COUNT_NOW_CNTL,
1695                                     CRTC_FORCE_COUNT_NOW_CLEAR);
1696
1697                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1698                 break;
1699         }
1700
1701         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
1702
1703         set_reg_field_value(value,
1704                             2,
1705                             CRTC_MASTER_UPDATE_MODE,
1706                             MASTER_UPDATE_MODE);
1707
1708         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
1709 }
1710 void dce110_timing_generator_disable_reset_trigger(
1711         struct timing_generator *tg)
1712 {
1713         uint32_t value;
1714         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1715
1716         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1717
1718         set_reg_field_value(value,
1719                             0, /* force counter now mode is disabled */
1720                             CRTC_FORCE_COUNT_NOW_CNTL,
1721                             CRTC_FORCE_COUNT_NOW_MODE);
1722
1723         set_reg_field_value(value,
1724                             1, /* clear trigger status */
1725                             CRTC_FORCE_COUNT_NOW_CNTL,
1726                             CRTC_FORCE_COUNT_NOW_CLEAR);
1727
1728         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
1729
1730         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1731
1732         set_reg_field_value(value,
1733                             1,
1734                             CRTC_VERT_SYNC_CONTROL,
1735                             CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
1736
1737         set_reg_field_value(value,
1738                             0,
1739                             CRTC_VERT_SYNC_CONTROL,
1740                             CRTC_AUTO_FORCE_VSYNC_MODE);
1741
1742         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
1743
1744         /********************************************************************/
1745         value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
1746
1747         set_reg_field_value(value,
1748                             TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
1749                             CRTC_TRIGB_CNTL,
1750                             CRTC_TRIGB_SOURCE_SELECT);
1751
1752         set_reg_field_value(value,
1753                             TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
1754                             CRTC_TRIGB_CNTL,
1755                             CRTC_TRIGB_POLARITY_SELECT);
1756
1757         set_reg_field_value(value,
1758                             1, /* clear trigger status */
1759                             CRTC_TRIGB_CNTL,
1760                             CRTC_TRIGB_CLEAR);
1761
1762         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
1763 }
1764
1765 /**
1766  *****************************************************************************
1767  *  @brief
1768  *     Checks whether CRTC triggered reset occurred
1769  *
1770  *  @return
1771  *     true if triggered reset occurred, false otherwise
1772  *****************************************************************************
1773  */
1774 bool dce110_timing_generator_did_triggered_reset_occur(
1775         struct timing_generator *tg)
1776 {
1777         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1778         uint32_t value = dm_read_reg(tg->ctx,
1779                         CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
1780         uint32_t value1 = dm_read_reg(tg->ctx,
1781                         CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
1782         bool force = get_reg_field_value(value,
1783                                          CRTC_FORCE_COUNT_NOW_CNTL,
1784                                          CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
1785         bool vert_sync = get_reg_field_value(value1,
1786                                              CRTC_VERT_SYNC_CONTROL,
1787                                              CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
1788
1789         return (force || vert_sync);
1790 }
1791
1792 /**
1793  * dce110_timing_generator_disable_vga
1794  * Turn OFF VGA Mode and Timing  - DxVGA_CONTROL
1795  * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
1796  */
1797 void dce110_timing_generator_disable_vga(
1798         struct timing_generator *tg)
1799 {
1800         uint32_t addr = 0;
1801         uint32_t value = 0;
1802
1803         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1804
1805         switch (tg110->controller_id) {
1806         case CONTROLLER_ID_D0:
1807                 addr = mmD1VGA_CONTROL;
1808                 break;
1809         case CONTROLLER_ID_D1:
1810                 addr = mmD2VGA_CONTROL;
1811                 break;
1812         case CONTROLLER_ID_D2:
1813                 addr = mmD3VGA_CONTROL;
1814                 break;
1815         case CONTROLLER_ID_D3:
1816                 addr = mmD4VGA_CONTROL;
1817                 break;
1818         case CONTROLLER_ID_D4:
1819                 addr = mmD5VGA_CONTROL;
1820                 break;
1821         case CONTROLLER_ID_D5:
1822                 addr = mmD6VGA_CONTROL;
1823                 break;
1824         default:
1825                 break;
1826         }
1827         value = dm_read_reg(tg->ctx, addr);
1828
1829         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
1830         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
1831         set_reg_field_value(
1832                         value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
1833         set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
1834
1835         dm_write_reg(tg->ctx, addr, value);
1836 }
1837
1838 /**
1839 * set_overscan_color_black
1840 *
1841 * @param :black_color is one of the color space
1842 *    :this routine will set overscan black color according to the color space.
1843 * @return none
1844 */
1845
1846 void dce110_timing_generator_set_overscan_color_black(
1847         struct timing_generator *tg,
1848         const struct tg_color *color)
1849 {
1850         struct dc_context *ctx = tg->ctx;
1851         uint32_t addr;
1852         uint32_t value = 0;
1853         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1854
1855         set_reg_field_value(
1856                         value,
1857                         color->color_b_cb,
1858                         CRTC_OVERSCAN_COLOR,
1859                         CRTC_OVERSCAN_COLOR_BLUE);
1860
1861         set_reg_field_value(
1862                         value,
1863                         color->color_r_cr,
1864                         CRTC_OVERSCAN_COLOR,
1865                         CRTC_OVERSCAN_COLOR_RED);
1866
1867         set_reg_field_value(
1868                         value,
1869                         color->color_g_y,
1870                         CRTC_OVERSCAN_COLOR,
1871                         CRTC_OVERSCAN_COLOR_GREEN);
1872
1873         addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1874         dm_write_reg(ctx, addr, value);
1875         addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1876         dm_write_reg(ctx, addr, value);
1877         /* This is desirable to have a constant DAC output voltage during the
1878          * blank time that is higher than the 0 volt reference level that the
1879          * DAC outputs when the NBLANK signal
1880          * is asserted low, such as for output to an analog TV. */
1881         addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1882         dm_write_reg(ctx, addr, value);
1883
1884         /* TO DO we have to program EXT registers and we need to know LB DATA
1885          * format because it is used when more 10 , i.e. 12 bits per color
1886          *
1887          * m_mmDxCRTC_OVERSCAN_COLOR_EXT
1888          * m_mmDxCRTC_BLACK_COLOR_EXT
1889          * m_mmDxCRTC_BLANK_DATA_COLOR_EXT
1890          */
1891
1892 }
1893
1894 void dce110_tg_program_blank_color(struct timing_generator *tg,
1895                 const struct tg_color *black_color)
1896 {
1897         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1898         uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
1899         uint32_t value = dm_read_reg(tg->ctx, addr);
1900
1901         set_reg_field_value(
1902                 value,
1903                 black_color->color_b_cb,
1904                 CRTC_BLACK_COLOR,
1905                 CRTC_BLACK_COLOR_B_CB);
1906         set_reg_field_value(
1907                 value,
1908                 black_color->color_g_y,
1909                 CRTC_BLACK_COLOR,
1910                 CRTC_BLACK_COLOR_G_Y);
1911         set_reg_field_value(
1912                 value,
1913                 black_color->color_r_cr,
1914                 CRTC_BLACK_COLOR,
1915                 CRTC_BLACK_COLOR_R_CR);
1916
1917         dm_write_reg(tg->ctx, addr, value);
1918
1919         addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
1920         dm_write_reg(tg->ctx, addr, value);
1921 }
1922
1923 void dce110_tg_set_overscan_color(struct timing_generator *tg,
1924         const struct tg_color *overscan_color)
1925 {
1926         struct dc_context *ctx = tg->ctx;
1927         uint32_t value = 0;
1928         uint32_t addr;
1929         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1930
1931         set_reg_field_value(
1932                 value,
1933                 overscan_color->color_b_cb,
1934                 CRTC_OVERSCAN_COLOR,
1935                 CRTC_OVERSCAN_COLOR_BLUE);
1936
1937         set_reg_field_value(
1938                 value,
1939                 overscan_color->color_g_y,
1940                 CRTC_OVERSCAN_COLOR,
1941                 CRTC_OVERSCAN_COLOR_GREEN);
1942
1943         set_reg_field_value(
1944                 value,
1945                 overscan_color->color_r_cr,
1946                 CRTC_OVERSCAN_COLOR,
1947                 CRTC_OVERSCAN_COLOR_RED);
1948
1949         addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
1950         dm_write_reg(ctx, addr, value);
1951 }
1952
1953 void dce110_tg_program_timing(struct timing_generator *tg,
1954         const struct dc_crtc_timing *timing,
1955         bool use_vbios)
1956 {
1957         if (use_vbios)
1958                 dce110_timing_generator_program_timing_generator(tg, timing);
1959         else
1960                 dce110_timing_generator_program_blanking(tg, timing);
1961 }
1962
1963 bool dce110_tg_is_blanked(struct timing_generator *tg)
1964 {
1965         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1966         uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
1967
1968         if (get_reg_field_value(
1969                         value,
1970                         CRTC_BLANK_CONTROL,
1971                         CRTC_BLANK_DATA_EN) == 1 &&
1972                 get_reg_field_value(
1973                         value,
1974                         CRTC_BLANK_CONTROL,
1975                         CRTC_CURRENT_BLANK_STATE) == 1)
1976                 return true;
1977         return false;
1978 }
1979
1980 void dce110_tg_set_blank(struct timing_generator *tg,
1981                 bool enable_blanking)
1982 {
1983         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
1984         uint32_t value = 0;
1985
1986         set_reg_field_value(
1987                 value,
1988                 1,
1989                 CRTC_DOUBLE_BUFFER_CONTROL,
1990                 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
1991
1992         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
1993         value = 0;
1994
1995         if (enable_blanking) {
1996                 set_reg_field_value(
1997                         value,
1998                         1,
1999                         CRTC_BLANK_CONTROL,
2000                         CRTC_BLANK_DATA_EN);
2001
2002                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
2003
2004         } else
2005                 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
2006 }
2007
2008 bool dce110_tg_validate_timing(struct timing_generator *tg,
2009         const struct dc_crtc_timing *timing)
2010 {
2011         return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
2012 }
2013
2014 void dce110_tg_wait_for_state(struct timing_generator *tg,
2015         enum crtc_state state)
2016 {
2017         switch (state) {
2018         case CRTC_STATE_VBLANK:
2019                 dce110_timing_generator_wait_for_vblank(tg);
2020                 break;
2021
2022         case CRTC_STATE_VACTIVE:
2023                 dce110_timing_generator_wait_for_vactive(tg);
2024                 break;
2025
2026         default:
2027                 break;
2028         }
2029 }
2030
2031 void dce110_tg_set_colors(struct timing_generator *tg,
2032         const struct tg_color *blank_color,
2033         const struct tg_color *overscan_color)
2034 {
2035         if (blank_color != NULL)
2036                 dce110_tg_program_blank_color(tg, blank_color);
2037         if (overscan_color != NULL)
2038                 dce110_tg_set_overscan_color(tg, overscan_color);
2039 }
2040
2041 /* Gets first line of blank region of the display timing for CRTC
2042  * and programms is as a trigger to fire vertical interrupt
2043  */
2044 bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
2045 {
2046         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2047         uint32_t v_blank_start = 0;
2048         uint32_t v_blank_end = 0;
2049         uint32_t val = 0;
2050         uint32_t h_position, v_position;
2051
2052         tg->funcs->get_scanoutpos(
2053                         tg,
2054                         &v_blank_start,
2055                         &v_blank_end,
2056                         &h_position,
2057                         &v_position);
2058
2059         if (v_blank_start == 0 || v_blank_end == 0)
2060                 return false;
2061
2062         set_reg_field_value(
2063                 val,
2064                 v_blank_start,
2065                 CRTC_VERTICAL_INTERRUPT0_POSITION,
2066                 CRTC_VERTICAL_INTERRUPT0_LINE_START);
2067
2068         /* Set interval width for interrupt to fire to 1 scanline */
2069         set_reg_field_value(
2070                 val,
2071                 v_blank_start + width,
2072                 CRTC_VERTICAL_INTERRUPT0_POSITION,
2073                 CRTC_VERTICAL_INTERRUPT0_LINE_END);
2074
2075         dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
2076
2077         return true;
2078 }
2079
2080 static bool dce110_is_tg_enabled(struct timing_generator *tg)
2081 {
2082         uint32_t addr = 0;
2083         uint32_t value = 0;
2084         uint32_t field = 0;
2085         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2086
2087         addr = CRTC_REG(mmCRTC_CONTROL);
2088         value = dm_read_reg(tg->ctx, addr);
2089         field = get_reg_field_value(value, CRTC_CONTROL,
2090                                     CRTC_CURRENT_MASTER_EN_STATE);
2091         return field == 1;
2092 }
2093
2094 bool dce110_configure_crc(struct timing_generator *tg,
2095                           const struct crc_params *params)
2096 {
2097         uint32_t cntl_addr = 0;
2098         uint32_t addr = 0;
2099         uint32_t value;
2100         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2101
2102         /* Cannot configure crc on a CRTC that is disabled */
2103         if (!dce110_is_tg_enabled(tg))
2104                 return false;
2105
2106         cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
2107
2108         /* First, disable CRC before we configure it. */
2109         dm_write_reg(tg->ctx, cntl_addr, 0);
2110
2111         if (!params->enable)
2112                 return true;
2113
2114         /* Program frame boundaries */
2115         /* Window A x axis start and end. */
2116         value = 0;
2117         addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
2118         set_reg_field_value(value, params->windowa_x_start,
2119                             CRTC_CRC0_WINDOWA_X_CONTROL,
2120                             CRTC_CRC0_WINDOWA_X_START);
2121         set_reg_field_value(value, params->windowa_x_end,
2122                             CRTC_CRC0_WINDOWA_X_CONTROL,
2123                             CRTC_CRC0_WINDOWA_X_END);
2124         dm_write_reg(tg->ctx, addr, value);
2125
2126         /* Window A y axis start and end. */
2127         value = 0;
2128         addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
2129         set_reg_field_value(value, params->windowa_y_start,
2130                             CRTC_CRC0_WINDOWA_Y_CONTROL,
2131                             CRTC_CRC0_WINDOWA_Y_START);
2132         set_reg_field_value(value, params->windowa_y_end,
2133                             CRTC_CRC0_WINDOWA_Y_CONTROL,
2134                             CRTC_CRC0_WINDOWA_Y_END);
2135         dm_write_reg(tg->ctx, addr, value);
2136
2137         /* Window B x axis start and end. */
2138         value = 0;
2139         addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
2140         set_reg_field_value(value, params->windowb_x_start,
2141                             CRTC_CRC0_WINDOWB_X_CONTROL,
2142                             CRTC_CRC0_WINDOWB_X_START);
2143         set_reg_field_value(value, params->windowb_x_end,
2144                             CRTC_CRC0_WINDOWB_X_CONTROL,
2145                             CRTC_CRC0_WINDOWB_X_END);
2146         dm_write_reg(tg->ctx, addr, value);
2147
2148         /* Window B y axis start and end. */
2149         value = 0;
2150         addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
2151         set_reg_field_value(value, params->windowb_y_start,
2152                             CRTC_CRC0_WINDOWB_Y_CONTROL,
2153                             CRTC_CRC0_WINDOWB_Y_START);
2154         set_reg_field_value(value, params->windowb_y_end,
2155                             CRTC_CRC0_WINDOWB_Y_CONTROL,
2156                             CRTC_CRC0_WINDOWB_Y_END);
2157         dm_write_reg(tg->ctx, addr, value);
2158
2159         /* Set crc mode and selection, and enable. Only using CRC0*/
2160         value = 0;
2161         set_reg_field_value(value, params->continuous_mode ? 1 : 0,
2162                             CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
2163         set_reg_field_value(value, params->selection,
2164                             CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
2165         set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
2166         dm_write_reg(tg->ctx, cntl_addr, value);
2167
2168         return true;
2169 }
2170
2171 bool dce110_get_crc(struct timing_generator *tg,
2172                     uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
2173 {
2174         uint32_t addr = 0;
2175         uint32_t value = 0;
2176         uint32_t field = 0;
2177         struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
2178
2179         addr = CRTC_REG(mmCRTC_CRC_CNTL);
2180         value = dm_read_reg(tg->ctx, addr);
2181         field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
2182
2183         /* Early return if CRC is not enabled for this CRTC */
2184         if (!field)
2185                 return false;
2186
2187         addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
2188         value = dm_read_reg(tg->ctx, addr);
2189         *r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
2190         *g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
2191
2192         addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
2193         value = dm_read_reg(tg->ctx, addr);
2194         *b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
2195
2196         return true;
2197 }
2198
2199 static const struct timing_generator_funcs dce110_tg_funcs = {
2200                 .validate_timing = dce110_tg_validate_timing,
2201                 .program_timing = dce110_tg_program_timing,
2202                 .enable_crtc = dce110_timing_generator_enable_crtc,
2203                 .disable_crtc = dce110_timing_generator_disable_crtc,
2204                 .is_counter_moving = dce110_timing_generator_is_counter_moving,
2205                 .get_position = dce110_timing_generator_get_position,
2206                 .get_frame_count = dce110_timing_generator_get_vblank_counter,
2207                 .get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
2208                 .set_early_control = dce110_timing_generator_set_early_control,
2209                 .wait_for_state = dce110_tg_wait_for_state,
2210                 .set_blank = dce110_tg_set_blank,
2211                 .is_blanked = dce110_tg_is_blanked,
2212                 .set_colors = dce110_tg_set_colors,
2213                 .set_overscan_blank_color =
2214                                 dce110_timing_generator_set_overscan_color_black,
2215                 .set_blank_color = dce110_timing_generator_program_blank_color,
2216                 .disable_vga = dce110_timing_generator_disable_vga,
2217                 .did_triggered_reset_occur =
2218                                 dce110_timing_generator_did_triggered_reset_occur,
2219                 .setup_global_swap_lock =
2220                                 dce110_timing_generator_setup_global_swap_lock,
2221                 .enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
2222                 .enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
2223                 .disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
2224                 .tear_down_global_swap_lock =
2225                                 dce110_timing_generator_tear_down_global_swap_lock,
2226                 .enable_advanced_request =
2227                                 dce110_timing_generator_enable_advanced_request,
2228                 .set_drr =
2229                                 dce110_timing_generator_set_drr,
2230                 .set_static_screen_control =
2231                         dce110_timing_generator_set_static_screen_control,
2232                 .set_test_pattern = dce110_timing_generator_set_test_pattern,
2233                 .arm_vert_intr = dce110_arm_vert_intr,
2234                 .is_tg_enabled = dce110_is_tg_enabled,
2235                 .configure_crc = dce110_configure_crc,
2236                 .get_crc = dce110_get_crc,
2237 };
2238
2239 void dce110_timing_generator_construct(
2240         struct dce110_timing_generator *tg110,
2241         struct dc_context *ctx,
2242         uint32_t instance,
2243         const struct dce110_timing_generator_offsets *offsets)
2244 {
2245         tg110->controller_id = CONTROLLER_ID_D0 + instance;
2246         tg110->base.inst = instance;
2247
2248         tg110->offsets = *offsets;
2249
2250         tg110->base.funcs = &dce110_tg_funcs;
2251
2252         tg110->base.ctx = ctx;
2253         tg110->base.bp = ctx->dc_bios;
2254
2255         tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
2256         tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
2257
2258         tg110->min_h_blank = 56;
2259         tg110->min_h_front_porch = 4;
2260         tg110->min_h_back_porch = 4;
2261 }