GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / gpu / drm / amd / powerplay / smumgr / fiji_smc.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include "fiji_smc.h"
25 #include "smu7_dyn_defaults.h"
26
27 #include "smu7_hwmgr.h"
28 #include "hardwaremanager.h"
29 #include "ppatomctrl.h"
30 #include "pp_debug.h"
31 #include "cgs_common.h"
32 #include "atombios.h"
33 #include "fiji_smumgr.h"
34 #include "pppcielanes.h"
35 #include "smu7_ppsmc.h"
36 #include "smu73.h"
37 #include "smu/smu_7_1_3_d.h"
38 #include "smu/smu_7_1_3_sh_mask.h"
39 #include "gmc/gmc_8_1_d.h"
40 #include "gmc/gmc_8_1_sh_mask.h"
41 #include "bif/bif_5_0_d.h"
42 #include "bif/bif_5_0_sh_mask.h"
43 #include "dce/dce_10_0_d.h"
44 #include "dce/dce_10_0_sh_mask.h"
45 #include "smu7_smumgr.h"
46
47 #define VOLTAGE_SCALE 4
48 #define POWERTUNE_DEFAULT_SET_MAX    1
49 #define VOLTAGE_VID_OFFSET_SCALE1   625
50 #define VOLTAGE_VID_OFFSET_SCALE2   100
51 #define VDDC_VDDCI_DELTA            300
52 #define MC_CG_ARB_FREQ_F1           0x0b
53
54 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
55  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
56  */
57 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
58                                 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
59
60 /* [FF, SS] type, [] 4 voltage ranges, and
61  * [Floor Freq, Boundary Freq, VID min , VID max]
62  */
63 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
64         { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
65         { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
66
67 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
68  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
69  */
70 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
71                                 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
72
73 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
74                 /*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
75                 {1,               0xF,             0xFD,
76                 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
77                 0x19,        5,               45}
78 };
79
80 /* PPGen has the gain setting generated in x * 100 unit
81  * This function is to convert the unit to x * 4096(0x1000) unit.
82  *  This is the unit expected by SMC firmware
83  */
84 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
85                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
86                 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
87 {
88         uint32_t i;
89         uint16_t vddci;
90         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
91         *voltage = *mvdd = 0;
92
93
94         /* clock - voltage dependency table is empty table */
95         if (dep_table->count == 0)
96                 return -EINVAL;
97
98         for (i = 0; i < dep_table->count; i++) {
99                 /* find first sclk bigger than request */
100                 if (dep_table->entries[i].clk >= clock) {
101                         *voltage |= (dep_table->entries[i].vddc *
102                                         VOLTAGE_SCALE) << VDDC_SHIFT;
103                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
104                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
105                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
106                         else if (dep_table->entries[i].vddci)
107                                 *voltage |= (dep_table->entries[i].vddci *
108                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
109                         else {
110                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
111                                                 (dep_table->entries[i].vddc -
112                                                                 VDDC_VDDCI_DELTA));
113                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
114                         }
115
116                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
117                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
118                                         VOLTAGE_SCALE;
119                         else if (dep_table->entries[i].mvdd)
120                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
121                                         VOLTAGE_SCALE;
122
123                         *voltage |= 1 << PHASES_SHIFT;
124                         return 0;
125                 }
126         }
127
128         /* sclk is bigger than max sclk in the dependence table */
129         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
130
131         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
132                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
133                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
134         else if (dep_table->entries[i-1].vddci) {
135                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
136                                 (dep_table->entries[i].vddc -
137                                                 VDDC_VDDCI_DELTA));
138                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
139         }
140
141         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
142                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
143         else if (dep_table->entries[i].mvdd)
144                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
145
146         return 0;
147 }
148
149
150 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
151 {
152         uint32_t tmp;
153         tmp = raw_setting * 4096 / 100;
154         return (uint16_t)tmp;
155 }
156
157 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
158 {
159         switch (line) {
160         case SMU7_I2CLineID_DDC1:
161                 *scl = SMU7_I2C_DDC1CLK;
162                 *sda = SMU7_I2C_DDC1DATA;
163                 break;
164         case SMU7_I2CLineID_DDC2:
165                 *scl = SMU7_I2C_DDC2CLK;
166                 *sda = SMU7_I2C_DDC2DATA;
167                 break;
168         case SMU7_I2CLineID_DDC3:
169                 *scl = SMU7_I2C_DDC3CLK;
170                 *sda = SMU7_I2C_DDC3DATA;
171                 break;
172         case SMU7_I2CLineID_DDC4:
173                 *scl = SMU7_I2C_DDC4CLK;
174                 *sda = SMU7_I2C_DDC4DATA;
175                 break;
176         case SMU7_I2CLineID_DDC5:
177                 *scl = SMU7_I2C_DDC5CLK;
178                 *sda = SMU7_I2C_DDC5DATA;
179                 break;
180         case SMU7_I2CLineID_DDC6:
181                 *scl = SMU7_I2C_DDC6CLK;
182                 *sda = SMU7_I2C_DDC6DATA;
183                 break;
184         case SMU7_I2CLineID_SCLSDA:
185                 *scl = SMU7_I2C_SCL;
186                 *sda = SMU7_I2C_SDA;
187                 break;
188         case SMU7_I2CLineID_DDCVGA:
189                 *scl = SMU7_I2C_DDCVGACLK;
190                 *sda = SMU7_I2C_DDCVGADATA;
191                 break;
192         default:
193                 *scl = 0;
194                 *sda = 0;
195                 break;
196         }
197 }
198
199 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
200 {
201         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
202         struct phm_ppt_v1_information *table_info =
203                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
204
205         if (table_info &&
206                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
207                         table_info->cac_dtp_table->usPowerTuneDataSetID)
208                 smu_data->power_tune_defaults =
209                                 &fiji_power_tune_data_set_array
210                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
211         else
212                 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
213
214 }
215
216 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
217 {
218
219         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
220         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
221
222         SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
223
224         struct phm_ppt_v1_information *table_info =
225                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
226         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
227         struct pp_advance_fan_control_parameters *fan_table =
228                         &hwmgr->thermal_controller.advanceFanControlParameters;
229         uint8_t uc_scl, uc_sda;
230
231         /* TDP number of fraction bits are changed from 8 to 7 for Fiji
232          * as requested by SMC team
233          */
234         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
235                         (uint16_t)(cac_dtp_table->usTDP * 128));
236         dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
237                         (uint16_t)(cac_dtp_table->usTDP * 128));
238
239         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
240                         "Target Operating Temp is out of Range!",
241                         );
242
243         dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
244         dpm_table->GpuTjHyst = 8;
245
246         dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
247
248         /* The following are for new Fiji Multi-input fan/thermal control */
249         dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
250                         cac_dtp_table->usTargetOperatingTemp * 256);
251         dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
252                         cac_dtp_table->usTemperatureLimitHotspot * 256);
253         dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
254                         cac_dtp_table->usTemperatureLimitLiquid1 * 256);
255         dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
256                         cac_dtp_table->usTemperatureLimitLiquid2 * 256);
257         dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
258                         cac_dtp_table->usTemperatureLimitVrVddc * 256);
259         dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
260                         cac_dtp_table->usTemperatureLimitVrMvdd * 256);
261         dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
262                         cac_dtp_table->usTemperatureLimitPlx * 256);
263
264         dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
265                         scale_fan_gain_settings(fan_table->usFanGainEdge));
266         dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
267                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
268         dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
269                         scale_fan_gain_settings(fan_table->usFanGainLiquid));
270         dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
271                         scale_fan_gain_settings(fan_table->usFanGainVrVddc));
272         dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
273                         scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
274         dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
275                         scale_fan_gain_settings(fan_table->usFanGainPlx));
276         dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
277                         scale_fan_gain_settings(fan_table->usFanGainHbm));
278
279         dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
280         dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
281         dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
282         dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
283
284         get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
285         dpm_table->Liquid_I2C_LineSCL = uc_scl;
286         dpm_table->Liquid_I2C_LineSDA = uc_sda;
287
288         get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
289         dpm_table->Vr_I2C_LineSCL = uc_scl;
290         dpm_table->Vr_I2C_LineSDA = uc_sda;
291
292         get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
293         dpm_table->Plx_I2C_LineSCL = uc_scl;
294         dpm_table->Plx_I2C_LineSDA = uc_sda;
295
296         return 0;
297 }
298
299
300 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
301 {
302         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
303         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
304
305         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
306         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
307         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
308         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
309
310         return 0;
311 }
312
313
314 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
315 {
316         uint16_t tdc_limit;
317         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
318         struct phm_ppt_v1_information *table_info =
319                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
320         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
321
322         /* TDC number of fraction bits are changed from 8 to 7
323          * for Fiji as requested by SMC team
324          */
325         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
326         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
327                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
328         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
329                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
330         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
331
332         return 0;
333 }
334
335 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
336 {
337         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
338         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
339         uint32_t temp;
340
341         if (smu7_read_smc_sram_dword(hwmgr->smumgr,
342                         fuse_table_offset +
343                         offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
344                         (uint32_t *)&temp, SMC_RAM_END))
345                 PP_ASSERT_WITH_CODE(false,
346                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
347                                 return -EINVAL);
348         else {
349                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
350                 smu_data->power_tune_table.LPMLTemperatureMin =
351                                 (uint8_t)((temp >> 16) & 0xff);
352                 smu_data->power_tune_table.LPMLTemperatureMax =
353                                 (uint8_t)((temp >> 8) & 0xff);
354                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
355         }
356         return 0;
357 }
358
359 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
360 {
361         int i;
362         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
363
364         /* Currently not used. Set all to zero. */
365         for (i = 0; i < 16; i++)
366                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
367
368         return 0;
369 }
370
371 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
372 {
373         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
374
375         if ((hwmgr->thermal_controller.advanceFanControlParameters.
376                         usFanOutputSensitivity & (1 << 15)) ||
377                         0 == hwmgr->thermal_controller.advanceFanControlParameters.
378                         usFanOutputSensitivity)
379                 hwmgr->thermal_controller.advanceFanControlParameters.
380                 usFanOutputSensitivity = hwmgr->thermal_controller.
381                         advanceFanControlParameters.usDefaultFanOutputSensitivity;
382
383         smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
384                         PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
385                                         advanceFanControlParameters.usFanOutputSensitivity);
386         return 0;
387 }
388
389 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
390 {
391         int i;
392         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
393
394         /* Currently not used. Set all to zero. */
395         for (i = 0; i < 16; i++)
396                 smu_data->power_tune_table.GnbLPML[i] = 0;
397
398         return 0;
399 }
400
401 static int fiji_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
402 {
403         return 0;
404 }
405
406 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
407 {
408         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
409         struct phm_ppt_v1_information *table_info =
410                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
411         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
412         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
413         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
414
415         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
416         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
417
418         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
419                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
420         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
421                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
422
423         return 0;
424 }
425
426 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
427 {
428         uint32_t pm_fuse_table_offset;
429         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
430
431         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
432                         PHM_PlatformCaps_PowerContainment)) {
433                 if (smu7_read_smc_sram_dword(hwmgr->smumgr,
434                                 SMU7_FIRMWARE_HEADER_LOCATION +
435                                 offsetof(SMU73_Firmware_Header, PmFuseTable),
436                                 &pm_fuse_table_offset, SMC_RAM_END))
437                         PP_ASSERT_WITH_CODE(false,
438                                         "Attempt to get pm_fuse_table_offset Failed!",
439                                         return -EINVAL);
440
441                 /* DW6 */
442                 if (fiji_populate_svi_load_line(hwmgr))
443                         PP_ASSERT_WITH_CODE(false,
444                                         "Attempt to populate SviLoadLine Failed!",
445                                         return -EINVAL);
446                 /* DW7 */
447                 if (fiji_populate_tdc_limit(hwmgr))
448                         PP_ASSERT_WITH_CODE(false,
449                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
450                 /* DW8 */
451                 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
452                         PP_ASSERT_WITH_CODE(false,
453                                         "Attempt to populate TdcWaterfallCtl, "
454                                         "LPMLTemperature Min and Max Failed!",
455                                         return -EINVAL);
456
457                 /* DW9-DW12 */
458                 if (0 != fiji_populate_temperature_scaler(hwmgr))
459                         PP_ASSERT_WITH_CODE(false,
460                                         "Attempt to populate LPMLTemperatureScaler Failed!",
461                                         return -EINVAL);
462
463                 /* DW13-DW14 */
464                 if (fiji_populate_fuzzy_fan(hwmgr))
465                         PP_ASSERT_WITH_CODE(false,
466                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
467                                         return -EINVAL);
468
469                 /* DW15-DW18 */
470                 if (fiji_populate_gnb_lpml(hwmgr))
471                         PP_ASSERT_WITH_CODE(false,
472                                         "Attempt to populate GnbLPML Failed!",
473                                         return -EINVAL);
474
475                 /* DW19 */
476                 if (fiji_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
477                         PP_ASSERT_WITH_CODE(false,
478                                         "Attempt to populate GnbLPML Min and Max Vid Failed!",
479                                         return -EINVAL);
480
481                 /* DW20 */
482                 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
483                         PP_ASSERT_WITH_CODE(false,
484                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
485                                         "Sidd Failed!", return -EINVAL);
486
487                 if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
488                                 (uint8_t *)&smu_data->power_tune_table,
489                                 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
490                         PP_ASSERT_WITH_CODE(false,
491                                         "Attempt to download PmFuseTable Failed!",
492                                         return -EINVAL);
493         }
494         return 0;
495 }
496
497 /**
498 * Preparation of vddc and vddgfx CAC tables for SMC.
499 *
500 * @param    hwmgr  the address of the hardware manager
501 * @param    table  the SMC DPM table structure to be populated
502 * @return   always 0
503 */
504 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
505                 struct SMU73_Discrete_DpmTable *table)
506 {
507         uint32_t count;
508         uint8_t index;
509         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
510         struct phm_ppt_v1_information *table_info =
511                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
512         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
513                         table_info->vddc_lookup_table;
514         /* tables is already swapped, so in order to use the value from it,
515          * we need to swap it back.
516          * We are populating vddc CAC data to BapmVddc table
517          * in split and merged mode
518          */
519
520         for (count = 0; count < lookup_table->count; count++) {
521                 index = phm_get_voltage_index(lookup_table,
522                                 data->vddc_voltage_table.entries[count].value);
523                 table->BapmVddcVidLoSidd[count] =
524                         convert_to_vid(lookup_table->entries[index].us_cac_low);
525                 table->BapmVddcVidHiSidd[count] =
526                         convert_to_vid(lookup_table->entries[index].us_cac_high);
527         }
528
529         return 0;
530 }
531
532 /**
533 * Preparation of voltage tables for SMC.
534 *
535 * @param    hwmgr   the address of the hardware manager
536 * @param    table   the SMC DPM table structure to be populated
537 * @return   always  0
538 */
539
540 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
541                 struct SMU73_Discrete_DpmTable *table)
542 {
543         int result;
544
545         result = fiji_populate_cac_table(hwmgr, table);
546         PP_ASSERT_WITH_CODE(0 == result,
547                         "can not populate CAC voltage tables to SMC",
548                         return -EINVAL);
549
550         return 0;
551 }
552
553 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
554                 struct SMU73_Discrete_Ulv *state)
555 {
556         int result = 0;
557
558         struct phm_ppt_v1_information *table_info =
559                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
560
561         state->CcPwrDynRm = 0;
562         state->CcPwrDynRm1 = 0;
563
564         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
565         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
566                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
567
568         state->VddcPhase = 1;
569
570         if (!result) {
571                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
572                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
573                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
574         }
575         return result;
576 }
577
578 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
579                 struct SMU73_Discrete_DpmTable *table)
580 {
581         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
582 }
583
584 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
585                 struct SMU73_Discrete_DpmTable *table)
586 {
587         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
588         struct smu7_dpm_table *dpm_table = &data->dpm_table;
589         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
590         int i;
591
592         /* Index (dpm_table->pcie_speed_table.count)
593          * is reserved for PCIE boot level. */
594         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
595                 table->LinkLevel[i].PcieGenSpeed  =
596                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
597                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
598                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
599                 table->LinkLevel[i].EnabledForActivity = 1;
600                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
601                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
602                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
603         }
604
605         smu_data->smc_state_table.LinkLevelCount =
606                         (uint8_t)dpm_table->pcie_speed_table.count;
607         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
608                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
609
610         return 0;
611 }
612
613
614 /**
615 * Calculates the SCLK dividers using the provided engine clock
616 *
617 * @param    hwmgr  the address of the hardware manager
618 * @param    clock  the engine clock to use to populate the structure
619 * @param    sclk   the SMC SCLK structure to be populated
620 */
621 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
622                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
623 {
624         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
625         struct pp_atomctrl_clock_dividers_vi dividers;
626         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
627         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
628         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
629         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
630         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
631         uint32_t ref_clock;
632         uint32_t ref_divider;
633         uint32_t fbdiv;
634         int result;
635
636         /* get the engine clock dividers for this clock value */
637         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
638
639         PP_ASSERT_WITH_CODE(result == 0,
640                         "Error retrieving Engine Clock dividers from VBIOS.",
641                         return result);
642
643         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
644         ref_clock = atomctrl_get_reference_clock(hwmgr);
645         ref_divider = 1 + dividers.uc_pll_ref_div;
646
647         /* low 14 bits is fraction and high 12 bits is divider */
648         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
649
650         /* SPLL_FUNC_CNTL setup */
651         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
652                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
653         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
654                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
655
656         /* SPLL_FUNC_CNTL_3 setup*/
657         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
658                         SPLL_FB_DIV, fbdiv);
659
660         /* set to use fractional accumulation*/
661         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
662                         SPLL_DITHEN, 1);
663
664         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
665                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
666                 struct pp_atomctrl_internal_ss_info ssInfo;
667
668                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
669                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
670                                 vco_freq, &ssInfo)) {
671                         /*
672                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
673                          * ss_info.speed_spectrum_rate -- in unit of khz
674                          *
675                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
676                          */
677                         uint32_t clk_s = ref_clock * 5 /
678                                         (ref_divider * ssInfo.speed_spectrum_rate);
679                         /* clkv = 2 * D * fbdiv / NS */
680                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
681                                         fbdiv / (clk_s * 10000);
682
683                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
684                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
685                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
686                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
687                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
688                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
689                 }
690         }
691
692         sclk->SclkFrequency        = clock;
693         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
694         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
695         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
696         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
697         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
698
699         return 0;
700 }
701
702 /**
703 * Populates single SMC SCLK structure using the provided engine clock
704 *
705 * @param    hwmgr      the address of the hardware manager
706 * @param    clock the engine clock to use to populate the structure
707 * @param    sclk        the SMC SCLK structure to be populated
708 */
709
710 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
711                 uint32_t clock, uint16_t sclk_al_threshold,
712                 struct SMU73_Discrete_GraphicsLevel *level)
713 {
714         int result;
715         /* PP_Clocks minClocks; */
716         uint32_t threshold, mvdd;
717         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
718         struct phm_ppt_v1_information *table_info =
719                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
720
721         result = fiji_calculate_sclk_params(hwmgr, clock, level);
722
723         /* populate graphics levels */
724         result = fiji_get_dependency_volt_by_clk(hwmgr,
725                         table_info->vdd_dep_on_sclk, clock,
726                         (uint32_t *)(&level->MinVoltage), &mvdd);
727         PP_ASSERT_WITH_CODE((0 == result),
728                         "can not find VDDC voltage value for "
729                         "VDDC engine clock dependency table",
730                         return result);
731
732         level->SclkFrequency = clock;
733         level->ActivityLevel = sclk_al_threshold;
734         level->CcPwrDynRm = 0;
735         level->CcPwrDynRm1 = 0;
736         level->EnabledForActivity = 0;
737         level->EnabledForThrottle = 1;
738         level->UpHyst = 10;
739         level->DownHyst = 0;
740         level->VoltageDownHyst = 0;
741         level->PowerThrottle = 0;
742
743         threshold = clock * data->fast_watermark_threshold / 100;
744
745         data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
746
747         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
748                 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
749                                                                 hwmgr->display_config.min_core_set_clock_in_sr);
750
751
752         /* Default to slow, highest DPM level will be
753          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
754          */
755         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
756
757         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
758         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
759         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
760         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
761         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
762         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
763         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
764         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
765         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
766
767         return 0;
768 }
769 /**
770 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
771 *
772 * @param    hwmgr      the address of the hardware manager
773 */
774 int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
775 {
776         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
777         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
778
779         struct smu7_dpm_table *dpm_table = &data->dpm_table;
780         struct phm_ppt_v1_information *table_info =
781                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
782         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
783         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
784         int result = 0;
785         uint32_t array = smu_data->smu7_data.dpm_table_start +
786                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
787         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
788                         SMU73_MAX_LEVELS_GRAPHICS;
789         struct SMU73_Discrete_GraphicsLevel *levels =
790                         smu_data->smc_state_table.GraphicsLevel;
791         uint32_t i, max_entry;
792         uint8_t hightest_pcie_level_enabled = 0,
793                         lowest_pcie_level_enabled = 0,
794                         mid_pcie_level_enabled = 0,
795                         count = 0;
796
797         for (i = 0; i < dpm_table->sclk_table.count; i++) {
798                 result = fiji_populate_single_graphic_level(hwmgr,
799                                 dpm_table->sclk_table.dpm_levels[i].value,
800                                 (uint16_t)smu_data->activity_target[i],
801                                 &levels[i]);
802                 if (result)
803                         return result;
804
805                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
806                 if (i > 1)
807                         levels[i].DeepSleepDivId = 0;
808         }
809
810         /* Only enable level 0 for now.*/
811         levels[0].EnabledForActivity = 1;
812
813         /* set highest level watermark to high */
814         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
815                         PPSMC_DISPLAY_WATERMARK_HIGH;
816
817         smu_data->smc_state_table.GraphicsDpmLevelCount =
818                         (uint8_t)dpm_table->sclk_table.count;
819         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
820                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
821
822         if (pcie_table != NULL) {
823                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
824                                 "There must be 1 or more PCIE levels defined in PPTable.",
825                                 return -EINVAL);
826                 max_entry = pcie_entry_cnt - 1;
827                 for (i = 0; i < dpm_table->sclk_table.count; i++)
828                         levels[i].pcieDpmLevel =
829                                         (uint8_t) ((i < max_entry) ? i : max_entry);
830         } else {
831                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
832                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
833                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
834                         hightest_pcie_level_enabled++;
835
836                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
837                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
838                                                 (1 << lowest_pcie_level_enabled)) == 0))
839                         lowest_pcie_level_enabled++;
840
841                 while ((count < hightest_pcie_level_enabled) &&
842                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
843                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
844                         count++;
845
846                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
847                                 hightest_pcie_level_enabled ?
848                                                 (lowest_pcie_level_enabled + 1 + count) :
849                                                 hightest_pcie_level_enabled;
850
851                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
852                 for (i = 2; i < dpm_table->sclk_table.count; i++)
853                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
854
855                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
856                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
857
858                 /* set pcieDpmLevel to mid_pcie_level_enabled */
859                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
860         }
861         /* level count will send to smc once at init smc table and never change */
862         result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
863                         (uint32_t)array_size, SMC_RAM_END);
864
865         return result;
866 }
867
868
869 /**
870  * MCLK Frequency Ratio
871  * SEQ_CG_RESP  Bit[31:24] - 0x0
872  * Bit[27:24] \96 DDR3 Frequency ratio
873  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
874  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
875  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
876  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
877  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
878  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
879  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
880  * 400 < 0x7 <= 450MHz,       800 < 0xF
881  */
882 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
883 {
884         if (mem_clock <= 10000)
885                 return 0x0;
886         if (mem_clock <= 15000)
887                 return 0x1;
888         if (mem_clock <= 20000)
889                 return 0x2;
890         if (mem_clock <= 25000)
891                 return 0x3;
892         if (mem_clock <= 30000)
893                 return 0x4;
894         if (mem_clock <= 35000)
895                 return 0x5;
896         if (mem_clock <= 40000)
897                 return 0x6;
898         if (mem_clock <= 45000)
899                 return 0x7;
900         if (mem_clock <= 50000)
901                 return 0x8;
902         if (mem_clock <= 55000)
903                 return 0x9;
904         if (mem_clock <= 60000)
905                 return 0xa;
906         if (mem_clock <= 65000)
907                 return 0xb;
908         if (mem_clock <= 70000)
909                 return 0xc;
910         if (mem_clock <= 75000)
911                 return 0xd;
912         if (mem_clock <= 80000)
913                 return 0xe;
914         /* mem_clock > 800MHz */
915         return 0xf;
916 }
917
918 /**
919 * Populates the SMC MCLK structure using the provided memory clock
920 *
921 * @param    hwmgr   the address of the hardware manager
922 * @param    clock   the memory clock to use to populate the structure
923 * @param    sclk    the SMC SCLK structure to be populated
924 */
925 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
926     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
927 {
928         struct pp_atomctrl_memory_clock_param mem_param;
929         int result;
930
931         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
932         PP_ASSERT_WITH_CODE((0 == result),
933                         "Failed to get Memory PLL Dividers.",
934                         );
935
936         /* Save the result data to outpupt memory level structure */
937         mclk->MclkFrequency   = clock;
938         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
939         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
940
941         return result;
942 }
943
944 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
945                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
946 {
947         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
948         struct phm_ppt_v1_information *table_info =
949                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
950         int result = 0;
951         uint32_t mclk_stutter_mode_threshold = 60000;
952
953         if (table_info->vdd_dep_on_mclk) {
954                 result = fiji_get_dependency_volt_by_clk(hwmgr,
955                                 table_info->vdd_dep_on_mclk, clock,
956                                 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
957                 PP_ASSERT_WITH_CODE((0 == result),
958                                 "can not find MinVddc voltage value from memory "
959                                 "VDDC voltage dependency table", return result);
960         }
961
962         mem_level->EnabledForThrottle = 1;
963         mem_level->EnabledForActivity = 0;
964         mem_level->UpHyst = 0;
965         mem_level->DownHyst = 100;
966         mem_level->VoltageDownHyst = 0;
967         mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
968         mem_level->StutterEnable = false;
969
970         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
971
972         /* enable stutter mode if all the follow condition applied
973          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
974          * &(data->DisplayTiming.numExistingDisplays));
975          */
976         data->display_timing.num_existing_displays = 1;
977
978         if (mclk_stutter_mode_threshold &&
979                 (clock <= mclk_stutter_mode_threshold) &&
980                 (!data->is_uvd_enabled) &&
981                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
982                                 STUTTER_ENABLE) & 0x1))
983                 mem_level->StutterEnable = true;
984
985         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
986         if (!result) {
987                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
988                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
989                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
990                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
991         }
992         return result;
993 }
994
995 /**
996 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
997 *
998 * @param    hwmgr      the address of the hardware manager
999 */
1000 int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1001 {
1002         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1004         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1005         int result;
1006         /* populate MCLK dpm table to SMU7 */
1007         uint32_t array = smu_data->smu7_data.dpm_table_start +
1008                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1009         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1010                         SMU73_MAX_LEVELS_MEMORY;
1011         struct SMU73_Discrete_MemoryLevel *levels =
1012                         smu_data->smc_state_table.MemoryLevel;
1013         uint32_t i;
1014
1015         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1016                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1017                                 "can not populate memory level as memory clock is zero",
1018                                 return -EINVAL);
1019                 result = fiji_populate_single_memory_level(hwmgr,
1020                                 dpm_table->mclk_table.dpm_levels[i].value,
1021                                 &levels[i]);
1022                 if (result)
1023                         return result;
1024         }
1025
1026         /* Only enable level 0 for now. */
1027         levels[0].EnabledForActivity = 1;
1028
1029         /* in order to prevent MC activity from stutter mode to push DPM up.
1030          * the UVD change complements this by putting the MCLK in
1031          * a higher state by default such that we are not effected by
1032          * up threshold or and MCLK DPM latency.
1033          */
1034         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1035         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1036
1037         smu_data->smc_state_table.MemoryDpmLevelCount =
1038                         (uint8_t)dpm_table->mclk_table.count;
1039         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1040                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1041         /* set highest level watermark to high */
1042         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1043                         PPSMC_DISPLAY_WATERMARK_HIGH;
1044
1045         /* level count will send to smc once at init smc table and never change */
1046         result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1047                         (uint32_t)array_size, SMC_RAM_END);
1048
1049         return result;
1050 }
1051
1052
1053 /**
1054 * Populates the SMC MVDD structure using the provided memory clock.
1055 *
1056 * @param    hwmgr      the address of the hardware manager
1057 * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
1058 * @param    voltage     the SMC VOLTAGE structure to be populated
1059 */
1060 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1061                 uint32_t mclk, SMIO_Pattern *smio_pat)
1062 {
1063         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1064         struct phm_ppt_v1_information *table_info =
1065                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1066         uint32_t i = 0;
1067
1068         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1069                 /* find mvdd value which clock is more than request */
1070                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1071                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1072                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1073                                 break;
1074                         }
1075                 }
1076                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1077                                 "MVDD Voltage is outside the supported range.",
1078                                 return -EINVAL);
1079         } else
1080                 return -EINVAL;
1081
1082         return 0;
1083 }
1084
1085 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1086                 SMU73_Discrete_DpmTable *table)
1087 {
1088         int result = 0;
1089         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1090         struct phm_ppt_v1_information *table_info =
1091                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1092         struct pp_atomctrl_clock_dividers_vi dividers;
1093         SMIO_Pattern vol_level;
1094         uint32_t mvdd;
1095         uint16_t us_mvdd;
1096         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1097         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1098
1099         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1100
1101         if (!data->sclk_dpm_key_disabled) {
1102                 /* Get MinVoltage and Frequency from DPM0,
1103                  * already converted to SMC_UL */
1104                 table->ACPILevel.SclkFrequency =
1105                                 data->dpm_table.sclk_table.dpm_levels[0].value;
1106                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1107                                 table_info->vdd_dep_on_sclk,
1108                                 table->ACPILevel.SclkFrequency,
1109                                 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1110                 PP_ASSERT_WITH_CODE((0 == result),
1111                                 "Cannot find ACPI VDDC voltage value " \
1112                                 "in Clock Dependency Table",
1113                                 );
1114         } else {
1115                 table->ACPILevel.SclkFrequency =
1116                                 data->vbios_boot_state.sclk_bootup_value;
1117                 table->ACPILevel.MinVoltage =
1118                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1119         }
1120
1121         /* get the engine clock dividers for this clock value */
1122         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1123                         table->ACPILevel.SclkFrequency,  &dividers);
1124         PP_ASSERT_WITH_CODE(result == 0,
1125                         "Error retrieving Engine Clock dividers from VBIOS.",
1126                         return result);
1127
1128         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1129         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1130         table->ACPILevel.DeepSleepDivId = 0;
1131
1132         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1133                         SPLL_PWRON, 0);
1134         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1135                         SPLL_RESET, 1);
1136         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1137                         SCLK_MUX_SEL, 4);
1138
1139         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1140         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1141         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1142         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1143         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1144         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1145         table->ACPILevel.CcPwrDynRm = 0;
1146         table->ACPILevel.CcPwrDynRm1 = 0;
1147
1148         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1149         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1150         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1151         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1152         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1153         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1154         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1155         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1156         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1157         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1158         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1159
1160         if (!data->mclk_dpm_key_disabled) {
1161                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1162                 table->MemoryACPILevel.MclkFrequency =
1163                                 data->dpm_table.mclk_table.dpm_levels[0].value;
1164                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1165                                 table_info->vdd_dep_on_mclk,
1166                                 table->MemoryACPILevel.MclkFrequency,
1167                         (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1168                 PP_ASSERT_WITH_CODE((0 == result),
1169                                 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1170                                 );
1171         } else {
1172                 table->MemoryACPILevel.MclkFrequency =
1173                                 data->vbios_boot_state.mclk_bootup_value;
1174                 table->MemoryACPILevel.MinVoltage =
1175                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1176         }
1177
1178         us_mvdd = 0;
1179         if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1180                         (data->mclk_dpm_key_disabled))
1181                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1182         else {
1183                 if (!fiji_populate_mvdd_value(hwmgr,
1184                                 data->dpm_table.mclk_table.dpm_levels[0].value,
1185                                 &vol_level))
1186                         us_mvdd = vol_level.Voltage;
1187         }
1188
1189         table->MemoryACPILevel.MinMvdd =
1190                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1191
1192         table->MemoryACPILevel.EnabledForThrottle = 0;
1193         table->MemoryACPILevel.EnabledForActivity = 0;
1194         table->MemoryACPILevel.UpHyst = 0;
1195         table->MemoryACPILevel.DownHyst = 100;
1196         table->MemoryACPILevel.VoltageDownHyst = 0;
1197         table->MemoryACPILevel.ActivityLevel =
1198                         PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
1199
1200         table->MemoryACPILevel.StutterEnable = false;
1201         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1202         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1203
1204         return result;
1205 }
1206
1207 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1208                 SMU73_Discrete_DpmTable *table)
1209 {
1210         int result = -EINVAL;
1211         uint8_t count;
1212         struct pp_atomctrl_clock_dividers_vi dividers;
1213         struct phm_ppt_v1_information *table_info =
1214                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1215         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1216                         table_info->mm_dep_table;
1217
1218         table->VceLevelCount = (uint8_t)(mm_table->count);
1219         table->VceBootLevel = 0;
1220
1221         for (count = 0; count < table->VceLevelCount; count++) {
1222                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1223                 table->VceLevel[count].MinVoltage = 0;
1224                 table->VceLevel[count].MinVoltage |=
1225                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1226                 table->VceLevel[count].MinVoltage |=
1227                                 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1228                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1229                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1230
1231                 /*retrieve divider value for VBIOS */
1232                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1233                                 table->VceLevel[count].Frequency, &dividers);
1234                 PP_ASSERT_WITH_CODE((0 == result),
1235                                 "can not find divide id for VCE engine clock",
1236                                 return result);
1237
1238                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1239
1240                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1241                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1242         }
1243         return result;
1244 }
1245
1246 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1247                 SMU73_Discrete_DpmTable *table)
1248 {
1249         int result = -EINVAL;
1250         uint8_t count;
1251         struct pp_atomctrl_clock_dividers_vi dividers;
1252         struct phm_ppt_v1_information *table_info =
1253                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1254         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1255                         table_info->mm_dep_table;
1256
1257         table->AcpLevelCount = (uint8_t)(mm_table->count);
1258         table->AcpBootLevel = 0;
1259
1260         for (count = 0; count < table->AcpLevelCount; count++) {
1261                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1262                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1263                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1264                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1265                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1266                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1267
1268                 /* retrieve divider value for VBIOS */
1269                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1270                                 table->AcpLevel[count].Frequency, &dividers);
1271                 PP_ASSERT_WITH_CODE((0 == result),
1272                                 "can not find divide id for engine clock", return result);
1273
1274                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1275
1276                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1277                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1278         }
1279         return result;
1280 }
1281
1282 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1283                 SMU73_Discrete_DpmTable *table)
1284 {
1285         int result = -EINVAL;
1286         uint8_t count;
1287         struct pp_atomctrl_clock_dividers_vi dividers;
1288         struct phm_ppt_v1_information *table_info =
1289                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1290         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1291                         table_info->mm_dep_table;
1292
1293         table->SamuBootLevel = 0;
1294         table->SamuLevelCount = (uint8_t)(mm_table->count);
1295
1296         for (count = 0; count < table->SamuLevelCount; count++) {
1297                 /* not sure whether we need evclk or not */
1298                 table->SamuLevel[count].MinVoltage = 0;
1299                 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
1300                 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1301                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1302                 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1303                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1304                 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1305
1306                 /* retrieve divider value for VBIOS */
1307                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1308                                 table->SamuLevel[count].Frequency, &dividers);
1309                 PP_ASSERT_WITH_CODE((0 == result),
1310                                 "can not find divide id for samu clock", return result);
1311
1312                 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1313
1314                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1315                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
1316         }
1317         return result;
1318 }
1319
1320 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1321                 int32_t eng_clock, int32_t mem_clock,
1322                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1323 {
1324         uint32_t dram_timing;
1325         uint32_t dram_timing2;
1326         uint32_t burstTime;
1327         ULONG state, trrds, trrdl;
1328         int result;
1329
1330         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1331                         eng_clock, mem_clock);
1332         PP_ASSERT_WITH_CODE(result == 0,
1333                         "Error calling VBIOS to set DRAM_TIMING.", return result);
1334
1335         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1336         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1337         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1338
1339         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1340         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1341         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1342
1343         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1344         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1345         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1346         arb_regs->TRRDS            = (uint8_t)trrds;
1347         arb_regs->TRRDL            = (uint8_t)trrdl;
1348
1349         return 0;
1350 }
1351
1352 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1353 {
1354         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1355         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1356         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1357         uint32_t i, j;
1358         int result = 0;
1359
1360         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1361                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1362                         result = fiji_populate_memory_timing_parameters(hwmgr,
1363                                         data->dpm_table.sclk_table.dpm_levels[i].value,
1364                                         data->dpm_table.mclk_table.dpm_levels[j].value,
1365                                         &arb_regs.entries[i][j]);
1366                         if (result)
1367                                 break;
1368                 }
1369         }
1370
1371         if (!result)
1372                 result = smu7_copy_bytes_to_smc(
1373                                 hwmgr->smumgr,
1374                                 smu_data->smu7_data.arb_table_start,
1375                                 (uint8_t *)&arb_regs,
1376                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1377                                 SMC_RAM_END);
1378         return result;
1379 }
1380
1381 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1382                 struct SMU73_Discrete_DpmTable *table)
1383 {
1384         int result = -EINVAL;
1385         uint8_t count;
1386         struct pp_atomctrl_clock_dividers_vi dividers;
1387         struct phm_ppt_v1_information *table_info =
1388                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1389         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1390                         table_info->mm_dep_table;
1391
1392         table->UvdLevelCount = (uint8_t)(mm_table->count);
1393         table->UvdBootLevel = 0;
1394
1395         for (count = 0; count < table->UvdLevelCount; count++) {
1396                 table->UvdLevel[count].MinVoltage = 0;
1397                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1398                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1399                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1400                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1401                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1402                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1403                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1404
1405                 /* retrieve divider value for VBIOS */
1406                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1407                                 table->UvdLevel[count].VclkFrequency, &dividers);
1408                 PP_ASSERT_WITH_CODE((0 == result),
1409                                 "can not find divide id for Vclk clock", return result);
1410
1411                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1412
1413                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1414                                 table->UvdLevel[count].DclkFrequency, &dividers);
1415                 PP_ASSERT_WITH_CODE((0 == result),
1416                                 "can not find divide id for Dclk clock", return result);
1417
1418                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1419
1420                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1421                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1422                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1423
1424         }
1425         return result;
1426 }
1427
1428 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1429                 struct SMU73_Discrete_DpmTable *table)
1430 {
1431         int result = 0;
1432         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1433
1434         table->GraphicsBootLevel = 0;
1435         table->MemoryBootLevel = 0;
1436
1437         /* find boot level from dpm table */
1438         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1439                         data->vbios_boot_state.sclk_bootup_value,
1440                         (uint32_t *)&(table->GraphicsBootLevel));
1441
1442         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1443                         data->vbios_boot_state.mclk_bootup_value,
1444                         (uint32_t *)&(table->MemoryBootLevel));
1445
1446         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1447                         VOLTAGE_SCALE;
1448         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1449                         VOLTAGE_SCALE;
1450         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1451                         VOLTAGE_SCALE;
1452
1453         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1454         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1455         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1456
1457         return 0;
1458 }
1459
1460 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1461 {
1462         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1463         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1464         struct phm_ppt_v1_information *table_info =
1465                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1466         uint8_t count, level;
1467
1468         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1469         for (level = 0; level < count; level++) {
1470                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1471                                 data->vbios_boot_state.sclk_bootup_value) {
1472                         smu_data->smc_state_table.GraphicsBootLevel = level;
1473                         break;
1474                 }
1475         }
1476
1477         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1478         for (level = 0; level < count; level++) {
1479                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1480                                 data->vbios_boot_state.mclk_bootup_value) {
1481                         smu_data->smc_state_table.MemoryBootLevel = level;
1482                         break;
1483                 }
1484         }
1485
1486         return 0;
1487 }
1488
1489 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1490 {
1491         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1492                         volt_with_cks, value;
1493         uint16_t clock_freq_u16;
1494         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1495         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1496                         volt_offset = 0;
1497         struct phm_ppt_v1_information *table_info =
1498                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1499         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1500                         table_info->vdd_dep_on_sclk;
1501
1502         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1503
1504         /* Read SMU_Eefuse to read and calculate RO and determine
1505          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1506          */
1507         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1508                         ixSMU_EFUSE_0 + (146 * 4));
1509         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1510                         ixSMU_EFUSE_0 + (148 * 4));
1511         efuse &= 0xFF000000;
1512         efuse = efuse >> 24;
1513         efuse2 &= 0xF;
1514
1515         if (efuse2 == 1)
1516                 ro = (2300 - 1350) * efuse / 255 + 1350;
1517         else
1518                 ro = (2500 - 1000) * efuse / 255 + 1000;
1519
1520         if (ro >= 1660)
1521                 type = 0;
1522         else
1523                 type = 1;
1524
1525         /* Populate Stretch amount */
1526         smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1527
1528         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1529         for (i = 0; i < sclk_table->count; i++) {
1530                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1531                                 sclk_table->entries[i].cks_enable << i;
1532                 volt_without_cks = (uint32_t)((14041 *
1533                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1534                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1535                 volt_with_cks = (uint32_t)((13946 *
1536                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1537                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1538                 if (volt_without_cks >= volt_with_cks)
1539                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1540                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1541                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1542         }
1543
1544         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1545                         STRETCH_ENABLE, 0x0);
1546         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1547                         masterReset, 0x1);
1548         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1549                         staticEnable, 0x1);
1550         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1551                         masterReset, 0x0);
1552
1553         /* Populate CKS Lookup Table */
1554         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1555                 stretch_amount2 = 0;
1556         else if (stretch_amount == 3 || stretch_amount == 4)
1557                 stretch_amount2 = 1;
1558         else {
1559                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1560                                 PHM_PlatformCaps_ClockStretcher);
1561                 PP_ASSERT_WITH_CODE(false,
1562                                 "Stretch Amount in PPTable not supported\n",
1563                                 return -EINVAL);
1564         }
1565
1566         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1567                         ixPWR_CKS_CNTL);
1568         value &= 0xFFC2FF87;
1569         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1570                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1571         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1572                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1573         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1574                         GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1575                         SclkFrequency) / 100);
1576         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1577                         clock_freq_u16 &&
1578             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1579                         clock_freq_u16) {
1580                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1581                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1582                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1583                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1584                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1585                 value |= (fiji_clock_stretch_amount_conversion
1586                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1587                                  [stretch_amount]) << 3;
1588         }
1589         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1590                         CKS_LOOKUPTableEntry[0].minFreq);
1591         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1592                         CKS_LOOKUPTableEntry[0].maxFreq);
1593         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1594                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1595         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1596                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1597
1598         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1599                         ixPWR_CKS_CNTL, value);
1600
1601         /* Populate DDT Lookup Table */
1602         for (i = 0; i < 4; i++) {
1603                 /* Assign the minimum and maximum VID stored
1604                  * in the last row of Clock Stretcher Voltage Table.
1605                  */
1606                 smu_data->smc_state_table.ClockStretcherDataTable.
1607                 ClockStretcherDataTableEntry[i].minVID =
1608                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1609                 smu_data->smc_state_table.ClockStretcherDataTable.
1610                 ClockStretcherDataTableEntry[i].maxVID =
1611                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1612                 /* Loop through each SCLK and check the frequency
1613                  * to see if it lies within the frequency for clock stretcher.
1614                  */
1615                 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1616                         cks_setting = 0;
1617                         clock_freq = PP_SMC_TO_HOST_UL(
1618                                         smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1619                         /* Check the allowed frequency against the sclk level[j].
1620                          *  Sclk's endianness has already been converted,
1621                          *  and it's in 10Khz unit,
1622                          *  as opposed to Data table, which is in Mhz unit.
1623                          */
1624                         if (clock_freq >=
1625                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1626                                 cks_setting |= 0x2;
1627                                 if (clock_freq <
1628                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1629                                         cks_setting |= 0x1;
1630                         }
1631                         smu_data->smc_state_table.ClockStretcherDataTable.
1632                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1633                 }
1634                 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1635                                 ClockStretcherDataTable.
1636                                 ClockStretcherDataTableEntry[i].setting);
1637         }
1638
1639         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1640         value &= 0xFFFFFFFE;
1641         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1642
1643         return 0;
1644 }
1645
1646 /**
1647 * Populates the SMC VRConfig field in DPM table.
1648 *
1649 * @param    hwmgr   the address of the hardware manager
1650 * @param    table   the SMC DPM table structure to be populated
1651 * @return   always 0
1652 */
1653 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1654                 struct SMU73_Discrete_DpmTable *table)
1655 {
1656         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1657         uint16_t config;
1658
1659         config = VR_MERGED_WITH_VDDC;
1660         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1661
1662         /* Set Vddc Voltage Controller */
1663         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1664                 config = VR_SVI2_PLANE_1;
1665                 table->VRConfig |= config;
1666         } else {
1667                 PP_ASSERT_WITH_CODE(false,
1668                                 "VDDC should be on SVI2 control in merged mode!",
1669                                 );
1670         }
1671         /* Set Vddci Voltage Controller */
1672         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1673                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1674                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1675         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1676                 config = VR_SMIO_PATTERN_1;
1677                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1678         } else {
1679                 config = VR_STATIC_VOLTAGE;
1680                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1681         }
1682         /* Set Mvdd Voltage Controller */
1683         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1684                 config = VR_SVI2_PLANE_2;
1685                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1686         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1687                 config = VR_SMIO_PATTERN_2;
1688                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1689         } else {
1690                 config = VR_STATIC_VOLTAGE;
1691                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1692         }
1693
1694         return 0;
1695 }
1696
1697 static int fiji_init_arb_table_index(struct pp_smumgr *smumgr)
1698 {
1699         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(smumgr->backend);
1700         uint32_t tmp;
1701         int result;
1702
1703         /* This is a read-modify-write on the first byte of the ARB table.
1704          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1705          * is the field 'current'.
1706          * This solution is ugly, but we never write the whole table only
1707          * individual fields in it.
1708          * In reality this field should not be in that structure
1709          * but in a soft register.
1710          */
1711         result = smu7_read_smc_sram_dword(smumgr,
1712                         smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1713
1714         if (result)
1715                 return result;
1716
1717         tmp &= 0x00FFFFFF;
1718         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1719
1720         return smu7_write_smc_sram_dword(smumgr,
1721                         smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1722 }
1723
1724 /**
1725 * Initializes the SMC table and uploads it
1726 *
1727 * @param    hwmgr  the address of the powerplay hardware manager.
1728 * @param    pInput  the pointer to input data (PowerState)
1729 * @return   always 0
1730 */
1731 int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1732 {
1733         int result;
1734         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1735         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1736         struct phm_ppt_v1_information *table_info =
1737                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1738         struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1739         uint8_t i;
1740         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1741
1742         fiji_initialize_power_tune_defaults(hwmgr);
1743
1744         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1745                 fiji_populate_smc_voltage_tables(hwmgr, table);
1746
1747         table->SystemFlags = 0;
1748
1749         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1750                         PHM_PlatformCaps_AutomaticDCTransition))
1751                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1752
1753         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1754                         PHM_PlatformCaps_StepVddc))
1755                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1756
1757         if (data->is_memory_gddr5)
1758                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1759
1760         if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1761                 result = fiji_populate_ulv_state(hwmgr, table);
1762                 PP_ASSERT_WITH_CODE(0 == result,
1763                                 "Failed to initialize ULV state!", return result);
1764                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1765                                 ixCG_ULV_PARAMETER, 0x40035);
1766         }
1767
1768         result = fiji_populate_smc_link_level(hwmgr, table);
1769         PP_ASSERT_WITH_CODE(0 == result,
1770                         "Failed to initialize Link Level!", return result);
1771
1772         result = fiji_populate_all_graphic_levels(hwmgr);
1773         PP_ASSERT_WITH_CODE(0 == result,
1774                         "Failed to initialize Graphics Level!", return result);
1775
1776         result = fiji_populate_all_memory_levels(hwmgr);
1777         PP_ASSERT_WITH_CODE(0 == result,
1778                         "Failed to initialize Memory Level!", return result);
1779
1780         result = fiji_populate_smc_acpi_level(hwmgr, table);
1781         PP_ASSERT_WITH_CODE(0 == result,
1782                         "Failed to initialize ACPI Level!", return result);
1783
1784         result = fiji_populate_smc_vce_level(hwmgr, table);
1785         PP_ASSERT_WITH_CODE(0 == result,
1786                         "Failed to initialize VCE Level!", return result);
1787
1788         result = fiji_populate_smc_acp_level(hwmgr, table);
1789         PP_ASSERT_WITH_CODE(0 == result,
1790                         "Failed to initialize ACP Level!", return result);
1791
1792         result = fiji_populate_smc_samu_level(hwmgr, table);
1793         PP_ASSERT_WITH_CODE(0 == result,
1794                         "Failed to initialize SAMU Level!", return result);
1795
1796         /* Since only the initial state is completely set up at this point
1797          * (the other states are just copies of the boot state) we only
1798          * need to populate the  ARB settings for the initial state.
1799          */
1800         result = fiji_program_memory_timing_parameters(hwmgr);
1801         PP_ASSERT_WITH_CODE(0 == result,
1802                         "Failed to Write ARB settings for the initial state.", return result);
1803
1804         result = fiji_populate_smc_uvd_level(hwmgr, table);
1805         PP_ASSERT_WITH_CODE(0 == result,
1806                         "Failed to initialize UVD Level!", return result);
1807
1808         result = fiji_populate_smc_boot_level(hwmgr, table);
1809         PP_ASSERT_WITH_CODE(0 == result,
1810                         "Failed to initialize Boot Level!", return result);
1811
1812         result = fiji_populate_smc_initailial_state(hwmgr);
1813         PP_ASSERT_WITH_CODE(0 == result,
1814                         "Failed to initialize Boot State!", return result);
1815
1816         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
1817         PP_ASSERT_WITH_CODE(0 == result,
1818                         "Failed to populate BAPM Parameters!", return result);
1819
1820         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1821                         PHM_PlatformCaps_ClockStretcher)) {
1822                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
1823                 PP_ASSERT_WITH_CODE(0 == result,
1824                                 "Failed to populate Clock Stretcher Data Table!",
1825                                 return result);
1826         }
1827
1828         table->GraphicsVoltageChangeEnable  = 1;
1829         table->GraphicsThermThrottleEnable  = 1;
1830         table->GraphicsInterval = 1;
1831         table->VoltageInterval  = 1;
1832         table->ThermalInterval  = 1;
1833         table->TemperatureLimitHigh =
1834                         table_info->cac_dtp_table->usTargetOperatingTemp *
1835                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
1836         table->TemperatureLimitLow  =
1837                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
1838                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
1839         table->MemoryVoltageChangeEnable = 1;
1840         table->MemoryInterval = 1;
1841         table->VoltageResponseTime = 0;
1842         table->PhaseResponseTime = 0;
1843         table->MemoryThermThrottleEnable = 1;
1844         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
1845         table->PCIeGenInterval = 1;
1846         table->VRConfig = 0;
1847
1848         result = fiji_populate_vr_config(hwmgr, table);
1849         PP_ASSERT_WITH_CODE(0 == result,
1850                         "Failed to populate VRConfig setting!", return result);
1851
1852         table->ThermGpio = 17;
1853         table->SclkStepSize = 0x4000;
1854
1855         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
1856                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
1857                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1858                                 PHM_PlatformCaps_RegulatorHot);
1859         } else {
1860                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
1861                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1862                                 PHM_PlatformCaps_RegulatorHot);
1863         }
1864
1865         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
1866                         &gpio_pin)) {
1867                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
1868                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1869                                 PHM_PlatformCaps_AutomaticDCTransition);
1870         } else {
1871                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
1872                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1873                                 PHM_PlatformCaps_AutomaticDCTransition);
1874         }
1875
1876         /* Thermal Output GPIO */
1877         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
1878                         &gpio_pin)) {
1879                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1880                                 PHM_PlatformCaps_ThermalOutGPIO);
1881
1882                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
1883
1884                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
1885                  * since VBIOS will program this register to set 'inactive state',
1886                  * driver can then determine 'active state' from this and
1887                  * program SMU with correct polarity
1888                  */
1889                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
1890                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
1891                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
1892
1893                 /* if required, combine VRHot/PCC with thermal out GPIO */
1894                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1895                                 PHM_PlatformCaps_RegulatorHot) &&
1896                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1897                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
1898                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
1899         } else {
1900                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1901                                 PHM_PlatformCaps_ThermalOutGPIO);
1902                 table->ThermOutGpio = 17;
1903                 table->ThermOutPolarity = 1;
1904                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
1905         }
1906
1907         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
1908                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
1909
1910         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
1911         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
1912         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
1913         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
1914         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
1915         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
1916         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
1917         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
1918         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
1919
1920         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
1921         result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
1922                         smu_data->smu7_data.dpm_table_start +
1923                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
1924                         (uint8_t *)&(table->SystemFlags),
1925                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
1926                         SMC_RAM_END);
1927         PP_ASSERT_WITH_CODE(0 == result,
1928                         "Failed to upload dpm data to SMC memory!", return result);
1929
1930         result = fiji_init_arb_table_index(hwmgr->smumgr);
1931         PP_ASSERT_WITH_CODE(0 == result,
1932                         "Failed to upload arb data to SMC memory!", return result);
1933
1934         result = fiji_populate_pm_fuses(hwmgr);
1935         PP_ASSERT_WITH_CODE(0 == result,
1936                         "Failed to  populate PM fuses to SMC memory!", return result);
1937         return 0;
1938 }
1939
1940 /**
1941 * Set up the fan table to control the fan using the SMC.
1942 * @param    hwmgr  the address of the powerplay hardware manager.
1943 * @param    pInput the pointer to input data
1944 * @param    pOutput the pointer to output data
1945 * @param    pStorage the pointer to temporary storage
1946 * @param    Result the last failure code
1947 * @return   result from set temperature range routine
1948 */
1949 int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
1950 {
1951         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1952
1953         SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
1954         uint32_t duty100;
1955         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
1956         uint16_t fdo_min, slope1, slope2;
1957         uint32_t reference_clock;
1958         int res;
1959         uint64_t tmp64;
1960
1961         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
1962                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1963                         PHM_PlatformCaps_MicrocodeFanControl);
1964                 return 0;
1965         }
1966
1967         if (smu_data->smu7_data.fan_table_start == 0) {
1968                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1969                                 PHM_PlatformCaps_MicrocodeFanControl);
1970                 return 0;
1971         }
1972
1973         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1974                         CG_FDO_CTRL1, FMAX_DUTY100);
1975
1976         if (duty100 == 0) {
1977                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1978                                 PHM_PlatformCaps_MicrocodeFanControl);
1979                 return 0;
1980         }
1981
1982         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
1983                         usPWMMin * duty100;
1984         do_div(tmp64, 10000);
1985         fdo_min = (uint16_t)tmp64;
1986
1987         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
1988                         hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
1989         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
1990                         hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
1991
1992         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
1993                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
1994         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
1995                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
1996
1997         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
1998         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
1999
2000         fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2001                         thermal_controller.advanceFanControlParameters.usTMin) / 100);
2002         fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2003                         thermal_controller.advanceFanControlParameters.usTMed) / 100);
2004         fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2005                         thermal_controller.advanceFanControlParameters.usTMax) / 100);
2006
2007         fan_table.Slope1 = cpu_to_be16(slope1);
2008         fan_table.Slope2 = cpu_to_be16(slope2);
2009
2010         fan_table.FdoMin = cpu_to_be16(fdo_min);
2011
2012         fan_table.HystDown = cpu_to_be16(hwmgr->
2013                         thermal_controller.advanceFanControlParameters.ucTHyst);
2014
2015         fan_table.HystUp = cpu_to_be16(1);
2016
2017         fan_table.HystSlope = cpu_to_be16(1);
2018
2019         fan_table.TempRespLim = cpu_to_be16(5);
2020
2021         reference_clock = smu7_get_xclk(hwmgr);
2022
2023         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2024                         thermal_controller.advanceFanControlParameters.ulCycleDelay *
2025                         reference_clock) / 1600);
2026
2027         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2028
2029         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2030                         hwmgr->device, CGS_IND_REG__SMC,
2031                         CG_MULT_THERMAL_CTRL, TEMP_SEL);
2032
2033         res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.fan_table_start,
2034                         (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2035                         SMC_RAM_END);
2036
2037         if (!res && hwmgr->thermal_controller.
2038                         advanceFanControlParameters.ucMinimumPWMLimit)
2039                 res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2040                                 PPSMC_MSG_SetFanMinPwm,
2041                                 hwmgr->thermal_controller.
2042                                 advanceFanControlParameters.ucMinimumPWMLimit);
2043
2044         if (!res && hwmgr->thermal_controller.
2045                         advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2046                 res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2047                                 PPSMC_MSG_SetFanSclkTarget,
2048                                 hwmgr->thermal_controller.
2049                                 advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2050
2051         if (res)
2052                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2053                                 PHM_PlatformCaps_MicrocodeFanControl);
2054
2055         return 0;
2056 }
2057
2058 int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2059 {
2060         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2061
2062         if (data->need_update_smu7_dpm_table &
2063                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2064                 return fiji_program_memory_timing_parameters(hwmgr);
2065
2066         return 0;
2067 }
2068
2069 int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2070 {
2071         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2072         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2073
2074         int result = 0;
2075         uint32_t low_sclk_interrupt_threshold = 0;
2076
2077         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2078                         PHM_PlatformCaps_SclkThrottleLowNotification)
2079                 && (hwmgr->gfx_arbiter.sclk_threshold !=
2080                                 data->low_sclk_interrupt_threshold)) {
2081                 data->low_sclk_interrupt_threshold =
2082                                 hwmgr->gfx_arbiter.sclk_threshold;
2083                 low_sclk_interrupt_threshold =
2084                                 data->low_sclk_interrupt_threshold;
2085
2086                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2087
2088                 result = smu7_copy_bytes_to_smc(
2089                                 hwmgr->smumgr,
2090                                 smu_data->smu7_data.dpm_table_start +
2091                                 offsetof(SMU73_Discrete_DpmTable,
2092                                         LowSclkInterruptThreshold),
2093                                 (uint8_t *)&low_sclk_interrupt_threshold,
2094                                 sizeof(uint32_t),
2095                                 SMC_RAM_END);
2096         }
2097         result = fiji_program_mem_timing_parameters(hwmgr);
2098         PP_ASSERT_WITH_CODE((result == 0),
2099                         "Failed to program memory timing parameters!",
2100                         );
2101         return result;
2102 }
2103
2104 uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2105 {
2106         switch (type) {
2107         case SMU_SoftRegisters:
2108                 switch (member) {
2109                 case HandshakeDisables:
2110                         return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2111                 case VoltageChangeTimeout:
2112                         return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2113                 case AverageGraphicsActivity:
2114                         return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2115                 case PreVBlankGap:
2116                         return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2117                 case VBlankTimeout:
2118                         return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2119                 case UcodeLoadStatus:
2120                         return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2121                 }
2122         case SMU_Discrete_DpmTable:
2123                 switch (member) {
2124                 case UvdBootLevel:
2125                         return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2126                 case VceBootLevel:
2127                         return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2128                 case SamuBootLevel:
2129                         return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
2130                 case LowSclkInterruptThreshold:
2131                         return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2132                 }
2133         }
2134         printk("cant't get the offset of type %x member %x \n", type, member);
2135         return 0;
2136 }
2137
2138 uint32_t fiji_get_mac_definition(uint32_t value)
2139 {
2140         switch (value) {
2141         case SMU_MAX_LEVELS_GRAPHICS:
2142                 return SMU73_MAX_LEVELS_GRAPHICS;
2143         case SMU_MAX_LEVELS_MEMORY:
2144                 return SMU73_MAX_LEVELS_MEMORY;
2145         case SMU_MAX_LEVELS_LINK:
2146                 return SMU73_MAX_LEVELS_LINK;
2147         case SMU_MAX_ENTRIES_SMIO:
2148                 return SMU73_MAX_ENTRIES_SMIO;
2149         case SMU_MAX_LEVELS_VDDC:
2150                 return SMU73_MAX_LEVELS_VDDC;
2151         case SMU_MAX_LEVELS_VDDGFX:
2152                 return SMU73_MAX_LEVELS_VDDGFX;
2153         case SMU_MAX_LEVELS_VDDCI:
2154                 return SMU73_MAX_LEVELS_VDDCI;
2155         case SMU_MAX_LEVELS_MVDD:
2156                 return SMU73_MAX_LEVELS_MVDD;
2157         }
2158
2159         printk("cant't get the mac of %x \n", value);
2160         return 0;
2161 }
2162
2163
2164 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2165 {
2166         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2167         uint32_t mm_boot_level_offset, mm_boot_level_value;
2168         struct phm_ppt_v1_information *table_info =
2169                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2170
2171         smu_data->smc_state_table.UvdBootLevel = 0;
2172         if (table_info->mm_dep_table->count > 0)
2173                 smu_data->smc_state_table.UvdBootLevel =
2174                                 (uint8_t) (table_info->mm_dep_table->count - 1);
2175         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2176                                                 UvdBootLevel);
2177         mm_boot_level_offset /= 4;
2178         mm_boot_level_offset *= 4;
2179         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2180                         CGS_IND_REG__SMC, mm_boot_level_offset);
2181         mm_boot_level_value &= 0x00FFFFFF;
2182         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2183         cgs_write_ind_register(hwmgr->device,
2184                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2185
2186         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2187                         PHM_PlatformCaps_UVDDPM) ||
2188                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2189                         PHM_PlatformCaps_StablePState))
2190                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2191                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
2192                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2193         return 0;
2194 }
2195
2196 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2197 {
2198         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2199         uint32_t mm_boot_level_offset, mm_boot_level_value;
2200         struct phm_ppt_v1_information *table_info =
2201                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2202
2203         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2204                                         PHM_PlatformCaps_StablePState))
2205                 smu_data->smc_state_table.VceBootLevel =
2206                         (uint8_t) (table_info->mm_dep_table->count - 1);
2207         else
2208                 smu_data->smc_state_table.VceBootLevel = 0;
2209
2210         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2211                                         offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2212         mm_boot_level_offset /= 4;
2213         mm_boot_level_offset *= 4;
2214         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2215                         CGS_IND_REG__SMC, mm_boot_level_offset);
2216         mm_boot_level_value &= 0xFF00FFFF;
2217         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2218         cgs_write_ind_register(hwmgr->device,
2219                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2220
2221         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2222                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2223                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
2224                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2225         return 0;
2226 }
2227
2228 static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr)
2229 {
2230         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2231         uint32_t mm_boot_level_offset, mm_boot_level_value;
2232
2233
2234         smu_data->smc_state_table.SamuBootLevel = 0;
2235         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2236                                 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
2237
2238         mm_boot_level_offset /= 4;
2239         mm_boot_level_offset *= 4;
2240         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2241                         CGS_IND_REG__SMC, mm_boot_level_offset);
2242         mm_boot_level_value &= 0xFFFFFF00;
2243         mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
2244         cgs_write_ind_register(hwmgr->device,
2245                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2246
2247         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2248                         PHM_PlatformCaps_StablePState))
2249                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2250                                 PPSMC_MSG_SAMUDPM_SetEnabledMask,
2251                                 (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
2252         return 0;
2253 }
2254
2255 int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2256 {
2257         switch (type) {
2258         case SMU_UVD_TABLE:
2259                 fiji_update_uvd_smc_table(hwmgr);
2260                 break;
2261         case SMU_VCE_TABLE:
2262                 fiji_update_vce_smc_table(hwmgr);
2263                 break;
2264         case SMU_SAMU_TABLE:
2265                 fiji_update_samu_smc_table(hwmgr);
2266                 break;
2267         default:
2268                 break;
2269         }
2270         return 0;
2271 }
2272
2273
2274 /**
2275 * Get the location of various tables inside the FW image.
2276 *
2277 * @param    hwmgr  the address of the powerplay hardware manager.
2278 * @return   always  0
2279 */
2280 int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2281 {
2282         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2283         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2284         uint32_t tmp;
2285         int result;
2286         bool error = false;
2287
2288         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2289                         SMU7_FIRMWARE_HEADER_LOCATION +
2290                         offsetof(SMU73_Firmware_Header, DpmTable),
2291                         &tmp, SMC_RAM_END);
2292
2293         if (0 == result)
2294                 smu_data->smu7_data.dpm_table_start = tmp;
2295
2296         error |= (0 != result);
2297
2298         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2299                         SMU7_FIRMWARE_HEADER_LOCATION +
2300                         offsetof(SMU73_Firmware_Header, SoftRegisters),
2301                         &tmp, SMC_RAM_END);
2302
2303         if (!result) {
2304                 data->soft_regs_start = tmp;
2305                 smu_data->smu7_data.soft_regs_start = tmp;
2306         }
2307
2308         error |= (0 != result);
2309
2310         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2311                         SMU7_FIRMWARE_HEADER_LOCATION +
2312                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
2313                         &tmp, SMC_RAM_END);
2314
2315         if (!result)
2316                 smu_data->smu7_data.mc_reg_table_start = tmp;
2317
2318         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2319                         SMU7_FIRMWARE_HEADER_LOCATION +
2320                         offsetof(SMU73_Firmware_Header, FanTable),
2321                         &tmp, SMC_RAM_END);
2322
2323         if (!result)
2324                 smu_data->smu7_data.fan_table_start = tmp;
2325
2326         error |= (0 != result);
2327
2328         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2329                         SMU7_FIRMWARE_HEADER_LOCATION +
2330                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2331                         &tmp, SMC_RAM_END);
2332
2333         if (!result)
2334                 smu_data->smu7_data.arb_table_start = tmp;
2335
2336         error |= (0 != result);
2337
2338         result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2339                         SMU7_FIRMWARE_HEADER_LOCATION +
2340                         offsetof(SMU73_Firmware_Header, Version),
2341                         &tmp, SMC_RAM_END);
2342
2343         if (!result)
2344                 hwmgr->microcode_version_info.SMC = tmp;
2345
2346         error |= (0 != result);
2347
2348         return error ? -1 : 0;
2349 }
2350
2351 int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2352 {
2353
2354         /* Program additional LP registers
2355          * that are no longer programmed by VBIOS
2356          */
2357         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2358                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2359         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2360                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2361         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2362                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2363         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2364                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2365         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2366                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2367         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2368                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2369         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2370                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2371
2372         return 0;
2373 }
2374
2375 bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2376 {
2377         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2378                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2379                         ? true : false;
2380 }