GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / amd / powerplay / smumgr / fiji_smumgr.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
49
50
51 #define AVFS_EN_MSB                                        1568
52 #define AVFS_EN_LSB                                        1568
53
54 #define FIJI_SMC_SIZE 0x20000
55
56 #define POWERTUNE_DEFAULT_SET_MAX    1
57 #define VDDC_VDDCI_DELTA            300
58 #define MC_CG_ARB_FREQ_F1           0x0b
59
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62  */
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64                                 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
65
66 /* [FF, SS] type, [] 4 voltage ranges, and
67  * [Floor Freq, Boundary Freq, VID min , VID max]
68  */
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70         { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71         { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75  */
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77                                 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80                 /*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81                 {1,               0xF,             0xFD,
82                 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83                 0x19,        5,               45}
84 };
85
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87                 /*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
88                 /* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89                 { 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
90                 { 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
91                 { 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
92                 { 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
93                 { 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
94                 { 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
95                 { 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
96                 { 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
97 };
98
99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 {
101         int result = 0;
102
103         /* Wait for smc boot up */
104         /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105                 RCU_UC_EVENTS, boot_seq_done, 0); */
106
107         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109
110         result = smu7_upload_smu_firmware_image(hwmgr);
111         if (result)
112                 return result;
113
114         /* Clear status */
115         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116                         ixSMU_STATUS, 0);
117
118         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121         /* De-assert reset */
122         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125         /* Wait for ROM firmware to initialize interrupt hendler */
126         /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127                         SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128
129         /* Set SMU Auto Start */
130         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131                         SMU_INPUT_DATA, AUTO_START, 1);
132
133         /* Clear firmware interrupt enable flag */
134         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135                         ixFIRMWARE_FLAGS, 0);
136
137         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138                         INTERRUPTS_ENABLED, 1);
139
140         cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
141         cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
142         PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
143
144         /* Wait for done bit to be set */
145         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
146                         SMU_STATUS, SMU_DONE, 0);
147
148         /* Check pass/failed indicator */
149         if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
150                         SMU_STATUS, SMU_PASS) != 1) {
151                 PP_ASSERT_WITH_CODE(false,
152                                 "SMU Firmware start failed!", return -1);
153         }
154
155         /* Wait for firmware to initialize */
156         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
157                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
158
159         return result;
160 }
161
162 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
163 {
164         int result = 0;
165
166         /* wait for smc boot up */
167         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
168                         RCU_UC_EVENTS, boot_seq_done, 0);
169
170         /* Clear firmware interrupt enable flag */
171         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
172                         ixFIRMWARE_FLAGS, 0);
173
174         /* Assert reset */
175         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
176                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
177
178         result = smu7_upload_smu_firmware_image(hwmgr);
179         if (result)
180                 return result;
181
182         /* Set smc instruct start point at 0x0 */
183         smu7_program_jump_on_start(hwmgr);
184
185         /* Enable clock */
186         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
187                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
188
189         /* De-assert reset */
190         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
191                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
192
193         /* Wait for firmware to initialize */
194         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
195                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
196
197         return result;
198 }
199
200 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
201 {
202         int result = 0;
203         struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
204
205         if (0 != smu_data->avfs_btc_param) {
206                 if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
207                                 PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) {
208                         pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
209                         result = -EINVAL;
210                 }
211         }
212         /* Soft-Reset to reset the engine before loading uCode */
213          /* halt */
214         cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
215         /* reset everything */
216         cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
217         /* clear reset */
218         cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
219
220         return result;
221 }
222
223 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
224 {
225         int32_t vr_config;
226         uint32_t table_start;
227         uint32_t level_addr, vr_config_addr;
228         uint32_t level_size = sizeof(avfs_graphics_level);
229
230         PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
231                         SMU7_FIRMWARE_HEADER_LOCATION +
232                         offsetof(SMU73_Firmware_Header, DpmTable),
233                         &table_start, 0x40000),
234                         "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
235                         "communicate starting address of DPM table",
236                         return -1;);
237
238         /* Default value for vr_config =
239          * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
240         vr_config = 0x01000500;   /* Real value:0x50001 */
241
242         vr_config_addr = table_start +
243                         offsetof(SMU73_Discrete_DpmTable, VRConfig);
244
245         PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
246                         (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
247                         "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
248                         "vr_config value over to SMC",
249                         return -1;);
250
251         level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
252
253         PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
254                         (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
255                         "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
256                         return -1;);
257
258         return 0;
259 }
260
261 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
262 {
263         if (!hwmgr->avfs_supported)
264                 return 0;
265
266         PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
267                         "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
268                         " table over to SMU",
269                         return -EINVAL);
270         PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
271                         "[AVFS][fiji_avfs_event_mgr] Could not setup "
272                         "Pwr Virus for AVFS ",
273                         return -EINVAL);
274         PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
275                         "[AVFS][fiji_avfs_event_mgr] Failure at "
276                         "fiji_start_avfs_btc. AVFS Disabled",
277                         return -EINVAL);
278
279         return 0;
280 }
281
282 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
283 {
284         int result = 0;
285         struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
286
287         /* Only start SMC if SMC RAM is not running */
288         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
289                 /* Check if SMU is running in protected mode */
290                 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
291                                 CGS_IND_REG__SMC,
292                                 SMU_FIRMWARE, SMU_MODE)) {
293                         result = fiji_start_smu_in_non_protection_mode(hwmgr);
294                         if (result)
295                                 return result;
296                 } else {
297                         result = fiji_start_smu_in_protection_mode(hwmgr);
298                         if (result)
299                                 return result;
300                 }
301                 if (fiji_avfs_event_mgr(hwmgr))
302                         hwmgr->avfs_supported = false;
303         }
304
305         /* To initialize all clock gating before RLC loaded and running.*/
306         amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
307                         AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE);
308         amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
309                         AMD_IP_BLOCK_TYPE_GMC, AMD_CG_STATE_GATE);
310         amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
311                         AMD_IP_BLOCK_TYPE_SDMA, AMD_CG_STATE_GATE);
312         amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
313                         AMD_IP_BLOCK_TYPE_COMMON, AMD_CG_STATE_GATE);
314
315         /* Setup SoftRegsStart here for register lookup in case
316          * DummyBackEnd is used and ProcessFirmwareHeader is not executed
317          */
318         smu7_read_smc_sram_dword(hwmgr,
319                         SMU7_FIRMWARE_HEADER_LOCATION +
320                         offsetof(SMU73_Firmware_Header, SoftRegisters),
321                         &(priv->smu7_data.soft_regs_start), 0x40000);
322
323         result = smu7_request_smu_load_fw(hwmgr);
324
325         return result;
326 }
327
328 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
329 {
330
331         uint32_t efuse = 0;
332         uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
333
334         if (!hwmgr->not_vf)
335                 return false;
336
337         if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
338                         mask, &efuse)) {
339                 if (efuse)
340                         return true;
341         }
342         return false;
343 }
344
345 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
346 {
347         struct fiji_smumgr *fiji_priv = NULL;
348
349         fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
350
351         if (fiji_priv == NULL)
352                 return -ENOMEM;
353
354         hwmgr->smu_backend = fiji_priv;
355
356         if (smu7_init(hwmgr)) {
357                 kfree(fiji_priv);
358                 return -EINVAL;
359         }
360
361         return 0;
362 }
363
364 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
365                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
366                 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
367 {
368         uint32_t i;
369         uint16_t vddci;
370         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
371         *voltage = *mvdd = 0;
372
373
374         /* clock - voltage dependency table is empty table */
375         if (dep_table->count == 0)
376                 return -EINVAL;
377
378         for (i = 0; i < dep_table->count; i++) {
379                 /* find first sclk bigger than request */
380                 if (dep_table->entries[i].clk >= clock) {
381                         *voltage |= (dep_table->entries[i].vddc *
382                                         VOLTAGE_SCALE) << VDDC_SHIFT;
383                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
384                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
385                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
386                         else if (dep_table->entries[i].vddci)
387                                 *voltage |= (dep_table->entries[i].vddci *
388                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
389                         else {
390                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
391                                                 (dep_table->entries[i].vddc -
392                                                                 VDDC_VDDCI_DELTA));
393                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
394                         }
395
396                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
397                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
398                                         VOLTAGE_SCALE;
399                         else if (dep_table->entries[i].mvdd)
400                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
401                                         VOLTAGE_SCALE;
402
403                         *voltage |= 1 << PHASES_SHIFT;
404                         return 0;
405                 }
406         }
407
408         /* sclk is bigger than max sclk in the dependence table */
409         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
410
411         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
412                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
413                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
414         else if (dep_table->entries[i-1].vddci) {
415                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
416                                 (dep_table->entries[i].vddc -
417                                                 VDDC_VDDCI_DELTA));
418                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
419         }
420
421         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
422                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
423         else if (dep_table->entries[i].mvdd)
424                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
425
426         return 0;
427 }
428
429
430 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
431 {
432         uint32_t tmp;
433         tmp = raw_setting * 4096 / 100;
434         return (uint16_t)tmp;
435 }
436
437 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
438 {
439         switch (line) {
440         case SMU7_I2CLineID_DDC1:
441                 *scl = SMU7_I2C_DDC1CLK;
442                 *sda = SMU7_I2C_DDC1DATA;
443                 break;
444         case SMU7_I2CLineID_DDC2:
445                 *scl = SMU7_I2C_DDC2CLK;
446                 *sda = SMU7_I2C_DDC2DATA;
447                 break;
448         case SMU7_I2CLineID_DDC3:
449                 *scl = SMU7_I2C_DDC3CLK;
450                 *sda = SMU7_I2C_DDC3DATA;
451                 break;
452         case SMU7_I2CLineID_DDC4:
453                 *scl = SMU7_I2C_DDC4CLK;
454                 *sda = SMU7_I2C_DDC4DATA;
455                 break;
456         case SMU7_I2CLineID_DDC5:
457                 *scl = SMU7_I2C_DDC5CLK;
458                 *sda = SMU7_I2C_DDC5DATA;
459                 break;
460         case SMU7_I2CLineID_DDC6:
461                 *scl = SMU7_I2C_DDC6CLK;
462                 *sda = SMU7_I2C_DDC6DATA;
463                 break;
464         case SMU7_I2CLineID_SCLSDA:
465                 *scl = SMU7_I2C_SCL;
466                 *sda = SMU7_I2C_SDA;
467                 break;
468         case SMU7_I2CLineID_DDCVGA:
469                 *scl = SMU7_I2C_DDCVGACLK;
470                 *sda = SMU7_I2C_DDCVGADATA;
471                 break;
472         default:
473                 *scl = 0;
474                 *sda = 0;
475                 break;
476         }
477 }
478
479 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
480 {
481         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
482         struct phm_ppt_v1_information *table_info =
483                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
484
485         if (table_info &&
486                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
487                         table_info->cac_dtp_table->usPowerTuneDataSetID)
488                 smu_data->power_tune_defaults =
489                                 &fiji_power_tune_data_set_array
490                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
491         else
492                 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
493
494 }
495
496 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
497 {
498
499         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
500         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
501
502         SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
503
504         struct phm_ppt_v1_information *table_info =
505                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
506         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
507         struct pp_advance_fan_control_parameters *fan_table =
508                         &hwmgr->thermal_controller.advanceFanControlParameters;
509         uint8_t uc_scl, uc_sda;
510
511         /* TDP number of fraction bits are changed from 8 to 7 for Fiji
512          * as requested by SMC team
513          */
514         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
515                         (uint16_t)(cac_dtp_table->usTDP * 128));
516         dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
517                         (uint16_t)(cac_dtp_table->usTDP * 128));
518
519         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
520                         "Target Operating Temp is out of Range!",
521                         );
522
523         dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
524         dpm_table->GpuTjHyst = 8;
525
526         dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
527
528         /* The following are for new Fiji Multi-input fan/thermal control */
529         dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
530                         cac_dtp_table->usTargetOperatingTemp * 256);
531         dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
532                         cac_dtp_table->usTemperatureLimitHotspot * 256);
533         dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
534                         cac_dtp_table->usTemperatureLimitLiquid1 * 256);
535         dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
536                         cac_dtp_table->usTemperatureLimitLiquid2 * 256);
537         dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
538                         cac_dtp_table->usTemperatureLimitVrVddc * 256);
539         dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
540                         cac_dtp_table->usTemperatureLimitVrMvdd * 256);
541         dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
542                         cac_dtp_table->usTemperatureLimitPlx * 256);
543
544         dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
545                         scale_fan_gain_settings(fan_table->usFanGainEdge));
546         dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
547                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
548         dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
549                         scale_fan_gain_settings(fan_table->usFanGainLiquid));
550         dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
551                         scale_fan_gain_settings(fan_table->usFanGainVrVddc));
552         dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
553                         scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
554         dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
555                         scale_fan_gain_settings(fan_table->usFanGainPlx));
556         dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
557                         scale_fan_gain_settings(fan_table->usFanGainHbm));
558
559         dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
560         dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
561         dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
562         dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
563
564         get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
565         dpm_table->Liquid_I2C_LineSCL = uc_scl;
566         dpm_table->Liquid_I2C_LineSDA = uc_sda;
567
568         get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
569         dpm_table->Vr_I2C_LineSCL = uc_scl;
570         dpm_table->Vr_I2C_LineSDA = uc_sda;
571
572         get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
573         dpm_table->Plx_I2C_LineSCL = uc_scl;
574         dpm_table->Plx_I2C_LineSDA = uc_sda;
575
576         return 0;
577 }
578
579
580 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
581 {
582         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
583         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
584
585         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
586         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
587         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
588         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
589
590         return 0;
591 }
592
593
594 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
595 {
596         uint16_t tdc_limit;
597         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
598         struct phm_ppt_v1_information *table_info =
599                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
600         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
601
602         /* TDC number of fraction bits are changed from 8 to 7
603          * for Fiji as requested by SMC team
604          */
605         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
606         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
607                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
608         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
609                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
610         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
611
612         return 0;
613 }
614
615 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
616 {
617         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
618         const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
619         uint32_t temp;
620
621         if (smu7_read_smc_sram_dword(hwmgr,
622                         fuse_table_offset +
623                         offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
624                         (uint32_t *)&temp, SMC_RAM_END))
625                 PP_ASSERT_WITH_CODE(false,
626                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
627                                 return -EINVAL);
628         else {
629                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
630                 smu_data->power_tune_table.LPMLTemperatureMin =
631                                 (uint8_t)((temp >> 16) & 0xff);
632                 smu_data->power_tune_table.LPMLTemperatureMax =
633                                 (uint8_t)((temp >> 8) & 0xff);
634                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
635         }
636         return 0;
637 }
638
639 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
640 {
641         int i;
642         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
643
644         /* Currently not used. Set all to zero. */
645         for (i = 0; i < 16; i++)
646                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
647
648         return 0;
649 }
650
651 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
652 {
653         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
654
655         if ((hwmgr->thermal_controller.advanceFanControlParameters.
656                         usFanOutputSensitivity & (1 << 15)) ||
657                         0 == hwmgr->thermal_controller.advanceFanControlParameters.
658                         usFanOutputSensitivity)
659                 hwmgr->thermal_controller.advanceFanControlParameters.
660                 usFanOutputSensitivity = hwmgr->thermal_controller.
661                         advanceFanControlParameters.usDefaultFanOutputSensitivity;
662
663         smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
664                         PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
665                                         advanceFanControlParameters.usFanOutputSensitivity);
666         return 0;
667 }
668
669 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
670 {
671         int i;
672         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
673
674         /* Currently not used. Set all to zero. */
675         for (i = 0; i < 16; i++)
676                 smu_data->power_tune_table.GnbLPML[i] = 0;
677
678         return 0;
679 }
680
681 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
682 {
683         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
684         struct phm_ppt_v1_information *table_info =
685                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
686         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
687         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
688         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
689
690         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
691         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
692
693         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
694                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
695         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
696                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
697
698         return 0;
699 }
700
701 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
702 {
703         uint32_t pm_fuse_table_offset;
704         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
705
706         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
707                         PHM_PlatformCaps_PowerContainment)) {
708                 if (smu7_read_smc_sram_dword(hwmgr,
709                                 SMU7_FIRMWARE_HEADER_LOCATION +
710                                 offsetof(SMU73_Firmware_Header, PmFuseTable),
711                                 &pm_fuse_table_offset, SMC_RAM_END))
712                         PP_ASSERT_WITH_CODE(false,
713                                         "Attempt to get pm_fuse_table_offset Failed!",
714                                         return -EINVAL);
715
716                 /* DW6 */
717                 if (fiji_populate_svi_load_line(hwmgr))
718                         PP_ASSERT_WITH_CODE(false,
719                                         "Attempt to populate SviLoadLine Failed!",
720                                         return -EINVAL);
721                 /* DW7 */
722                 if (fiji_populate_tdc_limit(hwmgr))
723                         PP_ASSERT_WITH_CODE(false,
724                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
725                 /* DW8 */
726                 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
727                         PP_ASSERT_WITH_CODE(false,
728                                         "Attempt to populate TdcWaterfallCtl, "
729                                         "LPMLTemperature Min and Max Failed!",
730                                         return -EINVAL);
731
732                 /* DW9-DW12 */
733                 if (0 != fiji_populate_temperature_scaler(hwmgr))
734                         PP_ASSERT_WITH_CODE(false,
735                                         "Attempt to populate LPMLTemperatureScaler Failed!",
736                                         return -EINVAL);
737
738                 /* DW13-DW14 */
739                 if (fiji_populate_fuzzy_fan(hwmgr))
740                         PP_ASSERT_WITH_CODE(false,
741                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
742                                         return -EINVAL);
743
744                 /* DW15-DW18 */
745                 if (fiji_populate_gnb_lpml(hwmgr))
746                         PP_ASSERT_WITH_CODE(false,
747                                         "Attempt to populate GnbLPML Failed!",
748                                         return -EINVAL);
749
750                 /* DW20 */
751                 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
752                         PP_ASSERT_WITH_CODE(false,
753                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
754                                         "Sidd Failed!", return -EINVAL);
755
756                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
757                                 (uint8_t *)&smu_data->power_tune_table,
758                                 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
759                         PP_ASSERT_WITH_CODE(false,
760                                         "Attempt to download PmFuseTable Failed!",
761                                         return -EINVAL);
762         }
763         return 0;
764 }
765
766 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
767                 struct SMU73_Discrete_DpmTable *table)
768 {
769         uint32_t count;
770         uint8_t index;
771         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
772         struct phm_ppt_v1_information *table_info =
773                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
774         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
775                         table_info->vddc_lookup_table;
776         /* tables is already swapped, so in order to use the value from it,
777          * we need to swap it back.
778          * We are populating vddc CAC data to BapmVddc table
779          * in split and merged mode
780          */
781
782         for (count = 0; count < lookup_table->count; count++) {
783                 index = phm_get_voltage_index(lookup_table,
784                                 data->vddc_voltage_table.entries[count].value);
785                 table->BapmVddcVidLoSidd[count] =
786                         convert_to_vid(lookup_table->entries[index].us_cac_low);
787                 table->BapmVddcVidHiSidd[count] =
788                         convert_to_vid(lookup_table->entries[index].us_cac_high);
789         }
790
791         return 0;
792 }
793
794 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
795                 struct SMU73_Discrete_DpmTable *table)
796 {
797         int result;
798
799         result = fiji_populate_cac_table(hwmgr, table);
800         PP_ASSERT_WITH_CODE(0 == result,
801                         "can not populate CAC voltage tables to SMC",
802                         return -EINVAL);
803
804         return 0;
805 }
806
807 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
808                 struct SMU73_Discrete_Ulv *state)
809 {
810         int result = 0;
811
812         struct phm_ppt_v1_information *table_info =
813                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
814
815         state->CcPwrDynRm = 0;
816         state->CcPwrDynRm1 = 0;
817
818         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
819         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
820                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
821
822         state->VddcPhase = 1;
823
824         if (!result) {
825                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
826                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
827                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
828         }
829         return result;
830 }
831
832 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
833                 struct SMU73_Discrete_DpmTable *table)
834 {
835         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
836 }
837
838 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
839                 struct SMU73_Discrete_DpmTable *table)
840 {
841         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
842         struct smu7_dpm_table *dpm_table = &data->dpm_table;
843         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
844         int i;
845
846         /* Index (dpm_table->pcie_speed_table.count)
847          * is reserved for PCIE boot level. */
848         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
849                 table->LinkLevel[i].PcieGenSpeed  =
850                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
851                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
852                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
853                 table->LinkLevel[i].EnabledForActivity = 1;
854                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
855                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
856                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
857         }
858
859         smu_data->smc_state_table.LinkLevelCount =
860                         (uint8_t)dpm_table->pcie_speed_table.count;
861         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
862                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
863
864         return 0;
865 }
866
867 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
868                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
869 {
870         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
871         struct pp_atomctrl_clock_dividers_vi dividers;
872         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
873         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
874         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
875         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
876         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
877         uint32_t ref_clock;
878         uint32_t ref_divider;
879         uint32_t fbdiv;
880         int result;
881
882         /* get the engine clock dividers for this clock value */
883         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
884
885         PP_ASSERT_WITH_CODE(result == 0,
886                         "Error retrieving Engine Clock dividers from VBIOS.",
887                         return result);
888
889         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
890         ref_clock = atomctrl_get_reference_clock(hwmgr);
891         ref_divider = 1 + dividers.uc_pll_ref_div;
892
893         /* low 14 bits is fraction and high 12 bits is divider */
894         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
895
896         /* SPLL_FUNC_CNTL setup */
897         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
898                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
899         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
900                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
901
902         /* SPLL_FUNC_CNTL_3 setup*/
903         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
904                         SPLL_FB_DIV, fbdiv);
905
906         /* set to use fractional accumulation*/
907         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
908                         SPLL_DITHEN, 1);
909
910         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
911                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
912                 struct pp_atomctrl_internal_ss_info ssInfo;
913
914                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
915                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
916                                 vco_freq, &ssInfo)) {
917                         /*
918                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
919                          * ss_info.speed_spectrum_rate -- in unit of khz
920                          *
921                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
922                          */
923                         uint32_t clk_s = ref_clock * 5 /
924                                         (ref_divider * ssInfo.speed_spectrum_rate);
925                         /* clkv = 2 * D * fbdiv / NS */
926                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
927                                         fbdiv / (clk_s * 10000);
928
929                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
930                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
931                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
932                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
933                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
934                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
935                 }
936         }
937
938         sclk->SclkFrequency        = clock;
939         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
940         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
941         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
942         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
943         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
944
945         return 0;
946 }
947
948 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
949                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
950 {
951         int result;
952         /* PP_Clocks minClocks; */
953         uint32_t threshold, mvdd;
954         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
955         struct phm_ppt_v1_information *table_info =
956                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
957         phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
958
959         result = fiji_calculate_sclk_params(hwmgr, clock, level);
960
961         if (hwmgr->od_enabled)
962                 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
963         else
964                 vdd_dep_table = table_info->vdd_dep_on_sclk;
965
966         /* populate graphics levels */
967         result = fiji_get_dependency_volt_by_clk(hwmgr,
968                         vdd_dep_table, clock,
969                         (uint32_t *)(&level->MinVoltage), &mvdd);
970         PP_ASSERT_WITH_CODE((0 == result),
971                         "can not find VDDC voltage value for "
972                         "VDDC engine clock dependency table",
973                         return result);
974
975         level->SclkFrequency = clock;
976         level->ActivityLevel = data->current_profile_setting.sclk_activity;
977         level->CcPwrDynRm = 0;
978         level->CcPwrDynRm1 = 0;
979         level->EnabledForActivity = 0;
980         level->EnabledForThrottle = 1;
981         level->UpHyst = data->current_profile_setting.sclk_up_hyst;
982         level->DownHyst = data->current_profile_setting.sclk_down_hyst;
983         level->VoltageDownHyst = 0;
984         level->PowerThrottle = 0;
985
986         threshold = clock * data->fast_watermark_threshold / 100;
987
988         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
989
990         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
991                 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
992                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
993
994
995         /* Default to slow, highest DPM level will be
996          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
997          */
998         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
999
1000         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1001         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1002         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1003         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1004         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1005         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1006         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1007         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1008         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1009
1010         return 0;
1011 }
1012
1013 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1014 {
1015         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1016         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1017
1018         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1019         struct phm_ppt_v1_information *table_info =
1020                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1021         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1022         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1023         int result = 0;
1024         uint32_t array = smu_data->smu7_data.dpm_table_start +
1025                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1026         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1027                         SMU73_MAX_LEVELS_GRAPHICS;
1028         struct SMU73_Discrete_GraphicsLevel *levels =
1029                         smu_data->smc_state_table.GraphicsLevel;
1030         uint32_t i, max_entry;
1031         uint8_t hightest_pcie_level_enabled = 0,
1032                         lowest_pcie_level_enabled = 0,
1033                         mid_pcie_level_enabled = 0,
1034                         count = 0;
1035
1036         for (i = 0; i < dpm_table->sclk_table.count; i++) {
1037                 result = fiji_populate_single_graphic_level(hwmgr,
1038                                 dpm_table->sclk_table.dpm_levels[i].value,
1039                                 &levels[i]);
1040                 if (result)
1041                         return result;
1042
1043                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1044                 if (i > 1)
1045                         levels[i].DeepSleepDivId = 0;
1046         }
1047
1048         /* Only enable level 0 for now.*/
1049         levels[0].EnabledForActivity = 1;
1050
1051         /* set highest level watermark to high */
1052         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1053                         PPSMC_DISPLAY_WATERMARK_HIGH;
1054
1055         smu_data->smc_state_table.GraphicsDpmLevelCount =
1056                         (uint8_t)dpm_table->sclk_table.count;
1057         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1058                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1059
1060         if (pcie_table != NULL) {
1061                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1062                                 "There must be 1 or more PCIE levels defined in PPTable.",
1063                                 return -EINVAL);
1064                 max_entry = pcie_entry_cnt - 1;
1065                 for (i = 0; i < dpm_table->sclk_table.count; i++)
1066                         levels[i].pcieDpmLevel =
1067                                         (uint8_t) ((i < max_entry) ? i : max_entry);
1068         } else {
1069                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1070                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1071                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1072                         hightest_pcie_level_enabled++;
1073
1074                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1075                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1076                                                 (1 << lowest_pcie_level_enabled)) == 0))
1077                         lowest_pcie_level_enabled++;
1078
1079                 while ((count < hightest_pcie_level_enabled) &&
1080                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1081                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1082                         count++;
1083
1084                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1085                                 hightest_pcie_level_enabled ?
1086                                                 (lowest_pcie_level_enabled + 1 + count) :
1087                                                 hightest_pcie_level_enabled;
1088
1089                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1090                 for (i = 2; i < dpm_table->sclk_table.count; i++)
1091                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1092
1093                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1094                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1095
1096                 /* set pcieDpmLevel to mid_pcie_level_enabled */
1097                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1098         }
1099         /* level count will send to smc once at init smc table and never change */
1100         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1101                         (uint32_t)array_size, SMC_RAM_END);
1102
1103         return result;
1104 }
1105
1106
1107 /**
1108  * MCLK Frequency Ratio
1109  * SEQ_CG_RESP  Bit[31:24] - 0x0
1110  * Bit[27:24] \96 DDR3 Frequency ratio
1111  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
1112  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
1113  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
1114  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
1115  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
1116  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
1117  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
1118  * 400 < 0x7 <= 450MHz,       800 < 0xF
1119  */
1120 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1121 {
1122         if (mem_clock <= 10000)
1123                 return 0x0;
1124         if (mem_clock <= 15000)
1125                 return 0x1;
1126         if (mem_clock <= 20000)
1127                 return 0x2;
1128         if (mem_clock <= 25000)
1129                 return 0x3;
1130         if (mem_clock <= 30000)
1131                 return 0x4;
1132         if (mem_clock <= 35000)
1133                 return 0x5;
1134         if (mem_clock <= 40000)
1135                 return 0x6;
1136         if (mem_clock <= 45000)
1137                 return 0x7;
1138         if (mem_clock <= 50000)
1139                 return 0x8;
1140         if (mem_clock <= 55000)
1141                 return 0x9;
1142         if (mem_clock <= 60000)
1143                 return 0xa;
1144         if (mem_clock <= 65000)
1145                 return 0xb;
1146         if (mem_clock <= 70000)
1147                 return 0xc;
1148         if (mem_clock <= 75000)
1149                 return 0xd;
1150         if (mem_clock <= 80000)
1151                 return 0xe;
1152         /* mem_clock > 800MHz */
1153         return 0xf;
1154 }
1155
1156 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1157     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1158 {
1159         struct pp_atomctrl_memory_clock_param mem_param;
1160         int result;
1161
1162         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1163         PP_ASSERT_WITH_CODE((0 == result),
1164                         "Failed to get Memory PLL Dividers.",
1165                         );
1166
1167         /* Save the result data to outpupt memory level structure */
1168         mclk->MclkFrequency   = clock;
1169         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
1170         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
1171
1172         return result;
1173 }
1174
1175 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1176                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1177 {
1178         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1179         struct phm_ppt_v1_information *table_info =
1180                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1181         int result = 0;
1182         uint32_t mclk_stutter_mode_threshold = 60000;
1183         phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1184
1185         if (hwmgr->od_enabled)
1186                 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1187         else
1188                 vdd_dep_table = table_info->vdd_dep_on_mclk;
1189
1190         if (vdd_dep_table) {
1191                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1192                                 vdd_dep_table, clock,
1193                                 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1194                 PP_ASSERT_WITH_CODE((0 == result),
1195                                 "can not find MinVddc voltage value from memory "
1196                                 "VDDC voltage dependency table", return result);
1197         }
1198
1199         mem_level->EnabledForThrottle = 1;
1200         mem_level->EnabledForActivity = 0;
1201         mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1202         mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1203         mem_level->VoltageDownHyst = 0;
1204         mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1205         mem_level->StutterEnable = false;
1206
1207         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1208
1209         /* enable stutter mode if all the follow condition applied
1210          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1211          * &(data->DisplayTiming.numExistingDisplays));
1212          */
1213         data->display_timing.num_existing_displays = 1;
1214
1215         if (mclk_stutter_mode_threshold &&
1216                 (clock <= mclk_stutter_mode_threshold) &&
1217                 (!data->is_uvd_enabled) &&
1218                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1219                                 STUTTER_ENABLE) & 0x1))
1220                 mem_level->StutterEnable = true;
1221
1222         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1223         if (!result) {
1224                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1225                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1226                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1227                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1228         }
1229         return result;
1230 }
1231
1232 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1233 {
1234         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1235         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1236         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1237         int result;
1238         /* populate MCLK dpm table to SMU7 */
1239         uint32_t array = smu_data->smu7_data.dpm_table_start +
1240                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1241         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1242                         SMU73_MAX_LEVELS_MEMORY;
1243         struct SMU73_Discrete_MemoryLevel *levels =
1244                         smu_data->smc_state_table.MemoryLevel;
1245         uint32_t i;
1246
1247         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1248                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1249                                 "can not populate memory level as memory clock is zero",
1250                                 return -EINVAL);
1251                 result = fiji_populate_single_memory_level(hwmgr,
1252                                 dpm_table->mclk_table.dpm_levels[i].value,
1253                                 &levels[i]);
1254                 if (result)
1255                         return result;
1256         }
1257
1258         /* Only enable level 0 for now. */
1259         levels[0].EnabledForActivity = 1;
1260
1261         /* in order to prevent MC activity from stutter mode to push DPM up.
1262          * the UVD change complements this by putting the MCLK in
1263          * a higher state by default such that we are not effected by
1264          * up threshold or and MCLK DPM latency.
1265          */
1266         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1267         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1268
1269         smu_data->smc_state_table.MemoryDpmLevelCount =
1270                         (uint8_t)dpm_table->mclk_table.count;
1271         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1272                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1273         /* set highest level watermark to high */
1274         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1275                         PPSMC_DISPLAY_WATERMARK_HIGH;
1276
1277         /* level count will send to smc once at init smc table and never change */
1278         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1279                         (uint32_t)array_size, SMC_RAM_END);
1280
1281         return result;
1282 }
1283
1284 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1285                 uint32_t mclk, SMIO_Pattern *smio_pat)
1286 {
1287         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1288         struct phm_ppt_v1_information *table_info =
1289                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1290         uint32_t i = 0;
1291
1292         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1293                 /* find mvdd value which clock is more than request */
1294                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1295                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1296                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1297                                 break;
1298                         }
1299                 }
1300                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1301                                 "MVDD Voltage is outside the supported range.",
1302                                 return -EINVAL);
1303         } else
1304                 return -EINVAL;
1305
1306         return 0;
1307 }
1308
1309 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1310                 SMU73_Discrete_DpmTable *table)
1311 {
1312         int result = 0;
1313         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1314         struct phm_ppt_v1_information *table_info =
1315                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1316         struct pp_atomctrl_clock_dividers_vi dividers;
1317         SMIO_Pattern vol_level;
1318         uint32_t mvdd;
1319         uint16_t us_mvdd;
1320         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1321         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1322
1323         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1324
1325         if (!data->sclk_dpm_key_disabled) {
1326                 /* Get MinVoltage and Frequency from DPM0,
1327                  * already converted to SMC_UL */
1328                 table->ACPILevel.SclkFrequency =
1329                                 data->dpm_table.sclk_table.dpm_levels[0].value;
1330                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1331                                 table_info->vdd_dep_on_sclk,
1332                                 table->ACPILevel.SclkFrequency,
1333                                 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1334                 PP_ASSERT_WITH_CODE((0 == result),
1335                                 "Cannot find ACPI VDDC voltage value " \
1336                                 "in Clock Dependency Table",
1337                                 );
1338         } else {
1339                 table->ACPILevel.SclkFrequency =
1340                                 data->vbios_boot_state.sclk_bootup_value;
1341                 table->ACPILevel.MinVoltage =
1342                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1343         }
1344
1345         /* get the engine clock dividers for this clock value */
1346         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1347                         table->ACPILevel.SclkFrequency,  &dividers);
1348         PP_ASSERT_WITH_CODE(result == 0,
1349                         "Error retrieving Engine Clock dividers from VBIOS.",
1350                         return result);
1351
1352         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1353         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1354         table->ACPILevel.DeepSleepDivId = 0;
1355
1356         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1357                         SPLL_PWRON, 0);
1358         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1359                         SPLL_RESET, 1);
1360         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1361                         SCLK_MUX_SEL, 4);
1362
1363         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1364         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1365         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1366         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1367         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1368         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1369         table->ACPILevel.CcPwrDynRm = 0;
1370         table->ACPILevel.CcPwrDynRm1 = 0;
1371
1372         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1373         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1374         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1375         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1376         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1377         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1378         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1379         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1380         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1381         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1382         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1383
1384         if (!data->mclk_dpm_key_disabled) {
1385                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1386                 table->MemoryACPILevel.MclkFrequency =
1387                                 data->dpm_table.mclk_table.dpm_levels[0].value;
1388                 result = fiji_get_dependency_volt_by_clk(hwmgr,
1389                                 table_info->vdd_dep_on_mclk,
1390                                 table->MemoryACPILevel.MclkFrequency,
1391                         (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1392                 PP_ASSERT_WITH_CODE((0 == result),
1393                                 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1394                                 );
1395         } else {
1396                 table->MemoryACPILevel.MclkFrequency =
1397                                 data->vbios_boot_state.mclk_bootup_value;
1398                 table->MemoryACPILevel.MinVoltage =
1399                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1400         }
1401
1402         us_mvdd = 0;
1403         if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1404                         (data->mclk_dpm_key_disabled))
1405                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1406         else {
1407                 if (!fiji_populate_mvdd_value(hwmgr,
1408                                 data->dpm_table.mclk_table.dpm_levels[0].value,
1409                                 &vol_level))
1410                         us_mvdd = vol_level.Voltage;
1411         }
1412
1413         table->MemoryACPILevel.MinMvdd =
1414                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1415
1416         table->MemoryACPILevel.EnabledForThrottle = 0;
1417         table->MemoryACPILevel.EnabledForActivity = 0;
1418         table->MemoryACPILevel.UpHyst = 0;
1419         table->MemoryACPILevel.DownHyst = 100;
1420         table->MemoryACPILevel.VoltageDownHyst = 0;
1421         table->MemoryACPILevel.ActivityLevel =
1422                         PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1423
1424         table->MemoryACPILevel.StutterEnable = false;
1425         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1426         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1427
1428         return result;
1429 }
1430
1431 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1432                 SMU73_Discrete_DpmTable *table)
1433 {
1434         int result = -EINVAL;
1435         uint8_t count;
1436         struct pp_atomctrl_clock_dividers_vi dividers;
1437         struct phm_ppt_v1_information *table_info =
1438                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1439         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1440                         table_info->mm_dep_table;
1441
1442         table->VceLevelCount = (uint8_t)(mm_table->count);
1443         table->VceBootLevel = 0;
1444
1445         for (count = 0; count < table->VceLevelCount; count++) {
1446                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1447                 table->VceLevel[count].MinVoltage = 0;
1448                 table->VceLevel[count].MinVoltage |=
1449                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1450                 table->VceLevel[count].MinVoltage |=
1451                                 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1452                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1453                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1454
1455                 /*retrieve divider value for VBIOS */
1456                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1457                                 table->VceLevel[count].Frequency, &dividers);
1458                 PP_ASSERT_WITH_CODE((0 == result),
1459                                 "can not find divide id for VCE engine clock",
1460                                 return result);
1461
1462                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1463
1464                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1465                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1466         }
1467         return result;
1468 }
1469
1470 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1471                 SMU73_Discrete_DpmTable *table)
1472 {
1473         int result = -EINVAL;
1474         uint8_t count;
1475         struct pp_atomctrl_clock_dividers_vi dividers;
1476         struct phm_ppt_v1_information *table_info =
1477                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1478         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1479                         table_info->mm_dep_table;
1480
1481         table->AcpLevelCount = (uint8_t)(mm_table->count);
1482         table->AcpBootLevel = 0;
1483
1484         for (count = 0; count < table->AcpLevelCount; count++) {
1485                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1486                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1487                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1488                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1489                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1490                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1491
1492                 /* retrieve divider value for VBIOS */
1493                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1494                                 table->AcpLevel[count].Frequency, &dividers);
1495                 PP_ASSERT_WITH_CODE((0 == result),
1496                                 "can not find divide id for engine clock", return result);
1497
1498                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1499
1500                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1501                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1502         }
1503         return result;
1504 }
1505
1506 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1507                 int32_t eng_clock, int32_t mem_clock,
1508                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1509 {
1510         uint32_t dram_timing;
1511         uint32_t dram_timing2;
1512         uint32_t burstTime;
1513         ULONG state, trrds, trrdl;
1514         int result;
1515
1516         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1517                         eng_clock, mem_clock);
1518         PP_ASSERT_WITH_CODE(result == 0,
1519                         "Error calling VBIOS to set DRAM_TIMING.", return result);
1520
1521         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1522         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1523         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1524
1525         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1526         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1527         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1528
1529         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1530         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1531         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1532         arb_regs->TRRDS            = (uint8_t)trrds;
1533         arb_regs->TRRDL            = (uint8_t)trrdl;
1534
1535         return 0;
1536 }
1537
1538 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1539 {
1540         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1541         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1542         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1543         uint32_t i, j;
1544         int result = 0;
1545
1546         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1547                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1548                         result = fiji_populate_memory_timing_parameters(hwmgr,
1549                                         data->dpm_table.sclk_table.dpm_levels[i].value,
1550                                         data->dpm_table.mclk_table.dpm_levels[j].value,
1551                                         &arb_regs.entries[i][j]);
1552                         if (result)
1553                                 break;
1554                 }
1555         }
1556
1557         if (!result)
1558                 result = smu7_copy_bytes_to_smc(
1559                                 hwmgr,
1560                                 smu_data->smu7_data.arb_table_start,
1561                                 (uint8_t *)&arb_regs,
1562                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1563                                 SMC_RAM_END);
1564         return result;
1565 }
1566
1567 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1568                 struct SMU73_Discrete_DpmTable *table)
1569 {
1570         int result = -EINVAL;
1571         uint8_t count;
1572         struct pp_atomctrl_clock_dividers_vi dividers;
1573         struct phm_ppt_v1_information *table_info =
1574                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1575         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1576                         table_info->mm_dep_table;
1577
1578         table->UvdLevelCount = (uint8_t)(mm_table->count);
1579         table->UvdBootLevel = 0;
1580
1581         for (count = 0; count < table->UvdLevelCount; count++) {
1582                 table->UvdLevel[count].MinVoltage = 0;
1583                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1584                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1585                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1586                                 VOLTAGE_SCALE) << VDDC_SHIFT;
1587                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1588                                 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1589                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1590
1591                 /* retrieve divider value for VBIOS */
1592                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1593                                 table->UvdLevel[count].VclkFrequency, &dividers);
1594                 PP_ASSERT_WITH_CODE((0 == result),
1595                                 "can not find divide id for Vclk clock", return result);
1596
1597                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1598
1599                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1600                                 table->UvdLevel[count].DclkFrequency, &dividers);
1601                 PP_ASSERT_WITH_CODE((0 == result),
1602                                 "can not find divide id for Dclk clock", return result);
1603
1604                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1605
1606                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1607                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1608                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1609
1610         }
1611         return result;
1612 }
1613
1614 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1615                 struct SMU73_Discrete_DpmTable *table)
1616 {
1617         int result = 0;
1618         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1619
1620         table->GraphicsBootLevel = 0;
1621         table->MemoryBootLevel = 0;
1622
1623         /* find boot level from dpm table */
1624         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1625                         data->vbios_boot_state.sclk_bootup_value,
1626                         (uint32_t *)&(table->GraphicsBootLevel));
1627
1628         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1629                         data->vbios_boot_state.mclk_bootup_value,
1630                         (uint32_t *)&(table->MemoryBootLevel));
1631
1632         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1633                         VOLTAGE_SCALE;
1634         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1635                         VOLTAGE_SCALE;
1636         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1637                         VOLTAGE_SCALE;
1638
1639         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1640         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1641         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1642
1643         return 0;
1644 }
1645
1646 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1647 {
1648         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1649         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1650         struct phm_ppt_v1_information *table_info =
1651                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1652         uint8_t count, level;
1653
1654         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1655         for (level = 0; level < count; level++) {
1656                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1657                                 data->vbios_boot_state.sclk_bootup_value) {
1658                         smu_data->smc_state_table.GraphicsBootLevel = level;
1659                         break;
1660                 }
1661         }
1662
1663         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1664         for (level = 0; level < count; level++) {
1665                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1666                                 data->vbios_boot_state.mclk_bootup_value) {
1667                         smu_data->smc_state_table.MemoryBootLevel = level;
1668                         break;
1669                 }
1670         }
1671
1672         return 0;
1673 }
1674
1675 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1676 {
1677         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1678                         volt_with_cks, value;
1679         uint16_t clock_freq_u16;
1680         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1681         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1682                         volt_offset = 0;
1683         struct phm_ppt_v1_information *table_info =
1684                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1685         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1686                         table_info->vdd_dep_on_sclk;
1687
1688         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1689
1690         /* Read SMU_Eefuse to read and calculate RO and determine
1691          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1692          */
1693         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1694                         ixSMU_EFUSE_0 + (146 * 4));
1695         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1696                         ixSMU_EFUSE_0 + (148 * 4));
1697         efuse &= 0xFF000000;
1698         efuse = efuse >> 24;
1699         efuse2 &= 0xF;
1700
1701         if (efuse2 == 1)
1702                 ro = (2300 - 1350) * efuse / 255 + 1350;
1703         else
1704                 ro = (2500 - 1000) * efuse / 255 + 1000;
1705
1706         if (ro >= 1660)
1707                 type = 0;
1708         else
1709                 type = 1;
1710
1711         /* Populate Stretch amount */
1712         smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1713
1714         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1715         for (i = 0; i < sclk_table->count; i++) {
1716                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1717                                 sclk_table->entries[i].cks_enable << i;
1718                 volt_without_cks = (uint32_t)((14041 *
1719                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1720                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1721                 volt_with_cks = (uint32_t)((13946 *
1722                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1723                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1724                 if (volt_without_cks >= volt_with_cks)
1725                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1726                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1727                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1728         }
1729
1730         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1731                         STRETCH_ENABLE, 0x0);
1732         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1733                         masterReset, 0x1);
1734         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1735                         staticEnable, 0x1);
1736         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1737                         masterReset, 0x0);
1738
1739         /* Populate CKS Lookup Table */
1740         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1741                 stretch_amount2 = 0;
1742         else if (stretch_amount == 3 || stretch_amount == 4)
1743                 stretch_amount2 = 1;
1744         else {
1745                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1746                                 PHM_PlatformCaps_ClockStretcher);
1747                 PP_ASSERT_WITH_CODE(false,
1748                                 "Stretch Amount in PPTable not supported",
1749                                 return -EINVAL);
1750         }
1751
1752         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1753                         ixPWR_CKS_CNTL);
1754         value &= 0xFFC2FF87;
1755         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1756                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1757         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1758                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1759         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1760                         GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1761                         SclkFrequency) / 100);
1762         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1763                         clock_freq_u16 &&
1764             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1765                         clock_freq_u16) {
1766                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1767                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1768                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1769                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1770                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1771                 value |= (fiji_clock_stretch_amount_conversion
1772                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1773                                  [stretch_amount]) << 3;
1774         }
1775         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1776                         CKS_LOOKUPTableEntry[0].minFreq);
1777         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1778                         CKS_LOOKUPTableEntry[0].maxFreq);
1779         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1780                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1781         smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1782                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1783
1784         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1785                         ixPWR_CKS_CNTL, value);
1786
1787         /* Populate DDT Lookup Table */
1788         for (i = 0; i < 4; i++) {
1789                 /* Assign the minimum and maximum VID stored
1790                  * in the last row of Clock Stretcher Voltage Table.
1791                  */
1792                 smu_data->smc_state_table.ClockStretcherDataTable.
1793                 ClockStretcherDataTableEntry[i].minVID =
1794                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1795                 smu_data->smc_state_table.ClockStretcherDataTable.
1796                 ClockStretcherDataTableEntry[i].maxVID =
1797                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1798                 /* Loop through each SCLK and check the frequency
1799                  * to see if it lies within the frequency for clock stretcher.
1800                  */
1801                 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1802                         cks_setting = 0;
1803                         clock_freq = PP_SMC_TO_HOST_UL(
1804                                         smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1805                         /* Check the allowed frequency against the sclk level[j].
1806                          *  Sclk's endianness has already been converted,
1807                          *  and it's in 10Khz unit,
1808                          *  as opposed to Data table, which is in Mhz unit.
1809                          */
1810                         if (clock_freq >=
1811                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1812                                 cks_setting |= 0x2;
1813                                 if (clock_freq <
1814                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1815                                         cks_setting |= 0x1;
1816                         }
1817                         smu_data->smc_state_table.ClockStretcherDataTable.
1818                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1819                 }
1820                 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1821                                 ClockStretcherDataTable.
1822                                 ClockStretcherDataTableEntry[i].setting);
1823         }
1824
1825         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1826         value &= 0xFFFFFFFE;
1827         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1828
1829         return 0;
1830 }
1831
1832 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1833                 struct SMU73_Discrete_DpmTable *table)
1834 {
1835         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1836         uint16_t config;
1837
1838         config = VR_MERGED_WITH_VDDC;
1839         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1840
1841         /* Set Vddc Voltage Controller */
1842         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1843                 config = VR_SVI2_PLANE_1;
1844                 table->VRConfig |= config;
1845         } else {
1846                 PP_ASSERT_WITH_CODE(false,
1847                                 "VDDC should be on SVI2 control in merged mode!",
1848                                 );
1849         }
1850         /* Set Vddci Voltage Controller */
1851         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1852                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1853                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1854         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1855                 config = VR_SMIO_PATTERN_1;
1856                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1857         } else {
1858                 config = VR_STATIC_VOLTAGE;
1859                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1860         }
1861         /* Set Mvdd Voltage Controller */
1862         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1863                 config = VR_SVI2_PLANE_2;
1864                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1865         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1866                 config = VR_SMIO_PATTERN_2;
1867                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1868         } else {
1869                 config = VR_STATIC_VOLTAGE;
1870                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1871         }
1872
1873         return 0;
1874 }
1875
1876 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1877 {
1878         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1879         uint32_t tmp;
1880         int result;
1881
1882         /* This is a read-modify-write on the first byte of the ARB table.
1883          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1884          * is the field 'current'.
1885          * This solution is ugly, but we never write the whole table only
1886          * individual fields in it.
1887          * In reality this field should not be in that structure
1888          * but in a soft register.
1889          */
1890         result = smu7_read_smc_sram_dword(hwmgr,
1891                         smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1892
1893         if (result)
1894                 return result;
1895
1896         tmp &= 0x00FFFFFF;
1897         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1898
1899         return smu7_write_smc_sram_dword(hwmgr,
1900                         smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1901 }
1902
1903 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1904 {
1905         pp_atomctrl_voltage_table param_led_dpm;
1906         int result = 0;
1907         u32 mask = 0;
1908
1909         result = atomctrl_get_voltage_table_v3(hwmgr,
1910                                                VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1911                                                &param_led_dpm);
1912         if (result == 0) {
1913                 int i, j;
1914                 u32 tmp = param_led_dpm.mask_low;
1915
1916                 for (i = 0, j = 0; i < 32; i++) {
1917                         if (tmp & 1) {
1918                                 mask |= (i << (8 * j));
1919                                 if (++j >= 3)
1920                                         break;
1921                         }
1922                         tmp >>= 1;
1923                 }
1924         }
1925         if (mask)
1926                 smum_send_msg_to_smc_with_parameter(hwmgr,
1927                                                     PPSMC_MSG_LedConfig,
1928                                                     mask);
1929         return 0;
1930 }
1931
1932 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1933 {
1934         int result;
1935         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1936         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1937         struct phm_ppt_v1_information *table_info =
1938                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1939         struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1940         uint8_t i;
1941         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1942
1943         fiji_initialize_power_tune_defaults(hwmgr);
1944
1945         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1946                 fiji_populate_smc_voltage_tables(hwmgr, table);
1947
1948         table->SystemFlags = 0;
1949
1950         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1951                         PHM_PlatformCaps_AutomaticDCTransition))
1952                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1953
1954         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1955                         PHM_PlatformCaps_StepVddc))
1956                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1957
1958         if (data->is_memory_gddr5)
1959                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1960
1961         if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1962                 result = fiji_populate_ulv_state(hwmgr, table);
1963                 PP_ASSERT_WITH_CODE(0 == result,
1964                                 "Failed to initialize ULV state!", return result);
1965                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1966                                 ixCG_ULV_PARAMETER, 0x40035);
1967         }
1968
1969         result = fiji_populate_smc_link_level(hwmgr, table);
1970         PP_ASSERT_WITH_CODE(0 == result,
1971                         "Failed to initialize Link Level!", return result);
1972
1973         result = fiji_populate_all_graphic_levels(hwmgr);
1974         PP_ASSERT_WITH_CODE(0 == result,
1975                         "Failed to initialize Graphics Level!", return result);
1976
1977         result = fiji_populate_all_memory_levels(hwmgr);
1978         PP_ASSERT_WITH_CODE(0 == result,
1979                         "Failed to initialize Memory Level!", return result);
1980
1981         result = fiji_populate_smc_acpi_level(hwmgr, table);
1982         PP_ASSERT_WITH_CODE(0 == result,
1983                         "Failed to initialize ACPI Level!", return result);
1984
1985         result = fiji_populate_smc_vce_level(hwmgr, table);
1986         PP_ASSERT_WITH_CODE(0 == result,
1987                         "Failed to initialize VCE Level!", return result);
1988
1989         result = fiji_populate_smc_acp_level(hwmgr, table);
1990         PP_ASSERT_WITH_CODE(0 == result,
1991                         "Failed to initialize ACP Level!", return result);
1992
1993         /* Since only the initial state is completely set up at this point
1994          * (the other states are just copies of the boot state) we only
1995          * need to populate the  ARB settings for the initial state.
1996          */
1997         result = fiji_program_memory_timing_parameters(hwmgr);
1998         PP_ASSERT_WITH_CODE(0 == result,
1999                         "Failed to Write ARB settings for the initial state.", return result);
2000
2001         result = fiji_populate_smc_uvd_level(hwmgr, table);
2002         PP_ASSERT_WITH_CODE(0 == result,
2003                         "Failed to initialize UVD Level!", return result);
2004
2005         result = fiji_populate_smc_boot_level(hwmgr, table);
2006         PP_ASSERT_WITH_CODE(0 == result,
2007                         "Failed to initialize Boot Level!", return result);
2008
2009         result = fiji_populate_smc_initailial_state(hwmgr);
2010         PP_ASSERT_WITH_CODE(0 == result,
2011                         "Failed to initialize Boot State!", return result);
2012
2013         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2014         PP_ASSERT_WITH_CODE(0 == result,
2015                         "Failed to populate BAPM Parameters!", return result);
2016
2017         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2018                         PHM_PlatformCaps_ClockStretcher)) {
2019                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2020                 PP_ASSERT_WITH_CODE(0 == result,
2021                                 "Failed to populate Clock Stretcher Data Table!",
2022                                 return result);
2023         }
2024
2025         table->GraphicsVoltageChangeEnable  = 1;
2026         table->GraphicsThermThrottleEnable  = 1;
2027         table->GraphicsInterval = 1;
2028         table->VoltageInterval  = 1;
2029         table->ThermalInterval  = 1;
2030         table->TemperatureLimitHigh =
2031                         table_info->cac_dtp_table->usTargetOperatingTemp *
2032                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2033         table->TemperatureLimitLow  =
2034                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2035                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2036         table->MemoryVoltageChangeEnable = 1;
2037         table->MemoryInterval = 1;
2038         table->VoltageResponseTime = 0;
2039         table->PhaseResponseTime = 0;
2040         table->MemoryThermThrottleEnable = 1;
2041         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2042         table->PCIeGenInterval = 1;
2043         table->VRConfig = 0;
2044
2045         result = fiji_populate_vr_config(hwmgr, table);
2046         PP_ASSERT_WITH_CODE(0 == result,
2047                         "Failed to populate VRConfig setting!", return result);
2048         data->vr_config = table->VRConfig;
2049         table->ThermGpio = 17;
2050         table->SclkStepSize = 0x4000;
2051
2052         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2053                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2054                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2055                                 PHM_PlatformCaps_RegulatorHot);
2056         } else {
2057                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2058                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2059                                 PHM_PlatformCaps_RegulatorHot);
2060         }
2061
2062         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2063                         &gpio_pin)) {
2064                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2065                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2066                                 PHM_PlatformCaps_AutomaticDCTransition);
2067         } else {
2068                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2069                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2070                                 PHM_PlatformCaps_AutomaticDCTransition);
2071         }
2072
2073         /* Thermal Output GPIO */
2074         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2075                         &gpio_pin)) {
2076                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2077                                 PHM_PlatformCaps_ThermalOutGPIO);
2078
2079                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2080
2081                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2082                  * since VBIOS will program this register to set 'inactive state',
2083                  * driver can then determine 'active state' from this and
2084                  * program SMU with correct polarity
2085                  */
2086                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2087                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2088                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2089
2090                 /* if required, combine VRHot/PCC with thermal out GPIO */
2091                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2092                                 PHM_PlatformCaps_RegulatorHot) &&
2093                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
2095                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2096         } else {
2097                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2098                                 PHM_PlatformCaps_ThermalOutGPIO);
2099                 table->ThermOutGpio = 17;
2100                 table->ThermOutPolarity = 1;
2101                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2102         }
2103
2104         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2105                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2106
2107         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2108         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2109         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2110         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2111         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2112         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2113         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2114         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2115         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2116
2117         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2118         result = smu7_copy_bytes_to_smc(hwmgr,
2119                         smu_data->smu7_data.dpm_table_start +
2120                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2121                         (uint8_t *)&(table->SystemFlags),
2122                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2123                         SMC_RAM_END);
2124         PP_ASSERT_WITH_CODE(0 == result,
2125                         "Failed to upload dpm data to SMC memory!", return result);
2126
2127         result = fiji_init_arb_table_index(hwmgr);
2128         PP_ASSERT_WITH_CODE(0 == result,
2129                         "Failed to upload arb data to SMC memory!", return result);
2130
2131         result = fiji_populate_pm_fuses(hwmgr);
2132         PP_ASSERT_WITH_CODE(0 == result,
2133                         "Failed to  populate PM fuses to SMC memory!", return result);
2134
2135         result = fiji_setup_dpm_led_config(hwmgr);
2136         PP_ASSERT_WITH_CODE(0 == result,
2137                             "Failed to setup dpm led config", return result);
2138
2139         return 0;
2140 }
2141
2142 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2143 {
2144         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2145
2146         SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2147         uint32_t duty100;
2148         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2149         uint16_t fdo_min, slope1, slope2;
2150         uint32_t reference_clock;
2151         int res;
2152         uint64_t tmp64;
2153
2154         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2155                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2156                         PHM_PlatformCaps_MicrocodeFanControl);
2157                 return 0;
2158         }
2159
2160         if (smu_data->smu7_data.fan_table_start == 0) {
2161                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2162                                 PHM_PlatformCaps_MicrocodeFanControl);
2163                 return 0;
2164         }
2165
2166         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2167                         CG_FDO_CTRL1, FMAX_DUTY100);
2168
2169         if (duty100 == 0) {
2170                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2171                                 PHM_PlatformCaps_MicrocodeFanControl);
2172                 return 0;
2173         }
2174
2175         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2176                         usPWMMin * duty100;
2177         do_div(tmp64, 10000);
2178         fdo_min = (uint16_t)tmp64;
2179
2180         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2181                         hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2182         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2183                         hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2184
2185         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2186                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2187         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2188                         hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2189
2190         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2191         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2192
2193         fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2194                         thermal_controller.advanceFanControlParameters.usTMin) / 100);
2195         fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2196                         thermal_controller.advanceFanControlParameters.usTMed) / 100);
2197         fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2198                         thermal_controller.advanceFanControlParameters.usTMax) / 100);
2199
2200         fan_table.Slope1 = cpu_to_be16(slope1);
2201         fan_table.Slope2 = cpu_to_be16(slope2);
2202
2203         fan_table.FdoMin = cpu_to_be16(fdo_min);
2204
2205         fan_table.HystDown = cpu_to_be16(hwmgr->
2206                         thermal_controller.advanceFanControlParameters.ucTHyst);
2207
2208         fan_table.HystUp = cpu_to_be16(1);
2209
2210         fan_table.HystSlope = cpu_to_be16(1);
2211
2212         fan_table.TempRespLim = cpu_to_be16(5);
2213
2214         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2215
2216         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2217                         thermal_controller.advanceFanControlParameters.ulCycleDelay *
2218                         reference_clock) / 1600);
2219
2220         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2221
2222         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2223                         hwmgr->device, CGS_IND_REG__SMC,
2224                         CG_MULT_THERMAL_CTRL, TEMP_SEL);
2225
2226         res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2227                         (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2228                         SMC_RAM_END);
2229
2230         if (!res && hwmgr->thermal_controller.
2231                         advanceFanControlParameters.ucMinimumPWMLimit)
2232                 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2233                                 PPSMC_MSG_SetFanMinPwm,
2234                                 hwmgr->thermal_controller.
2235                                 advanceFanControlParameters.ucMinimumPWMLimit);
2236
2237         if (!res && hwmgr->thermal_controller.
2238                         advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2239                 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2240                                 PPSMC_MSG_SetFanSclkTarget,
2241                                 hwmgr->thermal_controller.
2242                                 advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2243
2244         if (res)
2245                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2246                                 PHM_PlatformCaps_MicrocodeFanControl);
2247
2248         return 0;
2249 }
2250
2251
2252 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2253 {
2254         if (!hwmgr->avfs_supported)
2255                 return 0;
2256
2257         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2258
2259         return 0;
2260 }
2261
2262 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2263 {
2264         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2265
2266         if (data->need_update_smu7_dpm_table &
2267                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2268                 return fiji_program_memory_timing_parameters(hwmgr);
2269
2270         return 0;
2271 }
2272
2273 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2274 {
2275         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2276         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2277
2278         int result = 0;
2279         uint32_t low_sclk_interrupt_threshold = 0;
2280
2281         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2282                         PHM_PlatformCaps_SclkThrottleLowNotification)
2283                 && (data->low_sclk_interrupt_threshold != 0)) {
2284                 low_sclk_interrupt_threshold =
2285                                 data->low_sclk_interrupt_threshold;
2286
2287                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2288
2289                 result = smu7_copy_bytes_to_smc(
2290                                 hwmgr,
2291                                 smu_data->smu7_data.dpm_table_start +
2292                                 offsetof(SMU73_Discrete_DpmTable,
2293                                         LowSclkInterruptThreshold),
2294                                 (uint8_t *)&low_sclk_interrupt_threshold,
2295                                 sizeof(uint32_t),
2296                                 SMC_RAM_END);
2297         }
2298         result = fiji_program_mem_timing_parameters(hwmgr);
2299         PP_ASSERT_WITH_CODE((result == 0),
2300                         "Failed to program memory timing parameters!",
2301                         );
2302         return result;
2303 }
2304
2305 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2306 {
2307         switch (type) {
2308         case SMU_SoftRegisters:
2309                 switch (member) {
2310                 case HandshakeDisables:
2311                         return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2312                 case VoltageChangeTimeout:
2313                         return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2314                 case AverageGraphicsActivity:
2315                         return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2316                 case PreVBlankGap:
2317                         return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2318                 case VBlankTimeout:
2319                         return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2320                 case UcodeLoadStatus:
2321                         return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2322                 case DRAM_LOG_ADDR_H:
2323                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2324                 case DRAM_LOG_ADDR_L:
2325                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2326                 case DRAM_LOG_PHY_ADDR_H:
2327                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2328                 case DRAM_LOG_PHY_ADDR_L:
2329                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2330                 case DRAM_LOG_BUFF_SIZE:
2331                         return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2332                 }
2333                 break;
2334         case SMU_Discrete_DpmTable:
2335                 switch (member) {
2336                 case UvdBootLevel:
2337                         return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2338                 case VceBootLevel:
2339                         return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2340                 case LowSclkInterruptThreshold:
2341                         return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2342                 }
2343                 break;
2344         }
2345         pr_warn("can't get the offset of type %x member %x\n", type, member);
2346         return 0;
2347 }
2348
2349 static uint32_t fiji_get_mac_definition(uint32_t value)
2350 {
2351         switch (value) {
2352         case SMU_MAX_LEVELS_GRAPHICS:
2353                 return SMU73_MAX_LEVELS_GRAPHICS;
2354         case SMU_MAX_LEVELS_MEMORY:
2355                 return SMU73_MAX_LEVELS_MEMORY;
2356         case SMU_MAX_LEVELS_LINK:
2357                 return SMU73_MAX_LEVELS_LINK;
2358         case SMU_MAX_ENTRIES_SMIO:
2359                 return SMU73_MAX_ENTRIES_SMIO;
2360         case SMU_MAX_LEVELS_VDDC:
2361                 return SMU73_MAX_LEVELS_VDDC;
2362         case SMU_MAX_LEVELS_VDDGFX:
2363                 return SMU73_MAX_LEVELS_VDDGFX;
2364         case SMU_MAX_LEVELS_VDDCI:
2365                 return SMU73_MAX_LEVELS_VDDCI;
2366         case SMU_MAX_LEVELS_MVDD:
2367                 return SMU73_MAX_LEVELS_MVDD;
2368         }
2369
2370         pr_warn("can't get the mac of %x\n", value);
2371         return 0;
2372 }
2373
2374
2375 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2376 {
2377         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2378         uint32_t mm_boot_level_offset, mm_boot_level_value;
2379         struct phm_ppt_v1_information *table_info =
2380                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2381
2382         smu_data->smc_state_table.UvdBootLevel = 0;
2383         if (table_info->mm_dep_table->count > 0)
2384                 smu_data->smc_state_table.UvdBootLevel =
2385                                 (uint8_t) (table_info->mm_dep_table->count - 1);
2386         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2387                                                 UvdBootLevel);
2388         mm_boot_level_offset /= 4;
2389         mm_boot_level_offset *= 4;
2390         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2391                         CGS_IND_REG__SMC, mm_boot_level_offset);
2392         mm_boot_level_value &= 0x00FFFFFF;
2393         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2394         cgs_write_ind_register(hwmgr->device,
2395                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2396
2397         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2398                         PHM_PlatformCaps_UVDDPM) ||
2399                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2400                         PHM_PlatformCaps_StablePState))
2401                 smum_send_msg_to_smc_with_parameter(hwmgr,
2402                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
2403                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2404         return 0;
2405 }
2406
2407 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2408 {
2409         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2410         uint32_t mm_boot_level_offset, mm_boot_level_value;
2411         struct phm_ppt_v1_information *table_info =
2412                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2413
2414         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2415                                         PHM_PlatformCaps_StablePState))
2416                 smu_data->smc_state_table.VceBootLevel =
2417                         (uint8_t) (table_info->mm_dep_table->count - 1);
2418         else
2419                 smu_data->smc_state_table.VceBootLevel = 0;
2420
2421         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2422                                         offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2423         mm_boot_level_offset /= 4;
2424         mm_boot_level_offset *= 4;
2425         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2426                         CGS_IND_REG__SMC, mm_boot_level_offset);
2427         mm_boot_level_value &= 0xFF00FFFF;
2428         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2429         cgs_write_ind_register(hwmgr->device,
2430                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2431
2432         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2433                 smum_send_msg_to_smc_with_parameter(hwmgr,
2434                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
2435                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2436         return 0;
2437 }
2438
2439 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2440 {
2441         switch (type) {
2442         case SMU_UVD_TABLE:
2443                 fiji_update_uvd_smc_table(hwmgr);
2444                 break;
2445         case SMU_VCE_TABLE:
2446                 fiji_update_vce_smc_table(hwmgr);
2447                 break;
2448         default:
2449                 break;
2450         }
2451         return 0;
2452 }
2453
2454 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2455 {
2456         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2457         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2458         uint32_t tmp;
2459         int result;
2460         bool error = false;
2461
2462         result = smu7_read_smc_sram_dword(hwmgr,
2463                         SMU7_FIRMWARE_HEADER_LOCATION +
2464                         offsetof(SMU73_Firmware_Header, DpmTable),
2465                         &tmp, SMC_RAM_END);
2466
2467         if (0 == result)
2468                 smu_data->smu7_data.dpm_table_start = tmp;
2469
2470         error |= (0 != result);
2471
2472         result = smu7_read_smc_sram_dword(hwmgr,
2473                         SMU7_FIRMWARE_HEADER_LOCATION +
2474                         offsetof(SMU73_Firmware_Header, SoftRegisters),
2475                         &tmp, SMC_RAM_END);
2476
2477         if (!result) {
2478                 data->soft_regs_start = tmp;
2479                 smu_data->smu7_data.soft_regs_start = tmp;
2480         }
2481
2482         error |= (0 != result);
2483
2484         result = smu7_read_smc_sram_dword(hwmgr,
2485                         SMU7_FIRMWARE_HEADER_LOCATION +
2486                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
2487                         &tmp, SMC_RAM_END);
2488
2489         if (!result)
2490                 smu_data->smu7_data.mc_reg_table_start = tmp;
2491
2492         result = smu7_read_smc_sram_dword(hwmgr,
2493                         SMU7_FIRMWARE_HEADER_LOCATION +
2494                         offsetof(SMU73_Firmware_Header, FanTable),
2495                         &tmp, SMC_RAM_END);
2496
2497         if (!result)
2498                 smu_data->smu7_data.fan_table_start = tmp;
2499
2500         error |= (0 != result);
2501
2502         result = smu7_read_smc_sram_dword(hwmgr,
2503                         SMU7_FIRMWARE_HEADER_LOCATION +
2504                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2505                         &tmp, SMC_RAM_END);
2506
2507         if (!result)
2508                 smu_data->smu7_data.arb_table_start = tmp;
2509
2510         error |= (0 != result);
2511
2512         result = smu7_read_smc_sram_dword(hwmgr,
2513                         SMU7_FIRMWARE_HEADER_LOCATION +
2514                         offsetof(SMU73_Firmware_Header, Version),
2515                         &tmp, SMC_RAM_END);
2516
2517         if (!result)
2518                 hwmgr->microcode_version_info.SMC = tmp;
2519
2520         error |= (0 != result);
2521
2522         return error ? -1 : 0;
2523 }
2524
2525 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2526 {
2527
2528         /* Program additional LP registers
2529          * that are no longer programmed by VBIOS
2530          */
2531         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2532                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2533         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2534                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2535         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2536                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2537         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2538                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2539         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2540                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2541         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2542                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2543         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2544                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2545
2546         return 0;
2547 }
2548
2549 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2550 {
2551         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2552                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2553                         ? true : false;
2554 }
2555
2556 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2557                                 void *profile_setting)
2558 {
2559         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2560         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2561                         (hwmgr->smu_backend);
2562         struct profile_mode_setting *setting;
2563         struct SMU73_Discrete_GraphicsLevel *levels =
2564                         smu_data->smc_state_table.GraphicsLevel;
2565         uint32_t array = smu_data->smu7_data.dpm_table_start +
2566                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2567
2568         uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2569                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2570         struct SMU73_Discrete_MemoryLevel *mclk_levels =
2571                         smu_data->smc_state_table.MemoryLevel;
2572         uint32_t i;
2573         uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2574
2575         if (profile_setting == NULL)
2576                 return -EINVAL;
2577
2578         setting = (struct profile_mode_setting *)profile_setting;
2579
2580         if (setting->bupdate_sclk) {
2581                 if (!data->sclk_dpm_key_disabled)
2582                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2583                 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2584                         if (levels[i].ActivityLevel !=
2585                                 cpu_to_be16(setting->sclk_activity)) {
2586                                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2587
2588                                 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2589                                                 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2590                                 offset = clk_activity_offset & ~0x3;
2591                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2592                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2593                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2594
2595                         }
2596                         if (levels[i].UpHyst != setting->sclk_up_hyst ||
2597                                 levels[i].DownHyst != setting->sclk_down_hyst) {
2598                                 levels[i].UpHyst = setting->sclk_up_hyst;
2599                                 levels[i].DownHyst = setting->sclk_down_hyst;
2600                                 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2601                                                 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2602                                 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2603                                                 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2604                                 offset = up_hyst_offset & ~0x3;
2605                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2606                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2607                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2608                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2609                         }
2610                 }
2611                 if (!data->sclk_dpm_key_disabled)
2612                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2613         }
2614
2615         if (setting->bupdate_mclk) {
2616                 if (!data->mclk_dpm_key_disabled)
2617                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2618                 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2619                         if (mclk_levels[i].ActivityLevel !=
2620                                 cpu_to_be16(setting->mclk_activity)) {
2621                                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2622
2623                                 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2624                                                 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2625                                 offset = clk_activity_offset & ~0x3;
2626                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2627                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2628                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2629
2630                         }
2631                         if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2632                                 mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2633                                 mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2634                                 mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2635                                 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2636                                                 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2637                                 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2638                                                 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2639                                 offset = up_hyst_offset & ~0x3;
2640                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2641                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2642                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2643                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2644                         }
2645                 }
2646                 if (!data->mclk_dpm_key_disabled)
2647                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2648         }
2649         return 0;
2650 }
2651
2652 const struct pp_smumgr_func fiji_smu_funcs = {
2653         .smu_init = &fiji_smu_init,
2654         .smu_fini = &smu7_smu_fini,
2655         .start_smu = &fiji_start_smu,
2656         .check_fw_load_finish = &smu7_check_fw_load_finish,
2657         .request_smu_load_fw = &smu7_reload_firmware,
2658         .request_smu_load_specific_fw = NULL,
2659         .send_msg_to_smc = &smu7_send_msg_to_smc,
2660         .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2661         .download_pptable_settings = NULL,
2662         .upload_pptable_settings = NULL,
2663         .update_smc_table = fiji_update_smc_table,
2664         .get_offsetof = fiji_get_offsetof,
2665         .process_firmware_header = fiji_process_firmware_header,
2666         .init_smc_table = fiji_init_smc_table,
2667         .update_sclk_threshold = fiji_update_sclk_threshold,
2668         .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2669         .thermal_avfs_enable = fiji_thermal_avfs_enable,
2670         .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2671         .populate_all_memory_levels = fiji_populate_all_memory_levels,
2672         .get_mac_definition = fiji_get_mac_definition,
2673         .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2674         .is_dpm_running = fiji_is_dpm_running,
2675         .is_hw_avfs_present = fiji_is_hw_avfs_present,
2676         .update_dpm_settings = fiji_update_dpm_settings,
2677 };