GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / gpu / drm / amd / powerplay / smumgr / vegam_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include "smumgr.h"
25 #include "smu_ucode_xfer_vi.h"
26 #include "vegam_smumgr.h"
27 #include "smu/smu_7_1_3_d.h"
28 #include "smu/smu_7_1_3_sh_mask.h"
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 #include "oss/oss_3_0_d.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "bif/bif_5_0_d.h"
34 #include "bif/bif_5_0_sh_mask.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "smu7_ppsmc.h"
38
39 #include "smu7_dyn_defaults.h"
40
41 #include "smu7_hwmgr.h"
42 #include "hardwaremanager.h"
43 #include "ppatomctrl.h"
44 #include "atombios.h"
45 #include "pppcielanes.h"
46
47 #include "dce/dce_11_2_d.h"
48 #include "dce/dce_11_2_sh_mask.h"
49
50 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
51
52 #define VOLTAGE_VID_OFFSET_SCALE1   625
53 #define VOLTAGE_VID_OFFSET_SCALE2   100
54 #define POWERTUNE_DEFAULT_SET_MAX    1
55 #define VDDC_VDDCI_DELTA            200
56 #define MC_CG_ARB_FREQ_F1           0x0b
57
58 #define STRAP_ASIC_RO_LSB    2168
59 #define STRAP_ASIC_RO_MSB    2175
60
61 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
62 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
63
64 static const struct vegam_pt_defaults
65 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
66         /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
67          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
68         { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
69         { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
70         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
71 };
72
73 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
74                         {VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
75                         {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
76                         {VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
77                         {VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
78                         {VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
79                         {VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
80                         {VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
81                         {VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
82
83 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
84 {
85         struct vegam_smumgr *smu_data;
86
87         smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
88         if (smu_data == NULL)
89                 return -ENOMEM;
90
91         hwmgr->smu_backend = smu_data;
92
93         if (smu7_init(hwmgr)) {
94                 kfree(smu_data);
95                 return -EINVAL;
96         }
97
98         return 0;
99 }
100
101 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
102 {
103         int result = 0;
104
105         /* Wait for smc boot up */
106         /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
107
108         /* Assert reset */
109         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
110                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
111
112         result = smu7_upload_smu_firmware_image(hwmgr);
113         if (result != 0)
114                 return result;
115
116         /* Clear status */
117         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
118
119         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
120                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
121
122         /* De-assert reset */
123         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
124                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
125
126
127         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
128
129
130         /* Call Test SMU message with 0x20000 offset to trigger SMU start */
131         smu7_send_msg_to_smc_offset(hwmgr);
132
133         /* Wait done bit to be set */
134         /* Check pass/failed indicator */
135
136         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
137
138         if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
139                                                 SMU_STATUS, SMU_PASS))
140                 PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
141
142         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
143
144         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
145                                         SMC_SYSCON_RESET_CNTL, rst_reg, 1);
146
147         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
148                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
149
150         /* Wait for firmware to initialize */
151         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
152
153         return result;
154 }
155
156 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
157 {
158         int result = 0;
159
160         /* wait for smc boot up */
161         PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
162
163         /* Clear firmware interrupt enable flag */
164         /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
165         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
166                                 ixFIRMWARE_FLAGS, 0);
167
168         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
169                                         SMC_SYSCON_RESET_CNTL,
170                                         rst_reg, 1);
171
172         result = smu7_upload_smu_firmware_image(hwmgr);
173         if (result != 0)
174                 return result;
175
176         /* Set smc instruct start point at 0x0 */
177         smu7_program_jump_on_start(hwmgr);
178
179         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
180                                         SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
181
182         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
183                                         SMC_SYSCON_RESET_CNTL, rst_reg, 0);
184
185         /* Wait for firmware to initialize */
186
187         PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
188                                         FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
189
190         return result;
191 }
192
193 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
194 {
195         int result = 0;
196         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
197
198         /* Only start SMC if SMC RAM is not running */
199         if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
200                 smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
201                                 CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
202                 smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
203                                 hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
204
205                 /* Check if SMU is running in protected mode */
206                 if (smu_data->protected_mode == 0)
207                         result = vegam_start_smu_in_non_protection_mode(hwmgr);
208                 else
209                         result = vegam_start_smu_in_protection_mode(hwmgr);
210
211                 if (result != 0)
212                         PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
213         }
214
215         /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
216         smu7_read_smc_sram_dword(hwmgr,
217                         SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
218                         &(smu_data->smu7_data.soft_regs_start),
219                         0x40000);
220
221         result = smu7_request_smu_load_fw(hwmgr);
222
223         return result;
224 }
225
226 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
227 {
228         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
229         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
230         uint32_t tmp;
231         int result;
232         bool error = false;
233
234         result = smu7_read_smc_sram_dword(hwmgr,
235                         SMU7_FIRMWARE_HEADER_LOCATION +
236                         offsetof(SMU75_Firmware_Header, DpmTable),
237                         &tmp, SMC_RAM_END);
238
239         if (0 == result)
240                 smu_data->smu7_data.dpm_table_start = tmp;
241
242         error |= (0 != result);
243
244         result = smu7_read_smc_sram_dword(hwmgr,
245                         SMU7_FIRMWARE_HEADER_LOCATION +
246                         offsetof(SMU75_Firmware_Header, SoftRegisters),
247                         &tmp, SMC_RAM_END);
248
249         if (!result) {
250                 data->soft_regs_start = tmp;
251                 smu_data->smu7_data.soft_regs_start = tmp;
252         }
253
254         error |= (0 != result);
255
256         result = smu7_read_smc_sram_dword(hwmgr,
257                         SMU7_FIRMWARE_HEADER_LOCATION +
258                         offsetof(SMU75_Firmware_Header, mcRegisterTable),
259                         &tmp, SMC_RAM_END);
260
261         if (!result)
262                 smu_data->smu7_data.mc_reg_table_start = tmp;
263
264         result = smu7_read_smc_sram_dword(hwmgr,
265                         SMU7_FIRMWARE_HEADER_LOCATION +
266                         offsetof(SMU75_Firmware_Header, FanTable),
267                         &tmp, SMC_RAM_END);
268
269         if (!result)
270                 smu_data->smu7_data.fan_table_start = tmp;
271
272         error |= (0 != result);
273
274         result = smu7_read_smc_sram_dword(hwmgr,
275                         SMU7_FIRMWARE_HEADER_LOCATION +
276                         offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
277                         &tmp, SMC_RAM_END);
278
279         if (!result)
280                 smu_data->smu7_data.arb_table_start = tmp;
281
282         error |= (0 != result);
283
284         result = smu7_read_smc_sram_dword(hwmgr,
285                         SMU7_FIRMWARE_HEADER_LOCATION +
286                         offsetof(SMU75_Firmware_Header, Version),
287                         &tmp, SMC_RAM_END);
288
289         if (!result)
290                 hwmgr->microcode_version_info.SMC = tmp;
291
292         error |= (0 != result);
293
294         return error ? -1 : 0;
295 }
296
297 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
298 {
299         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
300                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
301                         ? true : false;
302 }
303
304 static uint32_t vegam_get_mac_definition(uint32_t value)
305 {
306         switch (value) {
307         case SMU_MAX_LEVELS_GRAPHICS:
308                 return SMU75_MAX_LEVELS_GRAPHICS;
309         case SMU_MAX_LEVELS_MEMORY:
310                 return SMU75_MAX_LEVELS_MEMORY;
311         case SMU_MAX_LEVELS_LINK:
312                 return SMU75_MAX_LEVELS_LINK;
313         case SMU_MAX_ENTRIES_SMIO:
314                 return SMU75_MAX_ENTRIES_SMIO;
315         case SMU_MAX_LEVELS_VDDC:
316                 return SMU75_MAX_LEVELS_VDDC;
317         case SMU_MAX_LEVELS_VDDGFX:
318                 return SMU75_MAX_LEVELS_VDDGFX;
319         case SMU_MAX_LEVELS_VDDCI:
320                 return SMU75_MAX_LEVELS_VDDCI;
321         case SMU_MAX_LEVELS_MVDD:
322                 return SMU75_MAX_LEVELS_MVDD;
323         case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
324                 return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
325                                 SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
326         }
327
328         pr_warn("can't get the mac of %x\n", value);
329         return 0;
330 }
331
332 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
333 {
334         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
335         uint32_t mm_boot_level_offset, mm_boot_level_value;
336         struct phm_ppt_v1_information *table_info =
337                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
338
339         smu_data->smc_state_table.UvdBootLevel = 0;
340         if (table_info->mm_dep_table->count > 0)
341                 smu_data->smc_state_table.UvdBootLevel =
342                                 (uint8_t) (table_info->mm_dep_table->count - 1);
343         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
344                                                 UvdBootLevel);
345         mm_boot_level_offset /= 4;
346         mm_boot_level_offset *= 4;
347         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
348                         CGS_IND_REG__SMC, mm_boot_level_offset);
349         mm_boot_level_value &= 0x00FFFFFF;
350         mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
351         cgs_write_ind_register(hwmgr->device,
352                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
353
354         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
355                         PHM_PlatformCaps_UVDDPM) ||
356                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
357                         PHM_PlatformCaps_StablePState))
358                 smum_send_msg_to_smc_with_parameter(hwmgr,
359                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
360                                 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
361         return 0;
362 }
363
364 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
365 {
366         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
367         uint32_t mm_boot_level_offset, mm_boot_level_value;
368         struct phm_ppt_v1_information *table_info =
369                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
370
371         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
372                                         PHM_PlatformCaps_StablePState))
373                 smu_data->smc_state_table.VceBootLevel =
374                         (uint8_t) (table_info->mm_dep_table->count - 1);
375         else
376                 smu_data->smc_state_table.VceBootLevel = 0;
377
378         mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
379                                         offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
380         mm_boot_level_offset /= 4;
381         mm_boot_level_offset *= 4;
382         mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
383                         CGS_IND_REG__SMC, mm_boot_level_offset);
384         mm_boot_level_value &= 0xFF00FFFF;
385         mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
386         cgs_write_ind_register(hwmgr->device,
387                         CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
388
389         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
390                 smum_send_msg_to_smc_with_parameter(hwmgr,
391                                 PPSMC_MSG_VCEDPM_SetEnabledMask,
392                                 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
393         return 0;
394 }
395
396 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
397 {
398         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
399         struct phm_ppt_v1_information *table_info =
400                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
401         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
402         int max_entry, i;
403
404         max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
405                                                 SMU75_MAX_LEVELS_LINK :
406                                                 pcie_table->count;
407         /* Setup BIF_SCLK levels */
408         for (i = 0; i < max_entry; i++)
409                 smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
410         return 0;
411 }
412
413 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
414 {
415         switch (type) {
416         case SMU_UVD_TABLE:
417                 vegam_update_uvd_smc_table(hwmgr);
418                 break;
419         case SMU_VCE_TABLE:
420                 vegam_update_vce_smc_table(hwmgr);
421                 break;
422         case SMU_BIF_TABLE:
423                 vegam_update_bif_smc_table(hwmgr);
424                 break;
425         default:
426                 break;
427         }
428         return 0;
429 }
430
431 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
432 {
433         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
434         struct  phm_ppt_v1_information *table_info =
435                         (struct  phm_ppt_v1_information *)(hwmgr->pptable);
436
437         if (table_info &&
438                         table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
439                         table_info->cac_dtp_table->usPowerTuneDataSetID)
440                 smu_data->power_tune_defaults =
441                                 &vegam_power_tune_data_set_array
442                                 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
443         else
444                 smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
445
446 }
447
448 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
449                         SMU75_Discrete_DpmTable *table)
450 {
451         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
452         uint32_t count, level;
453
454         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
455                 count = data->mvdd_voltage_table.count;
456                 if (count > SMU_MAX_SMIO_LEVELS)
457                         count = SMU_MAX_SMIO_LEVELS;
458                 for (level = 0; level < count; level++) {
459                         table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
460                                         data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
461                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
462                         table->SmioTable2.Pattern[level].Smio =
463                                 (uint8_t) level;
464                         table->Smio[level] |=
465                                 data->mvdd_voltage_table.entries[level].smio_low;
466                 }
467                 table->SmioMask2 = data->mvdd_voltage_table.mask_low;
468
469                 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
470         }
471
472         return 0;
473 }
474
475 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
476                                         struct SMU75_Discrete_DpmTable *table)
477 {
478         uint32_t count, level;
479         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
480
481         count = data->vddci_voltage_table.count;
482
483         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
484                 if (count > SMU_MAX_SMIO_LEVELS)
485                         count = SMU_MAX_SMIO_LEVELS;
486                 for (level = 0; level < count; ++level) {
487                         table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
488                                         data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
489                         table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
490
491                         table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
492                 }
493         }
494
495         table->SmioMask1 = data->vddci_voltage_table.mask_low;
496
497         return 0;
498 }
499
500 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
501                 struct SMU75_Discrete_DpmTable *table)
502 {
503         uint32_t count;
504         uint8_t index;
505         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
506         struct phm_ppt_v1_information *table_info =
507                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
508         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
509                         table_info->vddc_lookup_table;
510         /* tables is already swapped, so in order to use the value from it,
511          * we need to swap it back.
512          * We are populating vddc CAC data to BapmVddc table
513          * in split and merged mode
514          */
515         for (count = 0; count < lookup_table->count; count++) {
516                 index = phm_get_voltage_index(lookup_table,
517                                 data->vddc_voltage_table.entries[count].value);
518                 table->BapmVddcVidLoSidd[count] =
519                                 convert_to_vid(lookup_table->entries[index].us_cac_low);
520                 table->BapmVddcVidHiSidd[count] =
521                                 convert_to_vid(lookup_table->entries[index].us_cac_mid);
522                 table->BapmVddcVidHiSidd2[count] =
523                                 convert_to_vid(lookup_table->entries[index].us_cac_high);
524         }
525
526         return 0;
527 }
528
529 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
530                 struct SMU75_Discrete_DpmTable *table)
531 {
532         vegam_populate_smc_vddci_table(hwmgr, table);
533         vegam_populate_smc_mvdd_table(hwmgr, table);
534         vegam_populate_cac_table(hwmgr, table);
535
536         return 0;
537 }
538
539 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
540                 struct SMU75_Discrete_Ulv *state)
541 {
542         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
543         struct phm_ppt_v1_information *table_info =
544                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
545
546         state->CcPwrDynRm = 0;
547         state->CcPwrDynRm1 = 0;
548
549         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
550         state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
551                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
552
553         state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
554
555         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
556         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
557         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
558
559         return 0;
560 }
561
562 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
563                 struct SMU75_Discrete_DpmTable *table)
564 {
565         return vegam_populate_ulv_level(hwmgr, &table->Ulv);
566 }
567
568 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
569                 struct SMU75_Discrete_DpmTable *table)
570 {
571         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
572         struct vegam_smumgr *smu_data =
573                         (struct vegam_smumgr *)(hwmgr->smu_backend);
574         struct smu7_dpm_table *dpm_table = &data->dpm_table;
575         int i;
576
577         /* Index (dpm_table->pcie_speed_table.count)
578          * is reserved for PCIE boot level. */
579         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
580                 table->LinkLevel[i].PcieGenSpeed  =
581                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
582                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
583                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
584                 table->LinkLevel[i].EnabledForActivity = 1;
585                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
586                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
587                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
588         }
589
590         smu_data->smc_state_table.LinkLevelCount =
591                         (uint8_t)dpm_table->pcie_speed_table.count;
592
593 /* To Do move to hwmgr */
594         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
595                         phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
596
597         return 0;
598 }
599
600 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
601                 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
602                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
603 {
604         uint32_t i;
605         uint16_t vddci;
606         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
607
608         *voltage = *mvdd = 0;
609
610         /* clock - voltage dependency table is empty table */
611         if (dep_table->count == 0)
612                 return -EINVAL;
613
614         for (i = 0; i < dep_table->count; i++) {
615                 /* find first sclk bigger than request */
616                 if (dep_table->entries[i].clk >= clock) {
617                         *voltage |= (dep_table->entries[i].vddc *
618                                         VOLTAGE_SCALE) << VDDC_SHIFT;
619                         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
620                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
621                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
622                         else if (dep_table->entries[i].vddci)
623                                 *voltage |= (dep_table->entries[i].vddci *
624                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
625                         else {
626                                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
627                                                 (dep_table->entries[i].vddc -
628                                                                 (uint16_t)VDDC_VDDCI_DELTA));
629                                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
630                         }
631
632                         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
633                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
634                                         VOLTAGE_SCALE;
635                         else if (dep_table->entries[i].mvdd)
636                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
637                                         VOLTAGE_SCALE;
638
639                         *voltage |= 1 << PHASES_SHIFT;
640                         return 0;
641                 }
642         }
643
644         /* sclk is bigger than max sclk in the dependence table */
645         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
646
647         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
648                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
649                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
650         else if (dep_table->entries[i - 1].vddci)
651                 *voltage |= (dep_table->entries[i - 1].vddci *
652                                 VOLTAGE_SCALE) << VDDC_SHIFT;
653         else {
654                 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
655                                 (dep_table->entries[i - 1].vddc -
656                                                 (uint16_t)VDDC_VDDCI_DELTA));
657
658                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
659         }
660
661         if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
662                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
663         else if (dep_table->entries[i].mvdd)
664                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
665
666         return 0;
667 }
668
669 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
670                                    SMU75_Discrete_DpmTable  *table)
671 {
672         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
673         uint32_t i, ref_clk;
674
675         struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
676
677         ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
678
679         if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
680                 for (i = 0; i < NUM_SCLK_RANGE; i++) {
681                         table->SclkFcwRangeTable[i].vco_setting =
682                                         range_table_from_vbios.entry[i].ucVco_setting;
683                         table->SclkFcwRangeTable[i].postdiv =
684                                         range_table_from_vbios.entry[i].ucPostdiv;
685                         table->SclkFcwRangeTable[i].fcw_pcc =
686                                         range_table_from_vbios.entry[i].usFcw_pcc;
687
688                         table->SclkFcwRangeTable[i].fcw_trans_upper =
689                                         range_table_from_vbios.entry[i].usFcw_trans_upper;
690                         table->SclkFcwRangeTable[i].fcw_trans_lower =
691                                         range_table_from_vbios.entry[i].usRcw_trans_lower;
692
693                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
694                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
695                         CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
696                 }
697                 return;
698         }
699
700         for (i = 0; i < NUM_SCLK_RANGE; i++) {
701                 smu_data->range_table[i].trans_lower_frequency =
702                                 (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
703                 smu_data->range_table[i].trans_upper_frequency =
704                                 (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
705
706                 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
707                 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
708                 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
709
710                 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
711                 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
712
713                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
714                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
715                 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
716         }
717 }
718
719 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
720                 uint32_t clock, SMU_SclkSetting *sclk_setting)
721 {
722         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
723         const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
724         struct pp_atomctrl_clock_dividers_ai dividers;
725         uint32_t ref_clock;
726         uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
727         uint8_t i;
728         int result;
729         uint64_t temp;
730
731         sclk_setting->SclkFrequency = clock;
732         /* get the engine clock dividers for this clock value */
733         result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
734         if (result == 0) {
735                 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
736                 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
737                 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
738                 sclk_setting->PllRange = dividers.ucSclkPllRange;
739                 sclk_setting->Sclk_slew_rate = 0x400;
740                 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
741                 sclk_setting->Pcc_down_slew_rate = 0xffff;
742                 sclk_setting->SSc_En = dividers.ucSscEnable;
743                 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
744                 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
745                 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
746                 return result;
747         }
748
749         ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
750
751         for (i = 0; i < NUM_SCLK_RANGE; i++) {
752                 if (clock > smu_data->range_table[i].trans_lower_frequency
753                 && clock <= smu_data->range_table[i].trans_upper_frequency) {
754                         sclk_setting->PllRange = i;
755                         break;
756                 }
757         }
758
759         sclk_setting->Fcw_int = (uint16_t)
760                         ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
761                                         ref_clock);
762         temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
763         temp <<= 0x10;
764         do_div(temp, ref_clock);
765         sclk_setting->Fcw_frac = temp & 0xffff;
766
767         pcc_target_percent = 10; /*  Hardcode 10% for now. */
768         pcc_target_freq = clock - (clock * pcc_target_percent / 100);
769         sclk_setting->Pcc_fcw_int = (uint16_t)
770                         ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
771                                         ref_clock);
772
773         ss_target_percent = 2; /*  Hardcode 2% for now. */
774         sclk_setting->SSc_En = 0;
775         if (ss_target_percent) {
776                 sclk_setting->SSc_En = 1;
777                 ss_target_freq = clock - (clock * ss_target_percent / 100);
778                 sclk_setting->Fcw1_int = (uint16_t)
779                                 ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
780                                                 ref_clock);
781                 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
782                 temp <<= 0x10;
783                 do_div(temp, ref_clock);
784                 sclk_setting->Fcw1_frac = temp & 0xffff;
785         }
786
787         return 0;
788 }
789
790 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
791                 uint32_t clock_insr)
792 {
793         uint8_t i;
794         uint32_t temp;
795         uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
796
797         PP_ASSERT_WITH_CODE((clock >= min),
798                         "Engine clock can't satisfy stutter requirement!",
799                         return 0);
800         for (i = 31;  ; i--) {
801                 temp = clock / (i + 1);
802
803                 if (temp >= min || i == 0)
804                         break;
805         }
806         return i;
807 }
808
809 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
810                 uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
811 {
812         int result;
813         /* PP_Clocks minClocks; */
814         uint32_t mvdd;
815         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
816         struct phm_ppt_v1_information *table_info =
817                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
818         SMU_SclkSetting curr_sclk_setting = { 0 };
819
820         result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
821
822         /* populate graphics levels */
823         result = vegam_get_dependency_volt_by_clk(hwmgr,
824                         table_info->vdd_dep_on_sclk, clock,
825                         &level->MinVoltage, &mvdd);
826
827         PP_ASSERT_WITH_CODE((0 == result),
828                         "can not find VDDC voltage value for "
829                         "VDDC engine clock dependency table",
830                         return result);
831         level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
832
833         level->CcPwrDynRm = 0;
834         level->CcPwrDynRm1 = 0;
835         level->EnabledForActivity = 0;
836         level->EnabledForThrottle = 1;
837         level->VoltageDownHyst = 0;
838         level->PowerThrottle = 0;
839         data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
840
841         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
842                 level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
843                                                                 hwmgr->display_config->min_core_set_clock_in_sr);
844
845         level->SclkSetting = curr_sclk_setting;
846
847         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
848         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
849         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
850         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
851         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
852         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
853         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
854         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
855         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
856         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
857         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
858         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
859         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
860         CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
861         return 0;
862 }
863
864 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
865 {
866         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
867         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
868         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
869         struct phm_ppt_v1_information *table_info =
870                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
871         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
872         uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
873         int result = 0;
874         uint32_t array = smu_data->smu7_data.dpm_table_start +
875                         offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
876         uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
877                         SMU75_MAX_LEVELS_GRAPHICS;
878         struct SMU75_Discrete_GraphicsLevel *levels =
879                         smu_data->smc_state_table.GraphicsLevel;
880         uint32_t i, max_entry;
881         uint8_t hightest_pcie_level_enabled = 0,
882                 lowest_pcie_level_enabled = 0,
883                 mid_pcie_level_enabled = 0,
884                 count = 0;
885
886         vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
887
888         for (i = 0; i < dpm_table->sclk_table.count; i++) {
889
890                 result = vegam_populate_single_graphic_level(hwmgr,
891                                 dpm_table->sclk_table.dpm_levels[i].value,
892                                 &(smu_data->smc_state_table.GraphicsLevel[i]));
893                 if (result)
894                         return result;
895
896                 levels[i].UpHyst = (uint8_t)
897                                 (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
898                 levels[i].DownHyst = (uint8_t)
899                                 (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
900                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
901                 if (i > 1)
902                         levels[i].DeepSleepDivId = 0;
903         }
904         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
905                                         PHM_PlatformCaps_SPLLShutdownSupport))
906                 smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
907
908         smu_data->smc_state_table.GraphicsDpmLevelCount =
909                         (uint8_t)dpm_table->sclk_table.count;
910         hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
911                         phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
912
913         for (i = 0; i < dpm_table->sclk_table.count; i++)
914                 levels[i].EnabledForActivity =
915                                 (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
916
917         if (pcie_table != NULL) {
918                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
919                                 "There must be 1 or more PCIE levels defined in PPTable.",
920                                 return -EINVAL);
921                 max_entry = pcie_entry_cnt - 1;
922                 for (i = 0; i < dpm_table->sclk_table.count; i++)
923                         levels[i].pcieDpmLevel =
924                                         (uint8_t) ((i < max_entry) ? i : max_entry);
925         } else {
926                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
927                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
928                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0))
929                         hightest_pcie_level_enabled++;
930
931                 while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
932                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
933                                                 (1 << lowest_pcie_level_enabled)) == 0))
934                         lowest_pcie_level_enabled++;
935
936                 while ((count < hightest_pcie_level_enabled) &&
937                                 ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
938                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
939                         count++;
940
941                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
942                                 hightest_pcie_level_enabled ?
943                                                 (lowest_pcie_level_enabled + 1 + count) :
944                                                 hightest_pcie_level_enabled;
945
946                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
947                 for (i = 2; i < dpm_table->sclk_table.count; i++)
948                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
949
950                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
951                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
952
953                 /* set pcieDpmLevel to mid_pcie_level_enabled */
954                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
955         }
956         /* level count will send to smc once at init smc table and never change */
957         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
958                         (uint32_t)array_size, SMC_RAM_END);
959
960         return result;
961 }
962
963 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
964                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
965 {
966         struct pp_atomctrl_memory_clock_param_ai mpll_param;
967
968         PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
969                         clock, &mpll_param),
970                         "Failed to retrieve memory pll parameter.",
971                         return -EINVAL);
972
973         mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
974         mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
975         mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
976         mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
977
978         return 0;
979 }
980
981 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
982                 uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
983 {
984         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
985         struct phm_ppt_v1_information *table_info =
986                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
987         int result = 0;
988         uint32_t mclk_stutter_mode_threshold = 60000;
989
990
991         if (table_info->vdd_dep_on_mclk) {
992                 result = vegam_get_dependency_volt_by_clk(hwmgr,
993                                 table_info->vdd_dep_on_mclk, clock,
994                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
995                 PP_ASSERT_WITH_CODE(!result,
996                                 "can not find MinVddc voltage value from memory "
997                                 "VDDC voltage dependency table", return result);
998         }
999
1000         result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1001         PP_ASSERT_WITH_CODE(!result,
1002                         "Failed to calculate mclk params.",
1003                         return -EINVAL);
1004
1005         mem_level->EnabledForThrottle = 1;
1006         mem_level->EnabledForActivity = 0;
1007         mem_level->VoltageDownHyst = 0;
1008         mem_level->ActivityLevel = (uint16_t)
1009                         (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1010         mem_level->StutterEnable = false;
1011         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1012
1013         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1014
1015         if (mclk_stutter_mode_threshold &&
1016                 (clock <= mclk_stutter_mode_threshold) &&
1017                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1018                                 STUTTER_ENABLE) & 0x1))
1019                 mem_level->StutterEnable = true;
1020
1021         if (!result) {
1022                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1023                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1024                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1025                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1026                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1027                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1028         }
1029
1030         return result;
1031 }
1032
1033 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1034 {
1035         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1036         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1037         struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1038         int result;
1039         /* populate MCLK dpm table to SMU7 */
1040         uint32_t array = smu_data->smu7_data.dpm_table_start +
1041                         offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1042         uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1043                         SMU75_MAX_LEVELS_MEMORY;
1044         struct SMU75_Discrete_MemoryLevel *levels =
1045                         smu_data->smc_state_table.MemoryLevel;
1046         uint32_t i;
1047
1048         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1049                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1050                                 "can not populate memory level as memory clock is zero",
1051                                 return -EINVAL);
1052                 result = vegam_populate_single_memory_level(hwmgr,
1053                                 dpm_table->mclk_table.dpm_levels[i].value,
1054                                 &levels[i]);
1055
1056                 if (result)
1057                         return result;
1058
1059                 levels[i].UpHyst = (uint8_t)
1060                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1061                 levels[i].DownHyst = (uint8_t)
1062                                 (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1063         }
1064
1065         smu_data->smc_state_table.MemoryDpmLevelCount =
1066                         (uint8_t)dpm_table->mclk_table.count;
1067         hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1068                         phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1069
1070         for (i = 0; i < dpm_table->mclk_table.count; i++)
1071                 levels[i].EnabledForActivity =
1072                                 (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1073
1074         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1075                         PPSMC_DISPLAY_WATERMARK_HIGH;
1076
1077         /* level count will send to smc once at init smc table and never change */
1078         result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1079                         (uint32_t)array_size, SMC_RAM_END);
1080
1081         return result;
1082 }
1083
1084 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1085                 uint32_t mclk, SMIO_Pattern *smio_pat)
1086 {
1087         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1088         struct phm_ppt_v1_information *table_info =
1089                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1090         uint32_t i = 0;
1091
1092         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1093                 /* find mvdd value which clock is more than request */
1094                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1095                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1096                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1097                                 break;
1098                         }
1099                 }
1100                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1101                                 "MVDD Voltage is outside the supported range.",
1102                                 return -EINVAL);
1103         } else
1104                 return -EINVAL;
1105
1106         return 0;
1107 }
1108
1109 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1110                 SMU75_Discrete_DpmTable *table)
1111 {
1112         int result = 0;
1113         uint32_t sclk_frequency;
1114         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1115         struct phm_ppt_v1_information *table_info =
1116                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1117         SMIO_Pattern vol_level;
1118         uint32_t mvdd;
1119         uint16_t us_mvdd;
1120
1121         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1122
1123         /* Get MinVoltage and Frequency from DPM0,
1124          * already converted to SMC_UL */
1125         sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1126         result = vegam_get_dependency_volt_by_clk(hwmgr,
1127                         table_info->vdd_dep_on_sclk,
1128                         sclk_frequency,
1129                         &table->ACPILevel.MinVoltage, &mvdd);
1130         PP_ASSERT_WITH_CODE(!result,
1131                         "Cannot find ACPI VDDC voltage value "
1132                         "in Clock Dependency Table",
1133                         );
1134
1135         result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1136                         &(table->ACPILevel.SclkSetting));
1137         PP_ASSERT_WITH_CODE(!result,
1138                         "Error retrieving Engine Clock dividers from VBIOS.",
1139                         return result);
1140
1141         table->ACPILevel.DeepSleepDivId = 0;
1142         table->ACPILevel.CcPwrDynRm = 0;
1143         table->ACPILevel.CcPwrDynRm1 = 0;
1144
1145         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1146         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1147         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1148         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1149
1150         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1151         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1152         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1153         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1154         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1155         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1156         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1157         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1158         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1159         CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1160
1161
1162         /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1163         table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1164         result = vegam_get_dependency_volt_by_clk(hwmgr,
1165                         table_info->vdd_dep_on_mclk,
1166                         table->MemoryACPILevel.MclkFrequency,
1167                         &table->MemoryACPILevel.MinVoltage, &mvdd);
1168         PP_ASSERT_WITH_CODE((0 == result),
1169                         "Cannot find ACPI VDDCI voltage value "
1170                         "in Clock Dependency Table",
1171                         );
1172
1173         us_mvdd = 0;
1174         if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1175                         (data->mclk_dpm_key_disabled))
1176                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1177         else {
1178                 if (!vegam_populate_mvdd_value(hwmgr,
1179                                 data->dpm_table.mclk_table.dpm_levels[0].value,
1180                                 &vol_level))
1181                         us_mvdd = vol_level.Voltage;
1182         }
1183
1184         if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1185                 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1186         else
1187                 table->MemoryACPILevel.MinMvdd = 0;
1188
1189         table->MemoryACPILevel.StutterEnable = false;
1190
1191         table->MemoryACPILevel.EnabledForThrottle = 0;
1192         table->MemoryACPILevel.EnabledForActivity = 0;
1193         table->MemoryACPILevel.UpHyst = 0;
1194         table->MemoryACPILevel.DownHyst = 100;
1195         table->MemoryACPILevel.VoltageDownHyst = 0;
1196         table->MemoryACPILevel.ActivityLevel =
1197                 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1198
1199         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1200         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1201
1202         return result;
1203 }
1204
1205 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1206                 SMU75_Discrete_DpmTable *table)
1207 {
1208         int result = -EINVAL;
1209         uint8_t count;
1210         struct pp_atomctrl_clock_dividers_vi dividers;
1211         struct phm_ppt_v1_information *table_info =
1212                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1213         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1214                         table_info->mm_dep_table;
1215         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1216         uint32_t vddci;
1217
1218         table->VceLevelCount = (uint8_t)(mm_table->count);
1219         table->VceBootLevel = 0;
1220
1221         for (count = 0; count < table->VceLevelCount; count++) {
1222                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1223                 table->VceLevel[count].MinVoltage = 0;
1224                 table->VceLevel[count].MinVoltage |=
1225                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1226
1227                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1228                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1229                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1230                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1231                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1232                 else
1233                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1234
1235
1236                 table->VceLevel[count].MinVoltage |=
1237                                 (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1238                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1239
1240                 /*retrieve divider value for VBIOS */
1241                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1242                                 table->VceLevel[count].Frequency, &dividers);
1243                 PP_ASSERT_WITH_CODE((0 == result),
1244                                 "can not find divide id for VCE engine clock",
1245                                 return result);
1246
1247                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1248
1249                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1250                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1251         }
1252         return result;
1253 }
1254
1255 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1256                 int32_t eng_clock, int32_t mem_clock,
1257                 SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1258 {
1259         uint32_t dram_timing;
1260         uint32_t dram_timing2;
1261         uint32_t burst_time;
1262         uint32_t rfsh_rate;
1263         uint32_t misc3;
1264
1265         int result;
1266
1267         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1268                         eng_clock, mem_clock);
1269         PP_ASSERT_WITH_CODE(result == 0,
1270                         "Error calling VBIOS to set DRAM_TIMING.",
1271                         return result);
1272
1273         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1274         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1275         burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1276         rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1277         misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1278
1279         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1280         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1281         arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1282         arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1283         arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1284
1285         return 0;
1286 }
1287
1288 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1289 {
1290         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1291         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1292         struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1293         uint32_t i, j;
1294         int result = 0;
1295
1296         memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1297
1298         for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1299                 for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1300                         result = vegam_populate_memory_timing_parameters(hwmgr,
1301                                         hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1302                                         hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1303                                         &arb_regs.entries[i][j]);
1304                         if (result)
1305                                 return result;
1306                 }
1307         }
1308
1309         result = smu7_copy_bytes_to_smc(
1310                         hwmgr,
1311                         smu_data->smu7_data.arb_table_start,
1312                         (uint8_t *)&arb_regs,
1313                         sizeof(SMU75_Discrete_MCArbDramTimingTable),
1314                         SMC_RAM_END);
1315         return result;
1316 }
1317
1318 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1319                 struct SMU75_Discrete_DpmTable *table)
1320 {
1321         int result = -EINVAL;
1322         uint8_t count;
1323         struct pp_atomctrl_clock_dividers_vi dividers;
1324         struct phm_ppt_v1_information *table_info =
1325                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1326         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1327                         table_info->mm_dep_table;
1328         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1329         uint32_t vddci;
1330
1331         table->UvdLevelCount = (uint8_t)(mm_table->count);
1332         table->UvdBootLevel = 0;
1333
1334         for (count = 0; count < table->UvdLevelCount; count++) {
1335                 table->UvdLevel[count].MinVoltage = 0;
1336                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1337                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1338                 table->UvdLevel[count].MinVoltage |=
1339                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1340
1341                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1342                         vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1343                                                 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1344                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1345                         vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1346                 else
1347                         vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1348
1349                 table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1350                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1351
1352                 /* retrieve divider value for VBIOS */
1353                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1354                                 table->UvdLevel[count].VclkFrequency, &dividers);
1355                 PP_ASSERT_WITH_CODE((0 == result),
1356                                 "can not find divide id for Vclk clock", return result);
1357
1358                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1359
1360                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1361                                 table->UvdLevel[count].DclkFrequency, &dividers);
1362                 PP_ASSERT_WITH_CODE((0 == result),
1363                                 "can not find divide id for Dclk clock", return result);
1364
1365                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1366
1367                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1368                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1369                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1370         }
1371
1372         return result;
1373 }
1374
1375 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1376                 struct SMU75_Discrete_DpmTable *table)
1377 {
1378         int result = 0;
1379         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1380
1381         table->GraphicsBootLevel = 0;
1382         table->MemoryBootLevel = 0;
1383
1384         /* find boot level from dpm table */
1385         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1386                         data->vbios_boot_state.sclk_bootup_value,
1387                         (uint32_t *)&(table->GraphicsBootLevel));
1388
1389         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1390                         data->vbios_boot_state.mclk_bootup_value,
1391                         (uint32_t *)&(table->MemoryBootLevel));
1392
1393         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1394                         VOLTAGE_SCALE;
1395         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1396                         VOLTAGE_SCALE;
1397         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1398                         VOLTAGE_SCALE;
1399
1400         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1401         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1402         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1403
1404         return 0;
1405 }
1406
1407 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1408 {
1409         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1410         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1411         struct phm_ppt_v1_information *table_info =
1412                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1413         uint8_t count, level;
1414
1415         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1416
1417         for (level = 0; level < count; level++) {
1418                 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1419                                 hw_data->vbios_boot_state.sclk_bootup_value) {
1420                         smu_data->smc_state_table.GraphicsBootLevel = level;
1421                         break;
1422                 }
1423         }
1424
1425         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1426         for (level = 0; level < count; level++) {
1427                 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1428                                 hw_data->vbios_boot_state.mclk_bootup_value) {
1429                         smu_data->smc_state_table.MemoryBootLevel = level;
1430                         break;
1431                 }
1432         }
1433
1434         return 0;
1435 }
1436
1437 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1438 {
1439         uint32_t tmp;
1440         tmp = raw_setting * 4096 / 100;
1441         return (uint16_t)tmp;
1442 }
1443
1444 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1445 {
1446         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1447
1448         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1449         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1450         struct phm_ppt_v1_information *table_info =
1451                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1452         struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1453         struct pp_advance_fan_control_parameters *fan_table =
1454                         &hwmgr->thermal_controller.advanceFanControlParameters;
1455         int i, j, k;
1456         const uint16_t *pdef1;
1457         const uint16_t *pdef2;
1458
1459         table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1460         table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1461
1462         PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1463                                 "Target Operating Temp is out of Range!",
1464                                 );
1465
1466         table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1467                         cac_dtp_table->usTargetOperatingTemp * 256);
1468         table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1469                         cac_dtp_table->usTemperatureLimitHotspot * 256);
1470         table->FanGainEdge = PP_HOST_TO_SMC_US(
1471                         scale_fan_gain_settings(fan_table->usFanGainEdge));
1472         table->FanGainHotspot = PP_HOST_TO_SMC_US(
1473                         scale_fan_gain_settings(fan_table->usFanGainHotspot));
1474
1475         pdef1 = defaults->BAPMTI_R;
1476         pdef2 = defaults->BAPMTI_RC;
1477
1478         for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1479                 for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1480                         for (k = 0; k < SMU75_DTE_SINKS; k++) {
1481                                 table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1482                                 table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1483                                 pdef1++;
1484                                 pdef2++;
1485                         }
1486                 }
1487         }
1488
1489         return 0;
1490 }
1491
1492 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1493 {
1494         uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1495         struct vegam_smumgr *smu_data =
1496                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1497
1498         uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0;
1499         struct phm_ppt_v1_information *table_info =
1500                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1501         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1502                         table_info->vdd_dep_on_sclk;
1503         uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1504
1505         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1506
1507         atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1508                         mask, &efuse);
1509
1510         min = 1200;
1511         max = 2500;
1512
1513         ro = efuse * (max - min) / 255 + min;
1514
1515         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1516         for (i = 0; i < sclk_table->count; i++) {
1517                 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1518                                 sclk_table->entries[i].cks_enable << i;
1519                 volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1520                                 136418 - (ro - 70) * 1000000) /
1521                                 (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1522                 volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1523                                 3232 - (ro - 65) * 1000000) /
1524                                 (2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1525
1526                 if (volt_without_cks >= volt_with_cks)
1527                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1528                                         sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1529
1530                 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1531         }
1532
1533         smu_data->smc_state_table.LdoRefSel =
1534                         (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1535                         table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1536         /* Populate CKS Lookup Table */
1537         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1538                 stretch_amount2 = 0;
1539         else if (stretch_amount == 3 || stretch_amount == 4)
1540                 stretch_amount2 = 1;
1541         else {
1542                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1543                                 PHM_PlatformCaps_ClockStretcher);
1544                 PP_ASSERT_WITH_CODE(false,
1545                                 "Stretch Amount in PPTable not supported\n",
1546                                 return -EINVAL);
1547         }
1548
1549         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1550         value &= 0xFFFFFFFE;
1551         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1552
1553         return 0;
1554 }
1555
1556 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1557 {
1558         uint32_t efuse;
1559
1560         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1561                         ixSMU_EFUSE_0 + (49 * 4));
1562         efuse &= 0x00000001;
1563
1564         if (efuse)
1565                 return true;
1566
1567         return false;
1568 }
1569
1570 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1571 {
1572         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1573         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1574
1575         SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1576         int result = 0;
1577         struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1578         AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1579         AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1580         uint32_t tmp, i;
1581
1582         struct phm_ppt_v1_information *table_info =
1583                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1584         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1585                         table_info->vdd_dep_on_sclk;
1586
1587         if (!hwmgr->avfs_supported)
1588                 return 0;
1589
1590         result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1591
1592         if (0 == result) {
1593                 table->BTCGB_VDROOP_TABLE[0].a0 =
1594                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1595                 table->BTCGB_VDROOP_TABLE[0].a1 =
1596                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1597                 table->BTCGB_VDROOP_TABLE[0].a2 =
1598                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1599                 table->BTCGB_VDROOP_TABLE[1].a0 =
1600                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1601                 table->BTCGB_VDROOP_TABLE[1].a1 =
1602                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1603                 table->BTCGB_VDROOP_TABLE[1].a2 =
1604                                 PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1605                 table->AVFSGB_FUSE_TABLE[0].m1 =
1606                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1607                 table->AVFSGB_FUSE_TABLE[0].m2 =
1608                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1609                 table->AVFSGB_FUSE_TABLE[0].b =
1610                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1611                 table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1612                 table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1613                 table->AVFSGB_FUSE_TABLE[1].m1 =
1614                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1615                 table->AVFSGB_FUSE_TABLE[1].m2 =
1616                                 PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1617                 table->AVFSGB_FUSE_TABLE[1].b =
1618                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1619                 table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1620                 table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1621                 table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1622                 AVFS_meanNsigma.Aconstant[0] =
1623                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1624                 AVFS_meanNsigma.Aconstant[1] =
1625                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1626                 AVFS_meanNsigma.Aconstant[2] =
1627                                 PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1628                 AVFS_meanNsigma.DC_tol_sigma =
1629                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1630                 AVFS_meanNsigma.Platform_mean =
1631                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1632                 AVFS_meanNsigma.PSM_Age_CompFactor =
1633                                 PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1634                 AVFS_meanNsigma.Platform_sigma =
1635                                 PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1636
1637                 for (i = 0; i < sclk_table->count; i++) {
1638                         AVFS_meanNsigma.Static_Voltage_Offset[i] =
1639                                         (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1640                         AVFS_SclkOffset.Sclk_Offset[i] =
1641                                         PP_HOST_TO_SMC_US((uint16_t)
1642                                                         (sclk_table->entries[i].sclk_offset) / 100);
1643                 }
1644
1645                 result = smu7_read_smc_sram_dword(hwmgr,
1646                                 SMU7_FIRMWARE_HEADER_LOCATION +
1647                                 offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1648                                 &tmp, SMC_RAM_END);
1649                 smu7_copy_bytes_to_smc(hwmgr,
1650                                         tmp,
1651                                         (uint8_t *)&AVFS_meanNsigma,
1652                                         sizeof(AVFS_meanNsigma_t),
1653                                         SMC_RAM_END);
1654
1655                 result = smu7_read_smc_sram_dword(hwmgr,
1656                                 SMU7_FIRMWARE_HEADER_LOCATION +
1657                                 offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1658                                 &tmp, SMC_RAM_END);
1659                 smu7_copy_bytes_to_smc(hwmgr,
1660                                         tmp,
1661                                         (uint8_t *)&AVFS_SclkOffset,
1662                                         sizeof(AVFS_Sclk_Offset_t),
1663                                         SMC_RAM_END);
1664
1665                 data->avfs_vdroop_override_setting =
1666                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1667                                 (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1668                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1669                                 (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1670                 data->apply_avfs_cks_off_voltage =
1671                                 (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1672         }
1673         return result;
1674 }
1675
1676 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1677                 struct SMU75_Discrete_DpmTable *table)
1678 {
1679         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1680         struct vegam_smumgr *smu_data =
1681                         (struct vegam_smumgr *)(hwmgr->smu_backend);
1682         uint16_t config;
1683
1684         config = VR_MERGED_WITH_VDDC;
1685         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1686
1687         /* Set Vddc Voltage Controller */
1688         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1689                 config = VR_SVI2_PLANE_1;
1690                 table->VRConfig |= config;
1691         } else {
1692                 PP_ASSERT_WITH_CODE(false,
1693                                 "VDDC should be on SVI2 control in merged mode!",
1694                                 );
1695         }
1696         /* Set Vddci Voltage Controller */
1697         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1698                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1699                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1700         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1701                 config = VR_SMIO_PATTERN_1;
1702                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1703         } else {
1704                 config = VR_STATIC_VOLTAGE;
1705                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1706         }
1707         /* Set Mvdd Voltage Controller */
1708         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1709                 if (config != VR_SVI2_PLANE_2) {
1710                         config = VR_SVI2_PLANE_2;
1711                         table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1712                         cgs_write_ind_register(hwmgr->device,
1713                                         CGS_IND_REG__SMC,
1714                                         smu_data->smu7_data.soft_regs_start +
1715                                         offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1716                                         0x1);
1717                 } else {
1718                         PP_ASSERT_WITH_CODE(false,
1719                                         "SVI2 Plane 2 is already taken, set MVDD as Static",);
1720                         config = VR_STATIC_VOLTAGE;
1721                         table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1722                 }
1723         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1724                 config = VR_SMIO_PATTERN_2;
1725                 table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1726                 cgs_write_ind_register(hwmgr->device,
1727                                 CGS_IND_REG__SMC,
1728                                 smu_data->smu7_data.soft_regs_start +
1729                                 offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1730                                 0x1);
1731         } else {
1732                 config = VR_STATIC_VOLTAGE;
1733                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1734         }
1735
1736         return 0;
1737 }
1738
1739 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1740 {
1741         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1742         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1743
1744         smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1745         smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1746         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1747         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1748
1749         return 0;
1750 }
1751
1752 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1753 {
1754         uint16_t tdc_limit;
1755         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1756         struct phm_ppt_v1_information *table_info =
1757                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1758         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1759
1760         tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1761         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1762                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1763         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1764                         defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1765         smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1766
1767         return 0;
1768 }
1769
1770 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1771 {
1772         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1773         const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1774         uint32_t temp;
1775
1776         if (smu7_read_smc_sram_dword(hwmgr,
1777                         fuse_table_offset +
1778                         offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1779                         (uint32_t *)&temp, SMC_RAM_END))
1780                 PP_ASSERT_WITH_CODE(false,
1781                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1782                                 return -EINVAL);
1783         else {
1784                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1785                 smu_data->power_tune_table.LPMLTemperatureMin =
1786                                 (uint8_t)((temp >> 16) & 0xff);
1787                 smu_data->power_tune_table.LPMLTemperatureMax =
1788                                 (uint8_t)((temp >> 8) & 0xff);
1789                 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1790         }
1791         return 0;
1792 }
1793
1794 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1795 {
1796         int i;
1797         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1798
1799         /* Currently not used. Set all to zero. */
1800         for (i = 0; i < 16; i++)
1801                 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1802
1803         return 0;
1804 }
1805
1806 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1807 {
1808         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1809
1810 /* TO DO move to hwmgr */
1811         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1812                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1813                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1814                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1815
1816         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1817                                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1818         return 0;
1819 }
1820
1821 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1822 {
1823         int i;
1824         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1825
1826         /* Currently not used. Set all to zero. */
1827         for (i = 0; i < 16; i++)
1828                 smu_data->power_tune_table.GnbLPML[i] = 0;
1829
1830         return 0;
1831 }
1832
1833 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1834 {
1835         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1836         struct phm_ppt_v1_information *table_info =
1837                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1838         uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1839         uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1840         struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1841
1842         hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1843         lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1844
1845         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1846                         CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1847         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1848                         CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1849
1850         return 0;
1851 }
1852
1853 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1854 {
1855         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1856         uint32_t pm_fuse_table_offset;
1857
1858         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1859                         PHM_PlatformCaps_PowerContainment)) {
1860                 if (smu7_read_smc_sram_dword(hwmgr,
1861                                 SMU7_FIRMWARE_HEADER_LOCATION +
1862                                 offsetof(SMU75_Firmware_Header, PmFuseTable),
1863                                 &pm_fuse_table_offset, SMC_RAM_END))
1864                         PP_ASSERT_WITH_CODE(false,
1865                                         "Attempt to get pm_fuse_table_offset Failed!",
1866                                         return -EINVAL);
1867
1868                 if (vegam_populate_svi_load_line(hwmgr))
1869                         PP_ASSERT_WITH_CODE(false,
1870                                         "Attempt to populate SviLoadLine Failed!",
1871                                         return -EINVAL);
1872
1873                 if (vegam_populate_tdc_limit(hwmgr))
1874                         PP_ASSERT_WITH_CODE(false,
1875                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
1876
1877                 if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1878                         PP_ASSERT_WITH_CODE(false,
1879                                         "Attempt to populate TdcWaterfallCtl, "
1880                                         "LPMLTemperature Min and Max Failed!",
1881                                         return -EINVAL);
1882
1883                 if (0 != vegam_populate_temperature_scaler(hwmgr))
1884                         PP_ASSERT_WITH_CODE(false,
1885                                         "Attempt to populate LPMLTemperatureScaler Failed!",
1886                                         return -EINVAL);
1887
1888                 if (vegam_populate_fuzzy_fan(hwmgr))
1889                         PP_ASSERT_WITH_CODE(false,
1890                                         "Attempt to populate Fuzzy Fan Control parameters Failed!",
1891                                         return -EINVAL);
1892
1893                 if (vegam_populate_gnb_lpml(hwmgr))
1894                         PP_ASSERT_WITH_CODE(false,
1895                                         "Attempt to populate GnbLPML Failed!",
1896                                         return -EINVAL);
1897
1898                 if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1899                         PP_ASSERT_WITH_CODE(false,
1900                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1901                                         "Sidd Failed!", return -EINVAL);
1902
1903                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1904                                 (uint8_t *)&smu_data->power_tune_table,
1905                                 (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1906                                 SMC_RAM_END))
1907                         PP_ASSERT_WITH_CODE(false,
1908                                         "Attempt to download PmFuseTable Failed!",
1909                                         return -EINVAL);
1910         }
1911         return 0;
1912 }
1913
1914 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1915 {
1916         struct amdgpu_device *adev = hwmgr->adev;
1917
1918         smum_send_msg_to_smc_with_parameter(hwmgr,
1919                                             PPSMC_MSG_EnableModeSwitchRLCNotification,
1920                                             adev->gfx.cu_info.number);
1921
1922         return 0;
1923 }
1924
1925 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1926 {
1927         int result;
1928         struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1929         struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1930
1931         struct phm_ppt_v1_information *table_info =
1932                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1933         struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1934         uint8_t i;
1935         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1936         struct phm_ppt_v1_gpio_table *gpio_table =
1937                         (struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1938         pp_atomctrl_clock_dividers_vi dividers;
1939
1940         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1941                         PHM_PlatformCaps_AutomaticDCTransition);
1942
1943         vegam_initialize_power_tune_defaults(hwmgr);
1944
1945         if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1946                 vegam_populate_smc_voltage_tables(hwmgr, table);
1947
1948         table->SystemFlags = 0;
1949         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1950                         PHM_PlatformCaps_AutomaticDCTransition))
1951                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1952
1953         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1954                         PHM_PlatformCaps_StepVddc))
1955                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1956
1957         if (hw_data->is_memory_gddr5)
1958                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1959
1960         if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1961                 result = vegam_populate_ulv_state(hwmgr, table);
1962                 PP_ASSERT_WITH_CODE(!result,
1963                                 "Failed to initialize ULV state!", return result);
1964                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1965                                 ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1966         }
1967
1968         result = vegam_populate_smc_link_level(hwmgr, table);
1969         PP_ASSERT_WITH_CODE(!result,
1970                         "Failed to initialize Link Level!", return result);
1971
1972         result = vegam_populate_all_graphic_levels(hwmgr);
1973         PP_ASSERT_WITH_CODE(!result,
1974                         "Failed to initialize Graphics Level!", return result);
1975
1976         result = vegam_populate_all_memory_levels(hwmgr);
1977         PP_ASSERT_WITH_CODE(!result,
1978                         "Failed to initialize Memory Level!", return result);
1979
1980         result = vegam_populate_smc_acpi_level(hwmgr, table);
1981         PP_ASSERT_WITH_CODE(!result,
1982                         "Failed to initialize ACPI Level!", return result);
1983
1984         result = vegam_populate_smc_vce_level(hwmgr, table);
1985         PP_ASSERT_WITH_CODE(!result,
1986                         "Failed to initialize VCE Level!", return result);
1987
1988         /* Since only the initial state is completely set up at this point
1989          * (the other states are just copies of the boot state) we only
1990          * need to populate the  ARB settings for the initial state.
1991          */
1992         result = vegam_program_memory_timing_parameters(hwmgr);
1993         PP_ASSERT_WITH_CODE(!result,
1994                         "Failed to Write ARB settings for the initial state.", return result);
1995
1996         result = vegam_populate_smc_uvd_level(hwmgr, table);
1997         PP_ASSERT_WITH_CODE(!result,
1998                         "Failed to initialize UVD Level!", return result);
1999
2000         result = vegam_populate_smc_boot_level(hwmgr, table);
2001         PP_ASSERT_WITH_CODE(!result,
2002                         "Failed to initialize Boot Level!", return result);
2003
2004         result = vegam_populate_smc_initial_state(hwmgr);
2005         PP_ASSERT_WITH_CODE(!result,
2006                         "Failed to initialize Boot State!", return result);
2007
2008         result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2009         PP_ASSERT_WITH_CODE(!result,
2010                         "Failed to populate BAPM Parameters!", return result);
2011
2012         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2013                         PHM_PlatformCaps_ClockStretcher)) {
2014                 result = vegam_populate_clock_stretcher_data_table(hwmgr);
2015                 PP_ASSERT_WITH_CODE(!result,
2016                                 "Failed to populate Clock Stretcher Data Table!",
2017                                 return result);
2018         }
2019
2020         result = vegam_populate_avfs_parameters(hwmgr);
2021         PP_ASSERT_WITH_CODE(!result,
2022                         "Failed to populate AVFS Parameters!", return result;);
2023
2024         table->CurrSclkPllRange = 0xff;
2025         table->GraphicsVoltageChangeEnable  = 1;
2026         table->GraphicsThermThrottleEnable  = 1;
2027         table->GraphicsInterval = 1;
2028         table->VoltageInterval  = 1;
2029         table->ThermalInterval  = 1;
2030         table->TemperatureLimitHigh =
2031                         table_info->cac_dtp_table->usTargetOperatingTemp *
2032                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2033         table->TemperatureLimitLow  =
2034                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2035                         SMU7_Q88_FORMAT_CONVERSION_UNIT;
2036         table->MemoryVoltageChangeEnable = 1;
2037         table->MemoryInterval = 1;
2038         table->VoltageResponseTime = 0;
2039         table->PhaseResponseTime = 0;
2040         table->MemoryThermThrottleEnable = 1;
2041
2042         PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2043                         "There must be 1 or more PCIE levels defined in PPTable.",
2044                         return -EINVAL);
2045         table->PCIeBootLinkLevel =
2046                         hw_data->dpm_table.pcie_speed_table.count;
2047         table->PCIeGenInterval = 1;
2048         table->VRConfig = 0;
2049
2050         result = vegam_populate_vr_config(hwmgr, table);
2051         PP_ASSERT_WITH_CODE(!result,
2052                         "Failed to populate VRConfig setting!", return result);
2053
2054         table->ThermGpio = 17;
2055         table->SclkStepSize = 0x4000;
2056
2057         if (atomctrl_get_pp_assign_pin(hwmgr,
2058                         VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2059                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2060                 if (gpio_table)
2061                         table->VRHotLevel =
2062                                         table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2063         } else {
2064                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2065                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2066                                 PHM_PlatformCaps_RegulatorHot);
2067         }
2068
2069         if (atomctrl_get_pp_assign_pin(hwmgr,
2070                         PP_AC_DC_SWITCH_GPIO_PINID,     &gpio_pin)) {
2071                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2072                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2073                                 PHM_PlatformCaps_AutomaticDCTransition) &&
2074                                 !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2075                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2076                                         PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2077         } else {
2078                 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2079                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2080                                 PHM_PlatformCaps_AutomaticDCTransition);
2081         }
2082
2083         /* Thermal Output GPIO */
2084         if (atomctrl_get_pp_assign_pin(hwmgr,
2085                         THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2086                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2087
2088                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2089                  * since VBIOS will program this register to set 'inactive state',
2090                  * driver can then determine 'active state' from this and
2091                  * program SMU with correct polarity
2092                  */
2093                 table->ThermOutPolarity =
2094                                 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2095                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2096                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2097
2098                 /* if required, combine VRHot/PCC with thermal out GPIO */
2099                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2100                                 PHM_PlatformCaps_RegulatorHot) &&
2101                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2102                                 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2103                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2104         } else {
2105                 table->ThermOutGpio = 17;
2106                 table->ThermOutPolarity = 1;
2107                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2108         }
2109
2110         /* Populate BIF_SCLK levels into SMC DPM table */
2111         for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2112                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2113                                 smu_data->bif_sclk_table[i], &dividers);
2114                 PP_ASSERT_WITH_CODE(!result,
2115                                 "Can not find DFS divide id for Sclk",
2116                                 return result);
2117
2118                 if (i == 0)
2119                         table->Ulv.BifSclkDfs =
2120                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2121                 else
2122                         table->LinkLevel[i - 1].BifSclkDfs =
2123                                         PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2124         }
2125
2126         for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2127                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2128
2129         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2130         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2131         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2132         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2133         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2134         CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2135         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2136         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2137         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2138         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2139
2140         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2141         result = smu7_copy_bytes_to_smc(hwmgr,
2142                         smu_data->smu7_data.dpm_table_start +
2143                         offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2144                         (uint8_t *)&(table->SystemFlags),
2145                         sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2146                         SMC_RAM_END);
2147         PP_ASSERT_WITH_CODE(!result,
2148                         "Failed to upload dpm data to SMC memory!", return result);
2149
2150         result = vegam_populate_pm_fuses(hwmgr);
2151         PP_ASSERT_WITH_CODE(!result,
2152                         "Failed to  populate PM fuses to SMC memory!", return result);
2153
2154         result = vegam_enable_reconfig_cus(hwmgr);
2155         PP_ASSERT_WITH_CODE(!result,
2156                         "Failed to enable reconfigurable CUs!", return result);
2157
2158         return 0;
2159 }
2160
2161 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2162 {
2163         switch (type) {
2164         case SMU_SoftRegisters:
2165                 switch (member) {
2166                 case HandshakeDisables:
2167                         return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2168                 case VoltageChangeTimeout:
2169                         return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2170                 case AverageGraphicsActivity:
2171                         return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2172                 case PreVBlankGap:
2173                         return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2174                 case VBlankTimeout:
2175                         return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2176                 case UcodeLoadStatus:
2177                         return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2178                 case DRAM_LOG_ADDR_H:
2179                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2180                 case DRAM_LOG_ADDR_L:
2181                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2182                 case DRAM_LOG_PHY_ADDR_H:
2183                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2184                 case DRAM_LOG_PHY_ADDR_L:
2185                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2186                 case DRAM_LOG_BUFF_SIZE:
2187                         return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2188                 }
2189                 break;
2190         case SMU_Discrete_DpmTable:
2191                 switch (member) {
2192                 case UvdBootLevel:
2193                         return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2194                 case VceBootLevel:
2195                         return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2196                 case LowSclkInterruptThreshold:
2197                         return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2198                 }
2199                 break;
2200         }
2201         pr_warn("can't get the offset of type %x member %x\n", type, member);
2202         return 0;
2203 }
2204
2205 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2206 {
2207         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2208
2209         if (data->need_update_smu7_dpm_table &
2210                 (DPMTABLE_OD_UPDATE_SCLK +
2211                 DPMTABLE_UPDATE_SCLK +
2212                 DPMTABLE_UPDATE_MCLK))
2213                 return vegam_program_memory_timing_parameters(hwmgr);
2214
2215         return 0;
2216 }
2217
2218 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2219 {
2220         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2221         struct vegam_smumgr *smu_data =
2222                         (struct vegam_smumgr *)(hwmgr->smu_backend);
2223         int result = 0;
2224         uint32_t low_sclk_interrupt_threshold = 0;
2225
2226         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2227                         PHM_PlatformCaps_SclkThrottleLowNotification)
2228             && (data->low_sclk_interrupt_threshold != 0)) {
2229                 low_sclk_interrupt_threshold =
2230                                 data->low_sclk_interrupt_threshold;
2231
2232                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2233
2234                 result = smu7_copy_bytes_to_smc(
2235                                 hwmgr,
2236                                 smu_data->smu7_data.dpm_table_start +
2237                                 offsetof(SMU75_Discrete_DpmTable,
2238                                         LowSclkInterruptThreshold),
2239                                 (uint8_t *)&low_sclk_interrupt_threshold,
2240                                 sizeof(uint32_t),
2241                                 SMC_RAM_END);
2242         }
2243         PP_ASSERT_WITH_CODE((result == 0),
2244                         "Failed to update SCLK threshold!", return result);
2245
2246         result = vegam_program_mem_timing_parameters(hwmgr);
2247         PP_ASSERT_WITH_CODE((result == 0),
2248                         "Failed to program memory timing parameters!",
2249                         );
2250
2251         return result;
2252 }
2253
2254 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2255 {
2256         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2257         int ret;
2258
2259         if (!hwmgr->avfs_supported)
2260                 return 0;
2261
2262         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2263         if (!ret) {
2264                 if (data->apply_avfs_cks_off_voltage)
2265                         ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2266         }
2267
2268         return ret;
2269 }
2270
2271 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2272 {
2273         PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2274                         "VBIOS fan info is not correct!",
2275                         );
2276         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2277                         PHM_PlatformCaps_MicrocodeFanControl);
2278         return 0;
2279 }
2280
2281 const struct pp_smumgr_func vegam_smu_funcs = {
2282         .smu_init = vegam_smu_init,
2283         .smu_fini = smu7_smu_fini,
2284         .start_smu = vegam_start_smu,
2285         .check_fw_load_finish = smu7_check_fw_load_finish,
2286         .request_smu_load_fw = smu7_reload_firmware,
2287         .request_smu_load_specific_fw = NULL,
2288         .send_msg_to_smc = smu7_send_msg_to_smc,
2289         .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2290         .process_firmware_header = vegam_process_firmware_header,
2291         .is_dpm_running = vegam_is_dpm_running,
2292         .get_mac_definition = vegam_get_mac_definition,
2293         .update_smc_table = vegam_update_smc_table,
2294         .init_smc_table = vegam_init_smc_table,
2295         .get_offsetof = vegam_get_offsetof,
2296         .populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2297         .populate_all_memory_levels = vegam_populate_all_memory_levels,
2298         .update_sclk_threshold = vegam_update_sclk_threshold,
2299         .is_hw_avfs_present = vegam_is_hw_avfs_present,
2300         .thermal_avfs_enable = vegam_thermal_avfs_enable,
2301         .thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2302 };