GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53                                 addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244         return readq(addr);
245 }
246
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249         mmio_hw_access_pre(dev_priv);
250         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251         mmio_hw_access_post(dev_priv);
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255                 unsigned long index, u64 pte)
256 {
257         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259         writeq(pte, addr);
260 }
261
262 static inline int gtt_get_entry64(void *pt,
263                 struct intel_gvt_gtt_entry *e,
264                 unsigned long index, bool hypervisor_access, unsigned long gpa,
265                 struct intel_vgpu *vgpu)
266 {
267         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268         int ret;
269
270         if (WARN_ON(info->gtt_entry_size != 8))
271                 return -EINVAL;
272
273         if (hypervisor_access) {
274                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275                                 (index << info->gtt_entry_size_shift),
276                                 &e->val64, 8);
277                 if (WARN_ON(ret))
278                         return ret;
279         } else if (!pt) {
280                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
281         } else {
282                 e->val64 = *((u64 *)pt + index);
283         }
284         return 0;
285 }
286
287 static inline int gtt_set_entry64(void *pt,
288                 struct intel_gvt_gtt_entry *e,
289                 unsigned long index, bool hypervisor_access, unsigned long gpa,
290                 struct intel_vgpu *vgpu)
291 {
292         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
293         int ret;
294
295         if (WARN_ON(info->gtt_entry_size != 8))
296                 return -EINVAL;
297
298         if (hypervisor_access) {
299                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
300                                 (index << info->gtt_entry_size_shift),
301                                 &e->val64, 8);
302                 if (WARN_ON(ret))
303                         return ret;
304         } else if (!pt) {
305                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
306         } else {
307                 *((u64 *)pt + index) = e->val64;
308         }
309         return 0;
310 }
311
312 #define GTT_HAW 46
313
314 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
315 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
316 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
317
318 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
319 {
320         unsigned long pfn;
321
322         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
323                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
324         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
325                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
326         else
327                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
328         return pfn;
329 }
330
331 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
332 {
333         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
334                 e->val64 &= ~ADDR_1G_MASK;
335                 pfn &= (ADDR_1G_MASK >> 12);
336         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
337                 e->val64 &= ~ADDR_2M_MASK;
338                 pfn &= (ADDR_2M_MASK >> 12);
339         } else {
340                 e->val64 &= ~ADDR_4K_MASK;
341                 pfn &= (ADDR_4K_MASK >> 12);
342         }
343
344         e->val64 |= (pfn << 12);
345 }
346
347 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
348 {
349         /* Entry doesn't have PSE bit. */
350         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
351                 return false;
352
353         e->type = get_entry_type(e->type);
354         if (!(e->val64 & (1 << 7)))
355                 return false;
356
357         e->type = get_pse_type(e->type);
358         return true;
359 }
360
361 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
362 {
363         /*
364          * i915 writes PDP root pointer registers without present bit,
365          * it also works, so we need to treat root pointer entry
366          * specifically.
367          */
368         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
369                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
370                 return (e->val64 != 0);
371         else
372                 return (e->val64 & (1 << 0));
373 }
374
375 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
376 {
377         e->val64 &= ~(1 << 0);
378 }
379
380 /*
381  * Per-platform GMA routines.
382  */
383 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
384 {
385         unsigned long x = (gma >> GTT_PAGE_SHIFT);
386
387         trace_gma_index(__func__, gma, x);
388         return x;
389 }
390
391 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
392 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
393 { \
394         unsigned long x = (exp); \
395         trace_gma_index(__func__, gma, x); \
396         return x; \
397 }
398
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
402 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
403 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
404
405 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
406         .get_entry = gtt_get_entry64,
407         .set_entry = gtt_set_entry64,
408         .clear_present = gtt_entry_clear_present,
409         .test_present = gen8_gtt_test_present,
410         .test_pse = gen8_gtt_test_pse,
411         .get_pfn = gen8_gtt_get_pfn,
412         .set_pfn = gen8_gtt_set_pfn,
413 };
414
415 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
416         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
417         .gma_to_pte_index = gen8_gma_to_pte_index,
418         .gma_to_pde_index = gen8_gma_to_pde_index,
419         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
420         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
421         .gma_to_pml4_index = gen8_gma_to_pml4_index,
422 };
423
424 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
425                 struct intel_gvt_gtt_entry *m)
426 {
427         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
428         unsigned long gfn, mfn;
429
430         *m = *p;
431
432         if (!ops->test_present(p))
433                 return 0;
434
435         gfn = ops->get_pfn(p);
436
437         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
438         if (mfn == INTEL_GVT_INVALID_ADDR) {
439                 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
440                 return -ENXIO;
441         }
442
443         ops->set_pfn(m, mfn);
444         return 0;
445 }
446
447 /*
448  * MM helpers.
449  */
450 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
451                 void *page_table, struct intel_gvt_gtt_entry *e,
452                 unsigned long index)
453 {
454         struct intel_gvt *gvt = mm->vgpu->gvt;
455         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
456         int ret;
457
458         e->type = mm->page_table_entry_type;
459
460         ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
461         if (ret)
462                 return ret;
463
464         ops->test_pse(e);
465         return 0;
466 }
467
468 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
469                 void *page_table, struct intel_gvt_gtt_entry *e,
470                 unsigned long index)
471 {
472         struct intel_gvt *gvt = mm->vgpu->gvt;
473         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
474
475         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
476 }
477
478 /*
479  * PPGTT shadow page table helpers.
480  */
481 static inline int ppgtt_spt_get_entry(
482                 struct intel_vgpu_ppgtt_spt *spt,
483                 void *page_table, int type,
484                 struct intel_gvt_gtt_entry *e, unsigned long index,
485                 bool guest)
486 {
487         struct intel_gvt *gvt = spt->vgpu->gvt;
488         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
489         int ret;
490
491         e->type = get_entry_type(type);
492
493         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
494                 return -EINVAL;
495
496         ret = ops->get_entry(page_table, e, index, guest,
497                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
498                         spt->vgpu);
499         if (ret)
500                 return ret;
501
502         ops->test_pse(e);
503         return 0;
504 }
505
506 static inline int ppgtt_spt_set_entry(
507                 struct intel_vgpu_ppgtt_spt *spt,
508                 void *page_table, int type,
509                 struct intel_gvt_gtt_entry *e, unsigned long index,
510                 bool guest)
511 {
512         struct intel_gvt *gvt = spt->vgpu->gvt;
513         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
514
515         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
516                 return -EINVAL;
517
518         return ops->set_entry(page_table, e, index, guest,
519                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
520                         spt->vgpu);
521 }
522
523 #define ppgtt_get_guest_entry(spt, e, index) \
524         ppgtt_spt_get_entry(spt, NULL, \
525                 spt->guest_page_type, e, index, true)
526
527 #define ppgtt_set_guest_entry(spt, e, index) \
528         ppgtt_spt_set_entry(spt, NULL, \
529                 spt->guest_page_type, e, index, true)
530
531 #define ppgtt_get_shadow_entry(spt, e, index) \
532         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
533                 spt->shadow_page.type, e, index, false)
534
535 #define ppgtt_set_shadow_entry(spt, e, index) \
536         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
537                 spt->shadow_page.type, e, index, false)
538
539 /**
540  * intel_vgpu_init_guest_page - init a guest page data structure
541  * @vgpu: a vGPU
542  * @p: a guest page data structure
543  * @gfn: guest memory page frame number
544  * @handler: function will be called when target guest memory page has
545  * been modified.
546  *
547  * This function is called when user wants to track a guest memory page.
548  *
549  * Returns:
550  * Zero on success, negative error code if failed.
551  */
552 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
553                 struct intel_vgpu_guest_page *p,
554                 unsigned long gfn,
555                 int (*handler)(void *, u64, void *, int),
556                 void *data)
557 {
558         INIT_HLIST_NODE(&p->node);
559
560         p->writeprotection = false;
561         p->gfn = gfn;
562         p->handler = handler;
563         p->data = data;
564         p->oos_page = NULL;
565         p->write_cnt = 0;
566
567         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
568         return 0;
569 }
570
571 static int detach_oos_page(struct intel_vgpu *vgpu,
572                 struct intel_vgpu_oos_page *oos_page);
573
574 /**
575  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
576  * structure
577  * @vgpu: a vGPU
578  * @p: a tracked guest page
579  *
580  * This function is called when user tries to stop tracking a guest memory
581  * page.
582  */
583 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
584                 struct intel_vgpu_guest_page *p)
585 {
586         if (!hlist_unhashed(&p->node))
587                 hash_del(&p->node);
588
589         if (p->oos_page)
590                 detach_oos_page(vgpu, p->oos_page);
591
592         if (p->writeprotection)
593                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
594 }
595
596 /**
597  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
598  * @vgpu: a vGPU
599  * @gfn: guest memory page frame number
600  *
601  * This function is called when emulation logic wants to know if a trapped GFN
602  * is a tracked guest page.
603  *
604  * Returns:
605  * Pointer to guest page data structure, NULL if failed.
606  */
607 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
608                 struct intel_vgpu *vgpu, unsigned long gfn)
609 {
610         struct intel_vgpu_guest_page *p;
611
612         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
613                 p, node, gfn) {
614                 if (p->gfn == gfn)
615                         return p;
616         }
617         return NULL;
618 }
619
620 static inline int init_shadow_page(struct intel_vgpu *vgpu,
621                 struct intel_vgpu_shadow_page *p, int type)
622 {
623         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
624         dma_addr_t daddr;
625
626         daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
627         if (dma_mapping_error(kdev, daddr)) {
628                 gvt_vgpu_err("fail to map dma addr\n");
629                 return -EINVAL;
630         }
631
632         p->vaddr = page_address(p->page);
633         p->type = type;
634
635         INIT_HLIST_NODE(&p->node);
636
637         p->mfn = daddr >> GTT_PAGE_SHIFT;
638         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
639         return 0;
640 }
641
642 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
643                 struct intel_vgpu_shadow_page *p)
644 {
645         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
646
647         dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
648                         PCI_DMA_BIDIRECTIONAL);
649
650         if (!hlist_unhashed(&p->node))
651                 hash_del(&p->node);
652 }
653
654 static inline struct intel_vgpu_shadow_page *find_shadow_page(
655                 struct intel_vgpu *vgpu, unsigned long mfn)
656 {
657         struct intel_vgpu_shadow_page *p;
658
659         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
660                 p, node, mfn) {
661                 if (p->mfn == mfn)
662                         return p;
663         }
664         return NULL;
665 }
666
667 #define guest_page_to_ppgtt_spt(ptr) \
668         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
669
670 #define shadow_page_to_ppgtt_spt(ptr) \
671         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
672
673 static void *alloc_spt(gfp_t gfp_mask)
674 {
675         struct intel_vgpu_ppgtt_spt *spt;
676
677         spt = kzalloc(sizeof(*spt), gfp_mask);
678         if (!spt)
679                 return NULL;
680
681         spt->shadow_page.page = alloc_page(gfp_mask);
682         if (!spt->shadow_page.page) {
683                 kfree(spt);
684                 return NULL;
685         }
686         return spt;
687 }
688
689 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
690 {
691         __free_page(spt->shadow_page.page);
692         kfree(spt);
693 }
694
695 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
696 {
697         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
698
699         clean_shadow_page(spt->vgpu, &spt->shadow_page);
700         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
701         list_del_init(&spt->post_shadow_list);
702
703         free_spt(spt);
704 }
705
706 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
707 {
708         struct hlist_node *n;
709         struct intel_vgpu_shadow_page *sp;
710         int i;
711
712         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
713                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
714 }
715
716 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
717                 u64 pa, void *p_data, int bytes);
718
719 static int ppgtt_write_protection_handler(void *gp, u64 pa,
720                 void *p_data, int bytes)
721 {
722         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
723         int ret;
724
725         if (bytes != 4 && bytes != 8)
726                 return -EINVAL;
727
728         if (!gpt->writeprotection)
729                 return -EINVAL;
730
731         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
732                 pa, p_data, bytes);
733         if (ret)
734                 return ret;
735         return ret;
736 }
737
738 static int reclaim_one_mm(struct intel_gvt *gvt);
739
740 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
741                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
742 {
743         struct intel_vgpu_ppgtt_spt *spt = NULL;
744         int ret;
745
746 retry:
747         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
748         if (!spt) {
749                 if (reclaim_one_mm(vgpu->gvt))
750                         goto retry;
751
752                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
753                 return ERR_PTR(-ENOMEM);
754         }
755
756         spt->vgpu = vgpu;
757         spt->guest_page_type = type;
758         atomic_set(&spt->refcount, 1);
759         INIT_LIST_HEAD(&spt->post_shadow_list);
760
761         /*
762          * TODO: guest page type may be different with shadow page type,
763          *       when we support PSE page in future.
764          */
765         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
766         if (ret) {
767                 gvt_vgpu_err("fail to initialize shadow page for spt\n");
768                 goto err;
769         }
770
771         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
772                         gfn, ppgtt_write_protection_handler, NULL);
773         if (ret) {
774                 gvt_vgpu_err("fail to initialize guest page for spt\n");
775                 goto err;
776         }
777
778         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
779         return spt;
780 err:
781         ppgtt_free_shadow_page(spt);
782         return ERR_PTR(ret);
783 }
784
785 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
786                 struct intel_vgpu *vgpu, unsigned long mfn)
787 {
788         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
789
790         if (p)
791                 return shadow_page_to_ppgtt_spt(p);
792
793         gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
794         return NULL;
795 }
796
797 #define pt_entry_size_shift(spt) \
798         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
799
800 #define pt_entries(spt) \
801         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
802
803 #define for_each_present_guest_entry(spt, e, i) \
804         for (i = 0; i < pt_entries(spt); i++) \
805                 if (!ppgtt_get_guest_entry(spt, e, i) && \
806                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
807
808 #define for_each_present_shadow_entry(spt, e, i) \
809         for (i = 0; i < pt_entries(spt); i++) \
810                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
811                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
812
813 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
814 {
815         int v = atomic_read(&spt->refcount);
816
817         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
818
819         atomic_inc(&spt->refcount);
820 }
821
822 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
823
824 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
825                 struct intel_gvt_gtt_entry *e)
826 {
827         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
828         struct intel_vgpu_ppgtt_spt *s;
829         intel_gvt_gtt_type_t cur_pt_type;
830
831         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
832                 return -EINVAL;
833
834         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
835                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
836                 cur_pt_type = get_next_pt_type(e->type) + 1;
837                 if (ops->get_pfn(e) ==
838                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
839                         return 0;
840         }
841         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
842         if (!s) {
843                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
844                                 ops->get_pfn(e));
845                 return -ENXIO;
846         }
847         return ppgtt_invalidate_shadow_page(s);
848 }
849
850 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
851 {
852         struct intel_vgpu *vgpu = spt->vgpu;
853         struct intel_gvt_gtt_entry e;
854         unsigned long index;
855         int ret;
856         int v = atomic_read(&spt->refcount);
857
858         trace_spt_change(spt->vgpu->id, "die", spt,
859                         spt->guest_page.gfn, spt->shadow_page.type);
860
861         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
862
863         if (atomic_dec_return(&spt->refcount) > 0)
864                 return 0;
865
866         if (gtt_type_is_pte_pt(spt->shadow_page.type))
867                 goto release;
868
869         for_each_present_shadow_entry(spt, &e, index) {
870                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
871                         gvt_vgpu_err("GVT doesn't support pse bit for now\n");
872                         return -EINVAL;
873                 }
874                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
875                                 spt->vgpu, &e);
876                 if (ret)
877                         goto fail;
878         }
879 release:
880         trace_spt_change(spt->vgpu->id, "release", spt,
881                         spt->guest_page.gfn, spt->shadow_page.type);
882         ppgtt_free_shadow_page(spt);
883         return 0;
884 fail:
885         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
886                         spt, e.val64, e.type);
887         return ret;
888 }
889
890 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
891
892 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
893                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
894 {
895         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
896         struct intel_vgpu_ppgtt_spt *s = NULL;
897         struct intel_vgpu_guest_page *g;
898         int ret;
899
900         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
901                 ret = -EINVAL;
902                 goto fail;
903         }
904
905         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
906         if (g) {
907                 s = guest_page_to_ppgtt_spt(g);
908                 ppgtt_get_shadow_page(s);
909         } else {
910                 int type = get_next_pt_type(we->type);
911
912                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
913                 if (IS_ERR(s)) {
914                         ret = PTR_ERR(s);
915                         goto fail;
916                 }
917
918                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
919                 if (ret)
920                         goto fail;
921
922                 ret = ppgtt_populate_shadow_page(s);
923                 if (ret)
924                         goto fail;
925
926                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
927                         s->shadow_page.type);
928         }
929         return s;
930 fail:
931         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
932                         s, we->val64, we->type);
933         return ERR_PTR(ret);
934 }
935
936 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
937                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
938 {
939         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
940
941         se->type = ge->type;
942         se->val64 = ge->val64;
943
944         ops->set_pfn(se, s->shadow_page.mfn);
945 }
946
947 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
948 {
949         struct intel_vgpu *vgpu = spt->vgpu;
950         struct intel_vgpu_ppgtt_spt *s;
951         struct intel_gvt_gtt_entry se, ge;
952         unsigned long i;
953         int ret;
954
955         trace_spt_change(spt->vgpu->id, "born", spt,
956                         spt->guest_page.gfn, spt->shadow_page.type);
957
958         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
959                 for_each_present_guest_entry(spt, &ge, i) {
960                         ret = gtt_entry_p2m(vgpu, &ge, &se);
961                         if (ret)
962                                 goto fail;
963                         ppgtt_set_shadow_entry(spt, &se, i);
964                 }
965                 return 0;
966         }
967
968         for_each_present_guest_entry(spt, &ge, i) {
969                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
970                         gvt_vgpu_err("GVT doesn't support pse bit now\n");
971                         ret = -EINVAL;
972                         goto fail;
973                 }
974
975                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
976                 if (IS_ERR(s)) {
977                         ret = PTR_ERR(s);
978                         goto fail;
979                 }
980                 ppgtt_get_shadow_entry(spt, &se, i);
981                 ppgtt_generate_shadow_entry(&se, s, &ge);
982                 ppgtt_set_shadow_entry(spt, &se, i);
983         }
984         return 0;
985 fail:
986         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
987                         spt, ge.val64, ge.type);
988         return ret;
989 }
990
991 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
992                 struct intel_gvt_gtt_entry *se, unsigned long index)
993 {
994         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
995         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
996         struct intel_vgpu *vgpu = spt->vgpu;
997         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
998         int ret;
999
1000         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1001                          index);
1002
1003         if (!ops->test_present(se))
1004                 return 0;
1005
1006         if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1007                 return 0;
1008
1009         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1010                 struct intel_vgpu_ppgtt_spt *s =
1011                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1012                 if (!s) {
1013                         gvt_vgpu_err("fail to find guest page\n");
1014                         ret = -ENXIO;
1015                         goto fail;
1016                 }
1017                 ret = ppgtt_invalidate_shadow_page(s);
1018                 if (ret)
1019                         goto fail;
1020         }
1021         return 0;
1022 fail:
1023         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1024                         spt, se->val64, se->type);
1025         return ret;
1026 }
1027
1028 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1029                 struct intel_gvt_gtt_entry *we, unsigned long index)
1030 {
1031         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1032         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1033         struct intel_vgpu *vgpu = spt->vgpu;
1034         struct intel_gvt_gtt_entry m;
1035         struct intel_vgpu_ppgtt_spt *s;
1036         int ret;
1037
1038         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1039                 we->val64, index);
1040
1041         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1042                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1043                 if (IS_ERR(s)) {
1044                         ret = PTR_ERR(s);
1045                         goto fail;
1046                 }
1047                 ppgtt_get_shadow_entry(spt, &m, index);
1048                 ppgtt_generate_shadow_entry(&m, s, we);
1049                 ppgtt_set_shadow_entry(spt, &m, index);
1050         } else {
1051                 ret = gtt_entry_p2m(vgpu, we, &m);
1052                 if (ret)
1053                         goto fail;
1054                 ppgtt_set_shadow_entry(spt, &m, index);
1055         }
1056         return 0;
1057 fail:
1058         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1059                 spt, we->val64, we->type);
1060         return ret;
1061 }
1062
1063 static int sync_oos_page(struct intel_vgpu *vgpu,
1064                 struct intel_vgpu_oos_page *oos_page)
1065 {
1066         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1067         struct intel_gvt *gvt = vgpu->gvt;
1068         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1069         struct intel_vgpu_ppgtt_spt *spt =
1070                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1071         struct intel_gvt_gtt_entry old, new, m;
1072         int index;
1073         int ret;
1074
1075         trace_oos_change(vgpu->id, "sync", oos_page->id,
1076                         oos_page->guest_page, spt->guest_page_type);
1077
1078         old.type = new.type = get_entry_type(spt->guest_page_type);
1079         old.val64 = new.val64 = 0;
1080
1081         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1082                 index++) {
1083                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1084                 ops->get_entry(NULL, &new, index, true,
1085                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1086
1087                 if (old.val64 == new.val64
1088                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1089                         continue;
1090
1091                 trace_oos_sync(vgpu->id, oos_page->id,
1092                                 oos_page->guest_page, spt->guest_page_type,
1093                                 new.val64, index);
1094
1095                 ret = gtt_entry_p2m(vgpu, &new, &m);
1096                 if (ret)
1097                         return ret;
1098
1099                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1100                 ppgtt_set_shadow_entry(spt, &m, index);
1101         }
1102
1103         oos_page->guest_page->write_cnt = 0;
1104         list_del_init(&spt->post_shadow_list);
1105         return 0;
1106 }
1107
1108 static int detach_oos_page(struct intel_vgpu *vgpu,
1109                 struct intel_vgpu_oos_page *oos_page)
1110 {
1111         struct intel_gvt *gvt = vgpu->gvt;
1112         struct intel_vgpu_ppgtt_spt *spt =
1113                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1114
1115         trace_oos_change(vgpu->id, "detach", oos_page->id,
1116                         oos_page->guest_page, spt->guest_page_type);
1117
1118         oos_page->guest_page->write_cnt = 0;
1119         oos_page->guest_page->oos_page = NULL;
1120         oos_page->guest_page = NULL;
1121
1122         list_del_init(&oos_page->vm_list);
1123         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1124
1125         return 0;
1126 }
1127
1128 static int attach_oos_page(struct intel_vgpu *vgpu,
1129                 struct intel_vgpu_oos_page *oos_page,
1130                 struct intel_vgpu_guest_page *gpt)
1131 {
1132         struct intel_gvt *gvt = vgpu->gvt;
1133         int ret;
1134
1135         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1136                 oos_page->mem, GTT_PAGE_SIZE);
1137         if (ret)
1138                 return ret;
1139
1140         oos_page->guest_page = gpt;
1141         gpt->oos_page = oos_page;
1142
1143         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1144
1145         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1146                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1147         return 0;
1148 }
1149
1150 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1151                 struct intel_vgpu_guest_page *gpt)
1152 {
1153         int ret;
1154
1155         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1156         if (ret)
1157                 return ret;
1158
1159         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1160                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161
1162         list_del_init(&gpt->oos_page->vm_list);
1163         return sync_oos_page(vgpu, gpt->oos_page);
1164 }
1165
1166 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1167                 struct intel_vgpu_guest_page *gpt)
1168 {
1169         struct intel_gvt *gvt = vgpu->gvt;
1170         struct intel_gvt_gtt *gtt = &gvt->gtt;
1171         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1172         int ret;
1173
1174         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1175
1176         if (list_empty(&gtt->oos_page_free_list_head)) {
1177                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1178                         struct intel_vgpu_oos_page, list);
1179                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1180                 if (ret)
1181                         return ret;
1182                 ret = detach_oos_page(vgpu, oos_page);
1183                 if (ret)
1184                         return ret;
1185         } else
1186                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1187                         struct intel_vgpu_oos_page, list);
1188         return attach_oos_page(vgpu, oos_page, gpt);
1189 }
1190
1191 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1192                 struct intel_vgpu_guest_page *gpt)
1193 {
1194         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1195
1196         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1197                 return -EINVAL;
1198
1199         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1200                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201
1202         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1203         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1204 }
1205
1206 /**
1207  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1208  * @vgpu: a vGPU
1209  *
1210  * This function is called before submitting a guest workload to host,
1211  * to sync all the out-of-synced shadow for vGPU
1212  *
1213  * Returns:
1214  * Zero on success, negative error code if failed.
1215  */
1216 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1217 {
1218         struct list_head *pos, *n;
1219         struct intel_vgpu_oos_page *oos_page;
1220         int ret;
1221
1222         if (!enable_out_of_sync)
1223                 return 0;
1224
1225         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1226                 oos_page = container_of(pos,
1227                                 struct intel_vgpu_oos_page, vm_list);
1228                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1229                 if (ret)
1230                         return ret;
1231         }
1232         return 0;
1233 }
1234
1235 /*
1236  * The heart of PPGTT shadow page table.
1237  */
1238 static int ppgtt_handle_guest_write_page_table(
1239                 struct intel_vgpu_guest_page *gpt,
1240                 struct intel_gvt_gtt_entry *we, unsigned long index)
1241 {
1242         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1243         struct intel_vgpu *vgpu = spt->vgpu;
1244         int type = spt->shadow_page.type;
1245         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246         struct intel_gvt_gtt_entry se;
1247
1248         int ret;
1249         int new_present;
1250
1251         new_present = ops->test_present(we);
1252
1253         /*
1254          * Adding the new entry first and then removing the old one, that can
1255          * guarantee the ppgtt table is validated during the window between
1256          * adding and removal.
1257          */
1258         ppgtt_get_shadow_entry(spt, &se, index);
1259
1260         if (new_present) {
1261                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1262                 if (ret)
1263                         goto fail;
1264         }
1265
1266         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1267         if (ret)
1268                 goto fail;
1269
1270         if (!new_present) {
1271                 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1272                 ppgtt_set_shadow_entry(spt, &se, index);
1273         }
1274
1275         return 0;
1276 fail:
1277         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1278                         spt, we->val64, we->type);
1279         return ret;
1280 }
1281
1282 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1283 {
1284         return enable_out_of_sync
1285                 && gtt_type_is_pte_pt(
1286                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1287                 && gpt->write_cnt >= 2;
1288 }
1289
1290 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1291                 unsigned long index)
1292 {
1293         set_bit(index, spt->post_shadow_bitmap);
1294         if (!list_empty(&spt->post_shadow_list))
1295                 return;
1296
1297         list_add_tail(&spt->post_shadow_list,
1298                         &spt->vgpu->gtt.post_shadow_list_head);
1299 }
1300
1301 /**
1302  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1303  * @vgpu: a vGPU
1304  *
1305  * This function is called before submitting a guest workload to host,
1306  * to flush all the post shadows for a vGPU.
1307  *
1308  * Returns:
1309  * Zero on success, negative error code if failed.
1310  */
1311 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1312 {
1313         struct list_head *pos, *n;
1314         struct intel_vgpu_ppgtt_spt *spt;
1315         struct intel_gvt_gtt_entry ge;
1316         unsigned long index;
1317         int ret;
1318
1319         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1320                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1321                                 post_shadow_list);
1322
1323                 for_each_set_bit(index, spt->post_shadow_bitmap,
1324                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1325                         ppgtt_get_guest_entry(spt, &ge, index);
1326
1327                         ret = ppgtt_handle_guest_write_page_table(
1328                                         &spt->guest_page, &ge, index);
1329                         if (ret)
1330                                 return ret;
1331                         clear_bit(index, spt->post_shadow_bitmap);
1332                 }
1333                 list_del_init(&spt->post_shadow_list);
1334         }
1335         return 0;
1336 }
1337
1338 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1339                 u64 pa, void *p_data, int bytes)
1340 {
1341         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1342         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1343         struct intel_vgpu *vgpu = spt->vgpu;
1344         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1345         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1346         struct intel_gvt_gtt_entry we, se;
1347         unsigned long index;
1348         int ret;
1349
1350         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1351
1352         ppgtt_get_guest_entry(spt, &we, index);
1353
1354         ops->test_pse(&we);
1355
1356         if (bytes == info->gtt_entry_size) {
1357                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1358                 if (ret)
1359                         return ret;
1360         } else {
1361                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1362                         int type = spt->shadow_page.type;
1363
1364                         ppgtt_get_shadow_entry(spt, &se, index);
1365                         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1366                         if (ret)
1367                                 return ret;
1368                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1369                         ppgtt_set_shadow_entry(spt, &se, index);
1370                 }
1371                 ppgtt_set_post_shadow(spt, index);
1372         }
1373
1374         if (!enable_out_of_sync)
1375                 return 0;
1376
1377         gpt->write_cnt++;
1378
1379         if (gpt->oos_page)
1380                 ops->set_entry(gpt->oos_page->mem, &we, index,
1381                                 false, 0, vgpu);
1382
1383         if (can_do_out_of_sync(gpt)) {
1384                 if (!gpt->oos_page)
1385                         ppgtt_allocate_oos_page(vgpu, gpt);
1386
1387                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1388                 if (ret < 0)
1389                         return ret;
1390         }
1391         return 0;
1392 }
1393
1394 /*
1395  * mm page table allocation policy for bdw+
1396  *  - for ggtt, only virtual page table will be allocated.
1397  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1398  */
1399 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1400 {
1401         struct intel_vgpu *vgpu = mm->vgpu;
1402         struct intel_gvt *gvt = vgpu->gvt;
1403         const struct intel_gvt_device_info *info = &gvt->device_info;
1404         void *mem;
1405
1406         if (mm->type == INTEL_GVT_MM_PPGTT) {
1407                 mm->page_table_entry_cnt = 4;
1408                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1409                         info->gtt_entry_size;
1410                 mem = kzalloc(mm->has_shadow_page_table ?
1411                         mm->page_table_entry_size * 2
1412                                 : mm->page_table_entry_size, GFP_KERNEL);
1413                 if (!mem)
1414                         return -ENOMEM;
1415                 mm->virtual_page_table = mem;
1416                 if (!mm->has_shadow_page_table)
1417                         return 0;
1418                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1419         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1420                 mm->page_table_entry_cnt =
1421                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1422                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1423                         info->gtt_entry_size;
1424                 mem = vzalloc(mm->page_table_entry_size);
1425                 if (!mem)
1426                         return -ENOMEM;
1427                 mm->virtual_page_table = mem;
1428         }
1429         return 0;
1430 }
1431
1432 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1433 {
1434         if (mm->type == INTEL_GVT_MM_PPGTT) {
1435                 kfree(mm->virtual_page_table);
1436         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1437                 if (mm->virtual_page_table)
1438                         vfree(mm->virtual_page_table);
1439         }
1440         mm->virtual_page_table = mm->shadow_page_table = NULL;
1441 }
1442
1443 static void invalidate_mm(struct intel_vgpu_mm *mm)
1444 {
1445         struct intel_vgpu *vgpu = mm->vgpu;
1446         struct intel_gvt *gvt = vgpu->gvt;
1447         struct intel_gvt_gtt *gtt = &gvt->gtt;
1448         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1449         struct intel_gvt_gtt_entry se;
1450         int i;
1451
1452         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1453                 return;
1454
1455         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1456                 ppgtt_get_shadow_root_entry(mm, &se, i);
1457                 if (!ops->test_present(&se))
1458                         continue;
1459                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1460                                 vgpu, &se);
1461                 se.val64 = 0;
1462                 ppgtt_set_shadow_root_entry(mm, &se, i);
1463
1464                 trace_gpt_change(vgpu->id, "destroy root pointer",
1465                                 NULL, se.type, se.val64, i);
1466         }
1467         mm->shadowed = false;
1468 }
1469
1470 /**
1471  * intel_vgpu_destroy_mm - destroy a mm object
1472  * @mm: a kref object
1473  *
1474  * This function is used to destroy a mm object for vGPU
1475  *
1476  */
1477 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1478 {
1479         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1480         struct intel_vgpu *vgpu = mm->vgpu;
1481         struct intel_gvt *gvt = vgpu->gvt;
1482         struct intel_gvt_gtt *gtt = &gvt->gtt;
1483
1484         if (!mm->initialized)
1485                 goto out;
1486
1487         list_del(&mm->list);
1488         list_del(&mm->lru_list);
1489
1490         if (mm->has_shadow_page_table)
1491                 invalidate_mm(mm);
1492
1493         gtt->mm_free_page_table(mm);
1494 out:
1495         kfree(mm);
1496 }
1497
1498 static int shadow_mm(struct intel_vgpu_mm *mm)
1499 {
1500         struct intel_vgpu *vgpu = mm->vgpu;
1501         struct intel_gvt *gvt = vgpu->gvt;
1502         struct intel_gvt_gtt *gtt = &gvt->gtt;
1503         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1504         struct intel_vgpu_ppgtt_spt *spt;
1505         struct intel_gvt_gtt_entry ge, se;
1506         int i;
1507         int ret;
1508
1509         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1510                 return 0;
1511
1512         mm->shadowed = true;
1513
1514         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1515                 ppgtt_get_guest_root_entry(mm, &ge, i);
1516                 if (!ops->test_present(&ge))
1517                         continue;
1518
1519                 trace_gpt_change(vgpu->id, __func__, NULL,
1520                                 ge.type, ge.val64, i);
1521
1522                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1523                 if (IS_ERR(spt)) {
1524                         gvt_vgpu_err("fail to populate guest root pointer\n");
1525                         ret = PTR_ERR(spt);
1526                         goto fail;
1527                 }
1528                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1529                 ppgtt_set_shadow_root_entry(mm, &se, i);
1530
1531                 trace_gpt_change(vgpu->id, "populate root pointer",
1532                                 NULL, se.type, se.val64, i);
1533         }
1534         return 0;
1535 fail:
1536         invalidate_mm(mm);
1537         return ret;
1538 }
1539
1540 /**
1541  * intel_vgpu_create_mm - create a mm object for a vGPU
1542  * @vgpu: a vGPU
1543  * @mm_type: mm object type, should be PPGTT or GGTT
1544  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1545  *      to populate shadow later.
1546  * @page_table_level: describe the page table level of the mm object
1547  * @pde_base_index: pde root pointer base in GGTT MMIO.
1548  *
1549  * This function is used to create a mm object for a vGPU.
1550  *
1551  * Returns:
1552  * Zero on success, negative error code in pointer if failed.
1553  */
1554 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1555                 int mm_type, void *virtual_page_table, int page_table_level,
1556                 u32 pde_base_index)
1557 {
1558         struct intel_gvt *gvt = vgpu->gvt;
1559         struct intel_gvt_gtt *gtt = &gvt->gtt;
1560         struct intel_vgpu_mm *mm;
1561         int ret;
1562
1563         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1564         if (!mm) {
1565                 ret = -ENOMEM;
1566                 goto fail;
1567         }
1568
1569         mm->type = mm_type;
1570
1571         if (page_table_level == 1)
1572                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1573         else if (page_table_level == 3)
1574                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1575         else if (page_table_level == 4)
1576                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1577         else {
1578                 WARN_ON(1);
1579                 ret = -EINVAL;
1580                 goto fail;
1581         }
1582
1583         mm->page_table_level = page_table_level;
1584         mm->pde_base_index = pde_base_index;
1585
1586         mm->vgpu = vgpu;
1587         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1588
1589         kref_init(&mm->ref);
1590         atomic_set(&mm->pincount, 0);
1591         INIT_LIST_HEAD(&mm->list);
1592         INIT_LIST_HEAD(&mm->lru_list);
1593         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1594
1595         ret = gtt->mm_alloc_page_table(mm);
1596         if (ret) {
1597                 gvt_vgpu_err("fail to allocate page table for mm\n");
1598                 goto fail;
1599         }
1600
1601         mm->initialized = true;
1602
1603         if (virtual_page_table)
1604                 memcpy(mm->virtual_page_table, virtual_page_table,
1605                                 mm->page_table_entry_size);
1606
1607         if (mm->has_shadow_page_table) {
1608                 ret = shadow_mm(mm);
1609                 if (ret)
1610                         goto fail;
1611                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1612         }
1613         return mm;
1614 fail:
1615         gvt_vgpu_err("fail to create mm\n");
1616         if (mm)
1617                 intel_gvt_mm_unreference(mm);
1618         return ERR_PTR(ret);
1619 }
1620
1621 /**
1622  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1623  * @mm: a vGPU mm object
1624  *
1625  * This function is called when user doesn't want to use a vGPU mm object
1626  */
1627 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1628 {
1629         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1630                 return;
1631
1632         atomic_dec_if_positive(&mm->pincount);
1633 }
1634
1635 /**
1636  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1637  * @vgpu: a vGPU
1638  *
1639  * This function is called when user wants to use a vGPU mm object. If this
1640  * mm object hasn't been shadowed yet, the shadow will be populated at this
1641  * time.
1642  *
1643  * Returns:
1644  * Zero on success, negative error code if failed.
1645  */
1646 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1647 {
1648         int ret;
1649
1650         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1651                 return 0;
1652
1653         atomic_inc(&mm->pincount);
1654
1655         if (!mm->shadowed) {
1656                 ret = shadow_mm(mm);
1657                 if (ret)
1658                         return ret;
1659         }
1660
1661         list_del_init(&mm->lru_list);
1662         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1663         return 0;
1664 }
1665
1666 static int reclaim_one_mm(struct intel_gvt *gvt)
1667 {
1668         struct intel_vgpu_mm *mm;
1669         struct list_head *pos, *n;
1670
1671         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1672                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1673
1674                 if (mm->type != INTEL_GVT_MM_PPGTT)
1675                         continue;
1676                 if (atomic_read(&mm->pincount))
1677                         continue;
1678
1679                 list_del_init(&mm->lru_list);
1680                 invalidate_mm(mm);
1681                 return 1;
1682         }
1683         return 0;
1684 }
1685
1686 /*
1687  * GMA translation APIs.
1688  */
1689 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1690                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1691 {
1692         struct intel_vgpu *vgpu = mm->vgpu;
1693         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694         struct intel_vgpu_ppgtt_spt *s;
1695
1696         if (WARN_ON(!mm->has_shadow_page_table))
1697                 return -EINVAL;
1698
1699         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1700         if (!s)
1701                 return -ENXIO;
1702
1703         if (!guest)
1704                 ppgtt_get_shadow_entry(s, e, index);
1705         else
1706                 ppgtt_get_guest_entry(s, e, index);
1707         return 0;
1708 }
1709
1710 /**
1711  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1712  * @mm: mm object. could be a PPGTT or GGTT mm object
1713  * @gma: graphics memory address in this mm object
1714  *
1715  * This function is used to translate a graphics memory address in specific
1716  * graphics memory space to guest physical address.
1717  *
1718  * Returns:
1719  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1720  */
1721 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1722 {
1723         struct intel_vgpu *vgpu = mm->vgpu;
1724         struct intel_gvt *gvt = vgpu->gvt;
1725         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1726         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1727         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1728         unsigned long gma_index[4];
1729         struct intel_gvt_gtt_entry e;
1730         int i, index;
1731         int ret;
1732
1733         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1734                 return INTEL_GVT_INVALID_ADDR;
1735
1736         if (mm->type == INTEL_GVT_MM_GGTT) {
1737                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1738                         goto err;
1739
1740                 ret = ggtt_get_guest_entry(mm, &e,
1741                                 gma_ops->gma_to_ggtt_pte_index(gma));
1742                 if (ret)
1743                         goto err;
1744                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1745                         + (gma & ~GTT_PAGE_MASK);
1746
1747                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1748                 return gpa;
1749         }
1750
1751         switch (mm->page_table_level) {
1752         case 4:
1753                 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1754                 if (ret)
1755                         goto err;
1756                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1757                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1758                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1759                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1760                 index = 4;
1761                 break;
1762         case 3:
1763                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1764                                 gma_ops->gma_to_l3_pdp_index(gma));
1765                 if (ret)
1766                         goto err;
1767                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1768                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1769                 index = 2;
1770                 break;
1771         case 2:
1772                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1773                                 gma_ops->gma_to_pde_index(gma));
1774                 if (ret)
1775                         goto err;
1776                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1777                 index = 1;
1778                 break;
1779         default:
1780                 WARN_ON(1);
1781                 goto err;
1782         }
1783
1784         /* walk into the shadow page table and get gpa from guest entry */
1785         for (i = 0; i < index; i++) {
1786                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1787                         (i == index - 1));
1788                 if (ret)
1789                         goto err;
1790
1791                 if (!pte_ops->test_present(&e)) {
1792                         gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1793                         goto err;
1794                 }
1795         }
1796
1797         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1798                 + (gma & ~GTT_PAGE_MASK);
1799
1800         trace_gma_translate(vgpu->id, "ppgtt", 0,
1801                         mm->page_table_level, gma, gpa);
1802         return gpa;
1803 err:
1804         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1805         return INTEL_GVT_INVALID_ADDR;
1806 }
1807
1808 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1809         unsigned int off, void *p_data, unsigned int bytes)
1810 {
1811         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1812         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1813         unsigned long index = off >> info->gtt_entry_size_shift;
1814         struct intel_gvt_gtt_entry e;
1815
1816         if (bytes != 4 && bytes != 8)
1817                 return -EINVAL;
1818
1819         ggtt_get_guest_entry(ggtt_mm, &e, index);
1820         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1821                         bytes);
1822         return 0;
1823 }
1824
1825 /**
1826  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1827  * @vgpu: a vGPU
1828  * @off: register offset
1829  * @p_data: data will be returned to guest
1830  * @bytes: data length
1831  *
1832  * This function is used to emulate the GTT MMIO register read
1833  *
1834  * Returns:
1835  * Zero on success, error code if failed.
1836  */
1837 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1838         void *p_data, unsigned int bytes)
1839 {
1840         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1841         int ret;
1842
1843         if (bytes != 4 && bytes != 8)
1844                 return -EINVAL;
1845
1846         off -= info->gtt_start_offset;
1847         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1848         return ret;
1849 }
1850
1851 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1852         void *p_data, unsigned int bytes)
1853 {
1854         struct intel_gvt *gvt = vgpu->gvt;
1855         const struct intel_gvt_device_info *info = &gvt->device_info;
1856         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1857         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1858         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1859         unsigned long gma;
1860         struct intel_gvt_gtt_entry e, m;
1861         int ret;
1862
1863         if (bytes != 4 && bytes != 8)
1864                 return -EINVAL;
1865
1866         gma = g_gtt_index << GTT_PAGE_SHIFT;
1867
1868         /* the VM may configure the whole GM space when ballooning is used */
1869         if (!vgpu_gmadr_is_valid(vgpu, gma))
1870                 return 0;
1871
1872         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1873
1874         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1875                         bytes);
1876
1877         if (ops->test_present(&e)) {
1878                 ret = gtt_entry_p2m(vgpu, &e, &m);
1879                 if (ret) {
1880                         gvt_vgpu_err("fail to translate guest gtt entry\n");
1881                         /* guest driver may read/write the entry when partial
1882                          * update the entry in this situation p2m will fail
1883                          * settting the shadow entry to point to a scratch page
1884                          */
1885                         ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1886                 }
1887         } else {
1888                 m = e;
1889                 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1890         }
1891
1892         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1893         gtt_invalidate(gvt->dev_priv);
1894         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1895         return 0;
1896 }
1897
1898 /*
1899  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1900  * @vgpu: a vGPU
1901  * @off: register offset
1902  * @p_data: data from guest write
1903  * @bytes: data length
1904  *
1905  * This function is used to emulate the GTT MMIO register write
1906  *
1907  * Returns:
1908  * Zero on success, error code if failed.
1909  */
1910 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1911         void *p_data, unsigned int bytes)
1912 {
1913         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1914         int ret;
1915
1916         if (bytes != 4 && bytes != 8)
1917                 return -EINVAL;
1918
1919         off -= info->gtt_start_offset;
1920         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1921         return ret;
1922 }
1923
1924 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1925                 intel_gvt_gtt_type_t type)
1926 {
1927         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1928         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1929         int page_entry_num = GTT_PAGE_SIZE >>
1930                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1931         void *scratch_pt;
1932         int i;
1933         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1934         dma_addr_t daddr;
1935
1936         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1937                 return -EINVAL;
1938
1939         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1940         if (!scratch_pt) {
1941                 gvt_vgpu_err("fail to allocate scratch page\n");
1942                 return -ENOMEM;
1943         }
1944
1945         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1946                         4096, PCI_DMA_BIDIRECTIONAL);
1947         if (dma_mapping_error(dev, daddr)) {
1948                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1949                 __free_page(virt_to_page(scratch_pt));
1950                 return -ENOMEM;
1951         }
1952         gtt->scratch_pt[type].page_mfn =
1953                 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1954         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1955         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1956                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1957
1958         /* Build the tree by full filled the scratch pt with the entries which
1959          * point to the next level scratch pt or scratch page. The
1960          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1961          * 'type' pt.
1962          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1963          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1964          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1965          */
1966         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1967                 struct intel_gvt_gtt_entry se;
1968
1969                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1970                 se.type = get_entry_type(type - 1);
1971                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1972
1973                 /* The entry parameters like present/writeable/cache type
1974                  * set to the same as i915's scratch page tree.
1975                  */
1976                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1977                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1978                         se.val64 |= PPAT_CACHED_INDEX;
1979
1980                 for (i = 0; i < page_entry_num; i++)
1981                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1982         }
1983
1984         return 0;
1985 }
1986
1987 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1988 {
1989         int i;
1990         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1991         dma_addr_t daddr;
1992
1993         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1994                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1995                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1996                                         GTT_PAGE_SHIFT);
1997                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1998                         __free_page(vgpu->gtt.scratch_pt[i].page);
1999                         vgpu->gtt.scratch_pt[i].page = NULL;
2000                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2001                 }
2002         }
2003
2004         return 0;
2005 }
2006
2007 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2008 {
2009         int i, ret;
2010
2011         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2012                 ret = alloc_scratch_pages(vgpu, i);
2013                 if (ret)
2014                         goto err;
2015         }
2016
2017         return 0;
2018
2019 err:
2020         release_scratch_page_tree(vgpu);
2021         return ret;
2022 }
2023
2024 /**
2025  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2026  * @vgpu: a vGPU
2027  *
2028  * This function is used to initialize per-vGPU graphics memory virtualization
2029  * components.
2030  *
2031  * Returns:
2032  * Zero on success, error code if failed.
2033  */
2034 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2035 {
2036         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2037         struct intel_vgpu_mm *ggtt_mm;
2038
2039         hash_init(gtt->guest_page_hash_table);
2040         hash_init(gtt->shadow_page_hash_table);
2041
2042         INIT_LIST_HEAD(&gtt->mm_list_head);
2043         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2044         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2045
2046         intel_vgpu_reset_ggtt(vgpu);
2047
2048         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2049                         NULL, 1, 0);
2050         if (IS_ERR(ggtt_mm)) {
2051                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2052                 return PTR_ERR(ggtt_mm);
2053         }
2054
2055         gtt->ggtt_mm = ggtt_mm;
2056
2057         return create_scratch_page_tree(vgpu);
2058 }
2059
2060 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2061 {
2062         struct list_head *pos, *n;
2063         struct intel_vgpu_mm *mm;
2064
2065         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2066                 mm = container_of(pos, struct intel_vgpu_mm, list);
2067                 if (mm->type == type) {
2068                         vgpu->gvt->gtt.mm_free_page_table(mm);
2069                         list_del(&mm->list);
2070                         list_del(&mm->lru_list);
2071                         kfree(mm);
2072                 }
2073         }
2074 }
2075
2076 /**
2077  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2078  * @vgpu: a vGPU
2079  *
2080  * This function is used to clean up per-vGPU graphics memory virtualization
2081  * components.
2082  *
2083  * Returns:
2084  * Zero on success, error code if failed.
2085  */
2086 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2087 {
2088         ppgtt_free_all_shadow_page(vgpu);
2089         release_scratch_page_tree(vgpu);
2090
2091         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2092         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2093 }
2094
2095 static void clean_spt_oos(struct intel_gvt *gvt)
2096 {
2097         struct intel_gvt_gtt *gtt = &gvt->gtt;
2098         struct list_head *pos, *n;
2099         struct intel_vgpu_oos_page *oos_page;
2100
2101         WARN(!list_empty(&gtt->oos_page_use_list_head),
2102                 "someone is still using oos page\n");
2103
2104         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2105                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2106                 list_del(&oos_page->list);
2107                 kfree(oos_page);
2108         }
2109 }
2110
2111 static int setup_spt_oos(struct intel_gvt *gvt)
2112 {
2113         struct intel_gvt_gtt *gtt = &gvt->gtt;
2114         struct intel_vgpu_oos_page *oos_page;
2115         int i;
2116         int ret;
2117
2118         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2119         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2120
2121         for (i = 0; i < preallocated_oos_pages; i++) {
2122                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2123                 if (!oos_page) {
2124                         ret = -ENOMEM;
2125                         goto fail;
2126                 }
2127
2128                 INIT_LIST_HEAD(&oos_page->list);
2129                 INIT_LIST_HEAD(&oos_page->vm_list);
2130                 oos_page->id = i;
2131                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2132         }
2133
2134         gvt_dbg_mm("%d oos pages preallocated\n", i);
2135
2136         return 0;
2137 fail:
2138         clean_spt_oos(gvt);
2139         return ret;
2140 }
2141
2142 /**
2143  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2144  * @vgpu: a vGPU
2145  * @page_table_level: PPGTT page table level
2146  * @root_entry: PPGTT page table root pointers
2147  *
2148  * This function is used to find a PPGTT mm object from mm object pool
2149  *
2150  * Returns:
2151  * pointer to mm object on success, NULL if failed.
2152  */
2153 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2154                 int page_table_level, void *root_entry)
2155 {
2156         struct list_head *pos;
2157         struct intel_vgpu_mm *mm;
2158         u64 *src, *dst;
2159
2160         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2161                 mm = container_of(pos, struct intel_vgpu_mm, list);
2162                 if (mm->type != INTEL_GVT_MM_PPGTT)
2163                         continue;
2164
2165                 if (mm->page_table_level != page_table_level)
2166                         continue;
2167
2168                 src = root_entry;
2169                 dst = mm->virtual_page_table;
2170
2171                 if (page_table_level == 3) {
2172                         if (src[0] == dst[0]
2173                                         && src[1] == dst[1]
2174                                         && src[2] == dst[2]
2175                                         && src[3] == dst[3])
2176                                 return mm;
2177                 } else {
2178                         if (src[0] == dst[0])
2179                                 return mm;
2180                 }
2181         }
2182         return NULL;
2183 }
2184
2185 /**
2186  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2187  * g2v notification
2188  * @vgpu: a vGPU
2189  * @page_table_level: PPGTT page table level
2190  *
2191  * This function is used to create a PPGTT mm object from a guest to GVT-g
2192  * notification.
2193  *
2194  * Returns:
2195  * Zero on success, negative error code if failed.
2196  */
2197 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2198                 int page_table_level)
2199 {
2200         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2201         struct intel_vgpu_mm *mm;
2202
2203         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2204                 return -EINVAL;
2205
2206         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2207         if (mm) {
2208                 intel_gvt_mm_reference(mm);
2209         } else {
2210                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2211                                 pdp, page_table_level, 0);
2212                 if (IS_ERR(mm)) {
2213                         gvt_vgpu_err("fail to create mm\n");
2214                         return PTR_ERR(mm);
2215                 }
2216         }
2217         return 0;
2218 }
2219
2220 /**
2221  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2222  * g2v notification
2223  * @vgpu: a vGPU
2224  * @page_table_level: PPGTT page table level
2225  *
2226  * This function is used to create a PPGTT mm object from a guest to GVT-g
2227  * notification.
2228  *
2229  * Returns:
2230  * Zero on success, negative error code if failed.
2231  */
2232 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2233                 int page_table_level)
2234 {
2235         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2236         struct intel_vgpu_mm *mm;
2237
2238         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2239                 return -EINVAL;
2240
2241         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2242         if (!mm) {
2243                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2244                 return -EINVAL;
2245         }
2246         intel_gvt_mm_unreference(mm);
2247         return 0;
2248 }
2249
2250 /**
2251  * intel_gvt_init_gtt - initialize mm components of a GVT device
2252  * @gvt: GVT device
2253  *
2254  * This function is called at the initialization stage, to initialize
2255  * the mm components of a GVT device.
2256  *
2257  * Returns:
2258  * zero on success, negative error code if failed.
2259  */
2260 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2261 {
2262         int ret;
2263         void *page;
2264         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2265         dma_addr_t daddr;
2266
2267         gvt_dbg_core("init gtt\n");
2268
2269         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2270                 || IS_KABYLAKE(gvt->dev_priv)) {
2271                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2272                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2273                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2274                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2275         } else {
2276                 return -ENODEV;
2277         }
2278
2279         page = (void *)get_zeroed_page(GFP_KERNEL);
2280         if (!page) {
2281                 gvt_err("fail to allocate scratch ggtt page\n");
2282                 return -ENOMEM;
2283         }
2284
2285         daddr = dma_map_page(dev, virt_to_page(page), 0,
2286                         4096, PCI_DMA_BIDIRECTIONAL);
2287         if (dma_mapping_error(dev, daddr)) {
2288                 gvt_err("fail to dmamap scratch ggtt page\n");
2289                 __free_page(virt_to_page(page));
2290                 return -ENOMEM;
2291         }
2292         gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2293         gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2294
2295         if (enable_out_of_sync) {
2296                 ret = setup_spt_oos(gvt);
2297                 if (ret) {
2298                         gvt_err("fail to initialize SPT oos\n");
2299                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2300                         __free_page(gvt->gtt.scratch_ggtt_page);
2301                         return ret;
2302                 }
2303         }
2304         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2305         return 0;
2306 }
2307
2308 /**
2309  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2310  * @gvt: GVT device
2311  *
2312  * This function is called at the driver unloading stage, to clean up the
2313  * the mm components of a GVT device.
2314  *
2315  */
2316 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2317 {
2318         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2319         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2320                                         GTT_PAGE_SHIFT);
2321
2322         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2323
2324         __free_page(gvt->gtt.scratch_ggtt_page);
2325
2326         if (enable_out_of_sync)
2327                 clean_spt_oos(gvt);
2328 }
2329
2330 /**
2331  * intel_vgpu_reset_ggtt - reset the GGTT entry
2332  * @vgpu: a vGPU
2333  *
2334  * This function is called at the vGPU create stage
2335  * to reset all the GGTT entries.
2336  *
2337  */
2338 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2339 {
2340         struct intel_gvt *gvt = vgpu->gvt;
2341         struct drm_i915_private *dev_priv = gvt->dev_priv;
2342         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2343         u32 index;
2344         u32 offset;
2345         u32 num_entries;
2346         struct intel_gvt_gtt_entry e;
2347
2348         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2349         e.type = GTT_TYPE_GGTT_PTE;
2350         ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2351         e.val64 |= _PAGE_PRESENT;
2352
2353         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2354         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2355         for (offset = 0; offset < num_entries; offset++)
2356                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2357
2358         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2359         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2360         for (offset = 0; offset < num_entries; offset++)
2361                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2362
2363         gtt_invalidate(dev_priv);
2364 }
2365
2366 /**
2367  * intel_vgpu_reset_gtt - reset the all GTT related status
2368  * @vgpu: a vGPU
2369  *
2370  * This function is called from vfio core to reset reset all
2371  * GTT related status, including GGTT, PPGTT, scratch page.
2372  *
2373  */
2374 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2375 {
2376         int i;
2377
2378         ppgtt_free_all_shadow_page(vgpu);
2379
2380         /* Shadow pages are only created when there is no page
2381          * table tracking data, so remove page tracking data after
2382          * removing the shadow pages.
2383          */
2384         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2385
2386         intel_vgpu_reset_ggtt(vgpu);
2387
2388         /* clear scratch page for security */
2389         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2390                 if (vgpu->gtt.scratch_pt[i].page != NULL)
2391                         memset(page_address(vgpu->gtt.scratch_pt[i].page),
2392                                 0, PAGE_SIZE);
2393         }
2394 }