GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <asm/hypervisor.h>
37
38 #include <linux/io-mapping.h>
39 #include <linux/i2c.h>
40 #include <linux/i2c-algo-bit.h>
41 #include <linux/backlight.h>
42 #include <linux/hash.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/kref.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55
56 #include "i915_params.h"
57 #include "i915_reg.h"
58 #include "i915_utils.h"
59
60 #include "intel_uncore.h"
61 #include "intel_bios.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_uc.h"
64 #include "intel_lrc.h"
65 #include "intel_ringbuffer.h"
66
67 #include "i915_gem.h"
68 #include "i915_gem_context.h"
69 #include "i915_gem_fence_reg.h"
70 #include "i915_gem_object.h"
71 #include "i915_gem_gtt.h"
72 #include "i915_gem_render_state.h"
73 #include "i915_gem_request.h"
74 #include "i915_gem_timeline.h"
75
76 #include "i915_vma.h"
77
78 #include "intel_gvt.h"
79
80 /* General customization:
81  */
82
83 #define DRIVER_NAME             "i915"
84 #define DRIVER_DESC             "Intel Graphics"
85 #define DRIVER_DATE             "20170818"
86 #define DRIVER_TIMESTAMP        1503088845
87
88 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
89  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
90  * which may not necessarily be a user visible problem.  This will either
91  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
92  * enable distros and users to tailor their preferred amount of i915 abrt
93  * spam.
94  */
95 #define I915_STATE_WARN(condition, format...) ({                        \
96         int __ret_warn_on = !!(condition);                              \
97         if (unlikely(__ret_warn_on))                                    \
98                 if (!WARN(i915.verbose_state_checks, format))           \
99                         DRM_ERROR(format);                              \
100         unlikely(__ret_warn_on);                                        \
101 })
102
103 #define I915_STATE_WARN_ON(x)                                           \
104         I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
105
106 bool __i915_inject_load_failure(const char *func, int line);
107 #define i915_inject_load_failure() \
108         __i915_inject_load_failure(__func__, __LINE__)
109
110 typedef struct {
111         uint32_t val;
112 } uint_fixed_16_16_t;
113
114 #define FP_16_16_MAX ({ \
115         uint_fixed_16_16_t fp; \
116         fp.val = UINT_MAX; \
117         fp; \
118 })
119
120 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
121 {
122         if (val.val == 0)
123                 return true;
124         return false;
125 }
126
127 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
128 {
129         uint_fixed_16_16_t fp;
130
131         WARN_ON(val >> 16);
132
133         fp.val = val << 16;
134         return fp;
135 }
136
137 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
138 {
139         return DIV_ROUND_UP(fp.val, 1 << 16);
140 }
141
142 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
143 {
144         return fp.val >> 16;
145 }
146
147 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
148                                                  uint_fixed_16_16_t min2)
149 {
150         uint_fixed_16_16_t min;
151
152         min.val = min(min1.val, min2.val);
153         return min;
154 }
155
156 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
157                                                  uint_fixed_16_16_t max2)
158 {
159         uint_fixed_16_16_t max;
160
161         max.val = max(max1.val, max2.val);
162         return max;
163 }
164
165 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
166 {
167         uint_fixed_16_16_t fp;
168         WARN_ON(val >> 32);
169         fp.val = clamp_t(uint32_t, val, 0, ~0);
170         return fp;
171 }
172
173 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
174                                             uint_fixed_16_16_t d)
175 {
176         return DIV_ROUND_UP(val.val, d.val);
177 }
178
179 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
180                                                 uint_fixed_16_16_t mul)
181 {
182         uint64_t intermediate_val;
183
184         intermediate_val = (uint64_t) val * mul.val;
185         intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
186         WARN_ON(intermediate_val >> 32);
187         return clamp_t(uint32_t, intermediate_val, 0, ~0);
188 }
189
190 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
191                                              uint_fixed_16_16_t mul)
192 {
193         uint64_t intermediate_val;
194
195         intermediate_val = (uint64_t) val.val * mul.val;
196         intermediate_val = intermediate_val >> 16;
197         return clamp_u64_to_fixed16(intermediate_val);
198 }
199
200 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
201 {
202         uint64_t interm_val;
203
204         interm_val = (uint64_t)val << 16;
205         interm_val = DIV_ROUND_UP_ULL(interm_val, d);
206         return clamp_u64_to_fixed16(interm_val);
207 }
208
209 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
210                                                 uint_fixed_16_16_t d)
211 {
212         uint64_t interm_val;
213
214         interm_val = (uint64_t)val << 16;
215         interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
216         WARN_ON(interm_val >> 32);
217         return clamp_t(uint32_t, interm_val, 0, ~0);
218 }
219
220 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
221                                                      uint_fixed_16_16_t mul)
222 {
223         uint64_t intermediate_val;
224
225         intermediate_val = (uint64_t) val * mul.val;
226         return clamp_u64_to_fixed16(intermediate_val);
227 }
228
229 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
230                                              uint_fixed_16_16_t add2)
231 {
232         uint64_t interm_sum;
233
234         interm_sum = (uint64_t) add1.val + add2.val;
235         return clamp_u64_to_fixed16(interm_sum);
236 }
237
238 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
239                                                  uint32_t add2)
240 {
241         uint64_t interm_sum;
242         uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
243
244         interm_sum = (uint64_t) add1.val + interm_add2.val;
245         return clamp_u64_to_fixed16(interm_sum);
246 }
247
248 static inline const char *yesno(bool v)
249 {
250         return v ? "yes" : "no";
251 }
252
253 static inline const char *onoff(bool v)
254 {
255         return v ? "on" : "off";
256 }
257
258 static inline const char *enableddisabled(bool v)
259 {
260         return v ? "enabled" : "disabled";
261 }
262
263 enum pipe {
264         INVALID_PIPE = -1,
265         PIPE_A = 0,
266         PIPE_B,
267         PIPE_C,
268         _PIPE_EDP,
269         I915_MAX_PIPES = _PIPE_EDP
270 };
271 #define pipe_name(p) ((p) + 'A')
272
273 enum transcoder {
274         TRANSCODER_A = 0,
275         TRANSCODER_B,
276         TRANSCODER_C,
277         TRANSCODER_EDP,
278         TRANSCODER_DSI_A,
279         TRANSCODER_DSI_C,
280         I915_MAX_TRANSCODERS
281 };
282
283 static inline const char *transcoder_name(enum transcoder transcoder)
284 {
285         switch (transcoder) {
286         case TRANSCODER_A:
287                 return "A";
288         case TRANSCODER_B:
289                 return "B";
290         case TRANSCODER_C:
291                 return "C";
292         case TRANSCODER_EDP:
293                 return "EDP";
294         case TRANSCODER_DSI_A:
295                 return "DSI A";
296         case TRANSCODER_DSI_C:
297                 return "DSI C";
298         default:
299                 return "<invalid>";
300         }
301 }
302
303 static inline bool transcoder_is_dsi(enum transcoder transcoder)
304 {
305         return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
306 }
307
308 /*
309  * Global legacy plane identifier. Valid only for primary/sprite
310  * planes on pre-g4x, and only for primary planes on g4x+.
311  */
312 enum plane {
313         PLANE_A,
314         PLANE_B,
315         PLANE_C,
316 };
317 #define plane_name(p) ((p) + 'A')
318
319 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
320
321 /*
322  * Per-pipe plane identifier.
323  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
324  * number of planes per CRTC.  Not all platforms really have this many planes,
325  * which means some arrays of size I915_MAX_PLANES may have unused entries
326  * between the topmost sprite plane and the cursor plane.
327  *
328  * This is expected to be passed to various register macros
329  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
330  */
331 enum plane_id {
332         PLANE_PRIMARY,
333         PLANE_SPRITE0,
334         PLANE_SPRITE1,
335         PLANE_SPRITE2,
336         PLANE_CURSOR,
337         I915_MAX_PLANES,
338 };
339
340 #define for_each_plane_id_on_crtc(__crtc, __p) \
341         for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
342                 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
343
344 enum port {
345         PORT_NONE = -1,
346         PORT_A = 0,
347         PORT_B,
348         PORT_C,
349         PORT_D,
350         PORT_E,
351         I915_MAX_PORTS
352 };
353 #define port_name(p) ((p) + 'A')
354
355 #define I915_NUM_PHYS_VLV 2
356
357 enum dpio_channel {
358         DPIO_CH0,
359         DPIO_CH1
360 };
361
362 enum dpio_phy {
363         DPIO_PHY0,
364         DPIO_PHY1,
365         DPIO_PHY2,
366 };
367
368 enum intel_display_power_domain {
369         POWER_DOMAIN_PIPE_A,
370         POWER_DOMAIN_PIPE_B,
371         POWER_DOMAIN_PIPE_C,
372         POWER_DOMAIN_PIPE_A_PANEL_FITTER,
373         POWER_DOMAIN_PIPE_B_PANEL_FITTER,
374         POWER_DOMAIN_PIPE_C_PANEL_FITTER,
375         POWER_DOMAIN_TRANSCODER_A,
376         POWER_DOMAIN_TRANSCODER_B,
377         POWER_DOMAIN_TRANSCODER_C,
378         POWER_DOMAIN_TRANSCODER_EDP,
379         POWER_DOMAIN_TRANSCODER_DSI_A,
380         POWER_DOMAIN_TRANSCODER_DSI_C,
381         POWER_DOMAIN_PORT_DDI_A_LANES,
382         POWER_DOMAIN_PORT_DDI_B_LANES,
383         POWER_DOMAIN_PORT_DDI_C_LANES,
384         POWER_DOMAIN_PORT_DDI_D_LANES,
385         POWER_DOMAIN_PORT_DDI_E_LANES,
386         POWER_DOMAIN_PORT_DDI_A_IO,
387         POWER_DOMAIN_PORT_DDI_B_IO,
388         POWER_DOMAIN_PORT_DDI_C_IO,
389         POWER_DOMAIN_PORT_DDI_D_IO,
390         POWER_DOMAIN_PORT_DDI_E_IO,
391         POWER_DOMAIN_PORT_DSI,
392         POWER_DOMAIN_PORT_CRT,
393         POWER_DOMAIN_PORT_OTHER,
394         POWER_DOMAIN_VGA,
395         POWER_DOMAIN_AUDIO,
396         POWER_DOMAIN_PLLS,
397         POWER_DOMAIN_AUX_A,
398         POWER_DOMAIN_AUX_B,
399         POWER_DOMAIN_AUX_C,
400         POWER_DOMAIN_AUX_D,
401         POWER_DOMAIN_GMBUS,
402         POWER_DOMAIN_MODESET,
403         POWER_DOMAIN_INIT,
404
405         POWER_DOMAIN_NUM,
406 };
407
408 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
409 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
410                 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
411 #define POWER_DOMAIN_TRANSCODER(tran) \
412         ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
413          (tran) + POWER_DOMAIN_TRANSCODER_A)
414
415 enum hpd_pin {
416         HPD_NONE = 0,
417         HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
418         HPD_CRT,
419         HPD_SDVO_B,
420         HPD_SDVO_C,
421         HPD_PORT_A,
422         HPD_PORT_B,
423         HPD_PORT_C,
424         HPD_PORT_D,
425         HPD_PORT_E,
426         HPD_NUM_PINS
427 };
428
429 #define for_each_hpd_pin(__pin) \
430         for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
431
432 #define HPD_STORM_DEFAULT_THRESHOLD 5
433
434 struct i915_hotplug {
435         struct work_struct hotplug_work;
436
437         struct {
438                 unsigned long last_jiffies;
439                 int count;
440                 enum {
441                         HPD_ENABLED = 0,
442                         HPD_DISABLED = 1,
443                         HPD_MARK_DISABLED = 2
444                 } state;
445         } stats[HPD_NUM_PINS];
446         u32 event_bits;
447         struct delayed_work reenable_work;
448
449         struct intel_digital_port *irq_port[I915_MAX_PORTS];
450         u32 long_port_mask;
451         u32 short_port_mask;
452         struct work_struct dig_port_work;
453
454         struct work_struct poll_init_work;
455         bool poll_enabled;
456
457         unsigned int hpd_storm_threshold;
458
459         /*
460          * if we get a HPD irq from DP and a HPD irq from non-DP
461          * the non-DP HPD could block the workqueue on a mode config
462          * mutex getting, that userspace may have taken. However
463          * userspace is waiting on the DP workqueue to run which is
464          * blocked behind the non-DP one.
465          */
466         struct workqueue_struct *dp_wq;
467 };
468
469 #define I915_GEM_GPU_DOMAINS \
470         (I915_GEM_DOMAIN_RENDER | \
471          I915_GEM_DOMAIN_SAMPLER | \
472          I915_GEM_DOMAIN_COMMAND | \
473          I915_GEM_DOMAIN_INSTRUCTION | \
474          I915_GEM_DOMAIN_VERTEX)
475
476 #define for_each_pipe(__dev_priv, __p) \
477         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
478 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
479         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
480                 for_each_if ((__mask) & (1 << (__p)))
481 #define for_each_universal_plane(__dev_priv, __pipe, __p)               \
482         for ((__p) = 0;                                                 \
483              (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
484              (__p)++)
485 #define for_each_sprite(__dev_priv, __p, __s)                           \
486         for ((__s) = 0;                                                 \
487              (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
488              (__s)++)
489
490 #define for_each_port_masked(__port, __ports_mask) \
491         for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
492                 for_each_if ((__ports_mask) & (1 << (__port)))
493
494 #define for_each_crtc(dev, crtc) \
495         list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
496
497 #define for_each_intel_plane(dev, intel_plane) \
498         list_for_each_entry(intel_plane,                        \
499                             &(dev)->mode_config.plane_list,     \
500                             base.head)
501
502 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
503         list_for_each_entry(intel_plane,                                \
504                             &(dev)->mode_config.plane_list,             \
505                             base.head)                                  \
506                 for_each_if ((plane_mask) &                             \
507                              (1 << drm_plane_index(&intel_plane->base)))
508
509 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
510         list_for_each_entry(intel_plane,                                \
511                             &(dev)->mode_config.plane_list,             \
512                             base.head)                                  \
513                 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
514
515 #define for_each_intel_crtc(dev, intel_crtc)                            \
516         list_for_each_entry(intel_crtc,                                 \
517                             &(dev)->mode_config.crtc_list,              \
518                             base.head)
519
520 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
521         list_for_each_entry(intel_crtc,                                 \
522                             &(dev)->mode_config.crtc_list,              \
523                             base.head)                                  \
524                 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
525
526 #define for_each_intel_encoder(dev, intel_encoder)              \
527         list_for_each_entry(intel_encoder,                      \
528                             &(dev)->mode_config.encoder_list,   \
529                             base.head)
530
531 #define for_each_intel_connector_iter(intel_connector, iter) \
532         while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
533
534 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
535         list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
536                 for_each_if ((intel_encoder)->base.crtc == (__crtc))
537
538 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
539         list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
540                 for_each_if ((intel_connector)->base.encoder == (__encoder))
541
542 #define for_each_power_domain(domain, mask)                             \
543         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
544                 for_each_if (BIT_ULL(domain) & (mask))
545
546 #define for_each_power_well(__dev_priv, __power_well)                           \
547         for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
548              (__power_well) - (__dev_priv)->power_domains.power_wells < \
549                 (__dev_priv)->power_domains.power_well_count;           \
550              (__power_well)++)
551
552 #define for_each_power_well_rev(__dev_priv, __power_well)                       \
553         for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
554                               (__dev_priv)->power_domains.power_well_count - 1; \
555              (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
556              (__power_well)--)
557
558 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
559         for_each_power_well(__dev_priv, __power_well)                           \
560                 for_each_if ((__power_well)->domains & (__domain_mask))
561
562 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
563         for_each_power_well_rev(__dev_priv, __power_well)                       \
564                 for_each_if ((__power_well)->domains & (__domain_mask))
565
566 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
567         for ((__i) = 0; \
568              (__i) < (__state)->base.dev->mode_config.num_total_plane && \
569                      ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
570                       (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
571              (__i)++) \
572                 for_each_if (plane_state)
573
574 struct drm_i915_private;
575 struct i915_mm_struct;
576 struct i915_mmu_object;
577
578 struct drm_i915_file_private {
579         struct drm_i915_private *dev_priv;
580         struct drm_file *file;
581
582         struct {
583                 spinlock_t lock;
584                 struct list_head request_list;
585 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
586  * chosen to prevent the CPU getting more than a frame ahead of the GPU
587  * (when using lax throttling for the frontbuffer). We also use it to
588  * offer free GPU waitboosts for severely congested workloads.
589  */
590 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
591         } mm;
592         struct idr context_idr;
593
594         struct intel_rps_client {
595                 atomic_t boosts;
596         } rps;
597
598         unsigned int bsd_engine;
599
600 /* Client can have a maximum of 3 contexts banned before
601  * it is denied of creating new contexts. As one context
602  * ban needs 4 consecutive hangs, and more if there is
603  * progress in between, this is a last resort stop gap measure
604  * to limit the badly behaving clients access to gpu.
605  */
606 #define I915_MAX_CLIENT_CONTEXT_BANS 3
607         atomic_t context_bans;
608 };
609
610 /* Used by dp and fdi links */
611 struct intel_link_m_n {
612         uint32_t        tu;
613         uint32_t        gmch_m;
614         uint32_t        gmch_n;
615         uint32_t        link_m;
616         uint32_t        link_n;
617 };
618
619 void intel_link_compute_m_n(int bpp, int nlanes,
620                             int pixel_clock, int link_clock,
621                             struct intel_link_m_n *m_n,
622                             bool reduce_m_n);
623
624 /* Interface history:
625  *
626  * 1.1: Original.
627  * 1.2: Add Power Management
628  * 1.3: Add vblank support
629  * 1.4: Fix cmdbuffer path, add heap destroy
630  * 1.5: Add vblank pipe configuration
631  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
632  *      - Support vertical blank on secondary display pipe
633  */
634 #define DRIVER_MAJOR            1
635 #define DRIVER_MINOR            6
636 #define DRIVER_PATCHLEVEL       0
637
638 struct opregion_header;
639 struct opregion_acpi;
640 struct opregion_swsci;
641 struct opregion_asle;
642
643 struct intel_opregion {
644         struct opregion_header *header;
645         struct opregion_acpi *acpi;
646         struct opregion_swsci *swsci;
647         u32 swsci_gbda_sub_functions;
648         u32 swsci_sbcb_sub_functions;
649         struct opregion_asle *asle;
650         void *rvda;
651         void *vbt_firmware;
652         const void *vbt;
653         u32 vbt_size;
654         u32 *lid_state;
655         struct work_struct asle_work;
656 };
657 #define OPREGION_SIZE            (8*1024)
658
659 struct intel_overlay;
660 struct intel_overlay_error_state;
661
662 struct sdvo_device_mapping {
663         u8 initialized;
664         u8 dvo_port;
665         u8 slave_addr;
666         u8 dvo_wiring;
667         u8 i2c_pin;
668         u8 ddc_pin;
669 };
670
671 struct intel_connector;
672 struct intel_encoder;
673 struct intel_atomic_state;
674 struct intel_crtc_state;
675 struct intel_initial_plane_config;
676 struct intel_crtc;
677 struct intel_limit;
678 struct dpll;
679 struct intel_cdclk_state;
680
681 struct drm_i915_display_funcs {
682         void (*get_cdclk)(struct drm_i915_private *dev_priv,
683                           struct intel_cdclk_state *cdclk_state);
684         void (*set_cdclk)(struct drm_i915_private *dev_priv,
685                           const struct intel_cdclk_state *cdclk_state);
686         int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
687         int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
688         int (*compute_intermediate_wm)(struct drm_device *dev,
689                                        struct intel_crtc *intel_crtc,
690                                        struct intel_crtc_state *newstate);
691         void (*initial_watermarks)(struct intel_atomic_state *state,
692                                    struct intel_crtc_state *cstate);
693         void (*atomic_update_watermarks)(struct intel_atomic_state *state,
694                                          struct intel_crtc_state *cstate);
695         void (*optimize_watermarks)(struct intel_atomic_state *state,
696                                     struct intel_crtc_state *cstate);
697         int (*compute_global_watermarks)(struct drm_atomic_state *state);
698         void (*update_wm)(struct intel_crtc *crtc);
699         int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
700         /* Returns the active state of the crtc, and if the crtc is active,
701          * fills out the pipe-config with the hw state. */
702         bool (*get_pipe_config)(struct intel_crtc *,
703                                 struct intel_crtc_state *);
704         void (*get_initial_plane_config)(struct intel_crtc *,
705                                          struct intel_initial_plane_config *);
706         int (*crtc_compute_clock)(struct intel_crtc *crtc,
707                                   struct intel_crtc_state *crtc_state);
708         void (*crtc_enable)(struct intel_crtc_state *pipe_config,
709                             struct drm_atomic_state *old_state);
710         void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
711                              struct drm_atomic_state *old_state);
712         void (*update_crtcs)(struct drm_atomic_state *state,
713                              unsigned int *crtc_vblank_mask);
714         void (*audio_codec_enable)(struct drm_connector *connector,
715                                    struct intel_encoder *encoder,
716                                    const struct drm_display_mode *adjusted_mode);
717         void (*audio_codec_disable)(struct intel_encoder *encoder);
718         void (*fdi_link_train)(struct intel_crtc *crtc,
719                                const struct intel_crtc_state *crtc_state);
720         void (*init_clock_gating)(struct drm_i915_private *dev_priv);
721         void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
722         /* clock updates for mode set */
723         /* cursor updates */
724         /* render clock increase/decrease */
725         /* display clock increase/decrease */
726         /* pll clock increase/decrease */
727
728         void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
729         void (*load_luts)(struct drm_crtc_state *crtc_state);
730 };
731
732 #define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
733 #define CSR_VERSION_MAJOR(version)      ((version) >> 16)
734 #define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
735
736 struct intel_csr {
737         struct work_struct work;
738         const char *fw_path;
739         uint32_t *dmc_payload;
740         uint32_t dmc_fw_size;
741         uint32_t version;
742         uint32_t mmio_count;
743         i915_reg_t mmioaddr[8];
744         uint32_t mmiodata[8];
745         uint32_t dc_state;
746         uint32_t allowed_dc_mask;
747 };
748
749 #define DEV_INFO_FOR_EACH_FLAG(func) \
750         func(is_mobile); \
751         func(is_lp); \
752         func(is_alpha_support); \
753         /* Keep has_* in alphabetical order */ \
754         func(has_64bit_reloc); \
755         func(has_aliasing_ppgtt); \
756         func(has_csr); \
757         func(has_ddi); \
758         func(has_dp_mst); \
759         func(has_reset_engine); \
760         func(has_fbc); \
761         func(has_fpga_dbg); \
762         func(has_full_ppgtt); \
763         func(has_full_48bit_ppgtt); \
764         func(has_gmbus_irq); \
765         func(has_gmch_display); \
766         func(has_guc); \
767         func(has_guc_ct); \
768         func(has_hotplug); \
769         func(has_l3_dpf); \
770         func(has_llc); \
771         func(has_logical_ring_contexts); \
772         func(has_overlay); \
773         func(has_pipe_cxsr); \
774         func(has_pooled_eu); \
775         func(has_psr); \
776         func(has_rc6); \
777         func(has_rc6p); \
778         func(has_resource_streamer); \
779         func(has_runtime_pm); \
780         func(has_snoop); \
781         func(unfenced_needs_alignment); \
782         func(cursor_needs_physical); \
783         func(hws_needs_physical); \
784         func(overlay_needs_physical); \
785         func(supports_tv);
786
787 struct sseu_dev_info {
788         u8 slice_mask;
789         u8 subslice_mask;
790         u8 eu_total;
791         u8 eu_per_subslice;
792         u8 min_eu_in_pool;
793         /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
794         u8 subslice_7eu[3];
795         u8 has_slice_pg:1;
796         u8 has_subslice_pg:1;
797         u8 has_eu_pg:1;
798 };
799
800 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
801 {
802         return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
803 }
804
805 /* Keep in gen based order, and chronological order within a gen */
806 enum intel_platform {
807         INTEL_PLATFORM_UNINITIALIZED = 0,
808         INTEL_I830,
809         INTEL_I845G,
810         INTEL_I85X,
811         INTEL_I865G,
812         INTEL_I915G,
813         INTEL_I915GM,
814         INTEL_I945G,
815         INTEL_I945GM,
816         INTEL_G33,
817         INTEL_PINEVIEW,
818         INTEL_I965G,
819         INTEL_I965GM,
820         INTEL_G45,
821         INTEL_GM45,
822         INTEL_IRONLAKE,
823         INTEL_SANDYBRIDGE,
824         INTEL_IVYBRIDGE,
825         INTEL_VALLEYVIEW,
826         INTEL_HASWELL,
827         INTEL_BROADWELL,
828         INTEL_CHERRYVIEW,
829         INTEL_SKYLAKE,
830         INTEL_BROXTON,
831         INTEL_KABYLAKE,
832         INTEL_GEMINILAKE,
833         INTEL_COFFEELAKE,
834         INTEL_CANNONLAKE,
835         INTEL_MAX_PLATFORMS
836 };
837
838 struct intel_device_info {
839         u32 display_mmio_offset;
840         u16 device_id;
841         u8 num_pipes;
842         u8 num_sprites[I915_MAX_PIPES];
843         u8 num_scalers[I915_MAX_PIPES];
844         u8 gen;
845         u16 gen_mask;
846         enum intel_platform platform;
847         u8 gt; /* GT number, 0 if undefined */
848         u8 ring_mask; /* Rings supported by the HW */
849         u8 num_rings;
850 #define DEFINE_FLAG(name) u8 name:1
851         DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
852 #undef DEFINE_FLAG
853         u16 ddb_size; /* in blocks */
854         /* Register offsets for the various display pipes and transcoders */
855         int pipe_offsets[I915_MAX_TRANSCODERS];
856         int trans_offsets[I915_MAX_TRANSCODERS];
857         int palette_offsets[I915_MAX_PIPES];
858         int cursor_offsets[I915_MAX_PIPES];
859
860         /* Slice/subslice/EU info */
861         struct sseu_dev_info sseu;
862
863         struct color_luts {
864                 u16 degamma_lut_size;
865                 u16 gamma_lut_size;
866         } color;
867 };
868
869 struct intel_display_error_state;
870
871 struct i915_gpu_state {
872         struct kref ref;
873         struct timeval time;
874         struct timeval boottime;
875         struct timeval uptime;
876
877         struct drm_i915_private *i915;
878
879         char error_msg[128];
880         bool simulated;
881         bool awake;
882         bool wakelock;
883         bool suspended;
884         int iommu;
885         u32 reset_count;
886         u32 suspend_count;
887         struct intel_device_info device_info;
888         struct i915_params params;
889
890         /* Generic register state */
891         u32 eir;
892         u32 pgtbl_er;
893         u32 ier;
894         u32 gtier[4], ngtier;
895         u32 ccid;
896         u32 derrmr;
897         u32 forcewake;
898         u32 error; /* gen6+ */
899         u32 err_int; /* gen7 */
900         u32 fault_data0; /* gen8, gen9 */
901         u32 fault_data1; /* gen8, gen9 */
902         u32 done_reg;
903         u32 gac_eco;
904         u32 gam_ecochk;
905         u32 gab_ctl;
906         u32 gfx_mode;
907
908         u32 nfence;
909         u64 fence[I915_MAX_NUM_FENCES];
910         struct intel_overlay_error_state *overlay;
911         struct intel_display_error_state *display;
912         struct drm_i915_error_object *semaphore;
913         struct drm_i915_error_object *guc_log;
914
915         struct drm_i915_error_engine {
916                 int engine_id;
917                 /* Software tracked state */
918                 bool waiting;
919                 int num_waiters;
920                 unsigned long hangcheck_timestamp;
921                 bool hangcheck_stalled;
922                 enum intel_engine_hangcheck_action hangcheck_action;
923                 struct i915_address_space *vm;
924                 int num_requests;
925                 u32 reset_count;
926
927                 /* position of active request inside the ring */
928                 u32 rq_head, rq_post, rq_tail;
929
930                 /* our own tracking of ring head and tail */
931                 u32 cpu_ring_head;
932                 u32 cpu_ring_tail;
933
934                 u32 last_seqno;
935
936                 /* Register state */
937                 u32 start;
938                 u32 tail;
939                 u32 head;
940                 u32 ctl;
941                 u32 mode;
942                 u32 hws;
943                 u32 ipeir;
944                 u32 ipehr;
945                 u32 bbstate;
946                 u32 instpm;
947                 u32 instps;
948                 u32 seqno;
949                 u64 bbaddr;
950                 u64 acthd;
951                 u32 fault_reg;
952                 u64 faddr;
953                 u32 rc_psmi; /* sleep state */
954                 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
955                 struct intel_instdone instdone;
956
957                 struct drm_i915_error_context {
958                         char comm[TASK_COMM_LEN];
959                         pid_t pid;
960                         u32 handle;
961                         u32 hw_id;
962                         int ban_score;
963                         int active;
964                         int guilty;
965                 } context;
966
967                 struct drm_i915_error_object {
968                         u64 gtt_offset;
969                         u64 gtt_size;
970                         int page_count;
971                         int unused;
972                         u32 *pages[0];
973                 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
974
975                 struct drm_i915_error_object **user_bo;
976                 long user_bo_count;
977
978                 struct drm_i915_error_object *wa_ctx;
979
980                 struct drm_i915_error_request {
981                         long jiffies;
982                         pid_t pid;
983                         u32 context;
984                         int ban_score;
985                         u32 seqno;
986                         u32 head;
987                         u32 tail;
988                 } *requests, execlist[2];
989
990                 struct drm_i915_error_waiter {
991                         char comm[TASK_COMM_LEN];
992                         pid_t pid;
993                         u32 seqno;
994                 } *waiters;
995
996                 struct {
997                         u32 gfx_mode;
998                         union {
999                                 u64 pdp[4];
1000                                 u32 pp_dir_base;
1001                         };
1002                 } vm_info;
1003         } engine[I915_NUM_ENGINES];
1004
1005         struct drm_i915_error_buffer {
1006                 u32 size;
1007                 u32 name;
1008                 u32 rseqno[I915_NUM_ENGINES], wseqno;
1009                 u64 gtt_offset;
1010                 u32 read_domains;
1011                 u32 write_domain;
1012                 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1013                 u32 tiling:2;
1014                 u32 dirty:1;
1015                 u32 purgeable:1;
1016                 u32 userptr:1;
1017                 s32 engine:4;
1018                 u32 cache_level:3;
1019         } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1020         u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1021         struct i915_address_space *active_vm[I915_NUM_ENGINES];
1022 };
1023
1024 enum i915_cache_level {
1025         I915_CACHE_NONE = 0,
1026         I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1027         I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1028                               caches, eg sampler/render caches, and the
1029                               large Last-Level-Cache. LLC is coherent with
1030                               the CPU, but L3 is only visible to the GPU. */
1031         I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1032 };
1033
1034 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1035
1036 enum fb_op_origin {
1037         ORIGIN_GTT,
1038         ORIGIN_CPU,
1039         ORIGIN_CS,
1040         ORIGIN_FLIP,
1041         ORIGIN_DIRTYFB,
1042 };
1043
1044 struct intel_fbc {
1045         /* This is always the inner lock when overlapping with struct_mutex and
1046          * it's the outer lock when overlapping with stolen_lock. */
1047         struct mutex lock;
1048         unsigned threshold;
1049         unsigned int possible_framebuffer_bits;
1050         unsigned int busy_bits;
1051         unsigned int visible_pipes_mask;
1052         struct intel_crtc *crtc;
1053
1054         struct drm_mm_node compressed_fb;
1055         struct drm_mm_node *compressed_llb;
1056
1057         bool false_color;
1058
1059         bool enabled;
1060         bool active;
1061
1062         bool underrun_detected;
1063         struct work_struct underrun_work;
1064
1065         /*
1066          * Due to the atomic rules we can't access some structures without the
1067          * appropriate locking, so we cache information here in order to avoid
1068          * these problems.
1069          */
1070         struct intel_fbc_state_cache {
1071                 struct i915_vma *vma;
1072
1073                 struct {
1074                         unsigned int mode_flags;
1075                         uint32_t hsw_bdw_pixel_rate;
1076                 } crtc;
1077
1078                 struct {
1079                         unsigned int rotation;
1080                         int src_w;
1081                         int src_h;
1082                         bool visible;
1083                 } plane;
1084
1085                 struct {
1086                         const struct drm_format_info *format;
1087                         unsigned int stride;
1088                 } fb;
1089         } state_cache;
1090
1091         /*
1092          * This structure contains everything that's relevant to program the
1093          * hardware registers. When we want to figure out if we need to disable
1094          * and re-enable FBC for a new configuration we just check if there's
1095          * something different in the struct. The genx_fbc_activate functions
1096          * are supposed to read from it in order to program the registers.
1097          */
1098         struct intel_fbc_reg_params {
1099                 struct i915_vma *vma;
1100
1101                 struct {
1102                         enum pipe pipe;
1103                         enum plane plane;
1104                         unsigned int fence_y_offset;
1105                 } crtc;
1106
1107                 struct {
1108                         const struct drm_format_info *format;
1109                         unsigned int stride;
1110                 } fb;
1111
1112                 int cfb_size;
1113         } params;
1114
1115         struct intel_fbc_work {
1116                 bool scheduled;
1117                 u32 scheduled_vblank;
1118                 struct work_struct work;
1119         } work;
1120
1121         const char *no_fbc_reason;
1122 };
1123
1124 /*
1125  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1126  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1127  * parsing for same resolution.
1128  */
1129 enum drrs_refresh_rate_type {
1130         DRRS_HIGH_RR,
1131         DRRS_LOW_RR,
1132         DRRS_MAX_RR, /* RR count */
1133 };
1134
1135 enum drrs_support_type {
1136         DRRS_NOT_SUPPORTED = 0,
1137         STATIC_DRRS_SUPPORT = 1,
1138         SEAMLESS_DRRS_SUPPORT = 2
1139 };
1140
1141 struct intel_dp;
1142 struct i915_drrs {
1143         struct mutex mutex;
1144         struct delayed_work work;
1145         struct intel_dp *dp;
1146         unsigned busy_frontbuffer_bits;
1147         enum drrs_refresh_rate_type refresh_rate_type;
1148         enum drrs_support_type type;
1149 };
1150
1151 struct i915_psr {
1152         struct mutex lock;
1153         bool sink_support;
1154         bool source_ok;
1155         struct intel_dp *enabled;
1156         bool active;
1157         struct delayed_work work;
1158         unsigned busy_frontbuffer_bits;
1159         bool psr2_support;
1160         bool aux_frame_sync;
1161         bool link_standby;
1162         bool y_cord_support;
1163         bool colorimetry_support;
1164         bool alpm;
1165 };
1166
1167 enum intel_pch {
1168         PCH_NONE = 0,   /* No PCH present */
1169         PCH_IBX,        /* Ibexpeak PCH */
1170         PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
1171         PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
1172         PCH_SPT,        /* Sunrisepoint PCH */
1173         PCH_KBP,        /* Kaby Lake PCH */
1174         PCH_CNP,        /* Cannon Lake PCH */
1175         PCH_NOP,
1176 };
1177
1178 enum intel_sbi_destination {
1179         SBI_ICLK,
1180         SBI_MPHY,
1181 };
1182
1183 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1184 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1185 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1186 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1187 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1188 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
1189
1190 struct intel_fbdev;
1191 struct intel_fbc_work;
1192
1193 struct intel_gmbus {
1194         struct i2c_adapter adapter;
1195 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1196         u32 force_bit;
1197         u32 reg0;
1198         i915_reg_t gpio_reg;
1199         struct i2c_algo_bit_data bit_algo;
1200         struct drm_i915_private *dev_priv;
1201 };
1202
1203 struct i915_suspend_saved_registers {
1204         u32 saveDSPARB;
1205         u32 saveFBC_CONTROL;
1206         u32 saveCACHE_MODE_0;
1207         u32 saveMI_ARB_STATE;
1208         u32 saveSWF0[16];
1209         u32 saveSWF1[16];
1210         u32 saveSWF3[3];
1211         uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1212         u32 savePCH_PORT_HOTPLUG;
1213         u16 saveGCDGMBUS;
1214 };
1215
1216 struct vlv_s0ix_state {
1217         /* GAM */
1218         u32 wr_watermark;
1219         u32 gfx_prio_ctrl;
1220         u32 arb_mode;
1221         u32 gfx_pend_tlb0;
1222         u32 gfx_pend_tlb1;
1223         u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1224         u32 media_max_req_count;
1225         u32 gfx_max_req_count;
1226         u32 render_hwsp;
1227         u32 ecochk;
1228         u32 bsd_hwsp;
1229         u32 blt_hwsp;
1230         u32 tlb_rd_addr;
1231
1232         /* MBC */
1233         u32 g3dctl;
1234         u32 gsckgctl;
1235         u32 mbctl;
1236
1237         /* GCP */
1238         u32 ucgctl1;
1239         u32 ucgctl3;
1240         u32 rcgctl1;
1241         u32 rcgctl2;
1242         u32 rstctl;
1243         u32 misccpctl;
1244
1245         /* GPM */
1246         u32 gfxpause;
1247         u32 rpdeuhwtc;
1248         u32 rpdeuc;
1249         u32 ecobus;
1250         u32 pwrdwnupctl;
1251         u32 rp_down_timeout;
1252         u32 rp_deucsw;
1253         u32 rcubmabdtmr;
1254         u32 rcedata;
1255         u32 spare2gh;
1256
1257         /* Display 1 CZ domain */
1258         u32 gt_imr;
1259         u32 gt_ier;
1260         u32 pm_imr;
1261         u32 pm_ier;
1262         u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1263
1264         /* GT SA CZ domain */
1265         u32 tilectl;
1266         u32 gt_fifoctl;
1267         u32 gtlc_wake_ctrl;
1268         u32 gtlc_survive;
1269         u32 pmwgicz;
1270
1271         /* Display 2 CZ domain */
1272         u32 gu_ctl0;
1273         u32 gu_ctl1;
1274         u32 pcbr;
1275         u32 clock_gate_dis2;
1276 };
1277
1278 struct intel_rps_ei {
1279         ktime_t ktime;
1280         u32 render_c0;
1281         u32 media_c0;
1282 };
1283
1284 struct intel_gen6_power_mgmt {
1285         /*
1286          * work, interrupts_enabled and pm_iir are protected by
1287          * dev_priv->irq_lock
1288          */
1289         struct work_struct work;
1290         bool interrupts_enabled;
1291         u32 pm_iir;
1292
1293         /* PM interrupt bits that should never be masked */
1294         u32 pm_intrmsk_mbz;
1295
1296         /* Frequencies are stored in potentially platform dependent multiples.
1297          * In other words, *_freq needs to be multiplied by X to be interesting.
1298          * Soft limits are those which are used for the dynamic reclocking done
1299          * by the driver (raise frequencies under heavy loads, and lower for
1300          * lighter loads). Hard limits are those imposed by the hardware.
1301          *
1302          * A distinction is made for overclocking, which is never enabled by
1303          * default, and is considered to be above the hard limit if it's
1304          * possible at all.
1305          */
1306         u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1307         u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1308         u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1309         u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1310         u8 min_freq;            /* AKA RPn. Minimum frequency */
1311         u8 boost_freq;          /* Frequency to request when wait boosting */
1312         u8 idle_freq;           /* Frequency to request when we are idle */
1313         u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1314         u8 rp1_freq;            /* "less than" RP0 power/freqency */
1315         u8 rp0_freq;            /* Non-overclocked max frequency. */
1316         u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1317
1318         u8 up_threshold; /* Current %busy required to uplock */
1319         u8 down_threshold; /* Current %busy required to downclock */
1320
1321         int last_adj;
1322         enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1323
1324         bool enabled;
1325         bool ctx_corrupted;
1326         struct delayed_work autoenable_work;
1327         atomic_t num_waiters;
1328         atomic_t boosts;
1329
1330         /* manual wa residency calculations */
1331         struct intel_rps_ei ei;
1332
1333         /*
1334          * Protects RPS/RC6 register access and PCU communication.
1335          * Must be taken after struct_mutex if nested. Note that
1336          * this lock may be held for long periods of time when
1337          * talking to hw - so only take it when talking to hw!
1338          */
1339         struct mutex hw_lock;
1340 };
1341
1342 /* defined intel_pm.c */
1343 extern spinlock_t mchdev_lock;
1344
1345 struct intel_ilk_power_mgmt {
1346         u8 cur_delay;
1347         u8 min_delay;
1348         u8 max_delay;
1349         u8 fmax;
1350         u8 fstart;
1351
1352         u64 last_count1;
1353         unsigned long last_time1;
1354         unsigned long chipset_power;
1355         u64 last_count2;
1356         u64 last_time2;
1357         unsigned long gfx_power;
1358         u8 corr;
1359
1360         int c_m;
1361         int r_t;
1362 };
1363
1364 struct drm_i915_private;
1365 struct i915_power_well;
1366
1367 struct i915_power_well_ops {
1368         /*
1369          * Synchronize the well's hw state to match the current sw state, for
1370          * example enable/disable it based on the current refcount. Called
1371          * during driver init and resume time, possibly after first calling
1372          * the enable/disable handlers.
1373          */
1374         void (*sync_hw)(struct drm_i915_private *dev_priv,
1375                         struct i915_power_well *power_well);
1376         /*
1377          * Enable the well and resources that depend on it (for example
1378          * interrupts located on the well). Called after the 0->1 refcount
1379          * transition.
1380          */
1381         void (*enable)(struct drm_i915_private *dev_priv,
1382                        struct i915_power_well *power_well);
1383         /*
1384          * Disable the well and resources that depend on it. Called after
1385          * the 1->0 refcount transition.
1386          */
1387         void (*disable)(struct drm_i915_private *dev_priv,
1388                         struct i915_power_well *power_well);
1389         /* Returns the hw enabled state. */
1390         bool (*is_enabled)(struct drm_i915_private *dev_priv,
1391                            struct i915_power_well *power_well);
1392 };
1393
1394 /* Power well structure for haswell */
1395 struct i915_power_well {
1396         const char *name;
1397         bool always_on;
1398         /* power well enable/disable usage count */
1399         int count;
1400         /* cached hw enabled state */
1401         bool hw_enabled;
1402         u64 domains;
1403         /* unique identifier for this power well */
1404         enum i915_power_well_id id;
1405         /*
1406          * Arbitraty data associated with this power well. Platform and power
1407          * well specific.
1408          */
1409         union {
1410                 struct {
1411                         enum dpio_phy phy;
1412                 } bxt;
1413                 struct {
1414                         /* Mask of pipes whose IRQ logic is backed by the pw */
1415                         u8 irq_pipe_mask;
1416                         /* The pw is backing the VGA functionality */
1417                         bool has_vga:1;
1418                         bool has_fuses:1;
1419                 } hsw;
1420         };
1421         const struct i915_power_well_ops *ops;
1422 };
1423
1424 struct i915_power_domains {
1425         /*
1426          * Power wells needed for initialization at driver init and suspend
1427          * time are on. They are kept on until after the first modeset.
1428          */
1429         bool init_power_on;
1430         bool initializing;
1431         int power_well_count;
1432
1433         struct mutex lock;
1434         int domain_use_count[POWER_DOMAIN_NUM];
1435         struct i915_power_well *power_wells;
1436 };
1437
1438 #define MAX_L3_SLICES 2
1439 struct intel_l3_parity {
1440         u32 *remap_info[MAX_L3_SLICES];
1441         struct work_struct error_work;
1442         int which_slice;
1443 };
1444
1445 struct i915_gem_mm {
1446         /** Memory allocator for GTT stolen memory */
1447         struct drm_mm stolen;
1448         /** Protects the usage of the GTT stolen memory allocator. This is
1449          * always the inner lock when overlapping with struct_mutex. */
1450         struct mutex stolen_lock;
1451
1452         /** List of all objects in gtt_space. Used to restore gtt
1453          * mappings on resume */
1454         struct list_head bound_list;
1455         /**
1456          * List of objects which are not bound to the GTT (thus
1457          * are idle and not used by the GPU). These objects may or may
1458          * not actually have any pages attached.
1459          */
1460         struct list_head unbound_list;
1461
1462         /** List of all objects in gtt_space, currently mmaped by userspace.
1463          * All objects within this list must also be on bound_list.
1464          */
1465         struct list_head userfault_list;
1466
1467         /**
1468          * List of objects which are pending destruction.
1469          */
1470         struct llist_head free_list;
1471         struct work_struct free_work;
1472
1473         /** Usable portion of the GTT for GEM */
1474         dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1475
1476         /** PPGTT used for aliasing the PPGTT with the GTT */
1477         struct i915_hw_ppgtt *aliasing_ppgtt;
1478
1479         struct notifier_block oom_notifier;
1480         struct notifier_block vmap_notifier;
1481         struct shrinker shrinker;
1482
1483         /** LRU list of objects with fence regs on them. */
1484         struct list_head fence_list;
1485
1486         /**
1487          * Workqueue to fault in userptr pages, flushed by the execbuf
1488          * when required but otherwise left to userspace to try again
1489          * on EAGAIN.
1490          */
1491         struct workqueue_struct *userptr_wq;
1492
1493         u64 unordered_timeline;
1494
1495         /* the indicator for dispatch video commands on two BSD rings */
1496         atomic_t bsd_engine_dispatch_index;
1497
1498         /** Bit 6 swizzling required for X tiling */
1499         uint32_t bit_6_swizzle_x;
1500         /** Bit 6 swizzling required for Y tiling */
1501         uint32_t bit_6_swizzle_y;
1502
1503         /* accounting, useful for userland debugging */
1504         spinlock_t object_stat_lock;
1505         u64 object_memory;
1506         u32 object_count;
1507 };
1508
1509 struct drm_i915_error_state_buf {
1510         struct drm_i915_private *i915;
1511         unsigned bytes;
1512         unsigned size;
1513         int err;
1514         u8 *buf;
1515         loff_t start;
1516         loff_t pos;
1517 };
1518
1519 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1520 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1521
1522 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1523 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1524
1525 struct i915_gpu_error {
1526         /* For hangcheck timer */
1527 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1528 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1529
1530         struct delayed_work hangcheck_work;
1531
1532         /* For reset and error_state handling. */
1533         spinlock_t lock;
1534         /* Protected by the above dev->gpu_error.lock. */
1535         struct i915_gpu_state *first_error;
1536
1537         atomic_t pending_fb_pin;
1538
1539         unsigned long missed_irq_rings;
1540
1541         /**
1542          * State variable controlling the reset flow and count
1543          *
1544          * This is a counter which gets incremented when reset is triggered,
1545          *
1546          * Before the reset commences, the I915_RESET_BACKOFF bit is set
1547          * meaning that any waiters holding onto the struct_mutex should
1548          * relinquish the lock immediately in order for the reset to start.
1549          *
1550          * If reset is not completed succesfully, the I915_WEDGE bit is
1551          * set meaning that hardware is terminally sour and there is no
1552          * recovery. All waiters on the reset_queue will be woken when
1553          * that happens.
1554          *
1555          * This counter is used by the wait_seqno code to notice that reset
1556          * event happened and it needs to restart the entire ioctl (since most
1557          * likely the seqno it waited for won't ever signal anytime soon).
1558          *
1559          * This is important for lock-free wait paths, where no contended lock
1560          * naturally enforces the correct ordering between the bail-out of the
1561          * waiter and the gpu reset work code.
1562          */
1563         unsigned long reset_count;
1564
1565         /**
1566          * flags: Control various stages of the GPU reset
1567          *
1568          * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1569          * other users acquiring the struct_mutex. To do this we set the
1570          * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1571          * and then check for that bit before acquiring the struct_mutex (in
1572          * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1573          * secondary role in preventing two concurrent global reset attempts.
1574          *
1575          * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1576          * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1577          * but it may be held by some long running waiter (that we cannot
1578          * interrupt without causing trouble). Once we are ready to do the GPU
1579          * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1580          * they already hold the struct_mutex and want to participate they can
1581          * inspect the bit and do the reset directly, otherwise the worker
1582          * waits for the struct_mutex.
1583          *
1584          * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1585          * acquire the struct_mutex to reset an engine, we need an explicit
1586          * flag to prevent two concurrent reset attempts in the same engine.
1587          * As the number of engines continues to grow, allocate the flags from
1588          * the most significant bits.
1589          *
1590          * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1591          * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1592          * i915_gem_request_alloc(), this bit is checked and the sequence
1593          * aborted (with -EIO reported to userspace) if set.
1594          */
1595         unsigned long flags;
1596 #define I915_RESET_BACKOFF      0
1597 #define I915_RESET_HANDOFF      1
1598 #define I915_RESET_MODESET      2
1599 #define I915_WEDGED             (BITS_PER_LONG - 1)
1600 #define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1601
1602         /** Number of times an engine has been reset */
1603         u32 reset_engine_count[I915_NUM_ENGINES];
1604
1605         /**
1606          * Waitqueue to signal when a hang is detected. Used to for waiters
1607          * to release the struct_mutex for the reset to procede.
1608          */
1609         wait_queue_head_t wait_queue;
1610
1611         /**
1612          * Waitqueue to signal when the reset has completed. Used by clients
1613          * that wait for dev_priv->mm.wedged to settle.
1614          */
1615         wait_queue_head_t reset_queue;
1616
1617         /* For missed irq/seqno simulation. */
1618         unsigned long test_irq_rings;
1619 };
1620
1621 #define DP_AUX_A 0x40
1622 #define DP_AUX_B 0x10
1623 #define DP_AUX_C 0x20
1624 #define DP_AUX_D 0x30
1625
1626 #define DDC_PIN_B  0x05
1627 #define DDC_PIN_C  0x04
1628 #define DDC_PIN_D  0x06
1629
1630 struct ddi_vbt_port_info {
1631         /*
1632          * This is an index in the HDMI/DVI DDI buffer translation table.
1633          * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1634          * populate this field.
1635          */
1636 #define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1637         uint8_t hdmi_level_shift;
1638
1639         uint8_t supports_dvi:1;
1640         uint8_t supports_hdmi:1;
1641         uint8_t supports_dp:1;
1642         uint8_t supports_edp:1;
1643
1644         uint8_t alternate_aux_channel;
1645         uint8_t alternate_ddc_pin;
1646
1647         uint8_t dp_boost_level;
1648         uint8_t hdmi_boost_level;
1649 };
1650
1651 enum psr_lines_to_wait {
1652         PSR_0_LINES_TO_WAIT = 0,
1653         PSR_1_LINE_TO_WAIT,
1654         PSR_4_LINES_TO_WAIT,
1655         PSR_8_LINES_TO_WAIT
1656 };
1657
1658 struct intel_vbt_data {
1659         struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1660         struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1661
1662         /* Feature bits */
1663         unsigned int int_tv_support:1;
1664         unsigned int lvds_dither:1;
1665         unsigned int lvds_vbt:1;
1666         unsigned int int_crt_support:1;
1667         unsigned int lvds_use_ssc:1;
1668         unsigned int display_clock_mode:1;
1669         unsigned int fdi_rx_polarity_inverted:1;
1670         unsigned int panel_type:4;
1671         int lvds_ssc_freq;
1672         unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1673
1674         enum drrs_support_type drrs_type;
1675
1676         struct {
1677                 int rate;
1678                 int lanes;
1679                 int preemphasis;
1680                 int vswing;
1681                 bool low_vswing;
1682                 bool initialized;
1683                 bool support;
1684                 int bpp;
1685                 struct edp_power_seq pps;
1686         } edp;
1687
1688         struct {
1689                 bool full_link;
1690                 bool require_aux_wakeup;
1691                 int idle_frames;
1692                 enum psr_lines_to_wait lines_to_wait;
1693                 int tp1_wakeup_time;
1694                 int tp2_tp3_wakeup_time;
1695         } psr;
1696
1697         struct {
1698                 u16 pwm_freq_hz;
1699                 bool present;
1700                 bool active_low_pwm;
1701                 u8 min_brightness;      /* min_brightness/255 of max */
1702                 u8 controller;          /* brightness controller number */
1703                 enum intel_backlight_type type;
1704         } backlight;
1705
1706         /* MIPI DSI */
1707         struct {
1708                 u16 panel_id;
1709                 struct mipi_config *config;
1710                 struct mipi_pps_data *pps;
1711                 u8 seq_version;
1712                 u32 size;
1713                 u8 *data;
1714                 const u8 *sequence[MIPI_SEQ_MAX];
1715         } dsi;
1716
1717         int crt_ddc_pin;
1718
1719         int child_dev_num;
1720         union child_device_config *child_dev;
1721
1722         struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1723         struct sdvo_device_mapping sdvo_mappings[2];
1724 };
1725
1726 enum intel_ddb_partitioning {
1727         INTEL_DDB_PART_1_2,
1728         INTEL_DDB_PART_5_6, /* IVB+ */
1729 };
1730
1731 struct intel_wm_level {
1732         bool enable;
1733         uint32_t pri_val;
1734         uint32_t spr_val;
1735         uint32_t cur_val;
1736         uint32_t fbc_val;
1737 };
1738
1739 struct ilk_wm_values {
1740         uint32_t wm_pipe[3];
1741         uint32_t wm_lp[3];
1742         uint32_t wm_lp_spr[3];
1743         uint32_t wm_linetime[3];
1744         bool enable_fbc_wm;
1745         enum intel_ddb_partitioning partitioning;
1746 };
1747
1748 struct g4x_pipe_wm {
1749         uint16_t plane[I915_MAX_PLANES];
1750         uint16_t fbc;
1751 };
1752
1753 struct g4x_sr_wm {
1754         uint16_t plane;
1755         uint16_t cursor;
1756         uint16_t fbc;
1757 };
1758
1759 struct vlv_wm_ddl_values {
1760         uint8_t plane[I915_MAX_PLANES];
1761 };
1762
1763 struct vlv_wm_values {
1764         struct g4x_pipe_wm pipe[3];
1765         struct g4x_sr_wm sr;
1766         struct vlv_wm_ddl_values ddl[3];
1767         uint8_t level;
1768         bool cxsr;
1769 };
1770
1771 struct g4x_wm_values {
1772         struct g4x_pipe_wm pipe[2];
1773         struct g4x_sr_wm sr;
1774         struct g4x_sr_wm hpll;
1775         bool cxsr;
1776         bool hpll_en;
1777         bool fbc_en;
1778 };
1779
1780 struct skl_ddb_entry {
1781         uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1782 };
1783
1784 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1785 {
1786         return entry->end - entry->start;
1787 }
1788
1789 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1790                                        const struct skl_ddb_entry *e2)
1791 {
1792         if (e1->start == e2->start && e1->end == e2->end)
1793                 return true;
1794
1795         return false;
1796 }
1797
1798 struct skl_ddb_allocation {
1799         struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1800         struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1801 };
1802
1803 struct skl_wm_values {
1804         unsigned dirty_pipes;
1805         struct skl_ddb_allocation ddb;
1806 };
1807
1808 struct skl_wm_level {
1809         bool plane_en;
1810         uint16_t plane_res_b;
1811         uint8_t plane_res_l;
1812 };
1813
1814 /*
1815  * This struct helps tracking the state needed for runtime PM, which puts the
1816  * device in PCI D3 state. Notice that when this happens, nothing on the
1817  * graphics device works, even register access, so we don't get interrupts nor
1818  * anything else.
1819  *
1820  * Every piece of our code that needs to actually touch the hardware needs to
1821  * either call intel_runtime_pm_get or call intel_display_power_get with the
1822  * appropriate power domain.
1823  *
1824  * Our driver uses the autosuspend delay feature, which means we'll only really
1825  * suspend if we stay with zero refcount for a certain amount of time. The
1826  * default value is currently very conservative (see intel_runtime_pm_enable), but
1827  * it can be changed with the standard runtime PM files from sysfs.
1828  *
1829  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1830  * goes back to false exactly before we reenable the IRQs. We use this variable
1831  * to check if someone is trying to enable/disable IRQs while they're supposed
1832  * to be disabled. This shouldn't happen and we'll print some error messages in
1833  * case it happens.
1834  *
1835  * For more, read the Documentation/power/runtime_pm.txt.
1836  */
1837 struct i915_runtime_pm {
1838         atomic_t wakeref_count;
1839         bool suspended;
1840         bool irqs_enabled;
1841 };
1842
1843 enum intel_pipe_crc_source {
1844         INTEL_PIPE_CRC_SOURCE_NONE,
1845         INTEL_PIPE_CRC_SOURCE_PLANE1,
1846         INTEL_PIPE_CRC_SOURCE_PLANE2,
1847         INTEL_PIPE_CRC_SOURCE_PF,
1848         INTEL_PIPE_CRC_SOURCE_PIPE,
1849         /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1850         INTEL_PIPE_CRC_SOURCE_TV,
1851         INTEL_PIPE_CRC_SOURCE_DP_B,
1852         INTEL_PIPE_CRC_SOURCE_DP_C,
1853         INTEL_PIPE_CRC_SOURCE_DP_D,
1854         INTEL_PIPE_CRC_SOURCE_AUTO,
1855         INTEL_PIPE_CRC_SOURCE_MAX,
1856 };
1857
1858 struct intel_pipe_crc_entry {
1859         uint32_t frame;
1860         uint32_t crc[5];
1861 };
1862
1863 #define INTEL_PIPE_CRC_ENTRIES_NR       128
1864 struct intel_pipe_crc {
1865         spinlock_t lock;
1866         bool opened;            /* exclusive access to the result file */
1867         struct intel_pipe_crc_entry *entries;
1868         enum intel_pipe_crc_source source;
1869         int head, tail;
1870         wait_queue_head_t wq;
1871         int skipped;
1872 };
1873
1874 struct i915_frontbuffer_tracking {
1875         spinlock_t lock;
1876
1877         /*
1878          * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1879          * scheduled flips.
1880          */
1881         unsigned busy_bits;
1882         unsigned flip_bits;
1883 };
1884
1885 struct i915_wa_reg {
1886         i915_reg_t addr;
1887         u32 value;
1888         /* bitmask representing WA bits */
1889         u32 mask;
1890 };
1891
1892 /*
1893  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1894  * allowing it for RCS as we don't foresee any requirement of having
1895  * a whitelist for other engines. When it is really required for
1896  * other engines then the limit need to be increased.
1897  */
1898 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1899
1900 struct i915_workarounds {
1901         struct i915_wa_reg reg[I915_MAX_WA_REGS];
1902         u32 count;
1903         u32 hw_whitelist_count[I915_NUM_ENGINES];
1904 };
1905
1906 struct i915_virtual_gpu {
1907         bool active;
1908         u32 caps;
1909 };
1910
1911 /* used in computing the new watermarks state */
1912 struct intel_wm_config {
1913         unsigned int num_pipes_active;
1914         bool sprites_enabled;
1915         bool sprites_scaled;
1916 };
1917
1918 struct i915_oa_format {
1919         u32 format;
1920         int size;
1921 };
1922
1923 struct i915_oa_reg {
1924         i915_reg_t addr;
1925         u32 value;
1926 };
1927
1928 struct i915_oa_config {
1929         char uuid[UUID_STRING_LEN + 1];
1930         int id;
1931
1932         const struct i915_oa_reg *mux_regs;
1933         u32 mux_regs_len;
1934         const struct i915_oa_reg *b_counter_regs;
1935         u32 b_counter_regs_len;
1936         const struct i915_oa_reg *flex_regs;
1937         u32 flex_regs_len;
1938
1939         struct attribute_group sysfs_metric;
1940         struct attribute *attrs[2];
1941         struct device_attribute sysfs_metric_id;
1942
1943         atomic_t ref_count;
1944 };
1945
1946 struct i915_perf_stream;
1947
1948 /**
1949  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1950  */
1951 struct i915_perf_stream_ops {
1952         /**
1953          * @enable: Enables the collection of HW samples, either in response to
1954          * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1955          * without `I915_PERF_FLAG_DISABLED`.
1956          */
1957         void (*enable)(struct i915_perf_stream *stream);
1958
1959         /**
1960          * @disable: Disables the collection of HW samples, either in response
1961          * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1962          * the stream.
1963          */
1964         void (*disable)(struct i915_perf_stream *stream);
1965
1966         /**
1967          * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1968          * once there is something ready to read() for the stream
1969          */
1970         void (*poll_wait)(struct i915_perf_stream *stream,
1971                           struct file *file,
1972                           poll_table *wait);
1973
1974         /**
1975          * @wait_unlocked: For handling a blocking read, wait until there is
1976          * something to ready to read() for the stream. E.g. wait on the same
1977          * wait queue that would be passed to poll_wait().
1978          */
1979         int (*wait_unlocked)(struct i915_perf_stream *stream);
1980
1981         /**
1982          * @read: Copy buffered metrics as records to userspace
1983          * **buf**: the userspace, destination buffer
1984          * **count**: the number of bytes to copy, requested by userspace
1985          * **offset**: zero at the start of the read, updated as the read
1986          * proceeds, it represents how many bytes have been copied so far and
1987          * the buffer offset for copying the next record.
1988          *
1989          * Copy as many buffered i915 perf samples and records for this stream
1990          * to userspace as will fit in the given buffer.
1991          *
1992          * Only write complete records; returning -%ENOSPC if there isn't room
1993          * for a complete record.
1994          *
1995          * Return any error condition that results in a short read such as
1996          * -%ENOSPC or -%EFAULT, even though these may be squashed before
1997          * returning to userspace.
1998          */
1999         int (*read)(struct i915_perf_stream *stream,
2000                     char __user *buf,
2001                     size_t count,
2002                     size_t *offset);
2003
2004         /**
2005          * @destroy: Cleanup any stream specific resources.
2006          *
2007          * The stream will always be disabled before this is called.
2008          */
2009         void (*destroy)(struct i915_perf_stream *stream);
2010 };
2011
2012 /**
2013  * struct i915_perf_stream - state for a single open stream FD
2014  */
2015 struct i915_perf_stream {
2016         /**
2017          * @dev_priv: i915 drm device
2018          */
2019         struct drm_i915_private *dev_priv;
2020
2021         /**
2022          * @link: Links the stream into ``&drm_i915_private->streams``
2023          */
2024         struct list_head link;
2025
2026         /**
2027          * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2028          * properties given when opening a stream, representing the contents
2029          * of a single sample as read() by userspace.
2030          */
2031         u32 sample_flags;
2032
2033         /**
2034          * @sample_size: Considering the configured contents of a sample
2035          * combined with the required header size, this is the total size
2036          * of a single sample record.
2037          */
2038         int sample_size;
2039
2040         /**
2041          * @ctx: %NULL if measuring system-wide across all contexts or a
2042          * specific context that is being monitored.
2043          */
2044         struct i915_gem_context *ctx;
2045
2046         /**
2047          * @enabled: Whether the stream is currently enabled, considering
2048          * whether the stream was opened in a disabled state and based
2049          * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2050          */
2051         bool enabled;
2052
2053         /**
2054          * @ops: The callbacks providing the implementation of this specific
2055          * type of configured stream.
2056          */
2057         const struct i915_perf_stream_ops *ops;
2058
2059         /**
2060          * @oa_config: The OA configuration used by the stream.
2061          */
2062         struct i915_oa_config *oa_config;
2063 };
2064
2065 /**
2066  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2067  */
2068 struct i915_oa_ops {
2069         /**
2070          * @is_valid_b_counter_reg: Validates register's address for
2071          * programming boolean counters for a particular platform.
2072          */
2073         bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2074                                        u32 addr);
2075
2076         /**
2077          * @is_valid_mux_reg: Validates register's address for programming mux
2078          * for a particular platform.
2079          */
2080         bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2081
2082         /**
2083          * @is_valid_flex_reg: Validates register's address for programming
2084          * flex EU filtering for a particular platform.
2085          */
2086         bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2087
2088         /**
2089          * @init_oa_buffer: Resets the head and tail pointers of the
2090          * circular buffer for periodic OA reports.
2091          *
2092          * Called when first opening a stream for OA metrics, but also may be
2093          * called in response to an OA buffer overflow or other error
2094          * condition.
2095          *
2096          * Note it may be necessary to clear the full OA buffer here as part of
2097          * maintaining the invariable that new reports must be written to
2098          * zeroed memory for us to be able to reliable detect if an expected
2099          * report has not yet landed in memory.  (At least on Haswell the OA
2100          * buffer tail pointer is not synchronized with reports being visible
2101          * to the CPU)
2102          */
2103         void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2104
2105         /**
2106          * @enable_metric_set: Selects and applies any MUX configuration to set
2107          * up the Boolean and Custom (B/C) counters that are part of the
2108          * counter reports being sampled. May apply system constraints such as
2109          * disabling EU clock gating as required.
2110          */
2111         int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2112                                  const struct i915_oa_config *oa_config);
2113
2114         /**
2115          * @disable_metric_set: Remove system constraints associated with using
2116          * the OA unit.
2117          */
2118         void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2119
2120         /**
2121          * @oa_enable: Enable periodic sampling
2122          */
2123         void (*oa_enable)(struct drm_i915_private *dev_priv);
2124
2125         /**
2126          * @oa_disable: Disable periodic sampling
2127          */
2128         void (*oa_disable)(struct drm_i915_private *dev_priv);
2129
2130         /**
2131          * @read: Copy data from the circular OA buffer into a given userspace
2132          * buffer.
2133          */
2134         int (*read)(struct i915_perf_stream *stream,
2135                     char __user *buf,
2136                     size_t count,
2137                     size_t *offset);
2138
2139         /**
2140          * @oa_hw_tail_read: read the OA tail pointer register
2141          *
2142          * In particular this enables us to share all the fiddly code for
2143          * handling the OA unit tail pointer race that affects multiple
2144          * generations.
2145          */
2146         u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2147 };
2148
2149 struct intel_cdclk_state {
2150         unsigned int cdclk, vco, ref;
2151 };
2152
2153 struct drm_i915_private {
2154         struct drm_device drm;
2155
2156         struct kmem_cache *objects;
2157         struct kmem_cache *vmas;
2158         struct kmem_cache *luts;
2159         struct kmem_cache *requests;
2160         struct kmem_cache *dependencies;
2161         struct kmem_cache *priorities;
2162
2163         const struct intel_device_info info;
2164
2165         void __iomem *regs;
2166
2167         struct intel_uncore uncore;
2168
2169         struct mutex tlb_invalidate_lock;
2170
2171         struct i915_virtual_gpu vgpu;
2172
2173         struct intel_gvt *gvt;
2174
2175         struct intel_huc huc;
2176         struct intel_guc guc;
2177
2178         struct intel_csr csr;
2179
2180         struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2181
2182         /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2183          * controller on different i2c buses. */
2184         struct mutex gmbus_mutex;
2185
2186         /**
2187          * Base address of the gmbus and gpio block.
2188          */
2189         uint32_t gpio_mmio_base;
2190
2191         /* MMIO base address for MIPI regs */
2192         uint32_t mipi_mmio_base;
2193
2194         uint32_t psr_mmio_base;
2195
2196         uint32_t pps_mmio_base;
2197
2198         wait_queue_head_t gmbus_wait_queue;
2199
2200         struct pci_dev *bridge_dev;
2201         struct i915_gem_context *kernel_context;
2202         struct intel_engine_cs *engine[I915_NUM_ENGINES];
2203         struct i915_vma *semaphore;
2204
2205         struct drm_dma_handle *status_page_dmah;
2206         struct resource mch_res;
2207
2208         /* protects the irq masks */
2209         spinlock_t irq_lock;
2210
2211         bool display_irqs_enabled;
2212
2213         /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2214         struct pm_qos_request pm_qos;
2215
2216         /* Sideband mailbox protection */
2217         struct mutex sb_lock;
2218
2219         /** Cached value of IMR to avoid reads in updating the bitfield */
2220         union {
2221                 u32 irq_mask;
2222                 u32 de_irq_mask[I915_MAX_PIPES];
2223         };
2224         u32 gt_irq_mask;
2225         u32 pm_imr;
2226         u32 pm_ier;
2227         u32 pm_rps_events;
2228         u32 pm_guc_events;
2229         u32 pipestat_irq_mask[I915_MAX_PIPES];
2230
2231         struct i915_hotplug hotplug;
2232         struct intel_fbc fbc;
2233         struct i915_drrs drrs;
2234         struct intel_opregion opregion;
2235         struct intel_vbt_data vbt;
2236
2237         bool preserve_bios_swizzle;
2238
2239         /* overlay */
2240         struct intel_overlay *overlay;
2241
2242         /* backlight registers and fields in struct intel_panel */
2243         struct mutex backlight_lock;
2244
2245         /* LVDS info */
2246         bool no_aux_handshake;
2247
2248         /* protects panel power sequencer state */
2249         struct mutex pps_mutex;
2250
2251         struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2252         int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2253
2254         unsigned int fsb_freq, mem_freq, is_ddr3;
2255         unsigned int skl_preferred_vco_freq;
2256         unsigned int max_cdclk_freq;
2257
2258         unsigned int max_dotclk_freq;
2259         unsigned int rawclk_freq;
2260         unsigned int hpll_freq;
2261         unsigned int czclk_freq;
2262
2263         struct {
2264                 /*
2265                  * The current logical cdclk state.
2266                  * See intel_atomic_state.cdclk.logical
2267                  *
2268                  * For reading holding any crtc lock is sufficient,
2269                  * for writing must hold all of them.
2270                  */
2271                 struct intel_cdclk_state logical;
2272                 /*
2273                  * The current actual cdclk state.
2274                  * See intel_atomic_state.cdclk.actual
2275                  */
2276                 struct intel_cdclk_state actual;
2277                 /* The current hardware cdclk state */
2278                 struct intel_cdclk_state hw;
2279         } cdclk;
2280
2281         /**
2282          * wq - Driver workqueue for GEM.
2283          *
2284          * NOTE: Work items scheduled here are not allowed to grab any modeset
2285          * locks, for otherwise the flushing done in the pageflip code will
2286          * result in deadlocks.
2287          */
2288         struct workqueue_struct *wq;
2289
2290         /* Display functions */
2291         struct drm_i915_display_funcs display;
2292
2293         /* PCH chipset type */
2294         enum intel_pch pch_type;
2295         unsigned short pch_id;
2296
2297         unsigned long quirks;
2298
2299         struct drm_atomic_state *modeset_restore_state;
2300         struct drm_modeset_acquire_ctx reset_ctx;
2301
2302         struct list_head vm_list; /* Global list of all address spaces */
2303         struct i915_ggtt ggtt; /* VM representing the global address space */
2304
2305         struct i915_gem_mm mm;
2306         DECLARE_HASHTABLE(mm_structs, 7);
2307         struct mutex mm_lock;
2308
2309         /* Kernel Modesetting */
2310
2311         struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2312         struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2313
2314 #ifdef CONFIG_DEBUG_FS
2315         struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2316 #endif
2317
2318         /* dpll and cdclk state is protected by connection_mutex */
2319         int num_shared_dpll;
2320         struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2321         const struct intel_dpll_mgr *dpll_mgr;
2322
2323         /*
2324          * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2325          * Must be global rather than per dpll, because on some platforms
2326          * plls share registers.
2327          */
2328         struct mutex dpll_lock;
2329
2330         unsigned int active_crtcs;
2331         unsigned int min_pixclk[I915_MAX_PIPES];
2332
2333         int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2334
2335         struct i915_workarounds workarounds;
2336
2337         struct i915_frontbuffer_tracking fb_tracking;
2338
2339         struct intel_atomic_helper {
2340                 struct llist_head free_list;
2341                 struct work_struct free_work;
2342         } atomic_helper;
2343
2344         u16 orig_clock;
2345
2346         bool mchbar_need_disable;
2347
2348         struct intel_l3_parity l3_parity;
2349
2350         /* Cannot be determined by PCIID. You must always read a register. */
2351         u32 edram_cap;
2352
2353         /* gen6+ rps state */
2354         struct intel_gen6_power_mgmt rps;
2355
2356         /* ilk-only ips/rps state. Everything in here is protected by the global
2357          * mchdev_lock in intel_pm.c */
2358         struct intel_ilk_power_mgmt ips;
2359
2360         struct i915_power_domains power_domains;
2361
2362         struct i915_psr psr;
2363
2364         struct i915_gpu_error gpu_error;
2365
2366         struct drm_i915_gem_object *vlv_pctx;
2367
2368         /* list of fbdev register on this device */
2369         struct intel_fbdev *fbdev;
2370         struct work_struct fbdev_suspend_work;
2371
2372         struct drm_property *broadcast_rgb_property;
2373         struct drm_property *force_audio_property;
2374
2375         /* hda/i915 audio component */
2376         struct i915_audio_component *audio_component;
2377         bool audio_component_registered;
2378         /**
2379          * av_mutex - mutex for audio/video sync
2380          *
2381          */
2382         struct mutex av_mutex;
2383
2384         struct {
2385                 struct list_head list;
2386                 struct llist_head free_list;
2387                 struct work_struct free_work;
2388
2389                 /* The hw wants to have a stable context identifier for the
2390                  * lifetime of the context (for OA, PASID, faults, etc).
2391                  * This is limited in execlists to 21 bits.
2392                  */
2393                 struct ida hw_ida;
2394 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2395         } contexts;
2396
2397         u32 fdi_rx_config;
2398
2399         /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2400         u32 chv_phy_control;
2401         /*
2402          * Shadows for CHV DPLL_MD regs to keep the state
2403          * checker somewhat working in the presence hardware
2404          * crappiness (can't read out DPLL_MD for pipes B & C).
2405          */
2406         u32 chv_dpll_md[I915_MAX_PIPES];
2407         u32 bxt_phy_grc;
2408
2409         u32 suspend_count;
2410         bool suspended_to_idle;
2411         struct i915_suspend_saved_registers regfile;
2412         struct vlv_s0ix_state vlv_s0ix_state;
2413
2414         enum {
2415                 I915_SAGV_UNKNOWN = 0,
2416                 I915_SAGV_DISABLED,
2417                 I915_SAGV_ENABLED,
2418                 I915_SAGV_NOT_CONTROLLED
2419         } sagv_status;
2420
2421         struct {
2422                 /*
2423                  * Raw watermark latency values:
2424                  * in 0.1us units for WM0,
2425                  * in 0.5us units for WM1+.
2426                  */
2427                 /* primary */
2428                 uint16_t pri_latency[5];
2429                 /* sprite */
2430                 uint16_t spr_latency[5];
2431                 /* cursor */
2432                 uint16_t cur_latency[5];
2433                 /*
2434                  * Raw watermark memory latency values
2435                  * for SKL for all 8 levels
2436                  * in 1us units.
2437                  */
2438                 uint16_t skl_latency[8];
2439
2440                 /* current hardware state */
2441                 union {
2442                         struct ilk_wm_values hw;
2443                         struct skl_wm_values skl_hw;
2444                         struct vlv_wm_values vlv;
2445                         struct g4x_wm_values g4x;
2446                 };
2447
2448                 uint8_t max_level;
2449
2450                 /*
2451                  * Should be held around atomic WM register writing; also
2452                  * protects * intel_crtc->wm.active and
2453                  * cstate->wm.need_postvbl_update.
2454                  */
2455                 struct mutex wm_mutex;
2456
2457                 /*
2458                  * Set during HW readout of watermarks/DDB.  Some platforms
2459                  * need to know when we're still using BIOS-provided values
2460                  * (which we don't fully trust).
2461                  */
2462                 bool distrust_bios_wm;
2463         } wm;
2464
2465         struct i915_runtime_pm pm;
2466
2467         struct {
2468                 bool initialized;
2469
2470                 struct kobject *metrics_kobj;
2471                 struct ctl_table_header *sysctl_header;
2472
2473                 /*
2474                  * Lock associated with adding/modifying/removing OA configs
2475                  * in dev_priv->perf.metrics_idr.
2476                  */
2477                 struct mutex metrics_lock;
2478
2479                 /*
2480                  * List of dynamic configurations, you need to hold
2481                  * dev_priv->perf.metrics_lock to access it.
2482                  */
2483                 struct idr metrics_idr;
2484
2485                 /*
2486                  * Lock associated with anything below within this structure
2487                  * except exclusive_stream.
2488                  */
2489                 struct mutex lock;
2490                 struct list_head streams;
2491
2492                 struct {
2493                         /*
2494                          * The stream currently using the OA unit. If accessed
2495                          * outside a syscall associated to its file
2496                          * descriptor, you need to hold
2497                          * dev_priv->drm.struct_mutex.
2498                          */
2499                         struct i915_perf_stream *exclusive_stream;
2500
2501                         u32 specific_ctx_id;
2502
2503                         struct hrtimer poll_check_timer;
2504                         wait_queue_head_t poll_wq;
2505                         bool pollin;
2506
2507                         /**
2508                          * For rate limiting any notifications of spurious
2509                          * invalid OA reports
2510                          */
2511                         struct ratelimit_state spurious_report_rs;
2512
2513                         bool periodic;
2514                         int period_exponent;
2515                         int timestamp_frequency;
2516
2517                         struct i915_oa_config test_config;
2518
2519                         struct {
2520                                 struct i915_vma *vma;
2521                                 u8 *vaddr;
2522                                 u32 last_ctx_id;
2523                                 int format;
2524                                 int format_size;
2525
2526                                 /**
2527                                  * Locks reads and writes to all head/tail state
2528                                  *
2529                                  * Consider: the head and tail pointer state
2530                                  * needs to be read consistently from a hrtimer
2531                                  * callback (atomic context) and read() fop
2532                                  * (user context) with tail pointer updates
2533                                  * happening in atomic context and head updates
2534                                  * in user context and the (unlikely)
2535                                  * possibility of read() errors needing to
2536                                  * reset all head/tail state.
2537                                  *
2538                                  * Note: Contention or performance aren't
2539                                  * currently a significant concern here
2540                                  * considering the relatively low frequency of
2541                                  * hrtimer callbacks (5ms period) and that
2542                                  * reads typically only happen in response to a
2543                                  * hrtimer event and likely complete before the
2544                                  * next callback.
2545                                  *
2546                                  * Note: This lock is not held *while* reading
2547                                  * and copying data to userspace so the value
2548                                  * of head observed in htrimer callbacks won't
2549                                  * represent any partial consumption of data.
2550                                  */
2551                                 spinlock_t ptr_lock;
2552
2553                                 /**
2554                                  * One 'aging' tail pointer and one 'aged'
2555                                  * tail pointer ready to used for reading.
2556                                  *
2557                                  * Initial values of 0xffffffff are invalid
2558                                  * and imply that an update is required
2559                                  * (and should be ignored by an attempted
2560                                  * read)
2561                                  */
2562                                 struct {
2563                                         u32 offset;
2564                                 } tails[2];
2565
2566                                 /**
2567                                  * Index for the aged tail ready to read()
2568                                  * data up to.
2569                                  */
2570                                 unsigned int aged_tail_idx;
2571
2572                                 /**
2573                                  * A monotonic timestamp for when the current
2574                                  * aging tail pointer was read; used to
2575                                  * determine when it is old enough to trust.
2576                                  */
2577                                 u64 aging_timestamp;
2578
2579                                 /**
2580                                  * Although we can always read back the head
2581                                  * pointer register, we prefer to avoid
2582                                  * trusting the HW state, just to avoid any
2583                                  * risk that some hardware condition could
2584                                  * somehow bump the head pointer unpredictably
2585                                  * and cause us to forward the wrong OA buffer
2586                                  * data to userspace.
2587                                  */
2588                                 u32 head;
2589                         } oa_buffer;
2590
2591                         u32 gen7_latched_oastatus1;
2592                         u32 ctx_oactxctrl_offset;
2593                         u32 ctx_flexeu0_offset;
2594
2595                         /**
2596                          * The RPT_ID/reason field for Gen8+ includes a bit
2597                          * to determine if the CTX ID in the report is valid
2598                          * but the specific bit differs between Gen 8 and 9
2599                          */
2600                         u32 gen8_valid_ctx_bit;
2601
2602                         struct i915_oa_ops ops;
2603                         const struct i915_oa_format *oa_formats;
2604                 } oa;
2605         } perf;
2606
2607         /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2608         struct {
2609                 void (*resume)(struct drm_i915_private *);
2610                 void (*cleanup_engine)(struct intel_engine_cs *engine);
2611
2612                 struct list_head timelines;
2613                 struct i915_gem_timeline global_timeline;
2614                 u32 active_requests;
2615
2616                 /**
2617                  * Is the GPU currently considered idle, or busy executing
2618                  * userspace requests? Whilst idle, we allow runtime power
2619                  * management to power down the hardware and display clocks.
2620                  * In order to reduce the effect on performance, there
2621                  * is a slight delay before we do so.
2622                  */
2623                 bool awake;
2624
2625                 /**
2626                  * We leave the user IRQ off as much as possible,
2627                  * but this means that requests will finish and never
2628                  * be retired once the system goes idle. Set a timer to
2629                  * fire periodically while the ring is running. When it
2630                  * fires, go retire requests.
2631                  */
2632                 struct delayed_work retire_work;
2633
2634                 /**
2635                  * When we detect an idle GPU, we want to turn on
2636                  * powersaving features. So once we see that there
2637                  * are no more requests outstanding and no more
2638                  * arrive within a small period of time, we fire
2639                  * off the idle_work.
2640                  */
2641                 struct delayed_work idle_work;
2642
2643                 ktime_t last_init_time;
2644         } gt;
2645
2646         /* perform PHY state sanity checks? */
2647         bool chv_phy_assert[2];
2648
2649         bool ipc_enabled;
2650
2651         /* Used to save the pipe-to-encoder mapping for audio */
2652         struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2653
2654         /* necessary resource sharing with HDMI LPE audio driver. */
2655         struct {
2656                 struct platform_device *platdev;
2657                 int     irq;
2658         } lpe_audio;
2659
2660         /*
2661          * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2662          * will be rejected. Instead look for a better place.
2663          */
2664 };
2665
2666 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2667 {
2668         return container_of(dev, struct drm_i915_private, drm);
2669 }
2670
2671 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2672 {
2673         return to_i915(dev_get_drvdata(kdev));
2674 }
2675
2676 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2677 {
2678         return container_of(guc, struct drm_i915_private, guc);
2679 }
2680
2681 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2682 {
2683         return container_of(huc, struct drm_i915_private, huc);
2684 }
2685
2686 /* Simple iterator over all initialised engines */
2687 #define for_each_engine(engine__, dev_priv__, id__) \
2688         for ((id__) = 0; \
2689              (id__) < I915_NUM_ENGINES; \
2690              (id__)++) \
2691                 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2692
2693 /* Iterator over subset of engines selected by mask */
2694 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2695         for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2696              tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2697
2698 enum hdmi_force_audio {
2699         HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2700         HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2701         HDMI_AUDIO_AUTO,                /* trust EDID */
2702         HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2703 };
2704
2705 #define I915_GTT_OFFSET_NONE ((u32)-1)
2706
2707 /*
2708  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2709  * considered to be the frontbuffer for the given plane interface-wise. This
2710  * doesn't mean that the hw necessarily already scans it out, but that any
2711  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2712  *
2713  * We have one bit per pipe and per scanout plane type.
2714  */
2715 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2716 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2717 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2718         (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2719 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2720         (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2721 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2722         (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2723 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2724         (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2725 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2726         (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2727
2728 /*
2729  * Optimised SGL iterator for GEM objects
2730  */
2731 static __always_inline struct sgt_iter {
2732         struct scatterlist *sgp;
2733         union {
2734                 unsigned long pfn;
2735                 dma_addr_t dma;
2736         };
2737         unsigned int curr;
2738         unsigned int max;
2739 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2740         struct sgt_iter s = { .sgp = sgl };
2741
2742         if (s.sgp) {
2743                 s.max = s.curr = s.sgp->offset;
2744                 s.max += s.sgp->length;
2745                 if (dma)
2746                         s.dma = sg_dma_address(s.sgp);
2747                 else
2748                         s.pfn = page_to_pfn(sg_page(s.sgp));
2749         }
2750
2751         return s;
2752 }
2753
2754 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2755 {
2756         ++sg;
2757         if (unlikely(sg_is_chain(sg)))
2758                 sg = sg_chain_ptr(sg);
2759         return sg;
2760 }
2761
2762 /**
2763  * __sg_next - return the next scatterlist entry in a list
2764  * @sg:         The current sg entry
2765  *
2766  * Description:
2767  *   If the entry is the last, return NULL; otherwise, step to the next
2768  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2769  *   otherwise just return the pointer to the current element.
2770  **/
2771 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2772 {
2773 #ifdef CONFIG_DEBUG_SG
2774         BUG_ON(sg->sg_magic != SG_MAGIC);
2775 #endif
2776         return sg_is_last(sg) ? NULL : ____sg_next(sg);
2777 }
2778
2779 /**
2780  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2781  * @__dmap:     DMA address (output)
2782  * @__iter:     'struct sgt_iter' (iterator state, internal)
2783  * @__sgt:      sg_table to iterate over (input)
2784  */
2785 #define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2786         for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2787              ((__dmap) = (__iter).dma + (__iter).curr);                 \
2788              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2789              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2790
2791 /**
2792  * for_each_sgt_page - iterate over the pages of the given sg_table
2793  * @__pp:       page pointer (output)
2794  * @__iter:     'struct sgt_iter' (iterator state, internal)
2795  * @__sgt:      sg_table to iterate over (input)
2796  */
2797 #define for_each_sgt_page(__pp, __iter, __sgt)                          \
2798         for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2799              ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2800               pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2801              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2802              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2803
2804 static inline const struct intel_device_info *
2805 intel_info(const struct drm_i915_private *dev_priv)
2806 {
2807         return &dev_priv->info;
2808 }
2809
2810 #define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2811
2812 #define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2813 #define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2814
2815 #define REVID_FOREVER           0xff
2816 #define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2817
2818 #define GEN_FOREVER (0)
2819 /*
2820  * Returns true if Gen is in inclusive range [Start, End].
2821  *
2822  * Use GEN_FOREVER for unbound start and or end.
2823  */
2824 #define IS_GEN(dev_priv, s, e) ({ \
2825         unsigned int __s = (s), __e = (e); \
2826         BUILD_BUG_ON(!__builtin_constant_p(s)); \
2827         BUILD_BUG_ON(!__builtin_constant_p(e)); \
2828         if ((__s) != GEN_FOREVER) \
2829                 __s = (s) - 1; \
2830         if ((__e) == GEN_FOREVER) \
2831                 __e = BITS_PER_LONG - 1; \
2832         else \
2833                 __e = (e) - 1; \
2834         !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2835 })
2836
2837 /*
2838  * Return true if revision is in range [since,until] inclusive.
2839  *
2840  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2841  */
2842 #define IS_REVID(p, since, until) \
2843         (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2844
2845 #define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2846 #define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2847 #define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2848 #define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2849 #define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2850 #define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2851 #define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2852 #define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2853 #define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2854 #define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2855 #define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2856 #define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2857 #define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2858 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2859 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2860 #define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2861 #define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2862 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2863 #define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2864 #define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2865                                  INTEL_DEVID(dev_priv) == 0x0152 || \
2866                                  INTEL_DEVID(dev_priv) == 0x015a)
2867 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2868 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2869 #define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2870 #define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2871 #define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2872 #define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2873 #define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2874 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2875 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2876 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2877 #define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2878 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2879                                     (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2880 #define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2881                                  ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2882                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2883                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2884 /* ULX machines are also considered ULT. */
2885 #define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2886                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2887 #define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2888                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2889 #define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2890                                  (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2891 #define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2892                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2893 /* ULX machines are also considered ULT. */
2894 #define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2895                                  INTEL_DEVID(dev_priv) == 0x0A1E)
2896 #define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2897                                  INTEL_DEVID(dev_priv) == 0x1913 || \
2898                                  INTEL_DEVID(dev_priv) == 0x1916 || \
2899                                  INTEL_DEVID(dev_priv) == 0x1921 || \
2900                                  INTEL_DEVID(dev_priv) == 0x1926)
2901 #define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2902                                  INTEL_DEVID(dev_priv) == 0x1915 || \
2903                                  INTEL_DEVID(dev_priv) == 0x191E)
2904 #define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2905                                  INTEL_DEVID(dev_priv) == 0x5913 || \
2906                                  INTEL_DEVID(dev_priv) == 0x5916 || \
2907                                  INTEL_DEVID(dev_priv) == 0x5921 || \
2908                                  INTEL_DEVID(dev_priv) == 0x5926)
2909 #define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2910                                  INTEL_DEVID(dev_priv) == 0x5915 || \
2911                                  INTEL_DEVID(dev_priv) == 0x591E)
2912 #define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2913                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2914 #define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2915                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2916 #define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2917                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2918 #define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2919                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2920 #define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2921                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2922 #define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2923                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2924
2925 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2926
2927 #define SKL_REVID_A0            0x0
2928 #define SKL_REVID_B0            0x1
2929 #define SKL_REVID_C0            0x2
2930 #define SKL_REVID_D0            0x3
2931 #define SKL_REVID_E0            0x4
2932 #define SKL_REVID_F0            0x5
2933 #define SKL_REVID_G0            0x6
2934 #define SKL_REVID_H0            0x7
2935
2936 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2937
2938 #define BXT_REVID_A0            0x0
2939 #define BXT_REVID_A1            0x1
2940 #define BXT_REVID_B0            0x3
2941 #define BXT_REVID_B_LAST        0x8
2942 #define BXT_REVID_C0            0x9
2943
2944 #define IS_BXT_REVID(dev_priv, since, until) \
2945         (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2946
2947 #define KBL_REVID_A0            0x0
2948 #define KBL_REVID_B0            0x1
2949 #define KBL_REVID_C0            0x2
2950 #define KBL_REVID_D0            0x3
2951 #define KBL_REVID_E0            0x4
2952
2953 #define IS_KBL_REVID(dev_priv, since, until) \
2954         (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2955
2956 #define GLK_REVID_A0            0x0
2957 #define GLK_REVID_A1            0x1
2958
2959 #define IS_GLK_REVID(dev_priv, since, until) \
2960         (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2961
2962 #define CNL_REVID_A0            0x0
2963 #define CNL_REVID_B0            0x1
2964
2965 #define IS_CNL_REVID(p, since, until) \
2966         (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2967
2968 /*
2969  * The genX designation typically refers to the render engine, so render
2970  * capability related checks should use IS_GEN, while display and other checks
2971  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2972  * chips, etc.).
2973  */
2974 #define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2975 #define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2976 #define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2977 #define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2978 #define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2979 #define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2980 #define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2981 #define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2982 #define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2983
2984 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2985 #define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2986 #define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2987
2988 /*
2989  * The Gen7 cmdparser copies the scanned buffer to the ggtt for execution
2990  * All later gens can run the final buffer from the ppgtt
2991  */
2992 #define CMDPARSER_USES_GGTT(dev_priv) IS_GEN7(dev_priv)
2993
2994 #define ENGINE_MASK(id) BIT(id)
2995 #define RENDER_RING     ENGINE_MASK(RCS)
2996 #define BSD_RING        ENGINE_MASK(VCS)
2997 #define BLT_RING        ENGINE_MASK(BCS)
2998 #define VEBOX_RING      ENGINE_MASK(VECS)
2999 #define BSD2_RING       ENGINE_MASK(VCS2)
3000 #define ALL_ENGINES     (~0)
3001
3002 #define HAS_ENGINE(dev_priv, id) \
3003         (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3004
3005 #define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
3006 #define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
3007 #define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
3008 #define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
3009
3010 #define HAS_SECURE_BATCHES(dev_priv) (INTEL_GEN(dev_priv) < 6)
3011
3012 #define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
3013 #define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
3014 #define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3015 #define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
3016                                  IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3017
3018 #define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
3019
3020 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3021                 ((dev_priv)->info.has_logical_ring_contexts)
3022 #define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
3023 #define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
3024 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3025
3026 #define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
3027 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3028                 ((dev_priv)->info.overlay_needs_physical)
3029
3030 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3031 #define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
3032
3033 #define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)   \
3034         (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) == 9)
3035
3036 /* WaRsDisableCoarsePowerGating:skl,bxt */
3037 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3038         (INTEL_GEN(dev_priv) == 9)
3039
3040 /*
3041  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3042  * even when in MSI mode. This results in spurious interrupt warnings if the
3043  * legacy irq no. is shared with another device. The kernel then disables that
3044  * interrupt source and so prevents the other device from working properly.
3045  */
3046 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3047 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3048
3049 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3050  * rows, which changed the alignment requirements and fence programming.
3051  */
3052 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3053                                          !(IS_I915G(dev_priv) || \
3054                                          IS_I915GM(dev_priv)))
3055 #define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
3056 #define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
3057
3058 #define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
3059 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3060 #define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
3061 #define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3062
3063 #define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3064
3065 #define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
3066
3067 #define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
3068 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3069 #define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
3070 #define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
3071 #define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
3072
3073 #define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
3074
3075 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3076 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3077
3078 /*
3079  * For now, anything with a GuC requires uCode loading, and then supports
3080  * command submission once loaded. But these are logically independent
3081  * properties, so we have separate macros to test them.
3082  */
3083 #define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
3084 #define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
3085 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3086 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3087 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3088
3089 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3090
3091 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3092
3093 #define INTEL_PCH_DEVICE_ID_MASK                0xff80
3094 #define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
3095 #define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
3096 #define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
3097 #define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
3098 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
3099 #define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
3100 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
3101 #define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
3102 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
3103 #define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
3104 #define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
3105 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
3106 #define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
3107 #define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
3108 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
3109
3110 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3111 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3112 #define HAS_PCH_CNP_LP(dev_priv) \
3113         ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3114 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3115 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3116 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3117 #define HAS_PCH_LPT_LP(dev_priv) \
3118         ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3119          (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3120 #define HAS_PCH_LPT_H(dev_priv) \
3121         ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3122          (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3123 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3124 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3125 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3126 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3127
3128 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3129
3130 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3131
3132 /* DPF == dynamic parity feature */
3133 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3134 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3135                                  2 : HAS_L3_DPF(dev_priv))
3136
3137 #define GT_FREQUENCY_MULTIPLIER 50
3138 #define GEN9_FREQ_SCALER 3
3139
3140 #include "i915_trace.h"
3141
3142 static inline bool intel_vtd_active(void)
3143 {
3144 #ifdef CONFIG_INTEL_IOMMU
3145         if (intel_iommu_gfx_mapped)
3146                 return true;
3147 #endif
3148
3149         /* Running as a guest, we assume the host is enforcing VT'd */
3150         return !hypervisor_is_type(X86_HYPER_NATIVE);
3151 }
3152
3153 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3154 {
3155         return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3156 }
3157
3158 static inline bool
3159 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3160 {
3161         return IS_BROXTON(dev_priv) && intel_vtd_active();
3162 }
3163
3164 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3165                                 int enable_ppgtt);
3166
3167 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3168
3169 /* i915_drv.c */
3170 void __printf(3, 4)
3171 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3172               const char *fmt, ...);
3173
3174 #define i915_report_error(dev_priv, fmt, ...)                              \
3175         __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3176
3177 #ifdef CONFIG_COMPAT
3178 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3179                               unsigned long arg);
3180 #else
3181 #define i915_compat_ioctl NULL
3182 #endif
3183 extern const struct dev_pm_ops i915_pm_ops;
3184
3185 extern int i915_driver_load(struct pci_dev *pdev,
3186                             const struct pci_device_id *ent);
3187 extern void i915_driver_unload(struct drm_device *dev);
3188 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3189 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3190
3191 #define I915_RESET_QUIET BIT(0)
3192 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3193 extern int i915_reset_engine(struct intel_engine_cs *engine,
3194                              unsigned int flags);
3195
3196 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3197 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3198 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3199 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3200 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3201 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3202 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3203 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3204 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3205
3206 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3207 int intel_engines_init(struct drm_i915_private *dev_priv);
3208
3209 /* intel_hotplug.c */
3210 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3211                            u32 pin_mask, u32 long_mask);
3212 void intel_hpd_init(struct drm_i915_private *dev_priv);
3213 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3214 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3215 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3216 enum hpd_pin intel_hpd_pin(enum port port);
3217 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3218 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3219
3220 /* i915_irq.c */
3221 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3222 {
3223         unsigned long delay;
3224
3225         if (unlikely(!i915.enable_hangcheck))
3226                 return;
3227
3228         /* Don't continually defer the hangcheck so that it is always run at
3229          * least once after work has been scheduled on any ring. Otherwise,
3230          * we will ignore a hung ring if a second ring is kept busy.
3231          */
3232
3233         delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3234         queue_delayed_work(system_long_wq,
3235                            &dev_priv->gpu_error.hangcheck_work, delay);
3236 }
3237
3238 __printf(3, 4)
3239 void i915_handle_error(struct drm_i915_private *dev_priv,
3240                        u32 engine_mask,
3241                        const char *fmt, ...);
3242
3243 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3244 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3245 int intel_irq_install(struct drm_i915_private *dev_priv);
3246 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3247
3248 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3249 {
3250         return dev_priv->gvt;
3251 }
3252
3253 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3254 {
3255         return dev_priv->vgpu.active;
3256 }
3257
3258 void
3259 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3260                      u32 status_mask);
3261
3262 void
3263 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3264                       u32 status_mask);
3265
3266 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3267 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3268 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3269                                    uint32_t mask,
3270                                    uint32_t bits);
3271 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3272                             uint32_t interrupt_mask,
3273                             uint32_t enabled_irq_mask);
3274 static inline void
3275 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3276 {
3277         ilk_update_display_irq(dev_priv, bits, bits);
3278 }
3279 static inline void
3280 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3281 {
3282         ilk_update_display_irq(dev_priv, bits, 0);
3283 }
3284 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3285                          enum pipe pipe,
3286                          uint32_t interrupt_mask,
3287                          uint32_t enabled_irq_mask);
3288 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3289                                        enum pipe pipe, uint32_t bits)
3290 {
3291         bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3292 }
3293 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3294                                         enum pipe pipe, uint32_t bits)
3295 {
3296         bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3297 }
3298 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3299                                   uint32_t interrupt_mask,
3300                                   uint32_t enabled_irq_mask);
3301 static inline void
3302 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3303 {
3304         ibx_display_interrupt_update(dev_priv, bits, bits);
3305 }
3306 static inline void
3307 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3308 {
3309         ibx_display_interrupt_update(dev_priv, bits, 0);
3310 }
3311
3312 /* i915_gem.c */
3313 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3314                           struct drm_file *file_priv);
3315 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3316                          struct drm_file *file_priv);
3317 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3318                           struct drm_file *file_priv);
3319 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3320                         struct drm_file *file_priv);
3321 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3322                         struct drm_file *file_priv);
3323 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3324                               struct drm_file *file_priv);
3325 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3326                              struct drm_file *file_priv);
3327 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3328                         struct drm_file *file_priv);
3329 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3330                          struct drm_file *file_priv);
3331 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3332                         struct drm_file *file_priv);
3333 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3334                                struct drm_file *file);
3335 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3336                                struct drm_file *file);
3337 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3338                             struct drm_file *file_priv);
3339 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3340                            struct drm_file *file_priv);
3341 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3342                               struct drm_file *file_priv);
3343 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3344                               struct drm_file *file_priv);
3345 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3346 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3347 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3348                            struct drm_file *file);
3349 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3350                                 struct drm_file *file_priv);
3351 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3352                         struct drm_file *file_priv);
3353 void i915_gem_sanitize(struct drm_i915_private *i915);
3354 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3355 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3356 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3357 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3358 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3359
3360 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3361 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3362 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3363                          const struct drm_i915_gem_object_ops *ops);
3364 struct drm_i915_gem_object *
3365 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3366 struct drm_i915_gem_object *
3367 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3368                                  const void *data, size_t size);
3369 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3370 void i915_gem_free_object(struct drm_gem_object *obj);
3371
3372 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3373 {
3374         /* A single pass should suffice to release all the freed objects (along
3375          * most call paths) , but be a little more paranoid in that freeing
3376          * the objects does take a little amount of time, during which the rcu
3377          * callbacks could have added new objects into the freed list, and
3378          * armed the work again.
3379          */
3380         do {
3381                 rcu_barrier();
3382         } while (flush_work(&i915->mm.free_work));
3383 }
3384
3385 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3386 {
3387         /*
3388          * Similar to objects above (see i915_gem_drain_freed-objects), in
3389          * general we have workers that are armed by RCU and then rearm
3390          * themselves in their callbacks. To be paranoid, we need to
3391          * drain the workqueue a second time after waiting for the RCU
3392          * grace period so that we catch work queued via RCU from the first
3393          * pass. As neither drain_workqueue() nor flush_workqueue() report
3394          * a result, we make an assumption that we only don't require more
3395          * than 2 passes to catch all recursive RCU delayed work.
3396          *
3397          */
3398         int pass = 2;
3399         do {
3400                 rcu_barrier();
3401                 drain_workqueue(i915->wq);
3402         } while (--pass);
3403 }
3404
3405 struct i915_vma * __must_check
3406 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3407                          const struct i915_ggtt_view *view,
3408                          u64 size,
3409                          u64 alignment,
3410                          u64 flags);
3411
3412 struct i915_vma * __must_check
3413 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3414                     struct i915_address_space *vm,
3415                     const struct i915_ggtt_view *view,
3416                     u64 size,
3417                     u64 alignment,
3418                     u64 flags);
3419
3420 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3421 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3422
3423 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3424
3425 static inline int __sg_page_count(const struct scatterlist *sg)
3426 {
3427         return sg->length >> PAGE_SHIFT;
3428 }
3429
3430 struct scatterlist *
3431 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3432                        unsigned int n, unsigned int *offset);
3433
3434 struct page *
3435 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3436                          unsigned int n);
3437
3438 struct page *
3439 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3440                                unsigned int n);
3441
3442 dma_addr_t
3443 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3444                                 unsigned long n);
3445
3446 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3447                                  struct sg_table *pages);
3448 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3449
3450 static inline int __must_check
3451 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3452 {
3453         might_lock(&obj->mm.lock);
3454
3455         if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3456                 return 0;
3457
3458         return __i915_gem_object_get_pages(obj);
3459 }
3460
3461 static inline void
3462 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3463 {
3464         GEM_BUG_ON(!obj->mm.pages);
3465
3466         atomic_inc(&obj->mm.pages_pin_count);
3467 }
3468
3469 static inline bool
3470 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3471 {
3472         return atomic_read(&obj->mm.pages_pin_count);
3473 }
3474
3475 static inline void
3476 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3477 {
3478         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3479         GEM_BUG_ON(!obj->mm.pages);
3480
3481         atomic_dec(&obj->mm.pages_pin_count);
3482 }
3483
3484 static inline void
3485 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3486 {
3487         __i915_gem_object_unpin_pages(obj);
3488 }
3489
3490 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3491         I915_MM_NORMAL = 0,
3492         I915_MM_SHRINKER
3493 };
3494
3495 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3496                                  enum i915_mm_subclass subclass);
3497 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3498
3499 enum i915_map_type {
3500         I915_MAP_WB = 0,
3501         I915_MAP_WC,
3502 #define I915_MAP_OVERRIDE BIT(31)
3503         I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3504         I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3505 };
3506
3507 /**
3508  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3509  * @obj: the object to map into kernel address space
3510  * @type: the type of mapping, used to select pgprot_t
3511  *
3512  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3513  * pages and then returns a contiguous mapping of the backing storage into
3514  * the kernel address space. Based on the @type of mapping, the PTE will be
3515  * set to either WriteBack or WriteCombine (via pgprot_t).
3516  *
3517  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3518  * mapping is no longer required.
3519  *
3520  * Returns the pointer through which to access the mapped object, or an
3521  * ERR_PTR() on error.
3522  */
3523 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3524                                            enum i915_map_type type);
3525
3526 /**
3527  * i915_gem_object_unpin_map - releases an earlier mapping
3528  * @obj: the object to unmap
3529  *
3530  * After pinning the object and mapping its pages, once you are finished
3531  * with your access, call i915_gem_object_unpin_map() to release the pin
3532  * upon the mapping. Once the pin count reaches zero, that mapping may be
3533  * removed.
3534  */
3535 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3536 {
3537         i915_gem_object_unpin_pages(obj);
3538 }
3539
3540 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3541                                     unsigned int *needs_clflush);
3542 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3543                                      unsigned int *needs_clflush);
3544 #define CLFLUSH_BEFORE  BIT(0)
3545 #define CLFLUSH_AFTER   BIT(1)
3546 #define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3547
3548 static inline void
3549 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3550 {
3551         i915_gem_object_unpin_pages(obj);
3552 }
3553
3554 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3555 void i915_vma_move_to_active(struct i915_vma *vma,
3556                              struct drm_i915_gem_request *req,
3557                              unsigned int flags);
3558 int i915_gem_dumb_create(struct drm_file *file_priv,
3559                          struct drm_device *dev,
3560                          struct drm_mode_create_dumb *args);
3561 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3562                       uint32_t handle, uint64_t *offset);
3563 int i915_gem_mmap_gtt_version(void);
3564
3565 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3566                        struct drm_i915_gem_object *new,
3567                        unsigned frontbuffer_bits);
3568
3569 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3570
3571 struct drm_i915_gem_request *
3572 i915_gem_find_active_request(struct intel_engine_cs *engine);
3573
3574 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3575
3576 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3577 {
3578         return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3579 }
3580
3581 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3582 {
3583         return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3584 }
3585
3586 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3587 {
3588         return unlikely(test_bit(I915_WEDGED, &error->flags));
3589 }
3590
3591 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3592 {
3593         return i915_reset_backoff(error) | i915_terminally_wedged(error);
3594 }
3595
3596 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3597 {
3598         return READ_ONCE(error->reset_count);
3599 }
3600
3601 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3602                                           struct intel_engine_cs *engine)
3603 {
3604         return READ_ONCE(error->reset_engine_count[engine->id]);
3605 }
3606
3607 struct drm_i915_gem_request *
3608 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3609 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3610 void i915_gem_reset(struct drm_i915_private *dev_priv);
3611 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3612 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3613 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3614 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3615 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3616                            struct drm_i915_gem_request *request);
3617
3618 void i915_gem_init_mmio(struct drm_i915_private *i915);
3619 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3620 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3621 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3622 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3623 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3624                            unsigned int flags);
3625 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3626 void i915_gem_resume(struct drm_i915_private *dev_priv);
3627 int i915_gem_fault(struct vm_fault *vmf);
3628 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3629                          unsigned int flags,
3630                          long timeout,
3631                          struct intel_rps_client *rps);
3632 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3633                                   unsigned int flags,
3634                                   int priority);
3635 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3636
3637 int __must_check
3638 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3639 int __must_check
3640 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3641 int __must_check
3642 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3643 struct i915_vma * __must_check
3644 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3645                                      u32 alignment,
3646                                      const struct i915_ggtt_view *view);
3647 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3648 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3649                                 int align);
3650 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3651 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3652
3653 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3654                                     enum i915_cache_level cache_level);
3655
3656 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3657                                 struct dma_buf *dma_buf);
3658
3659 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3660                                 struct drm_gem_object *gem_obj, int flags);
3661
3662 static inline struct i915_hw_ppgtt *
3663 i915_vm_to_ppgtt(struct i915_address_space *vm)
3664 {
3665         return container_of(vm, struct i915_hw_ppgtt, base);
3666 }
3667
3668 /* i915_gem_fence_reg.c */
3669 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3670 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3671
3672 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3673 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3674
3675 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3676 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3677                                        struct sg_table *pages);
3678 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3679                                          struct sg_table *pages);
3680
3681 static inline struct i915_gem_context *
3682 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3683 {
3684         return idr_find(&file_priv->context_idr, id);
3685 }
3686
3687 static inline struct i915_gem_context *
3688 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3689 {
3690         struct i915_gem_context *ctx;
3691
3692         rcu_read_lock();
3693         ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3694         if (ctx && !kref_get_unless_zero(&ctx->ref))
3695                 ctx = NULL;
3696         rcu_read_unlock();
3697
3698         return ctx;
3699 }
3700
3701 static inline struct intel_timeline *
3702 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3703                                  struct intel_engine_cs *engine)
3704 {
3705         struct i915_address_space *vm;
3706
3707         vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3708         return &vm->timeline.engine[engine->id];
3709 }
3710
3711 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3712                          struct drm_file *file);
3713 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3714                                struct drm_file *file);
3715 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3716                                   struct drm_file *file);
3717 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3718                             struct i915_gem_context *ctx,
3719                             uint32_t *reg_state);
3720
3721 /* i915_gem_evict.c */
3722 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3723                                           u64 min_size, u64 alignment,
3724                                           unsigned cache_level,
3725                                           u64 start, u64 end,
3726                                           unsigned flags);
3727 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3728                                          struct drm_mm_node *node,
3729                                          unsigned int flags);
3730 int i915_gem_evict_vm(struct i915_address_space *vm);
3731
3732 /* belongs in i915_gem_gtt.h */
3733 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3734 {
3735         wmb();
3736         if (INTEL_GEN(dev_priv) < 6)
3737                 intel_gtt_chipset_flush();
3738 }
3739
3740 /* i915_gem_stolen.c */
3741 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3742                                 struct drm_mm_node *node, u64 size,
3743                                 unsigned alignment);
3744 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3745                                          struct drm_mm_node *node, u64 size,
3746                                          unsigned alignment, u64 start,
3747                                          u64 end);
3748 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3749                                  struct drm_mm_node *node);
3750 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3751 void i915_gem_cleanup_stolen(struct drm_device *dev);
3752 struct drm_i915_gem_object *
3753 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3754 struct drm_i915_gem_object *
3755 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3756                                                u32 stolen_offset,
3757                                                u32 gtt_offset,
3758                                                u32 size);
3759
3760 /* i915_gem_internal.c */
3761 struct drm_i915_gem_object *
3762 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3763                                 phys_addr_t size);
3764
3765 /* i915_gem_shrinker.c */
3766 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3767                               unsigned long target,
3768                               unsigned long *nr_scanned,
3769                               unsigned flags);
3770 #define I915_SHRINK_PURGEABLE 0x1
3771 #define I915_SHRINK_UNBOUND 0x2
3772 #define I915_SHRINK_BOUND 0x4
3773 #define I915_SHRINK_ACTIVE 0x8
3774 #define I915_SHRINK_VMAPS 0x10
3775 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3776 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3777 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3778
3779
3780 /* i915_gem_tiling.c */
3781 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3782 {
3783         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3784
3785         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3786                 i915_gem_object_is_tiled(obj);
3787 }
3788
3789 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3790                         unsigned int tiling, unsigned int stride);
3791 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3792                              unsigned int tiling, unsigned int stride);
3793
3794 /* i915_debugfs.c */
3795 #ifdef CONFIG_DEBUG_FS
3796 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3797 int i915_debugfs_connector_add(struct drm_connector *connector);
3798 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3799 #else
3800 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3801 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3802 { return 0; }
3803 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3804 #endif
3805
3806 /* i915_gpu_error.c */
3807 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3808
3809 __printf(2, 3)
3810 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3811 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3812                             const struct i915_gpu_state *gpu);
3813 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3814                               struct drm_i915_private *i915,
3815                               size_t count, loff_t pos);
3816 static inline void i915_error_state_buf_release(
3817         struct drm_i915_error_state_buf *eb)
3818 {
3819         kfree(eb->buf);
3820 }
3821
3822 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3823 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3824                               u32 engine_mask,
3825                               const char *error_msg);
3826
3827 static inline struct i915_gpu_state *
3828 i915_gpu_state_get(struct i915_gpu_state *gpu)
3829 {
3830         kref_get(&gpu->ref);
3831         return gpu;
3832 }
3833
3834 void __i915_gpu_state_free(struct kref *kref);
3835 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3836 {
3837         if (gpu)
3838                 kref_put(&gpu->ref, __i915_gpu_state_free);
3839 }
3840
3841 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3842 void i915_reset_error_state(struct drm_i915_private *i915);
3843
3844 #else
3845
3846 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3847                                             u32 engine_mask,
3848                                             const char *error_msg)
3849 {
3850 }
3851
3852 static inline struct i915_gpu_state *
3853 i915_first_error_state(struct drm_i915_private *i915)
3854 {
3855         return NULL;
3856 }
3857
3858 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3859 {
3860 }
3861
3862 #endif
3863
3864 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3865
3866 /* i915_cmd_parser.c */
3867 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3868 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3869 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3870 int intel_engine_cmd_parser(struct i915_gem_context *cxt,
3871                             struct intel_engine_cs *engine,
3872                             struct drm_i915_gem_object *batch_obj,
3873                             u64 user_batch_start,
3874                             u32 batch_start_offset,
3875                             u32 batch_len,
3876                             struct drm_i915_gem_object *shadow_batch_obj,
3877                             u64 shadow_batch_start);
3878
3879 /* i915_perf.c */
3880 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3881 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3882 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3883 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3884
3885 /* i915_suspend.c */
3886 extern int i915_save_state(struct drm_i915_private *dev_priv);
3887 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3888
3889 /* i915_sysfs.c */
3890 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3891 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3892
3893 /* intel_lpe_audio.c */
3894 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3895 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3896 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3897 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3898                             enum pipe pipe, enum port port,
3899                             const void *eld, int ls_clock, bool dp_output);
3900
3901 /* intel_i2c.c */
3902 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3903 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3904 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3905                                      unsigned int pin);
3906
3907 extern struct i2c_adapter *
3908 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3909 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3910 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3911 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3912 {
3913         return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3914 }
3915 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3916
3917 /* intel_bios.c */
3918 void intel_bios_init(struct drm_i915_private *dev_priv);
3919 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3920 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3921 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3922 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3923 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3924 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3925 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3926 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3927                                      enum port port);
3928 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3929                                 enum port port);
3930
3931
3932 /* intel_opregion.c */
3933 #ifdef CONFIG_ACPI
3934 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3935 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3936 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3937 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3938 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3939                                          bool enable);
3940 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3941                                          pci_power_t state);
3942 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3943 #else
3944 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3945 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3946 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3947 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3948 {
3949 }
3950 static inline int
3951 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3952 {
3953         return 0;
3954 }
3955 static inline int
3956 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3957 {
3958         return 0;
3959 }
3960 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3961 {
3962         return -ENODEV;
3963 }
3964 #endif
3965
3966 /* intel_acpi.c */
3967 #ifdef CONFIG_ACPI
3968 extern void intel_register_dsm_handler(void);
3969 extern void intel_unregister_dsm_handler(void);
3970 #else
3971 static inline void intel_register_dsm_handler(void) { return; }
3972 static inline void intel_unregister_dsm_handler(void) { return; }
3973 #endif /* CONFIG_ACPI */
3974
3975 /* intel_device_info.c */
3976 static inline struct intel_device_info *
3977 mkwrite_device_info(struct drm_i915_private *dev_priv)
3978 {
3979         return (struct intel_device_info *)&dev_priv->info;
3980 }
3981
3982 const char *intel_platform_name(enum intel_platform platform);
3983 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3984 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3985
3986 /* modesetting */
3987 extern void intel_modeset_init_hw(struct drm_device *dev);
3988 extern int intel_modeset_init(struct drm_device *dev);
3989 extern void intel_modeset_gem_init(struct drm_device *dev);
3990 extern void intel_modeset_cleanup(struct drm_device *dev);
3991 extern int intel_connector_register(struct drm_connector *);
3992 extern void intel_connector_unregister(struct drm_connector *);
3993 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3994                                        bool state);
3995 extern void intel_display_resume(struct drm_device *dev);
3996 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3997 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3998 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3999 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4000 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4001 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4002                                   bool enable);
4003
4004 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4005                         struct drm_file *file);
4006
4007 /* overlay */
4008 extern struct intel_overlay_error_state *
4009 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4010 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4011                                             struct intel_overlay_error_state *error);
4012
4013 extern struct intel_display_error_state *
4014 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4015 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4016                                             struct intel_display_error_state *error);
4017
4018 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4019 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
4020                                     u32 val, int timeout_us);
4021 #define sandybridge_pcode_write(dev_priv, mbox, val)    \
4022         sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500)
4023
4024 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4025                       u32 reply_mask, u32 reply, int timeout_base_ms);
4026
4027 /* intel_sideband.c */
4028 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4029 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4030 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4031 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4032 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4033 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4034 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4035 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4036 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4037 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4038 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4039 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4040 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4041 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4042                    enum intel_sbi_destination destination);
4043 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4044                      enum intel_sbi_destination destination);
4045 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4046 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4047
4048 /* intel_dpio_phy.c */
4049 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4050                              enum dpio_phy *phy, enum dpio_channel *ch);
4051 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4052                                   enum port port, u32 margin, u32 scale,
4053                                   u32 enable, u32 deemphasis);
4054 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4055 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4056 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4057                             enum dpio_phy phy);
4058 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4059                               enum dpio_phy phy);
4060 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4061                                              uint8_t lane_count);
4062 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4063                                      uint8_t lane_lat_optim_mask);
4064 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4065
4066 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4067                               u32 deemph_reg_value, u32 margin_reg_value,
4068                               bool uniq_trans_scale);
4069 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4070                               bool reset);
4071 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4072 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4073 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4074 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4075
4076 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4077                               u32 demph_reg_value, u32 preemph_reg_value,
4078                               u32 uniqtranscale_reg_value, u32 tx3_demph);
4079 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4080 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4081 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4082
4083 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4084 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4085 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4086                            const i915_reg_t reg);
4087
4088 #define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4089 #define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4090
4091 #define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4092 #define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4093 #define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4094 #define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4095
4096 #define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4097 #define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4098 #define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4099 #define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4100
4101 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4102  * will be implemented using 2 32-bit writes in an arbitrary order with
4103  * an arbitrary delay between them. This can cause the hardware to
4104  * act upon the intermediate value, possibly leading to corruption and
4105  * machine death. For this reason we do not support I915_WRITE64, or
4106  * dev_priv->uncore.funcs.mmio_writeq.
4107  *
4108  * When reading a 64-bit value as two 32-bit values, the delay may cause
4109  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4110  * occasionally a 64-bit register does not actualy support a full readq
4111  * and must be read using two 32-bit reads.
4112  *
4113  * You have been warned.
4114  */
4115 #define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4116
4117 #define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
4118         u32 upper, lower, old_upper, loop = 0;                          \
4119         upper = I915_READ(upper_reg);                                   \
4120         do {                                                            \
4121                 old_upper = upper;                                      \
4122                 lower = I915_READ(lower_reg);                           \
4123                 upper = I915_READ(upper_reg);                           \
4124         } while (upper != old_upper && loop++ < 2);                     \
4125         (u64)upper << 32 | lower; })
4126
4127 #define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
4128 #define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
4129
4130 #define __raw_read(x, s) \
4131 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4132                                              i915_reg_t reg) \
4133 { \
4134         return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4135 }
4136
4137 #define __raw_write(x, s) \
4138 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4139                                        i915_reg_t reg, uint##x##_t val) \
4140 { \
4141         write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4142 }
4143 __raw_read(8, b)
4144 __raw_read(16, w)
4145 __raw_read(32, l)
4146 __raw_read(64, q)
4147
4148 __raw_write(8, b)
4149 __raw_write(16, w)
4150 __raw_write(32, l)
4151 __raw_write(64, q)
4152
4153 #undef __raw_read
4154 #undef __raw_write
4155
4156 /* These are untraced mmio-accessors that are only valid to be used inside
4157  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4158  * controlled.
4159  *
4160  * Think twice, and think again, before using these.
4161  *
4162  * As an example, these accessors can possibly be used between:
4163  *
4164  * spin_lock_irq(&dev_priv->uncore.lock);
4165  * intel_uncore_forcewake_get__locked();
4166  *
4167  * and
4168  *
4169  * intel_uncore_forcewake_put__locked();
4170  * spin_unlock_irq(&dev_priv->uncore.lock);
4171  *
4172  *
4173  * Note: some registers may not need forcewake held, so
4174  * intel_uncore_forcewake_{get,put} can be omitted, see
4175  * intel_uncore_forcewake_for_reg().
4176  *
4177  * Certain architectures will die if the same cacheline is concurrently accessed
4178  * by different clients (e.g. on Ivybridge). Access to registers should
4179  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4180  * a more localised lock guarding all access to that bank of registers.
4181  */
4182 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4183 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4184 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4185 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4186
4187 /* "Broadcast RGB" property */
4188 #define INTEL_BROADCAST_RGB_AUTO 0
4189 #define INTEL_BROADCAST_RGB_FULL 1
4190 #define INTEL_BROADCAST_RGB_LIMITED 2
4191
4192 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4193 {
4194         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4195                 return VLV_VGACNTRL;
4196         else if (INTEL_GEN(dev_priv) >= 5)
4197                 return CPU_VGACNTRL;
4198         else
4199                 return VGACNTRL;
4200 }
4201
4202 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4203 {
4204         unsigned long j = msecs_to_jiffies(m);
4205
4206         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4207 }
4208
4209 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4210 {
4211         /* nsecs_to_jiffies64() does not guard against overflow */
4212         if (NSEC_PER_SEC % HZ &&
4213             div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4214                 return MAX_JIFFY_OFFSET;
4215
4216         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4217 }
4218
4219 static inline unsigned long
4220 timespec_to_jiffies_timeout(const struct timespec *value)
4221 {
4222         unsigned long j = timespec_to_jiffies(value);
4223
4224         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4225 }
4226
4227 /*
4228  * If you need to wait X milliseconds between events A and B, but event B
4229  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4230  * when event A happened, then just before event B you call this function and
4231  * pass the timestamp as the first argument, and X as the second argument.
4232  */
4233 static inline void
4234 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4235 {
4236         unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4237
4238         /*
4239          * Don't re-read the value of "jiffies" every time since it may change
4240          * behind our back and break the math.
4241          */
4242         tmp_jiffies = jiffies;
4243         target_jiffies = timestamp_jiffies +
4244                          msecs_to_jiffies_timeout(to_wait_ms);
4245
4246         if (time_after(target_jiffies, tmp_jiffies)) {
4247                 remaining_jiffies = target_jiffies - tmp_jiffies;
4248                 while (remaining_jiffies)
4249                         remaining_jiffies =
4250                             schedule_timeout_uninterruptible(remaining_jiffies);
4251         }
4252 }
4253
4254 static inline bool
4255 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4256 {
4257         struct intel_engine_cs *engine = req->engine;
4258         u32 seqno;
4259
4260         /* Note that the engine may have wrapped around the seqno, and
4261          * so our request->global_seqno will be ahead of the hardware,
4262          * even though it completed the request before wrapping. We catch
4263          * this by kicking all the waiters before resetting the seqno
4264          * in hardware, and also signal the fence.
4265          */
4266         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4267                 return true;
4268
4269         /* The request was dequeued before we were awoken. We check after
4270          * inspecting the hw to confirm that this was the same request
4271          * that generated the HWS update. The memory barriers within
4272          * the request execution are sufficient to ensure that a check
4273          * after reading the value from hw matches this request.
4274          */
4275         seqno = i915_gem_request_global_seqno(req);
4276         if (!seqno)
4277                 return false;
4278
4279         /* Before we do the heavier coherent read of the seqno,
4280          * check the value (hopefully) in the CPU cacheline.
4281          */
4282         if (__i915_gem_request_completed(req, seqno))
4283                 return true;
4284
4285         /* Ensure our read of the seqno is coherent so that we
4286          * do not "miss an interrupt" (i.e. if this is the last
4287          * request and the seqno write from the GPU is not visible
4288          * by the time the interrupt fires, we will see that the
4289          * request is incomplete and go back to sleep awaiting
4290          * another interrupt that will never come.)
4291          *
4292          * Strictly, we only need to do this once after an interrupt,
4293          * but it is easier and safer to do it every time the waiter
4294          * is woken.
4295          */
4296         if (engine->irq_seqno_barrier &&
4297             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4298                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4299
4300                 /* The ordering of irq_posted versus applying the barrier
4301                  * is crucial. The clearing of the current irq_posted must
4302                  * be visible before we perform the barrier operation,
4303                  * such that if a subsequent interrupt arrives, irq_posted
4304                  * is reasserted and our task rewoken (which causes us to
4305                  * do another __i915_request_irq_complete() immediately
4306                  * and reapply the barrier). Conversely, if the clear
4307                  * occurs after the barrier, then an interrupt that arrived
4308                  * whilst we waited on the barrier would not trigger a
4309                  * barrier on the next pass, and the read may not see the
4310                  * seqno update.
4311                  */
4312                 engine->irq_seqno_barrier(engine);
4313
4314                 /* If we consume the irq, but we are no longer the bottom-half,
4315                  * the real bottom-half may not have serialised their own
4316                  * seqno check with the irq-barrier (i.e. may have inspected
4317                  * the seqno before we believe it coherent since they see
4318                  * irq_posted == false but we are still running).
4319                  */
4320                 spin_lock_irq(&b->irq_lock);
4321                 if (b->irq_wait && b->irq_wait->tsk != current)
4322                         /* Note that if the bottom-half is changed as we
4323                          * are sending the wake-up, the new bottom-half will
4324                          * be woken by whomever made the change. We only have
4325                          * to worry about when we steal the irq-posted for
4326                          * ourself.
4327                          */
4328                         wake_up_process(b->irq_wait->tsk);
4329                 spin_unlock_irq(&b->irq_lock);
4330
4331                 if (__i915_gem_request_completed(req, seqno))
4332                         return true;
4333         }
4334
4335         return false;
4336 }
4337
4338 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4339 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4340
4341 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4342  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4343  * perform the operation. To check beforehand, pass in the parameters to
4344  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4345  * you only need to pass in the minor offsets, page-aligned pointers are
4346  * always valid.
4347  *
4348  * For just checking for SSE4.1, in the foreknowledge that the future use
4349  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4350  */
4351 #define i915_can_memcpy_from_wc(dst, src, len) \
4352         i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4353
4354 #define i915_has_memcpy_from_wc() \
4355         i915_memcpy_from_wc(NULL, NULL, 0)
4356
4357 /* i915_mm.c */
4358 int remap_io_mapping(struct vm_area_struct *vma,
4359                      unsigned long addr, unsigned long pfn, unsigned long size,
4360                      struct io_mapping *iomap);
4361
4362 static inline bool
4363 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4364 {
4365         return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4366                                               engine->class);
4367 }
4368
4369 #endif