GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 #define pipelined 0
59
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61                                  struct i915_vma *vma)
62 {
63         i915_reg_t fence_reg_lo, fence_reg_hi;
64         int fence_pitch_shift;
65         u64 val;
66
67         if (INTEL_GEN(fence->i915) >= 6) {
68                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71
72         } else {
73                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
75                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76         }
77
78         val = 0;
79         if (vma) {
80                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
81
82                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
83                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
86
87                 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
88                 val |= vma->node.start;
89                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
90                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
91                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
92                 val |= I965_FENCE_REG_VALID;
93         }
94
95         if (!pipelined) {
96                 struct drm_i915_private *dev_priv = fence->i915;
97
98                 /* To w/a incoherency with non-atomic 64-bit register updates,
99                  * we split the 64-bit update into two 32-bit writes. In order
100                  * for a partial fence not to be evaluated between writes, we
101                  * precede the update with write to turn off the fence register,
102                  * and only enable the fence as the last step.
103                  *
104                  * For extra levels of paranoia, we make sure each step lands
105                  * before applying the next step.
106                  */
107                 I915_WRITE(fence_reg_lo, 0);
108                 POSTING_READ(fence_reg_lo);
109
110                 I915_WRITE(fence_reg_hi, upper_32_bits(val));
111                 I915_WRITE(fence_reg_lo, lower_32_bits(val));
112                 POSTING_READ(fence_reg_lo);
113         }
114 }
115
116 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117                                  struct i915_vma *vma)
118 {
119         u32 val;
120
121         val = 0;
122         if (vma) {
123                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124                 bool is_y_tiled = tiling == I915_TILING_Y;
125                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
126
127                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128                 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
129                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
130                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
131
132                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
133                         stride /= 128;
134                 else
135                         stride /= 512;
136                 GEM_BUG_ON(!is_power_of_2(stride));
137
138                 val = vma->node.start;
139                 if (is_y_tiled)
140                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
141                 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
142                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143
144                 val |= I830_FENCE_REG_VALID;
145         }
146
147         if (!pipelined) {
148                 struct drm_i915_private *dev_priv = fence->i915;
149                 i915_reg_t reg = FENCE_REG(fence->id);
150
151                 I915_WRITE(reg, val);
152                 POSTING_READ(reg);
153         }
154 }
155
156 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157                                  struct i915_vma *vma)
158 {
159         u32 val;
160
161         val = 0;
162         if (vma) {
163                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
164
165                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166                 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
167                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
168                 GEM_BUG_ON(!is_power_of_2(stride / 128));
169                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
170
171                 val = vma->node.start;
172                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
173                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
174                 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
175                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
176                 val |= I830_FENCE_REG_VALID;
177         }
178
179         if (!pipelined) {
180                 struct drm_i915_private *dev_priv = fence->i915;
181                 i915_reg_t reg = FENCE_REG(fence->id);
182
183                 I915_WRITE(reg, val);
184                 POSTING_READ(reg);
185         }
186 }
187
188 static void fence_write(struct drm_i915_fence_reg *fence,
189                         struct i915_vma *vma)
190 {
191         /* Previous access through the fence register is marshalled by
192          * the mb() inside the fault handlers (i915_gem_release_mmaps)
193          * and explicitly managed for internal users.
194          */
195
196         if (IS_GEN2(fence->i915))
197                 i830_write_fence_reg(fence, vma);
198         else if (IS_GEN3(fence->i915))
199                 i915_write_fence_reg(fence, vma);
200         else
201                 i965_write_fence_reg(fence, vma);
202
203         /* Access through the fenced region afterwards is
204          * ordered by the posting reads whilst writing the registers.
205          */
206
207         fence->dirty = false;
208 }
209
210 static int fence_update(struct drm_i915_fence_reg *fence,
211                         struct i915_vma *vma)
212 {
213         int ret;
214
215         if (vma) {
216                 if (!i915_vma_is_map_and_fenceable(vma))
217                         return -EINVAL;
218
219                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220                          !i915_gem_object_get_tiling(vma->obj),
221                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222                          i915_gem_object_get_stride(vma->obj),
223                          i915_gem_object_get_tiling(vma->obj)))
224                         return -EINVAL;
225
226                 ret = i915_gem_active_retire(&vma->last_fence,
227                                              &vma->obj->base.dev->struct_mutex);
228                 if (ret)
229                         return ret;
230         }
231
232         if (fence->vma) {
233                 struct i915_vma *old = fence->vma;
234
235                 ret = i915_gem_active_retire(&old->last_fence,
236                                              &old->obj->base.dev->struct_mutex);
237                 if (ret)
238                         return ret;
239
240                 i915_vma_flush_writes(old);
241         }
242
243         if (fence->vma && fence->vma != vma) {
244                 /* Ensure that all userspace CPU access is completed before
245                  * stealing the fence.
246                  */
247                 GEM_BUG_ON(fence->vma->fence != fence);
248                 i915_vma_revoke_mmap(fence->vma);
249
250                 fence->vma->fence = NULL;
251                 fence->vma = NULL;
252
253                 list_move(&fence->link, &fence->i915->mm.fence_list);
254         }
255
256         /* We only need to update the register itself if the device is awake.
257          * If the device is currently powered down, we will defer the write
258          * to the runtime resume, see i915_gem_restore_fences().
259          */
260         if (intel_runtime_pm_get_if_in_use(fence->i915)) {
261                 fence_write(fence, vma);
262                 intel_runtime_pm_put(fence->i915);
263         }
264
265         if (vma) {
266                 if (fence->vma != vma) {
267                         vma->fence = fence;
268                         fence->vma = vma;
269                 }
270
271                 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
272         }
273
274         return 0;
275 }
276
277 /**
278  * i915_vma_put_fence - force-remove fence for a VMA
279  * @vma: vma to map linearly (not through a fence reg)
280  *
281  * This function force-removes any fence from the given object, which is useful
282  * if the kernel wants to do untiled GTT access.
283  *
284  * Returns:
285  *
286  * 0 on success, negative error code on failure.
287  */
288 int i915_vma_put_fence(struct i915_vma *vma)
289 {
290         struct drm_i915_fence_reg *fence = vma->fence;
291
292         if (!fence)
293                 return 0;
294
295         if (fence->pin_count)
296                 return -EBUSY;
297
298         return fence_update(fence, NULL);
299 }
300
301 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
302 {
303         struct drm_i915_fence_reg *fence;
304
305         list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
306                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
307
308                 if (fence->pin_count)
309                         continue;
310
311                 return fence;
312         }
313
314         /* Wait for completion of pending flips which consume fences */
315         if (intel_has_pending_fb_unpin(dev_priv))
316                 return ERR_PTR(-EAGAIN);
317
318         return ERR_PTR(-EDEADLK);
319 }
320
321 /**
322  * i915_vma_pin_fence - set up fencing for a vma
323  * @vma: vma to map through a fence reg
324  *
325  * When mapping objects through the GTT, userspace wants to be able to write
326  * to them without having to worry about swizzling if the object is tiled.
327  * This function walks the fence regs looking for a free one for @obj,
328  * stealing one if it can't find any.
329  *
330  * It then sets up the reg based on the object's properties: address, pitch
331  * and tiling format.
332  *
333  * For an untiled surface, this removes any existing fence.
334  *
335  * Returns:
336  *
337  * 0 on success, negative error code on failure.
338  */
339 int
340 i915_vma_pin_fence(struct i915_vma *vma)
341 {
342         struct drm_i915_fence_reg *fence;
343         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
344         int err;
345
346         /* Note that we revoke fences on runtime suspend. Therefore the user
347          * must keep the device awake whilst using the fence.
348          */
349         assert_rpm_wakelock_held(vma->vm->i915);
350
351         /* Just update our place in the LRU if our fence is getting reused. */
352         if (vma->fence) {
353                 fence = vma->fence;
354                 GEM_BUG_ON(fence->vma != vma);
355                 fence->pin_count++;
356                 if (!fence->dirty) {
357                         list_move_tail(&fence->link,
358                                        &fence->i915->mm.fence_list);
359                         return 0;
360                 }
361         } else if (set) {
362                 fence = fence_find(vma->vm->i915);
363                 if (IS_ERR(fence))
364                         return PTR_ERR(fence);
365
366                 GEM_BUG_ON(fence->pin_count);
367                 fence->pin_count++;
368         } else
369                 return 0;
370
371         err = fence_update(fence, set);
372         if (err)
373                 goto out_unpin;
374
375         GEM_BUG_ON(fence->vma != set);
376         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
377
378         if (set)
379                 return 0;
380
381 out_unpin:
382         fence->pin_count--;
383         return err;
384 }
385
386 /**
387  * i915_reserve_fence - Reserve a fence for vGPU
388  * @dev_priv: i915 device private
389  *
390  * This function walks the fence regs looking for a free one and remove
391  * it from the fence_list. It is used to reserve fence for vGPU to use.
392  */
393 struct drm_i915_fence_reg *
394 i915_reserve_fence(struct drm_i915_private *dev_priv)
395 {
396         struct drm_i915_fence_reg *fence;
397         int count;
398         int ret;
399
400         lockdep_assert_held(&dev_priv->drm.struct_mutex);
401
402         /* Keep at least one fence available for the display engine. */
403         count = 0;
404         list_for_each_entry(fence, &dev_priv->mm.fence_list, link)
405                 count += !fence->pin_count;
406         if (count <= 1)
407                 return ERR_PTR(-ENOSPC);
408
409         fence = fence_find(dev_priv);
410         if (IS_ERR(fence))
411                 return fence;
412
413         if (fence->vma) {
414                 /* Force-remove fence from VMA */
415                 ret = fence_update(fence, NULL);
416                 if (ret)
417                         return ERR_PTR(ret);
418         }
419
420         list_del(&fence->link);
421         return fence;
422 }
423
424 /**
425  * i915_unreserve_fence - Reclaim a reserved fence
426  * @fence: the fence reg
427  *
428  * This function add a reserved fence register from vGPU to the fence_list.
429  */
430 void i915_unreserve_fence(struct drm_i915_fence_reg *fence)
431 {
432         lockdep_assert_held(&fence->i915->drm.struct_mutex);
433
434         list_add(&fence->link, &fence->i915->mm.fence_list);
435 }
436
437 /**
438  * i915_gem_revoke_fences - revoke fence state
439  * @dev_priv: i915 device private
440  *
441  * Removes all GTT mmappings via the fence registers. This forces any user
442  * of the fence to reacquire that fence before continuing with their access.
443  * One use is during GPU reset where the fence register is lost and we need to
444  * revoke concurrent userspace access via GTT mmaps until the hardware has been
445  * reset and the fence registers have been restored.
446  */
447 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
448 {
449         int i;
450
451         lockdep_assert_held(&dev_priv->drm.struct_mutex);
452
453         for (i = 0; i < dev_priv->num_fence_regs; i++) {
454                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
455
456                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
457
458                 if (fence->vma)
459                         i915_vma_revoke_mmap(fence->vma);
460         }
461 }
462
463 /**
464  * i915_gem_restore_fences - restore fence state
465  * @dev_priv: i915 device private
466  *
467  * Restore the hw fence state to match the software tracking again, to be called
468  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
469  * the fences, to be reacquired by the user later.
470  */
471 void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
472 {
473         int i;
474
475         for (i = 0; i < dev_priv->num_fence_regs; i++) {
476                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
477                 struct i915_vma *vma = reg->vma;
478
479                 GEM_BUG_ON(vma && vma->fence != reg);
480
481                 /*
482                  * Commit delayed tiling changes if we have an object still
483                  * attached to the fence, otherwise just clear the fence.
484                  */
485                 if (vma && !i915_gem_object_is_tiled(vma->obj)) {
486                         GEM_BUG_ON(!reg->dirty);
487                         GEM_BUG_ON(i915_vma_has_userfault(vma));
488
489                         list_move(&reg->link, &dev_priv->mm.fence_list);
490                         vma->fence = NULL;
491                         vma = NULL;
492                 }
493
494                 fence_write(reg, vma);
495                 reg->vma = vma;
496         }
497 }
498
499 /**
500  * DOC: tiling swizzling details
501  *
502  * The idea behind tiling is to increase cache hit rates by rearranging
503  * pixel data so that a group of pixel accesses are in the same cacheline.
504  * Performance improvement from doing this on the back/depth buffer are on
505  * the order of 30%.
506  *
507  * Intel architectures make this somewhat more complicated, though, by
508  * adjustments made to addressing of data when the memory is in interleaved
509  * mode (matched pairs of DIMMS) to improve memory bandwidth.
510  * For interleaved memory, the CPU sends every sequential 64 bytes
511  * to an alternate memory channel so it can get the bandwidth from both.
512  *
513  * The GPU also rearranges its accesses for increased bandwidth to interleaved
514  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
515  * it does it a little differently, since one walks addresses not just in the
516  * X direction but also Y.  So, along with alternating channels when bit
517  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
518  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
519  * are common to both the 915 and 965-class hardware.
520  *
521  * The CPU also sometimes XORs in higher bits as well, to improve
522  * bandwidth doing strided access like we do so frequently in graphics.  This
523  * is called "Channel XOR Randomization" in the MCH documentation.  The result
524  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
525  * decode.
526  *
527  * All of this bit 6 XORing has an effect on our memory management,
528  * as we need to make sure that the 3d driver can correctly address object
529  * contents.
530  *
531  * If we don't have interleaved memory, all tiling is safe and no swizzling is
532  * required.
533  *
534  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
535  * 17 is not just a page offset, so as we page an object out and back in,
536  * individual pages in it will have different bit 17 addresses, resulting in
537  * each 64 bytes being swapped with its neighbor!
538  *
539  * Otherwise, if interleaved, we have to tell the 3d driver what the address
540  * swizzling it needs to do is, since it's writing with the CPU to the pages
541  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
542  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
543  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
544  * to match what the GPU expects.
545  */
546
547 /**
548  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
549  * @dev_priv: i915 device private
550  *
551  * Detects bit 6 swizzling of address lookup between IGD access and CPU
552  * access through main memory.
553  */
554 void
555 i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
556 {
557         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
558         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
559
560         if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
561                 /*
562                  * On BDW+, swizzling is not used. We leave the CPU memory
563                  * controller in charge of optimizing memory accesses without
564                  * the extra address manipulation GPU side.
565                  *
566                  * VLV and CHV don't have GPU swizzling.
567                  */
568                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
569                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
570         } else if (INTEL_GEN(dev_priv) >= 6) {
571                 if (dev_priv->preserve_bios_swizzle) {
572                         if (I915_READ(DISP_ARB_CTL) &
573                             DISP_TILE_SURFACE_SWIZZLING) {
574                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
575                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
576                         } else {
577                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
578                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
579                         }
580                 } else {
581                         uint32_t dimm_c0, dimm_c1;
582                         dimm_c0 = I915_READ(MAD_DIMM_C0);
583                         dimm_c1 = I915_READ(MAD_DIMM_C1);
584                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
585                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
586                         /* Enable swizzling when the channels are populated
587                          * with identically sized dimms. We don't need to check
588                          * the 3rd channel because no cpu with gpu attached
589                          * ships in that configuration. Also, swizzling only
590                          * makes sense for 2 channels anyway. */
591                         if (dimm_c0 == dimm_c1) {
592                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
593                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
594                         } else {
595                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
596                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
597                         }
598                 }
599         } else if (IS_GEN5(dev_priv)) {
600                 /* On Ironlake whatever DRAM config, GPU always do
601                  * same swizzling setup.
602                  */
603                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
604                 swizzle_y = I915_BIT_6_SWIZZLE_9;
605         } else if (IS_GEN2(dev_priv)) {
606                 /* As far as we know, the 865 doesn't have these bit 6
607                  * swizzling issues.
608                  */
609                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
610                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
611         } else if (IS_MOBILE(dev_priv) ||
612                    IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
613                 uint32_t dcc;
614
615                 /* On 9xx chipsets, channel interleave by the CPU is
616                  * determined by DCC.  For single-channel, neither the CPU
617                  * nor the GPU do swizzling.  For dual channel interleaved,
618                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
619                  * 9 for Y tiled.  The CPU's interleave is independent, and
620                  * can be based on either bit 11 (haven't seen this yet) or
621                  * bit 17 (common).
622                  */
623                 dcc = I915_READ(DCC);
624                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
625                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
626                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
627                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
628                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
629                         break;
630                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
631                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
632                                 /* This is the base swizzling by the GPU for
633                                  * tiled buffers.
634                                  */
635                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
636                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
637                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
638                                 /* Bit 11 swizzling by the CPU in addition. */
639                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
640                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
641                         } else {
642                                 /* Bit 17 swizzling by the CPU in addition. */
643                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
644                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
645                         }
646                         break;
647                 }
648
649                 /* check for L-shaped memory aka modified enhanced addressing */
650                 if (IS_GEN4(dev_priv) &&
651                     !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
652                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
653                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
654                 }
655
656                 if (dcc == 0xffffffff) {
657                         DRM_ERROR("Couldn't read from MCHBAR.  "
658                                   "Disabling tiling.\n");
659                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
660                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
661                 }
662         } else {
663                 /* The 965, G33, and newer, have a very flexible memory
664                  * configuration.  It will enable dual-channel mode
665                  * (interleaving) on as much memory as it can, and the GPU
666                  * will additionally sometimes enable different bit 6
667                  * swizzling for tiled objects from the CPU.
668                  *
669                  * Here's what I found on the G965:
670                  *    slot fill         memory size  swizzling
671                  * 0A   0B   1A   1B    1-ch   2-ch
672                  * 512  0    0    0     512    0     O
673                  * 512  0    512  0     16     1008  X
674                  * 512  0    0    512   16     1008  X
675                  * 0    512  0    512   16     1008  X
676                  * 1024 1024 1024 0     2048   1024  O
677                  *
678                  * We could probably detect this based on either the DRB
679                  * matching, which was the case for the swizzling required in
680                  * the table above, or from the 1-ch value being less than
681                  * the minimum size of a rank.
682                  *
683                  * Reports indicate that the swizzling actually
684                  * varies depending upon page placement inside the
685                  * channels, i.e. we see swizzled pages where the
686                  * banks of memory are paired and unswizzled on the
687                  * uneven portion, so leave that as unknown.
688                  */
689                 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
690                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
691                         swizzle_y = I915_BIT_6_SWIZZLE_9;
692                 }
693         }
694
695         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
696             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
697                 /* Userspace likes to explode if it sees unknown swizzling,
698                  * so lie. We will finish the lie when reporting through
699                  * the get-tiling-ioctl by reporting the physical swizzle
700                  * mode as unknown instead.
701                  *
702                  * As we don't strictly know what the swizzling is, it may be
703                  * bit17 dependent, and so we need to also prevent the pages
704                  * from being moved.
705                  */
706                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
707                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
708                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
709         }
710
711         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
712         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
713 }
714
715 /*
716  * Swap every 64 bytes of this page around, to account for it having a new
717  * bit 17 of its physical address and therefore being interpreted differently
718  * by the GPU.
719  */
720 static void
721 i915_gem_swizzle_page(struct page *page)
722 {
723         char temp[64];
724         char *vaddr;
725         int i;
726
727         vaddr = kmap(page);
728
729         for (i = 0; i < PAGE_SIZE; i += 128) {
730                 memcpy(temp, &vaddr[i], 64);
731                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
732                 memcpy(&vaddr[i + 64], temp, 64);
733         }
734
735         kunmap(page);
736 }
737
738 /**
739  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
740  * @obj: i915 GEM buffer object
741  * @pages: the scattergather list of physical pages
742  *
743  * This function fixes up the swizzling in case any page frame number for this
744  * object has changed in bit 17 since that state has been saved with
745  * i915_gem_object_save_bit_17_swizzle().
746  *
747  * This is called when pinning backing storage again, since the kernel is free
748  * to move unpinned backing storage around (either by directly moving pages or
749  * by swapping them out and back in again).
750  */
751 void
752 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
753                                   struct sg_table *pages)
754 {
755         struct sgt_iter sgt_iter;
756         struct page *page;
757         int i;
758
759         if (obj->bit_17 == NULL)
760                 return;
761
762         i = 0;
763         for_each_sgt_page(page, sgt_iter, pages) {
764                 char new_bit_17 = page_to_phys(page) >> 17;
765                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
766                         i915_gem_swizzle_page(page);
767                         set_page_dirty(page);
768                 }
769                 i++;
770         }
771 }
772
773 /**
774  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
775  * @obj: i915 GEM buffer object
776  * @pages: the scattergather list of physical pages
777  *
778  * This function saves the bit 17 of each page frame number so that swizzling
779  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
780  * be called before the backing storage can be unpinned.
781  */
782 void
783 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
784                                     struct sg_table *pages)
785 {
786         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
787         struct sgt_iter sgt_iter;
788         struct page *page;
789         int i;
790
791         if (obj->bit_17 == NULL) {
792                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
793                                       sizeof(long), GFP_KERNEL);
794                 if (obj->bit_17 == NULL) {
795                         DRM_ERROR("Failed to allocate memory for bit 17 "
796                                   "record\n");
797                         return;
798                 }
799         }
800
801         i = 0;
802
803         for_each_sgt_page(page, sgt_iter, pages) {
804                 if (page_to_phys(page) & (1 << 17))
805                         __set_bit(i, obj->bit_17);
806                 else
807                         __clear_bit(i, obj->bit_17);
808                 i++;
809         }
810 }