GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143 {
144         u32 val = I915_READ(reg);
145
146         if (val == 0)
147                 return;
148
149         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150              reg, val);
151         I915_WRITE(reg, 0xffffffff);
152         POSTING_READ(reg);
153         I915_WRITE(reg, 0xffffffff);
154         POSTING_READ(reg);
155 }
156
157 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
158         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
159         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
160         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
161         POSTING_READ(GEN8_##type##_IMR(which)); \
162 } while (0)
163
164 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
165         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
166         I915_WRITE(type##IER, (ier_val)); \
167         I915_WRITE(type##IMR, (imr_val)); \
168         POSTING_READ(type##IMR); \
169 } while (0)
170
171 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
172
173 /* For display hotplug interrupt */
174 static inline void
175 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176                                      uint32_t mask,
177                                      uint32_t bits)
178 {
179         uint32_t val;
180
181         assert_spin_locked(&dev_priv->irq_lock);
182         WARN_ON(bits & ~mask);
183
184         val = I915_READ(PORT_HOTPLUG_EN);
185         val &= ~mask;
186         val |= bits;
187         I915_WRITE(PORT_HOTPLUG_EN, val);
188 }
189
190 /**
191  * i915_hotplug_interrupt_update - update hotplug interrupt enable
192  * @dev_priv: driver private
193  * @mask: bits to update
194  * @bits: bits to enable
195  * NOTE: the HPD enable bits are modified both inside and outside
196  * of an interrupt context. To avoid that read-modify-write cycles
197  * interfer, these bits are protected by a spinlock. Since this
198  * function is usually not called from a context where the lock is
199  * held already, this function acquires the lock itself. A non-locking
200  * version is also available.
201  */
202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203                                    uint32_t mask,
204                                    uint32_t bits)
205 {
206         spin_lock_irq(&dev_priv->irq_lock);
207         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208         spin_unlock_irq(&dev_priv->irq_lock);
209 }
210
211 /**
212  * ilk_update_display_irq - update DEIMR
213  * @dev_priv: driver private
214  * @interrupt_mask: mask of interrupt bits to update
215  * @enabled_irq_mask: mask of interrupt bits to enable
216  */
217 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218                                    uint32_t interrupt_mask,
219                                    uint32_t enabled_irq_mask)
220 {
221         uint32_t new_val;
222
223         assert_spin_locked(&dev_priv->irq_lock);
224
225         WARN_ON(enabled_irq_mask & ~interrupt_mask);
226
227         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
228                 return;
229
230         new_val = dev_priv->irq_mask;
231         new_val &= ~interrupt_mask;
232         new_val |= (~enabled_irq_mask & interrupt_mask);
233
234         if (new_val != dev_priv->irq_mask) {
235                 dev_priv->irq_mask = new_val;
236                 I915_WRITE(DEIMR, dev_priv->irq_mask);
237                 POSTING_READ(DEIMR);
238         }
239 }
240
241 void
242 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243 {
244         ilk_update_display_irq(dev_priv, mask, mask);
245 }
246
247 void
248 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249 {
250         ilk_update_display_irq(dev_priv, mask, 0);
251 }
252
253 /**
254  * ilk_update_gt_irq - update GTIMR
255  * @dev_priv: driver private
256  * @interrupt_mask: mask of interrupt bits to update
257  * @enabled_irq_mask: mask of interrupt bits to enable
258  */
259 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         assert_spin_locked(&dev_priv->irq_lock);
264
265         WARN_ON(enabled_irq_mask & ~interrupt_mask);
266
267         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268                 return;
269
270         dev_priv->gt_irq_mask &= ~interrupt_mask;
271         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273         POSTING_READ(GTIMR);
274 }
275
276 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278         ilk_update_gt_irq(dev_priv, mask, mask);
279 }
280
281 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         ilk_update_gt_irq(dev_priv, mask, 0);
284 }
285
286 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
289 }
290
291 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
292 {
293         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
294 }
295
296 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
297 {
298         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
299 }
300
301 /**
302   * snb_update_pm_irq - update GEN6_PMIMR
303   * @dev_priv: driver private
304   * @interrupt_mask: mask of interrupt bits to update
305   * @enabled_irq_mask: mask of interrupt bits to enable
306   */
307 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
308                               uint32_t interrupt_mask,
309                               uint32_t enabled_irq_mask)
310 {
311         uint32_t new_val;
312
313         WARN_ON(enabled_irq_mask & ~interrupt_mask);
314
315         assert_spin_locked(&dev_priv->irq_lock);
316
317         new_val = dev_priv->pm_irq_mask;
318         new_val &= ~interrupt_mask;
319         new_val |= (~enabled_irq_mask & interrupt_mask);
320
321         if (new_val != dev_priv->pm_irq_mask) {
322                 dev_priv->pm_irq_mask = new_val;
323                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324                 POSTING_READ(gen6_pm_imr(dev_priv));
325         }
326 }
327
328 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
329 {
330         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331                 return;
332
333         snb_update_pm_irq(dev_priv, mask, mask);
334 }
335
336 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337                                   uint32_t mask)
338 {
339         snb_update_pm_irq(dev_priv, mask, 0);
340 }
341
342 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
343 {
344         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345                 return;
346
347         __gen6_disable_pm_irq(dev_priv, mask);
348 }
349
350 void gen6_reset_rps_interrupts(struct drm_device *dev)
351 {
352         struct drm_i915_private *dev_priv = dev->dev_private;
353         uint32_t reg = gen6_pm_iir(dev_priv);
354
355         spin_lock_irq(&dev_priv->irq_lock);
356         I915_WRITE(reg, dev_priv->pm_rps_events);
357         I915_WRITE(reg, dev_priv->pm_rps_events);
358         POSTING_READ(reg);
359         dev_priv->rps.pm_iir = 0;
360         spin_unlock_irq(&dev_priv->irq_lock);
361 }
362
363 void gen6_enable_rps_interrupts(struct drm_device *dev)
364 {
365         struct drm_i915_private *dev_priv = dev->dev_private;
366
367         spin_lock_irq(&dev_priv->irq_lock);
368
369         WARN_ON(dev_priv->rps.pm_iir);
370         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371         dev_priv->rps.interrupts_enabled = true;
372         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373                                 dev_priv->pm_rps_events);
374         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375
376         spin_unlock_irq(&dev_priv->irq_lock);
377 }
378
379 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380 {
381         /*
382          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383          * if GEN6_PM_UP_EI_EXPIRED is masked.
384          *
385          * TODO: verify if this can be reproduced on VLV,CHV.
386          */
387         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389
390         if (INTEL_INFO(dev_priv)->gen >= 8)
391                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392
393         return mask;
394 }
395
396 void gen6_disable_rps_interrupts(struct drm_device *dev)
397 {
398         struct drm_i915_private *dev_priv = dev->dev_private;
399
400         spin_lock_irq(&dev_priv->irq_lock);
401         dev_priv->rps.interrupts_enabled = false;
402         spin_unlock_irq(&dev_priv->irq_lock);
403
404         cancel_work_sync(&dev_priv->rps.work);
405
406         spin_lock_irq(&dev_priv->irq_lock);
407
408         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
409
410         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412                                 ~dev_priv->pm_rps_events);
413
414         spin_unlock_irq(&dev_priv->irq_lock);
415
416         synchronize_irq(dev->irq);
417 }
418
419 /**
420   * bdw_update_port_irq - update DE port interrupt
421   * @dev_priv: driver private
422   * @interrupt_mask: mask of interrupt bits to update
423   * @enabled_irq_mask: mask of interrupt bits to enable
424   */
425 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
426                                 uint32_t interrupt_mask,
427                                 uint32_t enabled_irq_mask)
428 {
429         uint32_t new_val;
430         uint32_t old_val;
431
432         assert_spin_locked(&dev_priv->irq_lock);
433
434         WARN_ON(enabled_irq_mask & ~interrupt_mask);
435
436         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
437                 return;
438
439         old_val = I915_READ(GEN8_DE_PORT_IMR);
440
441         new_val = old_val;
442         new_val &= ~interrupt_mask;
443         new_val |= (~enabled_irq_mask & interrupt_mask);
444
445         if (new_val != old_val) {
446                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
447                 POSTING_READ(GEN8_DE_PORT_IMR);
448         }
449 }
450
451 /**
452  * ibx_display_interrupt_update - update SDEIMR
453  * @dev_priv: driver private
454  * @interrupt_mask: mask of interrupt bits to update
455  * @enabled_irq_mask: mask of interrupt bits to enable
456  */
457 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
458                                   uint32_t interrupt_mask,
459                                   uint32_t enabled_irq_mask)
460 {
461         uint32_t sdeimr = I915_READ(SDEIMR);
462         sdeimr &= ~interrupt_mask;
463         sdeimr |= (~enabled_irq_mask & interrupt_mask);
464
465         WARN_ON(enabled_irq_mask & ~interrupt_mask);
466
467         assert_spin_locked(&dev_priv->irq_lock);
468
469         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
470                 return;
471
472         I915_WRITE(SDEIMR, sdeimr);
473         POSTING_READ(SDEIMR);
474 }
475
476 static void
477 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
478                        u32 enable_mask, u32 status_mask)
479 {
480         u32 reg = PIPESTAT(pipe);
481         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
482
483         assert_spin_locked(&dev_priv->irq_lock);
484         WARN_ON(!intel_irqs_enabled(dev_priv));
485
486         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
487                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
488                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
489                       pipe_name(pipe), enable_mask, status_mask))
490                 return;
491
492         if ((pipestat & enable_mask) == enable_mask)
493                 return;
494
495         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
496
497         /* Enable the interrupt, clear any pending status */
498         pipestat |= enable_mask | status_mask;
499         I915_WRITE(reg, pipestat);
500         POSTING_READ(reg);
501 }
502
503 static void
504 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
505                         u32 enable_mask, u32 status_mask)
506 {
507         u32 reg = PIPESTAT(pipe);
508         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
509
510         assert_spin_locked(&dev_priv->irq_lock);
511         WARN_ON(!intel_irqs_enabled(dev_priv));
512
513         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
514                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
515                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
516                       pipe_name(pipe), enable_mask, status_mask))
517                 return;
518
519         if ((pipestat & enable_mask) == 0)
520                 return;
521
522         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
523
524         pipestat &= ~enable_mask;
525         I915_WRITE(reg, pipestat);
526         POSTING_READ(reg);
527 }
528
529 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
530 {
531         u32 enable_mask = status_mask << 16;
532
533         /*
534          * On pipe A we don't support the PSR interrupt yet,
535          * on pipe B and C the same bit MBZ.
536          */
537         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
538                 return 0;
539         /*
540          * On pipe B and C we don't support the PSR interrupt yet, on pipe
541          * A the same bit is for perf counters which we don't use either.
542          */
543         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
544                 return 0;
545
546         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
547                          SPRITE0_FLIP_DONE_INT_EN_VLV |
548                          SPRITE1_FLIP_DONE_INT_EN_VLV);
549         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
550                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
551         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
552                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
553
554         return enable_mask;
555 }
556
557 void
558 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
559                      u32 status_mask)
560 {
561         u32 enable_mask;
562
563         if (IS_VALLEYVIEW(dev_priv->dev))
564                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
565                                                            status_mask);
566         else
567                 enable_mask = status_mask << 16;
568         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
569 }
570
571 void
572 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573                       u32 status_mask)
574 {
575         u32 enable_mask;
576
577         if (IS_VALLEYVIEW(dev_priv->dev))
578                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
579                                                            status_mask);
580         else
581                 enable_mask = status_mask << 16;
582         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
583 }
584
585 /**
586  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
587  * @dev: drm device
588  */
589 static void i915_enable_asle_pipestat(struct drm_device *dev)
590 {
591         struct drm_i915_private *dev_priv = dev->dev_private;
592
593         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
594                 return;
595
596         spin_lock_irq(&dev_priv->irq_lock);
597
598         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
599         if (INTEL_INFO(dev)->gen >= 4)
600                 i915_enable_pipestat(dev_priv, PIPE_A,
601                                      PIPE_LEGACY_BLC_EVENT_STATUS);
602
603         spin_unlock_irq(&dev_priv->irq_lock);
604 }
605
606 /*
607  * This timing diagram depicts the video signal in and
608  * around the vertical blanking period.
609  *
610  * Assumptions about the fictitious mode used in this example:
611  *  vblank_start >= 3
612  *  vsync_start = vblank_start + 1
613  *  vsync_end = vblank_start + 2
614  *  vtotal = vblank_start + 3
615  *
616  *           start of vblank:
617  *           latch double buffered registers
618  *           increment frame counter (ctg+)
619  *           generate start of vblank interrupt (gen4+)
620  *           |
621  *           |          frame start:
622  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
623  *           |          may be shifted forward 1-3 extra lines via PIPECONF
624  *           |          |
625  *           |          |  start of vsync:
626  *           |          |  generate vsync interrupt
627  *           |          |  |
628  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
629  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
630  * ----va---> <-----------------vb--------------------> <--------va-------------
631  *       |          |       <----vs----->                     |
632  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
633  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
634  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
635  *       |          |                                         |
636  *       last visible pixel                                   first visible pixel
637  *                  |                                         increment frame counter (gen3/4)
638  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
639  *
640  * x  = horizontal active
641  * _  = horizontal blanking
642  * hs = horizontal sync
643  * va = vertical active
644  * vb = vertical blanking
645  * vs = vertical sync
646  * vbs = vblank_start (number)
647  *
648  * Summary:
649  * - most events happen at the start of horizontal sync
650  * - frame start happens at the start of horizontal blank, 1-4 lines
651  *   (depending on PIPECONF settings) after the start of vblank
652  * - gen3/4 pixel and frame counter are synchronized with the start
653  *   of horizontal active on the first line of vertical active
654  */
655
656 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
657 {
658         /* Gen2 doesn't have a hardware frame counter */
659         return 0;
660 }
661
662 /* Called from drm generic code, passed a 'crtc', which
663  * we use as a pipe index
664  */
665 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
666 {
667         struct drm_i915_private *dev_priv = dev->dev_private;
668         unsigned long high_frame;
669         unsigned long low_frame;
670         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
671         struct intel_crtc *intel_crtc =
672                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
673         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
674
675         htotal = mode->crtc_htotal;
676         hsync_start = mode->crtc_hsync_start;
677         vbl_start = mode->crtc_vblank_start;
678         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
679                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
680
681         /* Convert to pixel count */
682         vbl_start *= htotal;
683
684         /* Start of vblank event occurs at start of hsync */
685         vbl_start -= htotal - hsync_start;
686
687         high_frame = PIPEFRAME(pipe);
688         low_frame = PIPEFRAMEPIXEL(pipe);
689
690         /*
691          * High & low register fields aren't synchronized, so make sure
692          * we get a low value that's stable across two reads of the high
693          * register.
694          */
695         do {
696                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
697                 low   = I915_READ(low_frame);
698                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699         } while (high1 != high2);
700
701         high1 >>= PIPE_FRAME_HIGH_SHIFT;
702         pixel = low & PIPE_PIXEL_MASK;
703         low >>= PIPE_FRAME_LOW_SHIFT;
704
705         /*
706          * The frame counter increments at beginning of active.
707          * Cook up a vblank counter by also checking the pixel
708          * counter against vblank start.
709          */
710         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
711 }
712
713 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
714 {
715         struct drm_i915_private *dev_priv = dev->dev_private;
716
717         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
718 }
719
720 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
721 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
722
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         struct drm_i915_private *dev_priv = dev->dev_private;
727         const struct drm_display_mode *mode = &crtc->base.hwmode;
728         enum pipe pipe = crtc->pipe;
729         int position, vtotal;
730
731         vtotal = mode->crtc_vtotal;
732         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733                 vtotal /= 2;
734
735         if (IS_GEN2(dev))
736                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737         else
738                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739
740         /*
741          * On HSW, the DSL reg (0x70000) appears to return 0 if we
742          * read it just before the start of vblank.  So try it again
743          * so we don't accidentally end up spanning a vblank frame
744          * increment, causing the pipe_update_end() code to squak at us.
745          *
746          * The nature of this problem means we can't simply check the ISR
747          * bit and return the vblank start value; nor can we use the scanline
748          * debug register in the transcoder as it appears to have the same
749          * problem.  We may need to extend this to include other platforms,
750          * but so far testing only shows the problem on HSW.
751          */
752         if (HAS_DDI(dev) && !position) {
753                 int i, temp;
754
755                 for (i = 0; i < 100; i++) {
756                         udelay(1);
757                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758                                 DSL_LINEMASK_GEN3;
759                         if (temp != position) {
760                                 position = temp;
761                                 break;
762                         }
763                 }
764         }
765
766         /*
767          * See update_scanline_offset() for the details on the
768          * scanline_offset adjustment.
769          */
770         return (position + crtc->scanline_offset) % vtotal;
771 }
772
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774                                     unsigned int flags, int *vpos, int *hpos,
775                                     ktime_t *stime, ktime_t *etime,
776                                     const struct drm_display_mode *mode)
777 {
778         struct drm_i915_private *dev_priv = dev->dev_private;
779         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781         int position;
782         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783         bool in_vbl = true;
784         int ret = 0;
785         unsigned long irqflags;
786
787         if (WARN_ON(!mode->crtc_clock)) {
788                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789                                  "pipe %c\n", pipe_name(pipe));
790                 return 0;
791         }
792
793         htotal = mode->crtc_htotal;
794         hsync_start = mode->crtc_hsync_start;
795         vtotal = mode->crtc_vtotal;
796         vbl_start = mode->crtc_vblank_start;
797         vbl_end = mode->crtc_vblank_end;
798
799         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801                 vbl_end /= 2;
802                 vtotal /= 2;
803         }
804
805         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807         /*
808          * Lock uncore.lock, as we will do multiple timing critical raw
809          * register reads, potentially with preemption disabled, so the
810          * following code must not block on uncore.lock.
811          */
812         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816         /* Get optional system timestamp before query. */
817         if (stime)
818                 *stime = ktime_get();
819
820         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
821                 /* No obvious pixelcount register. Only query vertical
822                  * scanout position from Display scan line register.
823                  */
824                 position = __intel_get_crtc_scanline(intel_crtc);
825         } else {
826                 /* Have access to pixelcount since start of frame.
827                  * We can split this into vertical and horizontal
828                  * scanout position.
829                  */
830                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831
832                 /* convert to pixel counts */
833                 vbl_start *= htotal;
834                 vbl_end *= htotal;
835                 vtotal *= htotal;
836
837                 /*
838                  * In interlaced modes, the pixel counter counts all pixels,
839                  * so one field will have htotal more pixels. In order to avoid
840                  * the reported position from jumping backwards when the pixel
841                  * counter is beyond the length of the shorter field, just
842                  * clamp the position the length of the shorter field. This
843                  * matches how the scanline counter based position works since
844                  * the scanline counter doesn't count the two half lines.
845                  */
846                 if (position >= vtotal)
847                         position = vtotal - 1;
848
849                 /*
850                  * Start of vblank interrupt is triggered at start of hsync,
851                  * just prior to the first active line of vblank. However we
852                  * consider lines to start at the leading edge of horizontal
853                  * active. So, should we get here before we've crossed into
854                  * the horizontal active of the first line in vblank, we would
855                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856                  * always add htotal-hsync_start to the current pixel position.
857                  */
858                 position = (position + htotal - hsync_start) % vtotal;
859         }
860
861         /* Get optional system timestamp after query. */
862         if (etime)
863                 *etime = ktime_get();
864
865         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866
867         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868
869         in_vbl = position >= vbl_start && position < vbl_end;
870
871         /*
872          * While in vblank, position will be negative
873          * counting up towards 0 at vbl_end. And outside
874          * vblank, position will be positive counting
875          * up since vbl_end.
876          */
877         if (position >= vbl_start)
878                 position -= vbl_end;
879         else
880                 position += vtotal - vbl_end;
881
882         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
883                 *vpos = position;
884                 *hpos = 0;
885         } else {
886                 *vpos = position / htotal;
887                 *hpos = position - (*vpos * htotal);
888         }
889
890         /* In vblank? */
891         if (in_vbl)
892                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
893
894         return ret;
895 }
896
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
900         unsigned long irqflags;
901         int position;
902
903         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904         position = __intel_get_crtc_scanline(crtc);
905         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907         return position;
908 }
909
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911                               int *max_error,
912                               struct timeval *vblank_time,
913                               unsigned flags)
914 {
915         struct drm_crtc *crtc;
916
917         if (pipe >= INTEL_INFO(dev)->num_pipes) {
918                 DRM_ERROR("Invalid crtc %u\n", pipe);
919                 return -EINVAL;
920         }
921
922         /* Get drm_crtc to timestamp: */
923         crtc = intel_get_crtc_for_pipe(dev, pipe);
924         if (crtc == NULL) {
925                 DRM_ERROR("Invalid crtc %u\n", pipe);
926                 return -EINVAL;
927         }
928
929         if (!crtc->hwmode.crtc_clock) {
930                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931                 return -EBUSY;
932         }
933
934         /* Helper routine in DRM core does all the work: */
935         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936                                                      vblank_time, flags,
937                                                      &crtc->hwmode);
938 }
939
940 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
941 {
942         struct drm_i915_private *dev_priv = dev->dev_private;
943         u32 busy_up, busy_down, max_avg, min_avg;
944         u8 new_delay;
945
946         spin_lock(&mchdev_lock);
947
948         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
949
950         new_delay = dev_priv->ips.cur_delay;
951
952         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
953         busy_up = I915_READ(RCPREVBSYTUPAVG);
954         busy_down = I915_READ(RCPREVBSYTDNAVG);
955         max_avg = I915_READ(RCBMAXAVG);
956         min_avg = I915_READ(RCBMINAVG);
957
958         /* Handle RCS change request from hw */
959         if (busy_up > max_avg) {
960                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
961                         new_delay = dev_priv->ips.cur_delay - 1;
962                 if (new_delay < dev_priv->ips.max_delay)
963                         new_delay = dev_priv->ips.max_delay;
964         } else if (busy_down < min_avg) {
965                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
966                         new_delay = dev_priv->ips.cur_delay + 1;
967                 if (new_delay > dev_priv->ips.min_delay)
968                         new_delay = dev_priv->ips.min_delay;
969         }
970
971         if (ironlake_set_drps(dev, new_delay))
972                 dev_priv->ips.cur_delay = new_delay;
973
974         spin_unlock(&mchdev_lock);
975
976         return;
977 }
978
979 static void notify_ring(struct intel_engine_cs *ring)
980 {
981         if (!intel_ring_initialized(ring))
982                 return;
983
984         trace_i915_gem_request_notify(ring);
985
986         wake_up_all(&ring->irq_queue);
987 }
988
989 static void vlv_c0_read(struct drm_i915_private *dev_priv,
990                         struct intel_rps_ei *ei)
991 {
992         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
993         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
994         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
995 }
996
997 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
998 {
999         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1000 }
1001
1002 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1003 {
1004         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1005         struct intel_rps_ei now;
1006         u32 events = 0;
1007
1008         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1009                 return 0;
1010
1011         vlv_c0_read(dev_priv, &now);
1012         if (now.cz_clock == 0)
1013                 return 0;
1014
1015         if (prev->cz_clock) {
1016                 u64 time, c0;
1017                 unsigned int mul;
1018
1019                 mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1020                 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1021                         mul <<= 8;
1022
1023                 time = now.cz_clock - prev->cz_clock;
1024                 time *= dev_priv->czclk_freq;
1025
1026                 /* Workload can be split between render + media,
1027                  * e.g. SwapBuffers being blitted in X after being rendered in
1028                  * mesa. To account for this we need to combine both engines
1029                  * into our activity counter.
1030                  */
1031                 c0 = now.render_c0 - prev->render_c0;
1032                 c0 += now.media_c0 - prev->media_c0;
1033                 c0 *= mul;
1034
1035                 if (c0 > time * dev_priv->rps.up_threshold)
1036                         events = GEN6_PM_RP_UP_THRESHOLD;
1037                 else if (c0 < time * dev_priv->rps.down_threshold)
1038                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1039         }
1040
1041         dev_priv->rps.ei = now;
1042         return events;
1043 }
1044
1045 static bool any_waiters(struct drm_i915_private *dev_priv)
1046 {
1047         struct intel_engine_cs *ring;
1048         int i;
1049
1050         for_each_ring(ring, dev_priv, i)
1051                 if (ring->irq_refcount)
1052                         return true;
1053
1054         return false;
1055 }
1056
1057 static void gen6_pm_rps_work(struct work_struct *work)
1058 {
1059         struct drm_i915_private *dev_priv =
1060                 container_of(work, struct drm_i915_private, rps.work);
1061         bool client_boost;
1062         int new_delay, adj, min, max;
1063         u32 pm_iir;
1064
1065         spin_lock_irq(&dev_priv->irq_lock);
1066         /* Speed up work cancelation during disabling rps interrupts. */
1067         if (!dev_priv->rps.interrupts_enabled) {
1068                 spin_unlock_irq(&dev_priv->irq_lock);
1069                 return;
1070         }
1071         pm_iir = dev_priv->rps.pm_iir;
1072         dev_priv->rps.pm_iir = 0;
1073         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1074         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1075         client_boost = dev_priv->rps.client_boost;
1076         dev_priv->rps.client_boost = false;
1077         spin_unlock_irq(&dev_priv->irq_lock);
1078
1079         /* Make sure we didn't queue anything we're not going to process. */
1080         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1081
1082         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1083                 return;
1084
1085         mutex_lock(&dev_priv->rps.hw_lock);
1086
1087         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1088
1089         adj = dev_priv->rps.last_adj;
1090         new_delay = dev_priv->rps.cur_freq;
1091         min = dev_priv->rps.min_freq_softlimit;
1092         max = dev_priv->rps.max_freq_softlimit;
1093
1094         if (client_boost) {
1095                 new_delay = dev_priv->rps.max_freq_softlimit;
1096                 adj = 0;
1097         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1098                 if (adj > 0)
1099                         adj *= 2;
1100                 else /* CHV needs even encode values */
1101                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1102                 /*
1103                  * For better performance, jump directly
1104                  * to RPe if we're below it.
1105                  */
1106                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1107                         new_delay = dev_priv->rps.efficient_freq;
1108                         adj = 0;
1109                 }
1110         } else if (any_waiters(dev_priv)) {
1111                 adj = 0;
1112         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1113                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1114                         new_delay = dev_priv->rps.efficient_freq;
1115                 else
1116                         new_delay = dev_priv->rps.min_freq_softlimit;
1117                 adj = 0;
1118         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1119                 if (adj < 0)
1120                         adj *= 2;
1121                 else /* CHV needs even encode values */
1122                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1123         } else { /* unknown event */
1124                 adj = 0;
1125         }
1126
1127         dev_priv->rps.last_adj = adj;
1128
1129         /* sysfs frequency interfaces may have snuck in while servicing the
1130          * interrupt
1131          */
1132         new_delay += adj;
1133         new_delay = clamp_t(int, new_delay, min, max);
1134
1135         intel_set_rps(dev_priv->dev, new_delay);
1136
1137         mutex_unlock(&dev_priv->rps.hw_lock);
1138 }
1139
1140
1141 /**
1142  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1143  * occurred.
1144  * @work: workqueue struct
1145  *
1146  * Doesn't actually do anything except notify userspace. As a consequence of
1147  * this event, userspace should try to remap the bad rows since statistically
1148  * it is likely the same row is more likely to go bad again.
1149  */
1150 static void ivybridge_parity_work(struct work_struct *work)
1151 {
1152         struct drm_i915_private *dev_priv =
1153                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1154         u32 error_status, row, bank, subbank;
1155         char *parity_event[6];
1156         uint32_t misccpctl;
1157         uint8_t slice = 0;
1158
1159         /* We must turn off DOP level clock gating to access the L3 registers.
1160          * In order to prevent a get/put style interface, acquire struct mutex
1161          * any time we access those registers.
1162          */
1163         mutex_lock(&dev_priv->dev->struct_mutex);
1164
1165         /* If we've screwed up tracking, just let the interrupt fire again */
1166         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1167                 goto out;
1168
1169         misccpctl = I915_READ(GEN7_MISCCPCTL);
1170         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1171         POSTING_READ(GEN7_MISCCPCTL);
1172
1173         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1174                 u32 reg;
1175
1176                 slice--;
1177                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1178                         break;
1179
1180                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1181
1182                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1183
1184                 error_status = I915_READ(reg);
1185                 row = GEN7_PARITY_ERROR_ROW(error_status);
1186                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1187                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1188
1189                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1190                 POSTING_READ(reg);
1191
1192                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1193                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1194                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1195                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1196                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1197                 parity_event[5] = NULL;
1198
1199                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1200                                    KOBJ_CHANGE, parity_event);
1201
1202                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1203                           slice, row, bank, subbank);
1204
1205                 kfree(parity_event[4]);
1206                 kfree(parity_event[3]);
1207                 kfree(parity_event[2]);
1208                 kfree(parity_event[1]);
1209         }
1210
1211         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1212
1213 out:
1214         WARN_ON(dev_priv->l3_parity.which_slice);
1215         spin_lock_irq(&dev_priv->irq_lock);
1216         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1217         spin_unlock_irq(&dev_priv->irq_lock);
1218
1219         mutex_unlock(&dev_priv->dev->struct_mutex);
1220 }
1221
1222 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1223 {
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225
1226         if (!HAS_L3_DPF(dev))
1227                 return;
1228
1229         spin_lock(&dev_priv->irq_lock);
1230         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1231         spin_unlock(&dev_priv->irq_lock);
1232
1233         iir &= GT_PARITY_ERROR(dev);
1234         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1235                 dev_priv->l3_parity.which_slice |= 1 << 1;
1236
1237         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1238                 dev_priv->l3_parity.which_slice |= 1 << 0;
1239
1240         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1241 }
1242
1243 static void ilk_gt_irq_handler(struct drm_device *dev,
1244                                struct drm_i915_private *dev_priv,
1245                                u32 gt_iir)
1246 {
1247         if (gt_iir &
1248             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1249                 notify_ring(&dev_priv->ring[RCS]);
1250         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1251                 notify_ring(&dev_priv->ring[VCS]);
1252 }
1253
1254 static void snb_gt_irq_handler(struct drm_device *dev,
1255                                struct drm_i915_private *dev_priv,
1256                                u32 gt_iir)
1257 {
1258
1259         if (gt_iir &
1260             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1261                 notify_ring(&dev_priv->ring[RCS]);
1262         if (gt_iir & GT_BSD_USER_INTERRUPT)
1263                 notify_ring(&dev_priv->ring[VCS]);
1264         if (gt_iir & GT_BLT_USER_INTERRUPT)
1265                 notify_ring(&dev_priv->ring[BCS]);
1266
1267         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1268                       GT_BSD_CS_ERROR_INTERRUPT |
1269                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1270                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1271
1272         if (gt_iir & GT_PARITY_ERROR(dev))
1273                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1274 }
1275
1276 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1277                                        u32 master_ctl)
1278 {
1279         irqreturn_t ret = IRQ_NONE;
1280
1281         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1282                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1283                 if (tmp) {
1284                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1285                         ret = IRQ_HANDLED;
1286
1287                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1288                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1289                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1290                                 notify_ring(&dev_priv->ring[RCS]);
1291
1292                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1293                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1294                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1295                                 notify_ring(&dev_priv->ring[BCS]);
1296                 } else
1297                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1298         }
1299
1300         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1301                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1302                 if (tmp) {
1303                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1304                         ret = IRQ_HANDLED;
1305
1306                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1307                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1308                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1309                                 notify_ring(&dev_priv->ring[VCS]);
1310
1311                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1312                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1313                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1314                                 notify_ring(&dev_priv->ring[VCS2]);
1315                 } else
1316                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1317         }
1318
1319         if (master_ctl & GEN8_GT_VECS_IRQ) {
1320                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1321                 if (tmp) {
1322                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1323                         ret = IRQ_HANDLED;
1324
1325                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1326                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1327                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1328                                 notify_ring(&dev_priv->ring[VECS]);
1329                 } else
1330                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1331         }
1332
1333         if (master_ctl & GEN8_GT_PM_IRQ) {
1334                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1335                 if (tmp & dev_priv->pm_rps_events) {
1336                         I915_WRITE_FW(GEN8_GT_IIR(2),
1337                                       tmp & dev_priv->pm_rps_events);
1338                         ret = IRQ_HANDLED;
1339                         gen6_rps_irq_handler(dev_priv, tmp);
1340                 } else
1341                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1342         }
1343
1344         return ret;
1345 }
1346
1347 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1348 {
1349         switch (port) {
1350         case PORT_A:
1351                 return val & PORTA_HOTPLUG_LONG_DETECT;
1352         case PORT_B:
1353                 return val & PORTB_HOTPLUG_LONG_DETECT;
1354         case PORT_C:
1355                 return val & PORTC_HOTPLUG_LONG_DETECT;
1356         default:
1357                 return false;
1358         }
1359 }
1360
1361 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1362 {
1363         switch (port) {
1364         case PORT_E:
1365                 return val & PORTE_HOTPLUG_LONG_DETECT;
1366         default:
1367                 return false;
1368         }
1369 }
1370
1371 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1372 {
1373         switch (port) {
1374         case PORT_A:
1375                 return val & PORTA_HOTPLUG_LONG_DETECT;
1376         case PORT_B:
1377                 return val & PORTB_HOTPLUG_LONG_DETECT;
1378         case PORT_C:
1379                 return val & PORTC_HOTPLUG_LONG_DETECT;
1380         case PORT_D:
1381                 return val & PORTD_HOTPLUG_LONG_DETECT;
1382         default:
1383                 return false;
1384         }
1385 }
1386
1387 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1388 {
1389         switch (port) {
1390         case PORT_A:
1391                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1392         default:
1393                 return false;
1394         }
1395 }
1396
1397 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1398 {
1399         switch (port) {
1400         case PORT_B:
1401                 return val & PORTB_HOTPLUG_LONG_DETECT;
1402         case PORT_C:
1403                 return val & PORTC_HOTPLUG_LONG_DETECT;
1404         case PORT_D:
1405                 return val & PORTD_HOTPLUG_LONG_DETECT;
1406         default:
1407                 return false;
1408         }
1409 }
1410
1411 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1412 {
1413         switch (port) {
1414         case PORT_B:
1415                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1416         case PORT_C:
1417                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1418         case PORT_D:
1419                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1420         default:
1421                 return false;
1422         }
1423 }
1424
1425 /*
1426  * Get a bit mask of pins that have triggered, and which ones may be long.
1427  * This can be called multiple times with the same masks to accumulate
1428  * hotplug detection results from several registers.
1429  *
1430  * Note that the caller is expected to zero out the masks initially.
1431  */
1432 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1433                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1434                              const u32 hpd[HPD_NUM_PINS],
1435                              bool long_pulse_detect(enum port port, u32 val))
1436 {
1437         enum port port;
1438         int i;
1439
1440         for_each_hpd_pin(i) {
1441                 if ((hpd[i] & hotplug_trigger) == 0)
1442                         continue;
1443
1444                 *pin_mask |= BIT(i);
1445
1446                 if (!intel_hpd_pin_to_port(i, &port))
1447                         continue;
1448
1449                 if (long_pulse_detect(port, dig_hotplug_reg))
1450                         *long_mask |= BIT(i);
1451         }
1452
1453         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1454                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1455
1456 }
1457
1458 static void gmbus_irq_handler(struct drm_device *dev)
1459 {
1460         struct drm_i915_private *dev_priv = dev->dev_private;
1461
1462         wake_up_all(&dev_priv->gmbus_wait_queue);
1463 }
1464
1465 static void dp_aux_irq_handler(struct drm_device *dev)
1466 {
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468
1469         wake_up_all(&dev_priv->gmbus_wait_queue);
1470 }
1471
1472 #if defined(CONFIG_DEBUG_FS)
1473 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1474                                          uint32_t crc0, uint32_t crc1,
1475                                          uint32_t crc2, uint32_t crc3,
1476                                          uint32_t crc4)
1477 {
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1480         struct intel_pipe_crc_entry *entry;
1481         int head, tail;
1482
1483         spin_lock(&pipe_crc->lock);
1484
1485         if (!pipe_crc->entries) {
1486                 spin_unlock(&pipe_crc->lock);
1487                 DRM_DEBUG_KMS("spurious interrupt\n");
1488                 return;
1489         }
1490
1491         head = pipe_crc->head;
1492         tail = pipe_crc->tail;
1493
1494         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1495                 spin_unlock(&pipe_crc->lock);
1496                 DRM_ERROR("CRC buffer overflowing\n");
1497                 return;
1498         }
1499
1500         entry = &pipe_crc->entries[head];
1501
1502         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1503         entry->crc[0] = crc0;
1504         entry->crc[1] = crc1;
1505         entry->crc[2] = crc2;
1506         entry->crc[3] = crc3;
1507         entry->crc[4] = crc4;
1508
1509         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1510         pipe_crc->head = head;
1511
1512         spin_unlock(&pipe_crc->lock);
1513
1514         wake_up_interruptible(&pipe_crc->wq);
1515 }
1516 #else
1517 static inline void
1518 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1519                              uint32_t crc0, uint32_t crc1,
1520                              uint32_t crc2, uint32_t crc3,
1521                              uint32_t crc4) {}
1522 #endif
1523
1524
1525 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1526 {
1527         struct drm_i915_private *dev_priv = dev->dev_private;
1528
1529         display_pipe_crc_irq_handler(dev, pipe,
1530                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1531                                      0, 0, 0, 0);
1532 }
1533
1534 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538         display_pipe_crc_irq_handler(dev, pipe,
1539                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1540                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1541                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1542                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1543                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1544 }
1545
1546 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1547 {
1548         struct drm_i915_private *dev_priv = dev->dev_private;
1549         uint32_t res1, res2;
1550
1551         if (INTEL_INFO(dev)->gen >= 3)
1552                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1553         else
1554                 res1 = 0;
1555
1556         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1557                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1558         else
1559                 res2 = 0;
1560
1561         display_pipe_crc_irq_handler(dev, pipe,
1562                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1563                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1564                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1565                                      res1, res2);
1566 }
1567
1568 /* The RPS events need forcewake, so we add them to a work queue and mask their
1569  * IMR bits until the work is done. Other interrupts can be processed without
1570  * the work queue. */
1571 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1572 {
1573         if (pm_iir & dev_priv->pm_rps_events) {
1574                 spin_lock(&dev_priv->irq_lock);
1575                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1576                 if (dev_priv->rps.interrupts_enabled) {
1577                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1578                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1579                 }
1580                 spin_unlock(&dev_priv->irq_lock);
1581         }
1582
1583         if (INTEL_INFO(dev_priv)->gen >= 8)
1584                 return;
1585
1586         if (HAS_VEBOX(dev_priv->dev)) {
1587                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1588                         notify_ring(&dev_priv->ring[VECS]);
1589
1590                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1591                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1592         }
1593 }
1594
1595 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1596 {
1597         if (!drm_handle_vblank(dev, pipe))
1598                 return false;
1599
1600         return true;
1601 }
1602
1603 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1604 {
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         u32 pipe_stats[I915_MAX_PIPES] = { };
1607         int pipe;
1608
1609         spin_lock(&dev_priv->irq_lock);
1610         for_each_pipe(dev_priv, pipe) {
1611                 int reg;
1612                 u32 mask, iir_bit = 0;
1613
1614                 /*
1615                  * PIPESTAT bits get signalled even when the interrupt is
1616                  * disabled with the mask bits, and some of the status bits do
1617                  * not generate interrupts at all (like the underrun bit). Hence
1618                  * we need to be careful that we only handle what we want to
1619                  * handle.
1620                  */
1621
1622                 /* fifo underruns are filterered in the underrun handler. */
1623                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1624
1625                 switch (pipe) {
1626                 case PIPE_A:
1627                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1628                         break;
1629                 case PIPE_B:
1630                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1631                         break;
1632                 case PIPE_C:
1633                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1634                         break;
1635                 }
1636                 if (iir & iir_bit)
1637                         mask |= dev_priv->pipestat_irq_mask[pipe];
1638
1639                 if (!mask)
1640                         continue;
1641
1642                 reg = PIPESTAT(pipe);
1643                 mask |= PIPESTAT_INT_ENABLE_MASK;
1644                 pipe_stats[pipe] = I915_READ(reg) & mask;
1645
1646                 /*
1647                  * Clear the PIPE*STAT regs before the IIR
1648                  */
1649                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1650                                         PIPESTAT_INT_STATUS_MASK))
1651                         I915_WRITE(reg, pipe_stats[pipe]);
1652         }
1653         spin_unlock(&dev_priv->irq_lock);
1654
1655         for_each_pipe(dev_priv, pipe) {
1656                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1657                     intel_pipe_handle_vblank(dev, pipe))
1658                         intel_check_page_flip(dev, pipe);
1659
1660                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1661                         intel_prepare_page_flip(dev, pipe);
1662                         intel_finish_page_flip(dev, pipe);
1663                 }
1664
1665                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1666                         i9xx_pipe_crc_irq_handler(dev, pipe);
1667
1668                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1669                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1670         }
1671
1672         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1673                 gmbus_irq_handler(dev);
1674 }
1675
1676 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1677 {
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1680         u32 pin_mask = 0, long_mask = 0;
1681
1682         if (!hotplug_status)
1683                 return;
1684
1685         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1686         /*
1687          * Make sure hotplug status is cleared before we clear IIR, or else we
1688          * may miss hotplug events.
1689          */
1690         POSTING_READ(PORT_HOTPLUG_STAT);
1691
1692         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1693                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1694
1695                 if (hotplug_trigger) {
1696                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1697                                            hotplug_trigger, hpd_status_g4x,
1698                                            i9xx_port_hotplug_long_detect);
1699
1700                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1701                 }
1702
1703                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1704                         dp_aux_irq_handler(dev);
1705         } else {
1706                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1707
1708                 if (hotplug_trigger) {
1709                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1710                                            hotplug_trigger, hpd_status_i915,
1711                                            i9xx_port_hotplug_long_detect);
1712                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1713                 }
1714         }
1715 }
1716
1717 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1718 {
1719         struct drm_device *dev = arg;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         u32 iir, gt_iir, pm_iir;
1722         irqreturn_t ret = IRQ_NONE;
1723
1724         if (!intel_irqs_enabled(dev_priv))
1725                 return IRQ_NONE;
1726
1727         while (true) {
1728                 /* Find, clear, then process each source of interrupt */
1729
1730                 gt_iir = I915_READ(GTIIR);
1731                 if (gt_iir)
1732                         I915_WRITE(GTIIR, gt_iir);
1733
1734                 pm_iir = I915_READ(GEN6_PMIIR);
1735                 if (pm_iir)
1736                         I915_WRITE(GEN6_PMIIR, pm_iir);
1737
1738                 iir = I915_READ(VLV_IIR);
1739                 if (iir) {
1740                         /* Consume port before clearing IIR or we'll miss events */
1741                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1742                                 i9xx_hpd_irq_handler(dev);
1743                         I915_WRITE(VLV_IIR, iir);
1744                 }
1745
1746                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1747                         goto out;
1748
1749                 ret = IRQ_HANDLED;
1750
1751                 if (gt_iir)
1752                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1753                 if (pm_iir)
1754                         gen6_rps_irq_handler(dev_priv, pm_iir);
1755                 /* Call regardless, as some status bits might not be
1756                  * signalled in iir */
1757                 valleyview_pipestat_irq_handler(dev, iir);
1758         }
1759
1760 out:
1761         return ret;
1762 }
1763
1764 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1765 {
1766         struct drm_device *dev = arg;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         u32 master_ctl, iir;
1769         irqreturn_t ret = IRQ_NONE;
1770
1771         if (!intel_irqs_enabled(dev_priv))
1772                 return IRQ_NONE;
1773
1774         for (;;) {
1775                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1776                 iir = I915_READ(VLV_IIR);
1777
1778                 if (master_ctl == 0 && iir == 0)
1779                         break;
1780
1781                 ret = IRQ_HANDLED;
1782
1783                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1784
1785                 /* Find, clear, then process each source of interrupt */
1786
1787                 if (iir) {
1788                         /* Consume port before clearing IIR or we'll miss events */
1789                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1790                                 i9xx_hpd_irq_handler(dev);
1791                         I915_WRITE(VLV_IIR, iir);
1792                 }
1793
1794                 gen8_gt_irq_handler(dev_priv, master_ctl);
1795
1796                 /* Call regardless, as some status bits might not be
1797                  * signalled in iir */
1798                 valleyview_pipestat_irq_handler(dev, iir);
1799
1800                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1801                 POSTING_READ(GEN8_MASTER_IRQ);
1802         }
1803
1804         return ret;
1805 }
1806
1807 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1808                                 const u32 hpd[HPD_NUM_PINS])
1809 {
1810         struct drm_i915_private *dev_priv = to_i915(dev);
1811         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1812
1813         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1814         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1815
1816         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1817                            dig_hotplug_reg, hpd,
1818                            pch_port_hotplug_long_detect);
1819
1820         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1821 }
1822
1823 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1824 {
1825         struct drm_i915_private *dev_priv = dev->dev_private;
1826         int pipe;
1827         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1828
1829         if (hotplug_trigger)
1830                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1831
1832         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1833                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1834                                SDE_AUDIO_POWER_SHIFT);
1835                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1836                                  port_name(port));
1837         }
1838
1839         if (pch_iir & SDE_AUX_MASK)
1840                 dp_aux_irq_handler(dev);
1841
1842         if (pch_iir & SDE_GMBUS)
1843                 gmbus_irq_handler(dev);
1844
1845         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1846                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1847
1848         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1849                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1850
1851         if (pch_iir & SDE_POISON)
1852                 DRM_ERROR("PCH poison interrupt\n");
1853
1854         if (pch_iir & SDE_FDI_MASK)
1855                 for_each_pipe(dev_priv, pipe)
1856                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1857                                          pipe_name(pipe),
1858                                          I915_READ(FDI_RX_IIR(pipe)));
1859
1860         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1861                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1862
1863         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1864                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1865
1866         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1867                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1868
1869         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1870                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1871 }
1872
1873 static void ivb_err_int_handler(struct drm_device *dev)
1874 {
1875         struct drm_i915_private *dev_priv = dev->dev_private;
1876         u32 err_int = I915_READ(GEN7_ERR_INT);
1877         enum pipe pipe;
1878
1879         if (err_int & ERR_INT_POISON)
1880                 DRM_ERROR("Poison interrupt\n");
1881
1882         for_each_pipe(dev_priv, pipe) {
1883                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1884                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1885
1886                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1887                         if (IS_IVYBRIDGE(dev))
1888                                 ivb_pipe_crc_irq_handler(dev, pipe);
1889                         else
1890                                 hsw_pipe_crc_irq_handler(dev, pipe);
1891                 }
1892         }
1893
1894         I915_WRITE(GEN7_ERR_INT, err_int);
1895 }
1896
1897 static void cpt_serr_int_handler(struct drm_device *dev)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         u32 serr_int = I915_READ(SERR_INT);
1901
1902         if (serr_int & SERR_INT_POISON)
1903                 DRM_ERROR("PCH poison interrupt\n");
1904
1905         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1906                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1907
1908         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1909                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1910
1911         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1912                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1913
1914         I915_WRITE(SERR_INT, serr_int);
1915 }
1916
1917 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1918 {
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         int pipe;
1921         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1922
1923         if (hotplug_trigger)
1924                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1925
1926         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1927                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1928                                SDE_AUDIO_POWER_SHIFT_CPT);
1929                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1930                                  port_name(port));
1931         }
1932
1933         if (pch_iir & SDE_AUX_MASK_CPT)
1934                 dp_aux_irq_handler(dev);
1935
1936         if (pch_iir & SDE_GMBUS_CPT)
1937                 gmbus_irq_handler(dev);
1938
1939         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1940                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1941
1942         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1943                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1944
1945         if (pch_iir & SDE_FDI_MASK_CPT)
1946                 for_each_pipe(dev_priv, pipe)
1947                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1948                                          pipe_name(pipe),
1949                                          I915_READ(FDI_RX_IIR(pipe)));
1950
1951         if (pch_iir & SDE_ERROR_CPT)
1952                 cpt_serr_int_handler(dev);
1953 }
1954
1955 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1959                 ~SDE_PORTE_HOTPLUG_SPT;
1960         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1961         u32 pin_mask = 0, long_mask = 0;
1962
1963         if (hotplug_trigger) {
1964                 u32 dig_hotplug_reg;
1965
1966                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1967                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1968
1969                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1970                                    dig_hotplug_reg, hpd_spt,
1971                                    spt_port_hotplug_long_detect);
1972         }
1973
1974         if (hotplug2_trigger) {
1975                 u32 dig_hotplug_reg;
1976
1977                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1978                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1979
1980                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1981                                    dig_hotplug_reg, hpd_spt,
1982                                    spt_port_hotplug2_long_detect);
1983         }
1984
1985         if (pin_mask)
1986                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1987
1988         if (pch_iir & SDE_GMBUS_CPT)
1989                 gmbus_irq_handler(dev);
1990 }
1991
1992 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1993                                 const u32 hpd[HPD_NUM_PINS])
1994 {
1995         struct drm_i915_private *dev_priv = to_i915(dev);
1996         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1997
1998         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1999         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2000
2001         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2002                            dig_hotplug_reg, hpd,
2003                            ilk_port_hotplug_long_detect);
2004
2005         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2006 }
2007
2008 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2009 {
2010         struct drm_i915_private *dev_priv = dev->dev_private;
2011         enum pipe pipe;
2012         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2013
2014         if (hotplug_trigger)
2015                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2016
2017         if (de_iir & DE_AUX_CHANNEL_A)
2018                 dp_aux_irq_handler(dev);
2019
2020         if (de_iir & DE_GSE)
2021                 intel_opregion_asle_intr(dev);
2022
2023         if (de_iir & DE_POISON)
2024                 DRM_ERROR("Poison interrupt\n");
2025
2026         for_each_pipe(dev_priv, pipe) {
2027                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2028                     intel_pipe_handle_vblank(dev, pipe))
2029                         intel_check_page_flip(dev, pipe);
2030
2031                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2032                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2033
2034                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2035                         i9xx_pipe_crc_irq_handler(dev, pipe);
2036
2037                 /* plane/pipes map 1:1 on ilk+ */
2038                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2039                         intel_prepare_page_flip(dev, pipe);
2040                         intel_finish_page_flip_plane(dev, pipe);
2041                 }
2042         }
2043
2044         /* check event from PCH */
2045         if (de_iir & DE_PCH_EVENT) {
2046                 u32 pch_iir = I915_READ(SDEIIR);
2047
2048                 if (HAS_PCH_CPT(dev))
2049                         cpt_irq_handler(dev, pch_iir);
2050                 else
2051                         ibx_irq_handler(dev, pch_iir);
2052
2053                 /* should clear PCH hotplug event before clear CPU irq */
2054                 I915_WRITE(SDEIIR, pch_iir);
2055         }
2056
2057         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2058                 ironlake_rps_change_irq_handler(dev);
2059 }
2060
2061 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2062 {
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         enum pipe pipe;
2065         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2066
2067         if (hotplug_trigger)
2068                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2069
2070         if (de_iir & DE_ERR_INT_IVB)
2071                 ivb_err_int_handler(dev);
2072
2073         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2074                 dp_aux_irq_handler(dev);
2075
2076         if (de_iir & DE_GSE_IVB)
2077                 intel_opregion_asle_intr(dev);
2078
2079         for_each_pipe(dev_priv, pipe) {
2080                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2081                     intel_pipe_handle_vblank(dev, pipe))
2082                         intel_check_page_flip(dev, pipe);
2083
2084                 /* plane/pipes map 1:1 on ilk+ */
2085                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2086                         intel_prepare_page_flip(dev, pipe);
2087                         intel_finish_page_flip_plane(dev, pipe);
2088                 }
2089         }
2090
2091         /* check event from PCH */
2092         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2093                 u32 pch_iir = I915_READ(SDEIIR);
2094
2095                 cpt_irq_handler(dev, pch_iir);
2096
2097                 /* clear PCH hotplug event before clear CPU irq */
2098                 I915_WRITE(SDEIIR, pch_iir);
2099         }
2100 }
2101
2102 /*
2103  * To handle irqs with the minimum potential races with fresh interrupts, we:
2104  * 1 - Disable Master Interrupt Control.
2105  * 2 - Find the source(s) of the interrupt.
2106  * 3 - Clear the Interrupt Identity bits (IIR).
2107  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2108  * 5 - Re-enable Master Interrupt Control.
2109  */
2110 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2111 {
2112         struct drm_device *dev = arg;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2115         irqreturn_t ret = IRQ_NONE;
2116
2117         if (!intel_irqs_enabled(dev_priv))
2118                 return IRQ_NONE;
2119
2120         /* We get interrupts on unclaimed registers, so check for this before we
2121          * do any I915_{READ,WRITE}. */
2122         intel_uncore_check_errors(dev);
2123
2124         /* disable master interrupt before clearing iir  */
2125         de_ier = I915_READ(DEIER);
2126         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2127         POSTING_READ(DEIER);
2128
2129         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2130          * interrupts will will be stored on its back queue, and then we'll be
2131          * able to process them after we restore SDEIER (as soon as we restore
2132          * it, we'll get an interrupt if SDEIIR still has something to process
2133          * due to its back queue). */
2134         if (!HAS_PCH_NOP(dev)) {
2135                 sde_ier = I915_READ(SDEIER);
2136                 I915_WRITE(SDEIER, 0);
2137                 POSTING_READ(SDEIER);
2138         }
2139
2140         /* Find, clear, then process each source of interrupt */
2141
2142         gt_iir = I915_READ(GTIIR);
2143         if (gt_iir) {
2144                 I915_WRITE(GTIIR, gt_iir);
2145                 ret = IRQ_HANDLED;
2146                 if (INTEL_INFO(dev)->gen >= 6)
2147                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2148                 else
2149                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2150         }
2151
2152         de_iir = I915_READ(DEIIR);
2153         if (de_iir) {
2154                 I915_WRITE(DEIIR, de_iir);
2155                 ret = IRQ_HANDLED;
2156                 if (INTEL_INFO(dev)->gen >= 7)
2157                         ivb_display_irq_handler(dev, de_iir);
2158                 else
2159                         ilk_display_irq_handler(dev, de_iir);
2160         }
2161
2162         if (INTEL_INFO(dev)->gen >= 6) {
2163                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2164                 if (pm_iir) {
2165                         I915_WRITE(GEN6_PMIIR, pm_iir);
2166                         ret = IRQ_HANDLED;
2167                         gen6_rps_irq_handler(dev_priv, pm_iir);
2168                 }
2169         }
2170
2171         I915_WRITE(DEIER, de_ier);
2172         POSTING_READ(DEIER);
2173         if (!HAS_PCH_NOP(dev)) {
2174                 I915_WRITE(SDEIER, sde_ier);
2175                 POSTING_READ(SDEIER);
2176         }
2177
2178         return ret;
2179 }
2180
2181 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2182                                 const u32 hpd[HPD_NUM_PINS])
2183 {
2184         struct drm_i915_private *dev_priv = to_i915(dev);
2185         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2186
2187         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2188         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2189
2190         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2191                            dig_hotplug_reg, hpd,
2192                            bxt_port_hotplug_long_detect);
2193
2194         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2195 }
2196
2197 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2198 {
2199         struct drm_device *dev = arg;
2200         struct drm_i915_private *dev_priv = dev->dev_private;
2201         u32 master_ctl;
2202         irqreturn_t ret = IRQ_NONE;
2203         uint32_t tmp = 0;
2204         enum pipe pipe;
2205         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2206
2207         if (!intel_irqs_enabled(dev_priv))
2208                 return IRQ_NONE;
2209
2210         if (INTEL_INFO(dev_priv)->gen >= 9)
2211                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2212                         GEN9_AUX_CHANNEL_D;
2213
2214         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2215         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2216         if (!master_ctl)
2217                 return IRQ_NONE;
2218
2219         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2220
2221         /* Find, clear, then process each source of interrupt */
2222
2223         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2224
2225         if (master_ctl & GEN8_DE_MISC_IRQ) {
2226                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2227                 if (tmp) {
2228                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2229                         ret = IRQ_HANDLED;
2230                         if (tmp & GEN8_DE_MISC_GSE)
2231                                 intel_opregion_asle_intr(dev);
2232                         else
2233                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2234                 }
2235                 else
2236                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2237         }
2238
2239         if (master_ctl & GEN8_DE_PORT_IRQ) {
2240                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2241                 if (tmp) {
2242                         bool found = false;
2243                         u32 hotplug_trigger = 0;
2244
2245                         if (IS_BROXTON(dev_priv))
2246                                 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2247                         else if (IS_BROADWELL(dev_priv))
2248                                 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2249
2250                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2251                         ret = IRQ_HANDLED;
2252
2253                         if (tmp & aux_mask) {
2254                                 dp_aux_irq_handler(dev);
2255                                 found = true;
2256                         }
2257
2258                         if (hotplug_trigger) {
2259                                 if (IS_BROXTON(dev))
2260                                         bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2261                                 else
2262                                         ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2263                                 found = true;
2264                         }
2265
2266                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2267                                 gmbus_irq_handler(dev);
2268                                 found = true;
2269                         }
2270
2271                         if (!found)
2272                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2273                 }
2274                 else
2275                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2276         }
2277
2278         for_each_pipe(dev_priv, pipe) {
2279                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2280
2281                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2282                         continue;
2283
2284                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2285                 if (pipe_iir) {
2286                         ret = IRQ_HANDLED;
2287                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2288
2289                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2290                             intel_pipe_handle_vblank(dev, pipe))
2291                                 intel_check_page_flip(dev, pipe);
2292
2293                         if (INTEL_INFO(dev_priv)->gen >= 9)
2294                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2295                         else
2296                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2297
2298                         if (flip_done) {
2299                                 intel_prepare_page_flip(dev, pipe);
2300                                 intel_finish_page_flip_plane(dev, pipe);
2301                         }
2302
2303                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2304                                 hsw_pipe_crc_irq_handler(dev, pipe);
2305
2306                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2307                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2308                                                                     pipe);
2309
2310
2311                         if (INTEL_INFO(dev_priv)->gen >= 9)
2312                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2313                         else
2314                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2315
2316                         if (fault_errors)
2317                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2318                                           pipe_name(pipe),
2319                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2320                 } else
2321                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2322         }
2323
2324         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2325             master_ctl & GEN8_DE_PCH_IRQ) {
2326                 /*
2327                  * FIXME(BDW): Assume for now that the new interrupt handling
2328                  * scheme also closed the SDE interrupt handling race we've seen
2329                  * on older pch-split platforms. But this needs testing.
2330                  */
2331                 u32 pch_iir = I915_READ(SDEIIR);
2332                 if (pch_iir) {
2333                         I915_WRITE(SDEIIR, pch_iir);
2334                         ret = IRQ_HANDLED;
2335
2336                         if (HAS_PCH_SPT(dev_priv))
2337                                 spt_irq_handler(dev, pch_iir);
2338                         else
2339                                 cpt_irq_handler(dev, pch_iir);
2340                 } else {
2341                         /*
2342                          * Like on previous PCH there seems to be something
2343                          * fishy going on with forwarding PCH interrupts.
2344                          */
2345                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2346                 }
2347         }
2348
2349         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2350         POSTING_READ_FW(GEN8_MASTER_IRQ);
2351
2352         return ret;
2353 }
2354
2355 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2356                                bool reset_completed)
2357 {
2358         struct intel_engine_cs *ring;
2359         int i;
2360
2361         /*
2362          * Notify all waiters for GPU completion events that reset state has
2363          * been changed, and that they need to restart their wait after
2364          * checking for potential errors (and bail out to drop locks if there is
2365          * a gpu reset pending so that i915_error_work_func can acquire them).
2366          */
2367
2368         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2369         for_each_ring(ring, dev_priv, i)
2370                 wake_up_all(&ring->irq_queue);
2371
2372         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2373         wake_up_all(&dev_priv->pending_flip_queue);
2374
2375         /*
2376          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2377          * reset state is cleared.
2378          */
2379         if (reset_completed)
2380                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2381 }
2382
2383 /**
2384  * i915_reset_and_wakeup - do process context error handling work
2385  * @dev: drm device
2386  *
2387  * Fire an error uevent so userspace can see that a hang or error
2388  * was detected.
2389  */
2390 static void i915_reset_and_wakeup(struct drm_device *dev)
2391 {
2392         struct drm_i915_private *dev_priv = to_i915(dev);
2393         struct i915_gpu_error *error = &dev_priv->gpu_error;
2394         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2395         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2396         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2397         int ret;
2398
2399         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2400
2401         /*
2402          * Note that there's only one work item which does gpu resets, so we
2403          * need not worry about concurrent gpu resets potentially incrementing
2404          * error->reset_counter twice. We only need to take care of another
2405          * racing irq/hangcheck declaring the gpu dead for a second time. A
2406          * quick check for that is good enough: schedule_work ensures the
2407          * correct ordering between hang detection and this work item, and since
2408          * the reset in-progress bit is only ever set by code outside of this
2409          * work we don't need to worry about any other races.
2410          */
2411         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2412                 DRM_DEBUG_DRIVER("resetting chip\n");
2413                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2414                                    reset_event);
2415
2416                 /*
2417                  * In most cases it's guaranteed that we get here with an RPM
2418                  * reference held, for example because there is a pending GPU
2419                  * request that won't finish until the reset is done. This
2420                  * isn't the case at least when we get here by doing a
2421                  * simulated reset via debugs, so get an RPM reference.
2422                  */
2423                 intel_runtime_pm_get(dev_priv);
2424
2425                 intel_prepare_reset(dev);
2426
2427                 /*
2428                  * All state reset _must_ be completed before we update the
2429                  * reset counter, for otherwise waiters might miss the reset
2430                  * pending state and not properly drop locks, resulting in
2431                  * deadlocks with the reset work.
2432                  */
2433                 ret = i915_reset(dev);
2434
2435                 intel_finish_reset(dev);
2436
2437                 intel_runtime_pm_put(dev_priv);
2438
2439                 if (ret == 0) {
2440                         /*
2441                          * After all the gem state is reset, increment the reset
2442                          * counter and wake up everyone waiting for the reset to
2443                          * complete.
2444                          *
2445                          * Since unlock operations are a one-sided barrier only,
2446                          * we need to insert a barrier here to order any seqno
2447                          * updates before
2448                          * the counter increment.
2449                          */
2450                         smp_mb__before_atomic();
2451                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2452
2453                         kobject_uevent_env(&dev->primary->kdev->kobj,
2454                                            KOBJ_CHANGE, reset_done_event);
2455                 } else {
2456                         atomic_or(I915_WEDGED, &error->reset_counter);
2457                 }
2458
2459                 /*
2460                  * Note: The wake_up also serves as a memory barrier so that
2461                  * waiters see the update value of the reset counter atomic_t.
2462                  */
2463                 i915_error_wake_up(dev_priv, true);
2464         }
2465 }
2466
2467 static void i915_report_and_clear_eir(struct drm_device *dev)
2468 {
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         uint32_t instdone[I915_NUM_INSTDONE_REG];
2471         u32 eir = I915_READ(EIR);
2472         int pipe, i;
2473
2474         if (!eir)
2475                 return;
2476
2477         pr_err("render error detected, EIR: 0x%08x\n", eir);
2478
2479         i915_get_extra_instdone(dev, instdone);
2480
2481         if (IS_G4X(dev)) {
2482                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2483                         u32 ipeir = I915_READ(IPEIR_I965);
2484
2485                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2486                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2487                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2488                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2489                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2490                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2491                         I915_WRITE(IPEIR_I965, ipeir);
2492                         POSTING_READ(IPEIR_I965);
2493                 }
2494                 if (eir & GM45_ERROR_PAGE_TABLE) {
2495                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2496                         pr_err("page table error\n");
2497                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2498                         I915_WRITE(PGTBL_ER, pgtbl_err);
2499                         POSTING_READ(PGTBL_ER);
2500                 }
2501         }
2502
2503         if (!IS_GEN2(dev)) {
2504                 if (eir & I915_ERROR_PAGE_TABLE) {
2505                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2506                         pr_err("page table error\n");
2507                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2508                         I915_WRITE(PGTBL_ER, pgtbl_err);
2509                         POSTING_READ(PGTBL_ER);
2510                 }
2511         }
2512
2513         if (eir & I915_ERROR_MEMORY_REFRESH) {
2514                 pr_err("memory refresh error:\n");
2515                 for_each_pipe(dev_priv, pipe)
2516                         pr_err("pipe %c stat: 0x%08x\n",
2517                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2518                 /* pipestat has already been acked */
2519         }
2520         if (eir & I915_ERROR_INSTRUCTION) {
2521                 pr_err("instruction error\n");
2522                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2523                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2524                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2525                 if (INTEL_INFO(dev)->gen < 4) {
2526                         u32 ipeir = I915_READ(IPEIR);
2527
2528                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2529                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2530                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2531                         I915_WRITE(IPEIR, ipeir);
2532                         POSTING_READ(IPEIR);
2533                 } else {
2534                         u32 ipeir = I915_READ(IPEIR_I965);
2535
2536                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2537                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2538                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2539                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2540                         I915_WRITE(IPEIR_I965, ipeir);
2541                         POSTING_READ(IPEIR_I965);
2542                 }
2543         }
2544
2545         I915_WRITE(EIR, eir);
2546         POSTING_READ(EIR);
2547         eir = I915_READ(EIR);
2548         if (eir) {
2549                 /*
2550                  * some errors might have become stuck,
2551                  * mask them.
2552                  */
2553                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2554                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2555                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2556         }
2557 }
2558
2559 /**
2560  * i915_handle_error - handle a gpu error
2561  * @dev: drm device
2562  *
2563  * Do some basic checking of register state at error time and
2564  * dump it to the syslog.  Also call i915_capture_error_state() to make
2565  * sure we get a record and make it available in debugfs.  Fire a uevent
2566  * so userspace knows something bad happened (should trigger collection
2567  * of a ring dump etc.).
2568  */
2569 void i915_handle_error(struct drm_device *dev, bool wedged,
2570                        const char *fmt, ...)
2571 {
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573         va_list args;
2574         char error_msg[80];
2575
2576         va_start(args, fmt);
2577         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2578         va_end(args);
2579
2580         i915_capture_error_state(dev, wedged, error_msg);
2581         i915_report_and_clear_eir(dev);
2582
2583         if (wedged) {
2584                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2585                                 &dev_priv->gpu_error.reset_counter);
2586
2587                 /*
2588                  * Wakeup waiting processes so that the reset function
2589                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2590                  * various locks. By bumping the reset counter first, the woken
2591                  * processes will see a reset in progress and back off,
2592                  * releasing their locks and then wait for the reset completion.
2593                  * We must do this for _all_ gpu waiters that might hold locks
2594                  * that the reset work needs to acquire.
2595                  *
2596                  * Note: The wake_up serves as the required memory barrier to
2597                  * ensure that the waiters see the updated value of the reset
2598                  * counter atomic_t.
2599                  */
2600                 i915_error_wake_up(dev_priv, false);
2601         }
2602
2603         i915_reset_and_wakeup(dev);
2604 }
2605
2606 /* Called from drm generic code, passed 'crtc' which
2607  * we use as a pipe index
2608  */
2609 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2610 {
2611         struct drm_i915_private *dev_priv = dev->dev_private;
2612         unsigned long irqflags;
2613
2614         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2615         if (INTEL_INFO(dev)->gen >= 4)
2616                 i915_enable_pipestat(dev_priv, pipe,
2617                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2618         else
2619                 i915_enable_pipestat(dev_priv, pipe,
2620                                      PIPE_VBLANK_INTERRUPT_STATUS);
2621         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2622
2623         return 0;
2624 }
2625
2626 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2627 {
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         unsigned long irqflags;
2630         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2631                                                      DE_PIPE_VBLANK(pipe);
2632
2633         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2634         ironlake_enable_display_irq(dev_priv, bit);
2635         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2636
2637         return 0;
2638 }
2639
2640 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2641 {
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         unsigned long irqflags;
2644
2645         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2646         i915_enable_pipestat(dev_priv, pipe,
2647                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2648         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649
2650         return 0;
2651 }
2652
2653 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2654 {
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         unsigned long irqflags;
2657
2658         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2659         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2660         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2661         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2662         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663         return 0;
2664 }
2665
2666 /* Called from drm generic code, passed 'crtc' which
2667  * we use as a pipe index
2668  */
2669 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2670 {
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         unsigned long irqflags;
2673
2674         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2675         i915_disable_pipestat(dev_priv, pipe,
2676                               PIPE_VBLANK_INTERRUPT_STATUS |
2677                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2678         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2679 }
2680
2681 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2682 {
2683         struct drm_i915_private *dev_priv = dev->dev_private;
2684         unsigned long irqflags;
2685         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2686                                                      DE_PIPE_VBLANK(pipe);
2687
2688         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2689         ironlake_disable_display_irq(dev_priv, bit);
2690         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2691 }
2692
2693 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2694 {
2695         struct drm_i915_private *dev_priv = dev->dev_private;
2696         unsigned long irqflags;
2697
2698         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2699         i915_disable_pipestat(dev_priv, pipe,
2700                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2701         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2702 }
2703
2704 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2705 {
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         unsigned long irqflags;
2708
2709         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2710         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2711         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2712         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2713         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2714 }
2715
2716 static bool
2717 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2718 {
2719         return (list_empty(&ring->request_list) ||
2720                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2721 }
2722
2723 static bool
2724 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2725 {
2726         if (INTEL_INFO(dev)->gen >= 8) {
2727                 return (ipehr >> 23) == 0x1c;
2728         } else {
2729                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2730                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2731                                  MI_SEMAPHORE_REGISTER);
2732         }
2733 }
2734
2735 static struct intel_engine_cs *
2736 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2737 {
2738         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2739         struct intel_engine_cs *signaller;
2740         int i;
2741
2742         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2743                 for_each_ring(signaller, dev_priv, i) {
2744                         if (ring == signaller)
2745                                 continue;
2746
2747                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2748                                 return signaller;
2749                 }
2750         } else {
2751                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2752
2753                 for_each_ring(signaller, dev_priv, i) {
2754                         if(ring == signaller)
2755                                 continue;
2756
2757                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2758                                 return signaller;
2759                 }
2760         }
2761
2762         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2763                   ring->id, ipehr, offset);
2764
2765         return NULL;
2766 }
2767
2768 static struct intel_engine_cs *
2769 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2770 {
2771         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2772         u32 cmd, ipehr, head;
2773         u64 offset = 0;
2774         int i, backwards;
2775
2776         /*
2777          * This function does not support execlist mode - any attempt to
2778          * proceed further into this function will result in a kernel panic
2779          * when dereferencing ring->buffer, which is not set up in execlist
2780          * mode.
2781          *
2782          * The correct way of doing it would be to derive the currently
2783          * executing ring buffer from the current context, which is derived
2784          * from the currently running request. Unfortunately, to get the
2785          * current request we would have to grab the struct_mutex before doing
2786          * anything else, which would be ill-advised since some other thread
2787          * might have grabbed it already and managed to hang itself, causing
2788          * the hang checker to deadlock.
2789          *
2790          * Therefore, this function does not support execlist mode in its
2791          * current form. Just return NULL and move on.
2792          */
2793         if (ring->buffer == NULL)
2794                 return NULL;
2795
2796         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2797         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2798                 return NULL;
2799
2800         /*
2801          * HEAD is likely pointing to the dword after the actual command,
2802          * so scan backwards until we find the MBOX. But limit it to just 3
2803          * or 4 dwords depending on the semaphore wait command size.
2804          * Note that we don't care about ACTHD here since that might
2805          * point at at batch, and semaphores are always emitted into the
2806          * ringbuffer itself.
2807          */
2808         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2809         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2810
2811         for (i = backwards; i; --i) {
2812                 /*
2813                  * Be paranoid and presume the hw has gone off into the wild -
2814                  * our ring is smaller than what the hardware (and hence
2815                  * HEAD_ADDR) allows. Also handles wrap-around.
2816                  */
2817                 head &= ring->buffer->size - 1;
2818
2819                 /* This here seems to blow up */
2820                 cmd = ioread32(ring->buffer->virtual_start + head);
2821                 if (cmd == ipehr)
2822                         break;
2823
2824                 head -= 4;
2825         }
2826
2827         if (!i)
2828                 return NULL;
2829
2830         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2831         if (INTEL_INFO(ring->dev)->gen >= 8) {
2832                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2833                 offset <<= 32;
2834                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2835         }
2836         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2837 }
2838
2839 static int semaphore_passed(struct intel_engine_cs *ring)
2840 {
2841         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2842         struct intel_engine_cs *signaller;
2843         u32 seqno;
2844
2845         ring->hangcheck.deadlock++;
2846
2847         signaller = semaphore_waits_for(ring, &seqno);
2848         if (signaller == NULL)
2849                 return -1;
2850
2851         /* Prevent pathological recursion due to driver bugs */
2852         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2853                 return -1;
2854
2855         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2856                 return 1;
2857
2858         /* cursory check for an unkickable deadlock */
2859         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2860             semaphore_passed(signaller) < 0)
2861                 return -1;
2862
2863         return 0;
2864 }
2865
2866 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2867 {
2868         struct intel_engine_cs *ring;
2869         int i;
2870
2871         for_each_ring(ring, dev_priv, i)
2872                 ring->hangcheck.deadlock = 0;
2873 }
2874
2875 static enum intel_ring_hangcheck_action
2876 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2877 {
2878         struct drm_device *dev = ring->dev;
2879         struct drm_i915_private *dev_priv = dev->dev_private;
2880         u32 tmp;
2881
2882         if (acthd != ring->hangcheck.acthd) {
2883                 if (acthd > ring->hangcheck.max_acthd) {
2884                         ring->hangcheck.max_acthd = acthd;
2885                         return HANGCHECK_ACTIVE;
2886                 }
2887
2888                 return HANGCHECK_ACTIVE_LOOP;
2889         }
2890
2891         if (IS_GEN2(dev))
2892                 return HANGCHECK_HUNG;
2893
2894         /* Is the chip hanging on a WAIT_FOR_EVENT?
2895          * If so we can simply poke the RB_WAIT bit
2896          * and break the hang. This should work on
2897          * all but the second generation chipsets.
2898          */
2899         tmp = I915_READ_CTL(ring);
2900         if (tmp & RING_WAIT) {
2901                 i915_handle_error(dev, false,
2902                                   "Kicking stuck wait on %s",
2903                                   ring->name);
2904                 I915_WRITE_CTL(ring, tmp);
2905                 return HANGCHECK_KICK;
2906         }
2907
2908         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2909                 switch (semaphore_passed(ring)) {
2910                 default:
2911                         return HANGCHECK_HUNG;
2912                 case 1:
2913                         i915_handle_error(dev, false,
2914                                           "Kicking stuck semaphore on %s",
2915                                           ring->name);
2916                         I915_WRITE_CTL(ring, tmp);
2917                         return HANGCHECK_KICK;
2918                 case 0:
2919                         return HANGCHECK_WAIT;
2920                 }
2921         }
2922
2923         return HANGCHECK_HUNG;
2924 }
2925
2926 /*
2927  * This is called when the chip hasn't reported back with completed
2928  * batchbuffers in a long time. We keep track per ring seqno progress and
2929  * if there are no progress, hangcheck score for that ring is increased.
2930  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2931  * we kick the ring. If we see no progress on three subsequent calls
2932  * we assume chip is wedged and try to fix it by resetting the chip.
2933  */
2934 static void i915_hangcheck_elapsed(struct work_struct *work)
2935 {
2936         struct drm_i915_private *dev_priv =
2937                 container_of(work, typeof(*dev_priv),
2938                              gpu_error.hangcheck_work.work);
2939         struct drm_device *dev = dev_priv->dev;
2940         struct intel_engine_cs *ring;
2941         int i;
2942         int busy_count = 0, rings_hung = 0;
2943         bool stuck[I915_NUM_RINGS] = { 0 };
2944 #define BUSY 1
2945 #define KICK 5
2946 #define HUNG 20
2947
2948         if (!i915.enable_hangcheck)
2949                 return;
2950
2951         for_each_ring(ring, dev_priv, i) {
2952                 u64 acthd;
2953                 u32 seqno;
2954                 bool busy = true;
2955
2956                 semaphore_clear_deadlocks(dev_priv);
2957
2958                 seqno = ring->get_seqno(ring, false);
2959                 acthd = intel_ring_get_active_head(ring);
2960
2961                 if (ring->hangcheck.seqno == seqno) {
2962                         if (ring_idle(ring, seqno)) {
2963                                 ring->hangcheck.action = HANGCHECK_IDLE;
2964
2965                                 if (waitqueue_active(&ring->irq_queue)) {
2966                                         /* Issue a wake-up to catch stuck h/w. */
2967                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2968                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2969                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2970                                                                   ring->name);
2971                                                 else
2972                                                         DRM_INFO("Fake missed irq on %s\n",
2973                                                                  ring->name);
2974                                                 wake_up_all(&ring->irq_queue);
2975                                         }
2976                                         /* Safeguard against driver failure */
2977                                         ring->hangcheck.score += BUSY;
2978                                 } else
2979                                         busy = false;
2980                         } else {
2981                                 /* We always increment the hangcheck score
2982                                  * if the ring is busy and still processing
2983                                  * the same request, so that no single request
2984                                  * can run indefinitely (such as a chain of
2985                                  * batches). The only time we do not increment
2986                                  * the hangcheck score on this ring, if this
2987                                  * ring is in a legitimate wait for another
2988                                  * ring. In that case the waiting ring is a
2989                                  * victim and we want to be sure we catch the
2990                                  * right culprit. Then every time we do kick
2991                                  * the ring, add a small increment to the
2992                                  * score so that we can catch a batch that is
2993                                  * being repeatedly kicked and so responsible
2994                                  * for stalling the machine.
2995                                  */
2996                                 ring->hangcheck.action = ring_stuck(ring,
2997                                                                     acthd);
2998
2999                                 switch (ring->hangcheck.action) {
3000                                 case HANGCHECK_IDLE:
3001                                 case HANGCHECK_WAIT:
3002                                 case HANGCHECK_ACTIVE:
3003                                         break;
3004                                 case HANGCHECK_ACTIVE_LOOP:
3005                                         ring->hangcheck.score += BUSY;
3006                                         break;
3007                                 case HANGCHECK_KICK:
3008                                         ring->hangcheck.score += KICK;
3009                                         break;
3010                                 case HANGCHECK_HUNG:
3011                                         ring->hangcheck.score += HUNG;
3012                                         stuck[i] = true;
3013                                         break;
3014                                 }
3015                         }
3016                 } else {
3017                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3018
3019                         /* Gradually reduce the count so that we catch DoS
3020                          * attempts across multiple batches.
3021                          */
3022                         if (ring->hangcheck.score > 0)
3023                                 ring->hangcheck.score--;
3024
3025                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3026                 }
3027
3028                 ring->hangcheck.seqno = seqno;
3029                 ring->hangcheck.acthd = acthd;
3030                 busy_count += busy;
3031         }
3032
3033         for_each_ring(ring, dev_priv, i) {
3034                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3035                         DRM_INFO("%s on %s\n",
3036                                  stuck[i] ? "stuck" : "no progress",
3037                                  ring->name);
3038                         rings_hung++;
3039                 }
3040         }
3041
3042         if (rings_hung)
3043                 return i915_handle_error(dev, true, "Ring hung");
3044
3045         if (busy_count)
3046                 /* Reset timer case chip hangs without another request
3047                  * being added */
3048                 i915_queue_hangcheck(dev);
3049 }
3050
3051 void i915_queue_hangcheck(struct drm_device *dev)
3052 {
3053         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3054
3055         if (!i915.enable_hangcheck)
3056                 return;
3057
3058         /* Don't continually defer the hangcheck so that it is always run at
3059          * least once after work has been scheduled on any ring. Otherwise,
3060          * we will ignore a hung ring if a second ring is kept busy.
3061          */
3062
3063         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3064                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3065 }
3066
3067 static void ibx_irq_reset(struct drm_device *dev)
3068 {
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070
3071         if (HAS_PCH_NOP(dev))
3072                 return;
3073
3074         GEN5_IRQ_RESET(SDE);
3075
3076         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3077                 I915_WRITE(SERR_INT, 0xffffffff);
3078 }
3079
3080 /*
3081  * SDEIER is also touched by the interrupt handler to work around missed PCH
3082  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3083  * instead we unconditionally enable all PCH interrupt sources here, but then
3084  * only unmask them as needed with SDEIMR.
3085  *
3086  * This function needs to be called before interrupts are enabled.
3087  */
3088 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3089 {
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091
3092         if (HAS_PCH_NOP(dev))
3093                 return;
3094
3095         WARN_ON(I915_READ(SDEIER) != 0);
3096         I915_WRITE(SDEIER, 0xffffffff);
3097         POSTING_READ(SDEIER);
3098 }
3099
3100 static void gen5_gt_irq_reset(struct drm_device *dev)
3101 {
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103
3104         GEN5_IRQ_RESET(GT);
3105         if (INTEL_INFO(dev)->gen >= 6)
3106                 GEN5_IRQ_RESET(GEN6_PM);
3107 }
3108
3109 /* drm_dma.h hooks
3110 */
3111 static void ironlake_irq_reset(struct drm_device *dev)
3112 {
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114
3115         I915_WRITE(HWSTAM, 0xffffffff);
3116
3117         GEN5_IRQ_RESET(DE);
3118         if (IS_GEN7(dev))
3119                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3120
3121         gen5_gt_irq_reset(dev);
3122
3123         ibx_irq_reset(dev);
3124 }
3125
3126 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3127 {
3128         enum pipe pipe;
3129
3130         i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3131         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3132
3133         for_each_pipe(dev_priv, pipe)
3134                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3135
3136         GEN5_IRQ_RESET(VLV_);
3137 }
3138
3139 static void valleyview_irq_preinstall(struct drm_device *dev)
3140 {
3141         struct drm_i915_private *dev_priv = dev->dev_private;
3142
3143         /* VLV magic */
3144         I915_WRITE(VLV_IMR, 0);
3145         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3146         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3147         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3148
3149         gen5_gt_irq_reset(dev);
3150
3151         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3152
3153         vlv_display_irq_reset(dev_priv);
3154 }
3155
3156 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3157 {
3158         GEN8_IRQ_RESET_NDX(GT, 0);
3159         GEN8_IRQ_RESET_NDX(GT, 1);
3160         GEN8_IRQ_RESET_NDX(GT, 2);
3161         GEN8_IRQ_RESET_NDX(GT, 3);
3162 }
3163
3164 static void gen8_irq_reset(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         int pipe;
3168
3169         I915_WRITE(GEN8_MASTER_IRQ, 0);
3170         POSTING_READ(GEN8_MASTER_IRQ);
3171
3172         gen8_gt_irq_reset(dev_priv);
3173
3174         for_each_pipe(dev_priv, pipe)
3175                 if (intel_display_power_is_enabled(dev_priv,
3176                                                    POWER_DOMAIN_PIPE(pipe)))
3177                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3178
3179         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3180         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3181         GEN5_IRQ_RESET(GEN8_PCU_);
3182
3183         if (HAS_PCH_SPLIT(dev))
3184                 ibx_irq_reset(dev);
3185 }
3186
3187 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3188                                      unsigned int pipe_mask)
3189 {
3190         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3191
3192         spin_lock_irq(&dev_priv->irq_lock);
3193         if (pipe_mask & 1 << PIPE_A)
3194                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3195                                   dev_priv->de_irq_mask[PIPE_A],
3196                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3197         if (pipe_mask & 1 << PIPE_B)
3198                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3199                                   dev_priv->de_irq_mask[PIPE_B],
3200                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3201         if (pipe_mask & 1 << PIPE_C)
3202                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3203                                   dev_priv->de_irq_mask[PIPE_C],
3204                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3205         spin_unlock_irq(&dev_priv->irq_lock);
3206 }
3207
3208 static void cherryview_irq_preinstall(struct drm_device *dev)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211
3212         I915_WRITE(GEN8_MASTER_IRQ, 0);
3213         POSTING_READ(GEN8_MASTER_IRQ);
3214
3215         gen8_gt_irq_reset(dev_priv);
3216
3217         GEN5_IRQ_RESET(GEN8_PCU_);
3218
3219         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3220
3221         vlv_display_irq_reset(dev_priv);
3222 }
3223
3224 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3225                                   const u32 hpd[HPD_NUM_PINS])
3226 {
3227         struct drm_i915_private *dev_priv = to_i915(dev);
3228         struct intel_encoder *encoder;
3229         u32 enabled_irqs = 0;
3230
3231         for_each_intel_encoder(dev, encoder)
3232                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3233                         enabled_irqs |= hpd[encoder->hpd_pin];
3234
3235         return enabled_irqs;
3236 }
3237
3238 static void ibx_hpd_irq_setup(struct drm_device *dev)
3239 {
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         u32 hotplug_irqs, hotplug, enabled_irqs;
3242
3243         if (HAS_PCH_IBX(dev)) {
3244                 hotplug_irqs = SDE_HOTPLUG_MASK;
3245                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3246         } else {
3247                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3248                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3249         }
3250
3251         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3252
3253         /*
3254          * Enable digital hotplug on the PCH, and configure the DP short pulse
3255          * duration to 2ms (which is the minimum in the Display Port spec).
3256          * The pulse duration bits are reserved on LPT+.
3257          */
3258         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3259         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3260         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3261         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3262         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3263         /*
3264          * When CPU and PCH are on the same package, port A
3265          * HPD must be enabled in both north and south.
3266          */
3267         if (HAS_PCH_LPT_LP(dev))
3268                 hotplug |= PORTA_HOTPLUG_ENABLE;
3269         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3270 }
3271
3272 static void spt_hpd_irq_setup(struct drm_device *dev)
3273 {
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275         u32 hotplug_irqs, hotplug, enabled_irqs;
3276
3277         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3278         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3279
3280         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3281
3282         /* Enable digital hotplug on the PCH */
3283         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3284         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3285                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3286         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3287
3288         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3289         hotplug |= PORTE_HOTPLUG_ENABLE;
3290         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3291 }
3292
3293 static void ilk_hpd_irq_setup(struct drm_device *dev)
3294 {
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296         u32 hotplug_irqs, hotplug, enabled_irqs;
3297
3298         if (INTEL_INFO(dev)->gen >= 8) {
3299                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3300                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3301
3302                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3303         } else if (INTEL_INFO(dev)->gen >= 7) {
3304                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3305                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3306
3307                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3308         } else {
3309                 hotplug_irqs = DE_DP_A_HOTPLUG;
3310                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3311
3312                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3313         }
3314
3315         /*
3316          * Enable digital hotplug on the CPU, and configure the DP short pulse
3317          * duration to 2ms (which is the minimum in the Display Port spec)
3318          * The pulse duration bits are reserved on HSW+.
3319          */
3320         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3321         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3322         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3323         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3324
3325         ibx_hpd_irq_setup(dev);
3326 }
3327
3328 static void bxt_hpd_irq_setup(struct drm_device *dev)
3329 {
3330         struct drm_i915_private *dev_priv = dev->dev_private;
3331         u32 hotplug_irqs, hotplug, enabled_irqs;
3332
3333         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3334         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3335
3336         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3337
3338         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3339         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3340                 PORTA_HOTPLUG_ENABLE;
3341         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3342 }
3343
3344 static void ibx_irq_postinstall(struct drm_device *dev)
3345 {
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347         u32 mask;
3348
3349         if (HAS_PCH_NOP(dev))
3350                 return;
3351
3352         if (HAS_PCH_IBX(dev))
3353                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3354         else
3355                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3356
3357         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3358         I915_WRITE(SDEIMR, ~mask);
3359 }
3360
3361 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364         u32 pm_irqs, gt_irqs;
3365
3366         pm_irqs = gt_irqs = 0;
3367
3368         dev_priv->gt_irq_mask = ~0;
3369         if (HAS_L3_DPF(dev)) {
3370                 /* L3 parity interrupt is always unmasked. */
3371                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3372                 gt_irqs |= GT_PARITY_ERROR(dev);
3373         }
3374
3375         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3376         if (IS_GEN5(dev)) {
3377                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3378                            ILK_BSD_USER_INTERRUPT;
3379         } else {
3380                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3381         }
3382
3383         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3384
3385         if (INTEL_INFO(dev)->gen >= 6) {
3386                 /*
3387                  * RPS interrupts will get enabled/disabled on demand when RPS
3388                  * itself is enabled/disabled.
3389                  */
3390                 if (HAS_VEBOX(dev))
3391                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3392
3393                 dev_priv->pm_irq_mask = 0xffffffff;
3394                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3395         }
3396 }
3397
3398 static int ironlake_irq_postinstall(struct drm_device *dev)
3399 {
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401         u32 display_mask, extra_mask;
3402
3403         if (INTEL_INFO(dev)->gen >= 7) {
3404                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3405                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3406                                 DE_PLANEB_FLIP_DONE_IVB |
3407                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3408                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3409                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3410                               DE_DP_A_HOTPLUG_IVB);
3411         } else {
3412                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3413                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3414                                 DE_AUX_CHANNEL_A |
3415                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3416                                 DE_POISON);
3417                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3418                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3419                               DE_DP_A_HOTPLUG);
3420         }
3421
3422         dev_priv->irq_mask = ~display_mask;
3423
3424         I915_WRITE(HWSTAM, 0xeffe);
3425
3426         ibx_irq_pre_postinstall(dev);
3427
3428         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3429
3430         gen5_gt_irq_postinstall(dev);
3431
3432         ibx_irq_postinstall(dev);
3433
3434         if (IS_IRONLAKE_M(dev)) {
3435                 /* Enable PCU event interrupts
3436                  *
3437                  * spinlocking not required here for correctness since interrupt
3438                  * setup is guaranteed to run in single-threaded context. But we
3439                  * need it to make the assert_spin_locked happy. */
3440                 spin_lock_irq(&dev_priv->irq_lock);
3441                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3442                 spin_unlock_irq(&dev_priv->irq_lock);
3443         }
3444
3445         return 0;
3446 }
3447
3448 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3449 {
3450         u32 pipestat_mask;
3451         u32 iir_mask;
3452         enum pipe pipe;
3453
3454         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3455                         PIPE_FIFO_UNDERRUN_STATUS;
3456
3457         for_each_pipe(dev_priv, pipe)
3458                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3459         POSTING_READ(PIPESTAT(PIPE_A));
3460
3461         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3462                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3463
3464         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3465         for_each_pipe(dev_priv, pipe)
3466                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3467
3468         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3469                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3470                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3471         if (IS_CHERRYVIEW(dev_priv))
3472                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3473         dev_priv->irq_mask &= ~iir_mask;
3474
3475         I915_WRITE(VLV_IIR, iir_mask);
3476         I915_WRITE(VLV_IIR, iir_mask);
3477         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3478         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3479         POSTING_READ(VLV_IMR);
3480 }
3481
3482 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3483 {
3484         u32 pipestat_mask;
3485         u32 iir_mask;
3486         enum pipe pipe;
3487
3488         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3489                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3490                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3491         if (IS_CHERRYVIEW(dev_priv))
3492                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3493
3494         dev_priv->irq_mask |= iir_mask;
3495         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3496         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3497         I915_WRITE(VLV_IIR, iir_mask);
3498         I915_WRITE(VLV_IIR, iir_mask);
3499         POSTING_READ(VLV_IIR);
3500
3501         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3502                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3503
3504         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3505         for_each_pipe(dev_priv, pipe)
3506                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3507
3508         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3509                         PIPE_FIFO_UNDERRUN_STATUS;
3510
3511         for_each_pipe(dev_priv, pipe)
3512                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3513         POSTING_READ(PIPESTAT(PIPE_A));
3514 }
3515
3516 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3517 {
3518         assert_spin_locked(&dev_priv->irq_lock);
3519
3520         if (dev_priv->display_irqs_enabled)
3521                 return;
3522
3523         dev_priv->display_irqs_enabled = true;
3524
3525         if (intel_irqs_enabled(dev_priv))
3526                 valleyview_display_irqs_install(dev_priv);
3527 }
3528
3529 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3530 {
3531         assert_spin_locked(&dev_priv->irq_lock);
3532
3533         if (!dev_priv->display_irqs_enabled)
3534                 return;
3535
3536         dev_priv->display_irqs_enabled = false;
3537
3538         if (intel_irqs_enabled(dev_priv))
3539                 valleyview_display_irqs_uninstall(dev_priv);
3540 }
3541
3542 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3543 {
3544         dev_priv->irq_mask = ~0;
3545
3546         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3547         POSTING_READ(PORT_HOTPLUG_EN);
3548
3549         I915_WRITE(VLV_IIR, 0xffffffff);
3550         I915_WRITE(VLV_IIR, 0xffffffff);
3551         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3552         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3553         POSTING_READ(VLV_IMR);
3554
3555         /* Interrupt setup is already guaranteed to be single-threaded, this is
3556          * just to make the assert_spin_locked check happy. */
3557         spin_lock_irq(&dev_priv->irq_lock);
3558         if (dev_priv->display_irqs_enabled)
3559                 valleyview_display_irqs_install(dev_priv);
3560         spin_unlock_irq(&dev_priv->irq_lock);
3561 }
3562
3563 static int valleyview_irq_postinstall(struct drm_device *dev)
3564 {
3565         struct drm_i915_private *dev_priv = dev->dev_private;
3566
3567         vlv_display_irq_postinstall(dev_priv);
3568
3569         gen5_gt_irq_postinstall(dev);
3570
3571         /* ack & enable invalid PTE error interrupts */
3572 #if 0 /* FIXME: add support to irq handler for checking these bits */
3573         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3574         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3575 #endif
3576
3577         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3578
3579         return 0;
3580 }
3581
3582 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3583 {
3584         /* These are interrupts we'll toggle with the ring mask register */
3585         uint32_t gt_interrupts[] = {
3586                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3587                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3588                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3589                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3590                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3591                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3592                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3593                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3594                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3595                 0,
3596                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3597                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3598                 };
3599
3600         dev_priv->pm_irq_mask = 0xffffffff;
3601         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3602         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3603         /*
3604          * RPS interrupts will get enabled/disabled on demand when RPS itself
3605          * is enabled/disabled.
3606          */
3607         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3608         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3609 }
3610
3611 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3612 {
3613         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3614         uint32_t de_pipe_enables;
3615         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3616         u32 de_port_enables;
3617         enum pipe pipe;
3618
3619         if (INTEL_INFO(dev_priv)->gen >= 9) {
3620                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3621                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3622                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3623                                   GEN9_AUX_CHANNEL_D;
3624                 if (IS_BROXTON(dev_priv))
3625                         de_port_masked |= BXT_DE_PORT_GMBUS;
3626         } else {
3627                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3628                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3629         }
3630
3631         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3632                                            GEN8_PIPE_FIFO_UNDERRUN;
3633
3634         de_port_enables = de_port_masked;
3635         if (IS_BROXTON(dev_priv))
3636                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3637         else if (IS_BROADWELL(dev_priv))
3638                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3639
3640         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3641         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3642         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3643
3644         for_each_pipe(dev_priv, pipe)
3645                 if (intel_display_power_is_enabled(dev_priv,
3646                                 POWER_DOMAIN_PIPE(pipe)))
3647                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3648                                           dev_priv->de_irq_mask[pipe],
3649                                           de_pipe_enables);
3650
3651         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3652 }
3653
3654 static int gen8_irq_postinstall(struct drm_device *dev)
3655 {
3656         struct drm_i915_private *dev_priv = dev->dev_private;
3657
3658         if (HAS_PCH_SPLIT(dev))
3659                 ibx_irq_pre_postinstall(dev);
3660
3661         gen8_gt_irq_postinstall(dev_priv);
3662         gen8_de_irq_postinstall(dev_priv);
3663
3664         if (HAS_PCH_SPLIT(dev))
3665                 ibx_irq_postinstall(dev);
3666
3667         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3668         POSTING_READ(GEN8_MASTER_IRQ);
3669
3670         return 0;
3671 }
3672
3673 static int cherryview_irq_postinstall(struct drm_device *dev)
3674 {
3675         struct drm_i915_private *dev_priv = dev->dev_private;
3676
3677         vlv_display_irq_postinstall(dev_priv);
3678
3679         gen8_gt_irq_postinstall(dev_priv);
3680
3681         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3682         POSTING_READ(GEN8_MASTER_IRQ);
3683
3684         return 0;
3685 }
3686
3687 static void gen8_irq_uninstall(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691         if (!dev_priv)
3692                 return;
3693
3694         gen8_irq_reset(dev);
3695 }
3696
3697 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3698 {
3699         /* Interrupt setup is already guaranteed to be single-threaded, this is
3700          * just to make the assert_spin_locked check happy. */
3701         spin_lock_irq(&dev_priv->irq_lock);
3702         if (dev_priv->display_irqs_enabled)
3703                 valleyview_display_irqs_uninstall(dev_priv);
3704         spin_unlock_irq(&dev_priv->irq_lock);
3705
3706         vlv_display_irq_reset(dev_priv);
3707
3708         dev_priv->irq_mask = ~0;
3709 }
3710
3711 static void valleyview_irq_uninstall(struct drm_device *dev)
3712 {
3713         struct drm_i915_private *dev_priv = dev->dev_private;
3714
3715         if (!dev_priv)
3716                 return;
3717
3718         I915_WRITE(VLV_MASTER_IER, 0);
3719
3720         gen5_gt_irq_reset(dev);
3721
3722         I915_WRITE(HWSTAM, 0xffffffff);
3723
3724         vlv_display_irq_uninstall(dev_priv);
3725 }
3726
3727 static void cherryview_irq_uninstall(struct drm_device *dev)
3728 {
3729         struct drm_i915_private *dev_priv = dev->dev_private;
3730
3731         if (!dev_priv)
3732                 return;
3733
3734         I915_WRITE(GEN8_MASTER_IRQ, 0);
3735         POSTING_READ(GEN8_MASTER_IRQ);
3736
3737         gen8_gt_irq_reset(dev_priv);
3738
3739         GEN5_IRQ_RESET(GEN8_PCU_);
3740
3741         vlv_display_irq_uninstall(dev_priv);
3742 }
3743
3744 static void ironlake_irq_uninstall(struct drm_device *dev)
3745 {
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748         if (!dev_priv)
3749                 return;
3750
3751         ironlake_irq_reset(dev);
3752 }
3753
3754 static void i8xx_irq_preinstall(struct drm_device * dev)
3755 {
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757         int pipe;
3758
3759         for_each_pipe(dev_priv, pipe)
3760                 I915_WRITE(PIPESTAT(pipe), 0);
3761         I915_WRITE16(IMR, 0xffff);
3762         I915_WRITE16(IER, 0x0);
3763         POSTING_READ16(IER);
3764 }
3765
3766 static int i8xx_irq_postinstall(struct drm_device *dev)
3767 {
3768         struct drm_i915_private *dev_priv = dev->dev_private;
3769
3770         I915_WRITE16(EMR,
3771                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3772
3773         /* Unmask the interrupts that we always want on. */
3774         dev_priv->irq_mask =
3775                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3776                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3777                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3778                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3779         I915_WRITE16(IMR, dev_priv->irq_mask);
3780
3781         I915_WRITE16(IER,
3782                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3783                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3784                      I915_USER_INTERRUPT);
3785         POSTING_READ16(IER);
3786
3787         /* Interrupt setup is already guaranteed to be single-threaded, this is
3788          * just to make the assert_spin_locked check happy. */
3789         spin_lock_irq(&dev_priv->irq_lock);
3790         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3791         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3792         spin_unlock_irq(&dev_priv->irq_lock);
3793
3794         return 0;
3795 }
3796
3797 /*
3798  * Returns true when a page flip has completed.
3799  */
3800 static bool i8xx_handle_vblank(struct drm_device *dev,
3801                                int plane, int pipe, u32 iir)
3802 {
3803         struct drm_i915_private *dev_priv = dev->dev_private;
3804         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3805
3806         if (!intel_pipe_handle_vblank(dev, pipe))
3807                 return false;
3808
3809         if ((iir & flip_pending) == 0)
3810                 goto check_page_flip;
3811
3812         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3813          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3814          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3815          * the flip is completed (no longer pending). Since this doesn't raise
3816          * an interrupt per se, we watch for the change at vblank.
3817          */
3818         if (I915_READ16(ISR) & flip_pending)
3819                 goto check_page_flip;
3820
3821         intel_prepare_page_flip(dev, plane);
3822         intel_finish_page_flip(dev, pipe);
3823         return true;
3824
3825 check_page_flip:
3826         intel_check_page_flip(dev, pipe);
3827         return false;
3828 }
3829
3830 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3831 {
3832         struct drm_device *dev = arg;
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834         u16 iir, new_iir;
3835         u32 pipe_stats[2];
3836         int pipe;
3837         u16 flip_mask =
3838                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3839                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3840
3841         if (!intel_irqs_enabled(dev_priv))
3842                 return IRQ_NONE;
3843
3844         iir = I915_READ16(IIR);
3845         if (iir == 0)
3846                 return IRQ_NONE;
3847
3848         while (iir & ~flip_mask) {
3849                 /* Can't rely on pipestat interrupt bit in iir as it might
3850                  * have been cleared after the pipestat interrupt was received.
3851                  * It doesn't set the bit in iir again, but it still produces
3852                  * interrupts (for non-MSI).
3853                  */
3854                 spin_lock(&dev_priv->irq_lock);
3855                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3856                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3857
3858                 for_each_pipe(dev_priv, pipe) {
3859                         int reg = PIPESTAT(pipe);
3860                         pipe_stats[pipe] = I915_READ(reg);
3861
3862                         /*
3863                          * Clear the PIPE*STAT regs before the IIR
3864                          */
3865                         if (pipe_stats[pipe] & 0x8000ffff)
3866                                 I915_WRITE(reg, pipe_stats[pipe]);
3867                 }
3868                 spin_unlock(&dev_priv->irq_lock);
3869
3870                 I915_WRITE16(IIR, iir & ~flip_mask);
3871                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3872
3873                 if (iir & I915_USER_INTERRUPT)
3874                         notify_ring(&dev_priv->ring[RCS]);
3875
3876                 for_each_pipe(dev_priv, pipe) {
3877                         int plane = pipe;
3878                         if (HAS_FBC(dev))
3879                                 plane = !plane;
3880
3881                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3882                             i8xx_handle_vblank(dev, plane, pipe, iir))
3883                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3884
3885                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3886                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3887
3888                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3889                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3890                                                                     pipe);
3891                 }
3892
3893                 iir = new_iir;
3894         }
3895
3896         return IRQ_HANDLED;
3897 }
3898
3899 static void i8xx_irq_uninstall(struct drm_device * dev)
3900 {
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902         int pipe;
3903
3904         for_each_pipe(dev_priv, pipe) {
3905                 /* Clear enable bits; then clear status bits */
3906                 I915_WRITE(PIPESTAT(pipe), 0);
3907                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3908         }
3909         I915_WRITE16(IMR, 0xffff);
3910         I915_WRITE16(IER, 0x0);
3911         I915_WRITE16(IIR, I915_READ16(IIR));
3912 }
3913
3914 static void i915_irq_preinstall(struct drm_device * dev)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         int pipe;
3918
3919         if (I915_HAS_HOTPLUG(dev)) {
3920                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3921                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3922         }
3923
3924         I915_WRITE16(HWSTAM, 0xeffe);
3925         for_each_pipe(dev_priv, pipe)
3926                 I915_WRITE(PIPESTAT(pipe), 0);
3927         I915_WRITE(IMR, 0xffffffff);
3928         I915_WRITE(IER, 0x0);
3929         POSTING_READ(IER);
3930 }
3931
3932 static int i915_irq_postinstall(struct drm_device *dev)
3933 {
3934         struct drm_i915_private *dev_priv = dev->dev_private;
3935         u32 enable_mask;
3936
3937         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3938
3939         /* Unmask the interrupts that we always want on. */
3940         dev_priv->irq_mask =
3941                 ~(I915_ASLE_INTERRUPT |
3942                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3943                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3944                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3945                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3946
3947         enable_mask =
3948                 I915_ASLE_INTERRUPT |
3949                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3950                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3951                 I915_USER_INTERRUPT;
3952
3953         if (I915_HAS_HOTPLUG(dev)) {
3954                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3955                 POSTING_READ(PORT_HOTPLUG_EN);
3956
3957                 /* Enable in IER... */
3958                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3959                 /* and unmask in IMR */
3960                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3961         }
3962
3963         I915_WRITE(IMR, dev_priv->irq_mask);
3964         I915_WRITE(IER, enable_mask);
3965         POSTING_READ(IER);
3966
3967         i915_enable_asle_pipestat(dev);
3968
3969         /* Interrupt setup is already guaranteed to be single-threaded, this is
3970          * just to make the assert_spin_locked check happy. */
3971         spin_lock_irq(&dev_priv->irq_lock);
3972         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3973         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3974         spin_unlock_irq(&dev_priv->irq_lock);
3975
3976         return 0;
3977 }
3978
3979 /*
3980  * Returns true when a page flip has completed.
3981  */
3982 static bool i915_handle_vblank(struct drm_device *dev,
3983                                int plane, int pipe, u32 iir)
3984 {
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3987
3988         if (!intel_pipe_handle_vblank(dev, pipe))
3989                 return false;
3990
3991         if ((iir & flip_pending) == 0)
3992                 goto check_page_flip;
3993
3994         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3995          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3996          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3997          * the flip is completed (no longer pending). Since this doesn't raise
3998          * an interrupt per se, we watch for the change at vblank.
3999          */
4000         if (I915_READ(ISR) & flip_pending)
4001                 goto check_page_flip;
4002
4003         intel_prepare_page_flip(dev, plane);
4004         intel_finish_page_flip(dev, pipe);
4005         return true;
4006
4007 check_page_flip:
4008         intel_check_page_flip(dev, pipe);
4009         return false;
4010 }
4011
4012 static irqreturn_t i915_irq_handler(int irq, void *arg)
4013 {
4014         struct drm_device *dev = arg;
4015         struct drm_i915_private *dev_priv = dev->dev_private;
4016         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4017         u32 flip_mask =
4018                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4019                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4020         int pipe, ret = IRQ_NONE;
4021
4022         if (!intel_irqs_enabled(dev_priv))
4023                 return IRQ_NONE;
4024
4025         iir = I915_READ(IIR);
4026         do {
4027                 bool irq_received = (iir & ~flip_mask) != 0;
4028                 bool blc_event = false;
4029
4030                 /* Can't rely on pipestat interrupt bit in iir as it might
4031                  * have been cleared after the pipestat interrupt was received.
4032                  * It doesn't set the bit in iir again, but it still produces
4033                  * interrupts (for non-MSI).
4034                  */
4035                 spin_lock(&dev_priv->irq_lock);
4036                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4037                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4038
4039                 for_each_pipe(dev_priv, pipe) {
4040                         int reg = PIPESTAT(pipe);
4041                         pipe_stats[pipe] = I915_READ(reg);
4042
4043                         /* Clear the PIPE*STAT regs before the IIR */
4044                         if (pipe_stats[pipe] & 0x8000ffff) {
4045                                 I915_WRITE(reg, pipe_stats[pipe]);
4046                                 irq_received = true;
4047                         }
4048                 }
4049                 spin_unlock(&dev_priv->irq_lock);
4050
4051                 if (!irq_received)
4052                         break;
4053
4054                 /* Consume port.  Then clear IIR or we'll miss events */
4055                 if (I915_HAS_HOTPLUG(dev) &&
4056                     iir & I915_DISPLAY_PORT_INTERRUPT)
4057                         i9xx_hpd_irq_handler(dev);
4058
4059                 I915_WRITE(IIR, iir & ~flip_mask);
4060                 new_iir = I915_READ(IIR); /* Flush posted writes */
4061
4062                 if (iir & I915_USER_INTERRUPT)
4063                         notify_ring(&dev_priv->ring[RCS]);
4064
4065                 for_each_pipe(dev_priv, pipe) {
4066                         int plane = pipe;
4067                         if (HAS_FBC(dev))
4068                                 plane = !plane;
4069
4070                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4071                             i915_handle_vblank(dev, plane, pipe, iir))
4072                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4073
4074                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4075                                 blc_event = true;
4076
4077                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4078                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4079
4080                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4081                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4082                                                                     pipe);
4083                 }
4084
4085                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4086                         intel_opregion_asle_intr(dev);
4087
4088                 /* With MSI, interrupts are only generated when iir
4089                  * transitions from zero to nonzero.  If another bit got
4090                  * set while we were handling the existing iir bits, then
4091                  * we would never get another interrupt.
4092                  *
4093                  * This is fine on non-MSI as well, as if we hit this path
4094                  * we avoid exiting the interrupt handler only to generate
4095                  * another one.
4096                  *
4097                  * Note that for MSI this could cause a stray interrupt report
4098                  * if an interrupt landed in the time between writing IIR and
4099                  * the posting read.  This should be rare enough to never
4100                  * trigger the 99% of 100,000 interrupts test for disabling
4101                  * stray interrupts.
4102                  */
4103                 ret = IRQ_HANDLED;
4104                 iir = new_iir;
4105         } while (iir & ~flip_mask);
4106
4107         return ret;
4108 }
4109
4110 static void i915_irq_uninstall(struct drm_device * dev)
4111 {
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         int pipe;
4114
4115         if (I915_HAS_HOTPLUG(dev)) {
4116                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4117                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4118         }
4119
4120         I915_WRITE16(HWSTAM, 0xffff);
4121         for_each_pipe(dev_priv, pipe) {
4122                 /* Clear enable bits; then clear status bits */
4123                 I915_WRITE(PIPESTAT(pipe), 0);
4124                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4125         }
4126         I915_WRITE(IMR, 0xffffffff);
4127         I915_WRITE(IER, 0x0);
4128
4129         I915_WRITE(IIR, I915_READ(IIR));
4130 }
4131
4132 static void i965_irq_preinstall(struct drm_device * dev)
4133 {
4134         struct drm_i915_private *dev_priv = dev->dev_private;
4135         int pipe;
4136
4137         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4138         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4139
4140         I915_WRITE(HWSTAM, 0xeffe);
4141         for_each_pipe(dev_priv, pipe)
4142                 I915_WRITE(PIPESTAT(pipe), 0);
4143         I915_WRITE(IMR, 0xffffffff);
4144         I915_WRITE(IER, 0x0);
4145         POSTING_READ(IER);
4146 }
4147
4148 static int i965_irq_postinstall(struct drm_device *dev)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         u32 enable_mask;
4152         u32 error_mask;
4153
4154         /* Unmask the interrupts that we always want on. */
4155         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4156                                I915_DISPLAY_PORT_INTERRUPT |
4157                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4158                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4159                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4160                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4161                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4162
4163         enable_mask = ~dev_priv->irq_mask;
4164         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4165                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4166         enable_mask |= I915_USER_INTERRUPT;
4167
4168         if (IS_G4X(dev))
4169                 enable_mask |= I915_BSD_USER_INTERRUPT;
4170
4171         /* Interrupt setup is already guaranteed to be single-threaded, this is
4172          * just to make the assert_spin_locked check happy. */
4173         spin_lock_irq(&dev_priv->irq_lock);
4174         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4175         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4176         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4177         spin_unlock_irq(&dev_priv->irq_lock);
4178
4179         /*
4180          * Enable some error detection, note the instruction error mask
4181          * bit is reserved, so we leave it masked.
4182          */
4183         if (IS_G4X(dev)) {
4184                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4185                                GM45_ERROR_MEM_PRIV |
4186                                GM45_ERROR_CP_PRIV |
4187                                I915_ERROR_MEMORY_REFRESH);
4188         } else {
4189                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4190                                I915_ERROR_MEMORY_REFRESH);
4191         }
4192         I915_WRITE(EMR, error_mask);
4193
4194         I915_WRITE(IMR, dev_priv->irq_mask);
4195         I915_WRITE(IER, enable_mask);
4196         POSTING_READ(IER);
4197
4198         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4199         POSTING_READ(PORT_HOTPLUG_EN);
4200
4201         i915_enable_asle_pipestat(dev);
4202
4203         return 0;
4204 }
4205
4206 static void i915_hpd_irq_setup(struct drm_device *dev)
4207 {
4208         struct drm_i915_private *dev_priv = dev->dev_private;
4209         u32 hotplug_en;
4210
4211         assert_spin_locked(&dev_priv->irq_lock);
4212
4213         /* Note HDMI and DP share hotplug bits */
4214         /* enable bits are the same for all generations */
4215         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4216         /* Programming the CRT detection parameters tends
4217            to generate a spurious hotplug event about three
4218            seconds later.  So just do it once.
4219         */
4220         if (IS_G4X(dev))
4221                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4222         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4223
4224         /* Ignore TV since it's buggy */
4225         i915_hotplug_interrupt_update_locked(dev_priv,
4226                                              HOTPLUG_INT_EN_MASK |
4227                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4228                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4229                                              hotplug_en);
4230 }
4231
4232 static irqreturn_t i965_irq_handler(int irq, void *arg)
4233 {
4234         struct drm_device *dev = arg;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         u32 iir, new_iir;
4237         u32 pipe_stats[I915_MAX_PIPES];
4238         int ret = IRQ_NONE, pipe;
4239         u32 flip_mask =
4240                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4241                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4242
4243         if (!intel_irqs_enabled(dev_priv))
4244                 return IRQ_NONE;
4245
4246         iir = I915_READ(IIR);
4247
4248         for (;;) {
4249                 bool irq_received = (iir & ~flip_mask) != 0;
4250                 bool blc_event = false;
4251
4252                 /* Can't rely on pipestat interrupt bit in iir as it might
4253                  * have been cleared after the pipestat interrupt was received.
4254                  * It doesn't set the bit in iir again, but it still produces
4255                  * interrupts (for non-MSI).
4256                  */
4257                 spin_lock(&dev_priv->irq_lock);
4258                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4259                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4260
4261                 for_each_pipe(dev_priv, pipe) {
4262                         int reg = PIPESTAT(pipe);
4263                         pipe_stats[pipe] = I915_READ(reg);
4264
4265                         /*
4266                          * Clear the PIPE*STAT regs before the IIR
4267                          */
4268                         if (pipe_stats[pipe] & 0x8000ffff) {
4269                                 I915_WRITE(reg, pipe_stats[pipe]);
4270                                 irq_received = true;
4271                         }
4272                 }
4273                 spin_unlock(&dev_priv->irq_lock);
4274
4275                 if (!irq_received)
4276                         break;
4277
4278                 ret = IRQ_HANDLED;
4279
4280                 /* Consume port.  Then clear IIR or we'll miss events */
4281                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4282                         i9xx_hpd_irq_handler(dev);
4283
4284                 I915_WRITE(IIR, iir & ~flip_mask);
4285                 new_iir = I915_READ(IIR); /* Flush posted writes */
4286
4287                 if (iir & I915_USER_INTERRUPT)
4288                         notify_ring(&dev_priv->ring[RCS]);
4289                 if (iir & I915_BSD_USER_INTERRUPT)
4290                         notify_ring(&dev_priv->ring[VCS]);
4291
4292                 for_each_pipe(dev_priv, pipe) {
4293                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4294                             i915_handle_vblank(dev, pipe, pipe, iir))
4295                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4296
4297                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4298                                 blc_event = true;
4299
4300                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4301                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4302
4303                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4304                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4305                 }
4306
4307                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4308                         intel_opregion_asle_intr(dev);
4309
4310                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4311                         gmbus_irq_handler(dev);
4312
4313                 /* With MSI, interrupts are only generated when iir
4314                  * transitions from zero to nonzero.  If another bit got
4315                  * set while we were handling the existing iir bits, then
4316                  * we would never get another interrupt.
4317                  *
4318                  * This is fine on non-MSI as well, as if we hit this path
4319                  * we avoid exiting the interrupt handler only to generate
4320                  * another one.
4321                  *
4322                  * Note that for MSI this could cause a stray interrupt report
4323                  * if an interrupt landed in the time between writing IIR and
4324                  * the posting read.  This should be rare enough to never
4325                  * trigger the 99% of 100,000 interrupts test for disabling
4326                  * stray interrupts.
4327                  */
4328                 iir = new_iir;
4329         }
4330
4331         return ret;
4332 }
4333
4334 static void i965_irq_uninstall(struct drm_device * dev)
4335 {
4336         struct drm_i915_private *dev_priv = dev->dev_private;
4337         int pipe;
4338
4339         if (!dev_priv)
4340                 return;
4341
4342         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4343         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4344
4345         I915_WRITE(HWSTAM, 0xffffffff);
4346         for_each_pipe(dev_priv, pipe)
4347                 I915_WRITE(PIPESTAT(pipe), 0);
4348         I915_WRITE(IMR, 0xffffffff);
4349         I915_WRITE(IER, 0x0);
4350
4351         for_each_pipe(dev_priv, pipe)
4352                 I915_WRITE(PIPESTAT(pipe),
4353                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4354         I915_WRITE(IIR, I915_READ(IIR));
4355 }
4356
4357 /**
4358  * intel_irq_init - initializes irq support
4359  * @dev_priv: i915 device instance
4360  *
4361  * This function initializes all the irq support including work items, timers
4362  * and all the vtables. It does not setup the interrupt itself though.
4363  */
4364 void intel_irq_init(struct drm_i915_private *dev_priv)
4365 {
4366         struct drm_device *dev = dev_priv->dev;
4367
4368         intel_hpd_init_work(dev_priv);
4369
4370         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4371         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4372
4373         /* Let's track the enabled rps events */
4374         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4375                 /* WaGsvRC0ResidencyMethod:vlv */
4376                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4377         else
4378                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4379
4380         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4381                           i915_hangcheck_elapsed);
4382
4383         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4384
4385         if (IS_GEN2(dev_priv)) {
4386                 dev->max_vblank_count = 0;
4387                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4388         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4389                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4390                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4391         } else {
4392                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4393                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4394         }
4395
4396         /*
4397          * Opt out of the vblank disable timer on everything except gen2.
4398          * Gen2 doesn't have a hardware frame counter and so depends on
4399          * vblank interrupts to produce sane vblank seuquence numbers.
4400          */
4401         if (!IS_GEN2(dev_priv))
4402                 dev->vblank_disable_immediate = true;
4403
4404         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4405         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4406
4407         if (IS_CHERRYVIEW(dev_priv)) {
4408                 dev->driver->irq_handler = cherryview_irq_handler;
4409                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4410                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4411                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4412                 dev->driver->enable_vblank = valleyview_enable_vblank;
4413                 dev->driver->disable_vblank = valleyview_disable_vblank;
4414                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4415         } else if (IS_VALLEYVIEW(dev_priv)) {
4416                 dev->driver->irq_handler = valleyview_irq_handler;
4417                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4418                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4419                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4420                 dev->driver->enable_vblank = valleyview_enable_vblank;
4421                 dev->driver->disable_vblank = valleyview_disable_vblank;
4422                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4423         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4424                 dev->driver->irq_handler = gen8_irq_handler;
4425                 dev->driver->irq_preinstall = gen8_irq_reset;
4426                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4427                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4428                 dev->driver->enable_vblank = gen8_enable_vblank;
4429                 dev->driver->disable_vblank = gen8_disable_vblank;
4430                 if (IS_BROXTON(dev))
4431                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4432                 else if (HAS_PCH_SPT(dev))
4433                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4434                 else
4435                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4436         } else if (HAS_PCH_SPLIT(dev)) {
4437                 dev->driver->irq_handler = ironlake_irq_handler;
4438                 dev->driver->irq_preinstall = ironlake_irq_reset;
4439                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4440                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4441                 dev->driver->enable_vblank = ironlake_enable_vblank;
4442                 dev->driver->disable_vblank = ironlake_disable_vblank;
4443                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4444         } else {
4445                 if (INTEL_INFO(dev_priv)->gen == 2) {
4446                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4447                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4448                         dev->driver->irq_handler = i8xx_irq_handler;
4449                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4450                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4451                         dev->driver->irq_preinstall = i915_irq_preinstall;
4452                         dev->driver->irq_postinstall = i915_irq_postinstall;
4453                         dev->driver->irq_uninstall = i915_irq_uninstall;
4454                         dev->driver->irq_handler = i915_irq_handler;
4455                 } else {
4456                         dev->driver->irq_preinstall = i965_irq_preinstall;
4457                         dev->driver->irq_postinstall = i965_irq_postinstall;
4458                         dev->driver->irq_uninstall = i965_irq_uninstall;
4459                         dev->driver->irq_handler = i965_irq_handler;
4460                 }
4461                 if (I915_HAS_HOTPLUG(dev_priv))
4462                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4463                 dev->driver->enable_vblank = i915_enable_vblank;
4464                 dev->driver->disable_vblank = i915_disable_vblank;
4465         }
4466 }
4467
4468 /**
4469  * intel_irq_install - enables the hardware interrupt
4470  * @dev_priv: i915 device instance
4471  *
4472  * This function enables the hardware interrupt handling, but leaves the hotplug
4473  * handling still disabled. It is called after intel_irq_init().
4474  *
4475  * In the driver load and resume code we need working interrupts in a few places
4476  * but don't want to deal with the hassle of concurrent probe and hotplug
4477  * workers. Hence the split into this two-stage approach.
4478  */
4479 int intel_irq_install(struct drm_i915_private *dev_priv)
4480 {
4481         /*
4482          * We enable some interrupt sources in our postinstall hooks, so mark
4483          * interrupts as enabled _before_ actually enabling them to avoid
4484          * special cases in our ordering checks.
4485          */
4486         dev_priv->pm.irqs_enabled = true;
4487
4488         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4489 }
4490
4491 /**
4492  * intel_irq_uninstall - finilizes all irq handling
4493  * @dev_priv: i915 device instance
4494  *
4495  * This stops interrupt and hotplug handling and unregisters and frees all
4496  * resources acquired in the init functions.
4497  */
4498 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4499 {
4500         drm_irq_uninstall(dev_priv->dev);
4501         intel_hpd_cancel_work(dev_priv);
4502         dev_priv->pm.irqs_enabled = false;
4503 }
4504
4505 /**
4506  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4507  * @dev_priv: i915 device instance
4508  *
4509  * This function is used to disable interrupts at runtime, both in the runtime
4510  * pm and the system suspend/resume code.
4511  */
4512 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4513 {
4514         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4515         dev_priv->pm.irqs_enabled = false;
4516         synchronize_irq(dev_priv->dev->irq);
4517 }
4518
4519 /**
4520  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4521  * @dev_priv: i915 device instance
4522  *
4523  * This function is used to enable interrupts at runtime, both in the runtime
4524  * pm and the system suspend/resume code.
4525  */
4526 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4527 {
4528         dev_priv->pm.irqs_enabled = true;
4529         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4530         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4531 }