GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 #ifdef CONFIG_SMP
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
32 #else
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
34 #endif
35
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
37 {
38         struct intel_wait *wait;
39         unsigned int result = 0;
40
41         lockdep_assert_held(&b->irq_lock);
42
43         wait = b->irq_wait;
44         if (wait) {
45                 /*
46                  * N.B. Since task_asleep() and ttwu are not atomic, the
47                  * waiter may actually go to sleep after the check, causing
48                  * us to suppress a valid wakeup. We prefer to reduce the
49                  * number of false positive missed_breadcrumb() warnings
50                  * at the expense of a few false negatives, as it it easy
51                  * to trigger a false positive under heavy load. Enough
52                  * signal should remain from genuine missed_breadcrumb()
53                  * for us to detect in CI.
54                  */
55                 bool was_asleep = task_asleep(wait->tsk);
56
57                 result = ENGINE_WAKEUP_WAITER;
58                 if (wake_up_process(wait->tsk) && was_asleep)
59                         result |= ENGINE_WAKEUP_ASLEEP;
60         }
61
62         return result;
63 }
64
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
66 {
67         struct intel_breadcrumbs *b = &engine->breadcrumbs;
68         unsigned long flags;
69         unsigned int result;
70
71         spin_lock_irqsave(&b->irq_lock, flags);
72         result = __intel_breadcrumbs_wakeup(b);
73         spin_unlock_irqrestore(&b->irq_lock, flags);
74
75         return result;
76 }
77
78 static unsigned long wait_timeout(void)
79 {
80         return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
81 }
82
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
84 {
85         if (GEM_SHOW_DEBUG()) {
86                 struct drm_printer p = drm_debug_printer(__func__);
87
88                 intel_engine_dump(engine, &p,
89                                   "%s missed breadcrumb at %pS\n",
90                                   engine->name, __builtin_return_address(0));
91         }
92
93         set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
94 }
95
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
97 {
98         struct intel_engine_cs *engine =
99                 from_timer(engine, t, breadcrumbs.hangcheck);
100         struct intel_breadcrumbs *b = &engine->breadcrumbs;
101         unsigned int irq_count;
102
103         if (!b->irq_armed)
104                 return;
105
106         irq_count = READ_ONCE(b->irq_count);
107         if (b->hangcheck_interrupts != irq_count) {
108                 b->hangcheck_interrupts = irq_count;
109                 mod_timer(&b->hangcheck, wait_timeout());
110                 return;
111         }
112
113         /* We keep the hangcheck timer alive until we disarm the irq, even
114          * if there are no waiters at present.
115          *
116          * If the waiter was currently running, assume it hasn't had a chance
117          * to process the pending interrupt (e.g, low priority task on a loaded
118          * system) and wait until it sleeps before declaring a missed interrupt.
119          *
120          * If the waiter was asleep (and not even pending a wakeup), then we
121          * must have missed an interrupt as the GPU has stopped advancing
122          * but we still have a waiter. Assuming all batches complete within
123          * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
124          */
125         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
126                 missed_breadcrumb(engine);
127                 mod_timer(&b->fake_irq, jiffies + 1);
128         } else {
129                 mod_timer(&b->hangcheck, wait_timeout());
130         }
131 }
132
133 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
134 {
135         struct intel_engine_cs *engine =
136                 from_timer(engine, t, breadcrumbs.fake_irq);
137         struct intel_breadcrumbs *b = &engine->breadcrumbs;
138
139         /*
140          * The timer persists in case we cannot enable interrupts,
141          * or if we have previously seen seqno/interrupt incoherency
142          * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
143          * Here the worker will wake up every jiffie in order to kick the
144          * oldest waiter to do the coherent seqno check.
145          */
146
147         spin_lock_irq(&b->irq_lock);
148         if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
149                 __intel_engine_disarm_breadcrumbs(engine);
150         spin_unlock_irq(&b->irq_lock);
151         if (!b->irq_armed)
152                 return;
153
154         /* If the user has disabled the fake-irq, restore the hangchecking */
155         if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) {
156                 mod_timer(&b->hangcheck, wait_timeout());
157                 return;
158         }
159
160         mod_timer(&b->fake_irq, jiffies + 1);
161 }
162
163 static void irq_enable(struct intel_engine_cs *engine)
164 {
165         /*
166          * FIXME: Ideally we want this on the API boundary, but for the
167          * sake of testing with mock breadcrumbs (no HW so unable to
168          * enable irqs) we place it deep within the bowels, at the point
169          * of no return.
170          */
171         GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
172
173         /* Enabling the IRQ may miss the generation of the interrupt, but
174          * we still need to force the barrier before reading the seqno,
175          * just in case.
176          */
177         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
178
179         /* Caller disables interrupts */
180         if (engine->irq_enable) {
181                 spin_lock(&engine->i915->irq_lock);
182                 engine->irq_enable(engine);
183                 spin_unlock(&engine->i915->irq_lock);
184         }
185 }
186
187 static void irq_disable(struct intel_engine_cs *engine)
188 {
189         /* Caller disables interrupts */
190         if (engine->irq_disable) {
191                 spin_lock(&engine->i915->irq_lock);
192                 engine->irq_disable(engine);
193                 spin_unlock(&engine->i915->irq_lock);
194         }
195 }
196
197 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
198 {
199         struct intel_breadcrumbs *b = &engine->breadcrumbs;
200
201         lockdep_assert_held(&b->irq_lock);
202         GEM_BUG_ON(b->irq_wait);
203         GEM_BUG_ON(!b->irq_armed);
204
205         GEM_BUG_ON(!b->irq_enabled);
206         if (!--b->irq_enabled)
207                 irq_disable(engine);
208
209         b->irq_armed = false;
210 }
211
212 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
213 {
214         struct intel_breadcrumbs *b = &engine->breadcrumbs;
215
216         spin_lock_irq(&b->irq_lock);
217         if (!b->irq_enabled++)
218                 irq_enable(engine);
219         GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
220         spin_unlock_irq(&b->irq_lock);
221 }
222
223 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
224 {
225         struct intel_breadcrumbs *b = &engine->breadcrumbs;
226
227         spin_lock_irq(&b->irq_lock);
228         GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
229         if (!--b->irq_enabled)
230                 irq_disable(engine);
231         spin_unlock_irq(&b->irq_lock);
232 }
233
234 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
235 {
236         struct intel_breadcrumbs *b = &engine->breadcrumbs;
237         struct intel_wait *wait, *n;
238
239         if (!b->irq_armed)
240                 return;
241
242         /*
243          * We only disarm the irq when we are idle (all requests completed),
244          * so if the bottom-half remains asleep, it missed the request
245          * completion.
246          */
247         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
248                 missed_breadcrumb(engine);
249
250         spin_lock_irq(&b->rb_lock);
251
252         spin_lock(&b->irq_lock);
253         b->irq_wait = NULL;
254         if (b->irq_armed)
255                 __intel_engine_disarm_breadcrumbs(engine);
256         spin_unlock(&b->irq_lock);
257
258         rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
259                 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
260                                               wait->seqno));
261                 RB_CLEAR_NODE(&wait->node);
262                 wake_up_process(wait->tsk);
263         }
264         b->waiters = RB_ROOT;
265
266         spin_unlock_irq(&b->rb_lock);
267 }
268
269 static bool use_fake_irq(const struct intel_breadcrumbs *b)
270 {
271         const struct intel_engine_cs *engine =
272                 container_of(b, struct intel_engine_cs, breadcrumbs);
273
274         if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
275                 return false;
276
277         /*
278          * Only start with the heavy weight fake irq timer if we have not
279          * seen any interrupts since enabling it the first time. If the
280          * interrupts are still arriving, it means we made a mistake in our
281          * engine->seqno_barrier(), a timing error that should be transient
282          * and unlikely to reoccur.
283          */
284         return READ_ONCE(b->irq_count) == b->hangcheck_interrupts;
285 }
286
287 static void enable_fake_irq(struct intel_breadcrumbs *b)
288 {
289         /* Ensure we never sleep indefinitely */
290         if (!b->irq_enabled || use_fake_irq(b))
291                 mod_timer(&b->fake_irq, jiffies + 1);
292         else
293                 mod_timer(&b->hangcheck, wait_timeout());
294 }
295
296 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
297 {
298         struct intel_engine_cs *engine =
299                 container_of(b, struct intel_engine_cs, breadcrumbs);
300         struct drm_i915_private *i915 = engine->i915;
301         bool enabled;
302
303         lockdep_assert_held(&b->irq_lock);
304         if (b->irq_armed)
305                 return false;
306
307         /* The breadcrumb irq will be disarmed on the interrupt after the
308          * waiters are signaled. This gives us a single interrupt window in
309          * which we can add a new waiter and avoid the cost of re-enabling
310          * the irq.
311          */
312         b->irq_armed = true;
313
314         if (I915_SELFTEST_ONLY(b->mock)) {
315                 /* For our mock objects we want to avoid interaction
316                  * with the real hardware (which is not set up). So
317                  * we simply pretend we have enabled the powerwell
318                  * and the irq, and leave it up to the mock
319                  * implementation to call intel_engine_wakeup()
320                  * itself when it wants to simulate a user interrupt,
321                  */
322                 return true;
323         }
324
325         /* Since we are waiting on a request, the GPU should be busy
326          * and should have its own rpm reference. This is tracked
327          * by i915->gt.awake, we can forgo holding our own wakref
328          * for the interrupt as before i915->gt.awake is released (when
329          * the driver is idle) we disarm the breadcrumbs.
330          */
331
332         /* No interrupts? Kick the waiter every jiffie! */
333         enabled = false;
334         if (!b->irq_enabled++ &&
335             !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
336                 irq_enable(engine);
337                 enabled = true;
338         }
339
340         enable_fake_irq(b);
341         return enabled;
342 }
343
344 static inline struct intel_wait *to_wait(struct rb_node *node)
345 {
346         return rb_entry(node, struct intel_wait, node);
347 }
348
349 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
350                                               struct intel_wait *wait)
351 {
352         lockdep_assert_held(&b->rb_lock);
353         GEM_BUG_ON(b->irq_wait == wait);
354
355         /*
356          * This request is completed, so remove it from the tree, mark it as
357          * complete, and *then* wake up the associated task. N.B. when the
358          * task wakes up, it will find the empty rb_node, discern that it
359          * has already been removed from the tree and skip the serialisation
360          * of the b->rb_lock and b->irq_lock. This means that the destruction
361          * of the intel_wait is not serialised with the interrupt handler
362          * by the waiter - it must instead be serialised by the caller.
363          */
364         rb_erase(&wait->node, &b->waiters);
365         RB_CLEAR_NODE(&wait->node);
366
367         if (wait->tsk->state != TASK_RUNNING)
368                 wake_up_process(wait->tsk); /* implicit smp_wmb() */
369 }
370
371 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
372                                             struct rb_node *next)
373 {
374         struct intel_breadcrumbs *b = &engine->breadcrumbs;
375
376         spin_lock(&b->irq_lock);
377         GEM_BUG_ON(!b->irq_armed);
378         GEM_BUG_ON(!b->irq_wait);
379         b->irq_wait = to_wait(next);
380         spin_unlock(&b->irq_lock);
381
382         /* We always wake up the next waiter that takes over as the bottom-half
383          * as we may delegate not only the irq-seqno barrier to the next waiter
384          * but also the task of waking up concurrent waiters.
385          */
386         if (next)
387                 wake_up_process(to_wait(next)->tsk);
388 }
389
390 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
391                                     struct intel_wait *wait)
392 {
393         struct intel_breadcrumbs *b = &engine->breadcrumbs;
394         struct rb_node **p, *parent, *completed;
395         bool first, armed;
396         u32 seqno;
397
398         GEM_BUG_ON(!wait->seqno);
399
400         /* Insert the request into the retirement ordered list
401          * of waiters by walking the rbtree. If we are the oldest
402          * seqno in the tree (the first to be retired), then
403          * set ourselves as the bottom-half.
404          *
405          * As we descend the tree, prune completed branches since we hold the
406          * spinlock we know that the first_waiter must be delayed and can
407          * reduce some of the sequential wake up latency if we take action
408          * ourselves and wake up the completed tasks in parallel. Also, by
409          * removing stale elements in the tree, we may be able to reduce the
410          * ping-pong between the old bottom-half and ourselves as first-waiter.
411          */
412         armed = false;
413         first = true;
414         parent = NULL;
415         completed = NULL;
416         seqno = intel_engine_get_seqno(engine);
417
418          /* If the request completed before we managed to grab the spinlock,
419           * return now before adding ourselves to the rbtree. We let the
420           * current bottom-half handle any pending wakeups and instead
421           * try and get out of the way quickly.
422           */
423         if (i915_seqno_passed(seqno, wait->seqno)) {
424                 RB_CLEAR_NODE(&wait->node);
425                 return first;
426         }
427
428         p = &b->waiters.rb_node;
429         while (*p) {
430                 parent = *p;
431                 if (wait->seqno == to_wait(parent)->seqno) {
432                         /* We have multiple waiters on the same seqno, select
433                          * the highest priority task (that with the smallest
434                          * task->prio) to serve as the bottom-half for this
435                          * group.
436                          */
437                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
438                                 p = &parent->rb_right;
439                                 first = false;
440                         } else {
441                                 p = &parent->rb_left;
442                         }
443                 } else if (i915_seqno_passed(wait->seqno,
444                                              to_wait(parent)->seqno)) {
445                         p = &parent->rb_right;
446                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
447                                 completed = parent;
448                         else
449                                 first = false;
450                 } else {
451                         p = &parent->rb_left;
452                 }
453         }
454         rb_link_node(&wait->node, parent, p);
455         rb_insert_color(&wait->node, &b->waiters);
456
457         if (first) {
458                 spin_lock(&b->irq_lock);
459                 b->irq_wait = wait;
460                 /* After assigning ourselves as the new bottom-half, we must
461                  * perform a cursory check to prevent a missed interrupt.
462                  * Either we miss the interrupt whilst programming the hardware,
463                  * or if there was a previous waiter (for a later seqno) they
464                  * may be woken instead of us (due to the inherent race
465                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
466                  * and so we miss the wake up.
467                  */
468                 armed = __intel_breadcrumbs_enable_irq(b);
469                 spin_unlock(&b->irq_lock);
470         }
471
472         if (completed) {
473                 /* Advance the bottom-half (b->irq_wait) before we wake up
474                  * the waiters who may scribble over their intel_wait
475                  * just as the interrupt handler is dereferencing it via
476                  * b->irq_wait.
477                  */
478                 if (!first) {
479                         struct rb_node *next = rb_next(completed);
480                         GEM_BUG_ON(next == &wait->node);
481                         __intel_breadcrumbs_next(engine, next);
482                 }
483
484                 do {
485                         struct intel_wait *crumb = to_wait(completed);
486                         completed = rb_prev(completed);
487                         __intel_breadcrumbs_finish(b, crumb);
488                 } while (completed);
489         }
490
491         GEM_BUG_ON(!b->irq_wait);
492         GEM_BUG_ON(!b->irq_armed);
493         GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
494
495         return armed;
496 }
497
498 bool intel_engine_add_wait(struct intel_engine_cs *engine,
499                            struct intel_wait *wait)
500 {
501         struct intel_breadcrumbs *b = &engine->breadcrumbs;
502         bool armed;
503
504         spin_lock_irq(&b->rb_lock);
505         armed = __intel_engine_add_wait(engine, wait);
506         spin_unlock_irq(&b->rb_lock);
507         if (armed)
508                 return armed;
509
510         /* Make the caller recheck if its request has already started. */
511         return i915_seqno_passed(intel_engine_get_seqno(engine),
512                                  wait->seqno - 1);
513 }
514
515 static inline bool chain_wakeup(struct rb_node *rb, int priority)
516 {
517         return rb && to_wait(rb)->tsk->prio <= priority;
518 }
519
520 static inline int wakeup_priority(struct intel_breadcrumbs *b,
521                                   struct task_struct *tsk)
522 {
523         if (tsk == b->signaler)
524                 return INT_MIN;
525         else
526                 return tsk->prio;
527 }
528
529 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
530                                        struct intel_wait *wait)
531 {
532         struct intel_breadcrumbs *b = &engine->breadcrumbs;
533
534         lockdep_assert_held(&b->rb_lock);
535
536         if (RB_EMPTY_NODE(&wait->node))
537                 goto out;
538
539         if (b->irq_wait == wait) {
540                 const int priority = wakeup_priority(b, wait->tsk);
541                 struct rb_node *next;
542
543                 /* We are the current bottom-half. Find the next candidate,
544                  * the first waiter in the queue on the remaining oldest
545                  * request. As multiple seqnos may complete in the time it
546                  * takes us to wake up and find the next waiter, we have to
547                  * wake up that waiter for it to perform its own coherent
548                  * completion check.
549                  */
550                 next = rb_next(&wait->node);
551                 if (chain_wakeup(next, priority)) {
552                         /* If the next waiter is already complete,
553                          * wake it up and continue onto the next waiter. So
554                          * if have a small herd, they will wake up in parallel
555                          * rather than sequentially, which should reduce
556                          * the overall latency in waking all the completed
557                          * clients.
558                          *
559                          * However, waking up a chain adds extra latency to
560                          * the first_waiter. This is undesirable if that
561                          * waiter is a high priority task.
562                          */
563                         u32 seqno = intel_engine_get_seqno(engine);
564
565                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
566                                 struct rb_node *n = rb_next(next);
567
568                                 __intel_breadcrumbs_finish(b, to_wait(next));
569                                 next = n;
570                                 if (!chain_wakeup(next, priority))
571                                         break;
572                         }
573                 }
574
575                 __intel_breadcrumbs_next(engine, next);
576         } else {
577                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
578         }
579
580         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
581         rb_erase(&wait->node, &b->waiters);
582         RB_CLEAR_NODE(&wait->node);
583
584 out:
585         GEM_BUG_ON(b->irq_wait == wait);
586         GEM_BUG_ON(rb_first(&b->waiters) !=
587                    (b->irq_wait ? &b->irq_wait->node : NULL));
588 }
589
590 void intel_engine_remove_wait(struct intel_engine_cs *engine,
591                               struct intel_wait *wait)
592 {
593         struct intel_breadcrumbs *b = &engine->breadcrumbs;
594
595         /* Quick check to see if this waiter was already decoupled from
596          * the tree by the bottom-half to avoid contention on the spinlock
597          * by the herd.
598          */
599         if (RB_EMPTY_NODE(&wait->node)) {
600                 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
601                 return;
602         }
603
604         spin_lock_irq(&b->rb_lock);
605         __intel_engine_remove_wait(engine, wait);
606         spin_unlock_irq(&b->rb_lock);
607 }
608
609 static void signaler_set_rtpriority(void)
610 {
611          struct sched_param param = { .sched_priority = 1 };
612
613          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
614 }
615
616 static int intel_breadcrumbs_signaler(void *arg)
617 {
618         struct intel_engine_cs *engine = arg;
619         struct intel_breadcrumbs *b = &engine->breadcrumbs;
620         struct i915_request *rq, *n;
621
622         /* Install ourselves with high priority to reduce signalling latency */
623         signaler_set_rtpriority();
624
625         do {
626                 bool do_schedule = true;
627                 LIST_HEAD(list);
628                 u32 seqno;
629
630                 set_current_state(TASK_INTERRUPTIBLE);
631                 if (list_empty(&b->signals))
632                         goto sleep;
633
634                 /*
635                  * We are either woken up by the interrupt bottom-half,
636                  * or by a client adding a new signaller. In both cases,
637                  * the GPU seqno may have advanced beyond our oldest signal.
638                  * If it has, propagate the signal, remove the waiter and
639                  * check again with the next oldest signal. Otherwise we
640                  * need to wait for a new interrupt from the GPU or for
641                  * a new client.
642                  */
643                 seqno = intel_engine_get_seqno(engine);
644
645                 spin_lock_irq(&b->rb_lock);
646                 list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
647                         u32 this = rq->signaling.wait.seqno;
648
649                         GEM_BUG_ON(!rq->signaling.wait.seqno);
650
651                         if (!i915_seqno_passed(seqno, this))
652                                 break;
653
654                         if (likely(this == i915_request_global_seqno(rq))) {
655                                 __intel_engine_remove_wait(engine,
656                                                            &rq->signaling.wait);
657
658                                 rq->signaling.wait.seqno = 0;
659                                 __list_del_entry(&rq->signaling.link);
660
661                                 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
662                                               &rq->fence.flags)) {
663                                         list_add_tail(&rq->signaling.link,
664                                                       &list);
665                                         i915_request_get(rq);
666                                 }
667                         }
668                 }
669                 spin_unlock_irq(&b->rb_lock);
670
671                 if (!list_empty(&list)) {
672                         local_bh_disable();
673                         list_for_each_entry_safe(rq, n, &list, signaling.link) {
674                                 dma_fence_signal(&rq->fence);
675                                 GEM_BUG_ON(!i915_request_completed(rq));
676                                 i915_request_put(rq);
677                         }
678                         local_bh_enable(); /* kick start the tasklets */
679
680                         /*
681                          * If the engine is saturated we may be continually
682                          * processing completed requests. This angers the
683                          * NMI watchdog if we never let anything else
684                          * have access to the CPU. Let's pretend to be nice
685                          * and relinquish the CPU if we burn through the
686                          * entire RT timeslice!
687                          */
688                         do_schedule = need_resched();
689                 }
690
691                 if (unlikely(do_schedule)) {
692                         /* Before we sleep, check for a missed seqno */
693                         if (current->state & TASK_NORMAL &&
694                             !list_empty(&b->signals) &&
695                             engine->irq_seqno_barrier &&
696                             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
697                                                &engine->irq_posted)) {
698                                 engine->irq_seqno_barrier(engine);
699                                 intel_engine_wakeup(engine);
700                         }
701
702 sleep:
703                         if (kthread_should_park())
704                                 kthread_parkme();
705
706                         if (unlikely(kthread_should_stop()))
707                                 break;
708
709                         schedule();
710                 }
711         } while (1);
712         __set_current_state(TASK_RUNNING);
713
714         return 0;
715 }
716
717 static void insert_signal(struct intel_breadcrumbs *b,
718                           struct i915_request *request,
719                           const u32 seqno)
720 {
721         struct i915_request *iter;
722
723         lockdep_assert_held(&b->rb_lock);
724
725         /*
726          * A reasonable assumption is that we are called to add signals
727          * in sequence, as the requests are submitted for execution and
728          * assigned a global_seqno. This will be the case for the majority
729          * of internally generated signals (inter-engine signaling).
730          *
731          * Out of order waiters triggering random signaling enabling will
732          * be more problematic, but hopefully rare enough and the list
733          * small enough that the O(N) insertion sort is not an issue.
734          */
735
736         list_for_each_entry_reverse(iter, &b->signals, signaling.link)
737                 if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
738                         break;
739
740         list_add(&request->signaling.link, &iter->signaling.link);
741 }
742
743 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
744 {
745         struct intel_engine_cs *engine = request->engine;
746         struct intel_breadcrumbs *b = &engine->breadcrumbs;
747         struct intel_wait *wait = &request->signaling.wait;
748         u32 seqno;
749
750         /*
751          * Note that we may be called from an interrupt handler on another
752          * device (e.g. nouveau signaling a fence completion causing us
753          * to submit a request, and so enable signaling). As such,
754          * we need to make sure that all other users of b->rb_lock protect
755          * against interrupts, i.e. use spin_lock_irqsave.
756          */
757
758         /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
759         GEM_BUG_ON(!irqs_disabled());
760         lockdep_assert_held(&request->lock);
761
762         seqno = i915_request_global_seqno(request);
763         if (!seqno) /* will be enabled later upon execution */
764                 return true;
765
766         GEM_BUG_ON(wait->seqno);
767         wait->tsk = b->signaler;
768         wait->request = request;
769         wait->seqno = seqno;
770
771         /*
772          * Add ourselves into the list of waiters, but registering our
773          * bottom-half as the signaller thread. As per usual, only the oldest
774          * waiter (not just signaller) is tasked as the bottom-half waking
775          * up all completed waiters after the user interrupt.
776          *
777          * If we are the oldest waiter, enable the irq (after which we
778          * must double check that the seqno did not complete).
779          */
780         spin_lock(&b->rb_lock);
781         insert_signal(b, request, seqno);
782         wakeup &= __intel_engine_add_wait(engine, wait);
783         spin_unlock(&b->rb_lock);
784
785         if (wakeup) {
786                 wake_up_process(b->signaler);
787                 return !intel_wait_complete(wait);
788         }
789
790         return true;
791 }
792
793 void intel_engine_cancel_signaling(struct i915_request *request)
794 {
795         struct intel_engine_cs *engine = request->engine;
796         struct intel_breadcrumbs *b = &engine->breadcrumbs;
797
798         GEM_BUG_ON(!irqs_disabled());
799         lockdep_assert_held(&request->lock);
800
801         if (!READ_ONCE(request->signaling.wait.seqno))
802                 return;
803
804         spin_lock(&b->rb_lock);
805         __intel_engine_remove_wait(engine, &request->signaling.wait);
806         if (fetch_and_zero(&request->signaling.wait.seqno))
807                 __list_del_entry(&request->signaling.link);
808         spin_unlock(&b->rb_lock);
809 }
810
811 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
812 {
813         struct intel_breadcrumbs *b = &engine->breadcrumbs;
814         struct task_struct *tsk;
815
816         spin_lock_init(&b->rb_lock);
817         spin_lock_init(&b->irq_lock);
818
819         timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
820         timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
821
822         INIT_LIST_HEAD(&b->signals);
823
824         /* Spawn a thread to provide a common bottom-half for all signals.
825          * As this is an asynchronous interface we cannot steal the current
826          * task for handling the bottom-half to the user interrupt, therefore
827          * we create a thread to do the coherent seqno dance after the
828          * interrupt and then signal the waitqueue (via the dma-buf/fence).
829          */
830         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
831                           "i915/signal:%d", engine->id);
832         if (IS_ERR(tsk))
833                 return PTR_ERR(tsk);
834
835         b->signaler = tsk;
836
837         return 0;
838 }
839
840 static void cancel_fake_irq(struct intel_engine_cs *engine)
841 {
842         struct intel_breadcrumbs *b = &engine->breadcrumbs;
843
844         del_timer_sync(&b->fake_irq); /* may queue b->hangcheck */
845         del_timer_sync(&b->hangcheck);
846         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
847 }
848
849 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
850 {
851         struct intel_breadcrumbs *b = &engine->breadcrumbs;
852         unsigned long flags;
853
854         spin_lock_irqsave(&b->irq_lock, flags);
855
856         /*
857          * Leave the fake_irq timer enabled (if it is running), but clear the
858          * bit so that it turns itself off on its next wake up and goes back
859          * to the long hangcheck interval if still required.
860          */
861         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
862
863         if (b->irq_enabled)
864                 irq_enable(engine);
865         else
866                 irq_disable(engine);
867
868         /*
869          * We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
870          * GPU is active and may have already executed the MI_USER_INTERRUPT
871          * before the CPU is ready to receive. However, the engine is currently
872          * idle (we haven't started it yet), there is no possibility for a
873          * missed interrupt as we enabled the irq and so we can clear the
874          * immediate wakeup (until a real interrupt arrives for the waiter).
875          */
876         clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
877
878         spin_unlock_irqrestore(&b->irq_lock, flags);
879 }
880
881 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
882 {
883         struct intel_breadcrumbs *b = &engine->breadcrumbs;
884
885         /* The engines should be idle and all requests accounted for! */
886         WARN_ON(READ_ONCE(b->irq_wait));
887         WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
888         WARN_ON(!list_empty(&b->signals));
889
890         if (!IS_ERR_OR_NULL(b->signaler))
891                 kthread_stop(b->signaler);
892
893         cancel_fake_irq(engine);
894 }
895
896 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
897 #include "selftests/intel_breadcrumbs.c"
898 #endif