GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / nouveau / nvkm / engine / gr / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/therm.h>
36 #include <subdev/timer.h>
37 #include <engine/fifo.h>
38
39 #include <nvif/class.h>
40 #include <nvif/cl9097.h>
41 #include <nvif/if900d.h>
42 #include <nvif/unpack.h>
43
44 /*******************************************************************************
45  * Zero Bandwidth Clear
46  ******************************************************************************/
47
48 static void
49 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
50 {
51         struct nvkm_device *device = gr->base.engine.subdev.device;
52         if (gr->zbc_color[zbc].format) {
53                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
54                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
55                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
56                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
57         }
58         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
59         nvkm_wr32(device, 0x405820, zbc);
60         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
61 }
62
63 static int
64 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
65                        const u32 ds[4], const u32 l2[4])
66 {
67         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
68         int zbc = -ENOSPC, i;
69
70         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
71                 if (gr->zbc_color[i].format) {
72                         if (gr->zbc_color[i].format != format)
73                                 continue;
74                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
75                                    gr->zbc_color[i].ds)))
76                                 continue;
77                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
78                                    gr->zbc_color[i].l2))) {
79                                 WARN_ON(1);
80                                 return -EINVAL;
81                         }
82                         return i;
83                 } else {
84                         zbc = (zbc < 0) ? i : zbc;
85                 }
86         }
87
88         if (zbc < 0)
89                 return zbc;
90
91         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
92         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
93         gr->zbc_color[zbc].format = format;
94         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
95         gr->func->zbc->clear_color(gr, zbc);
96         return zbc;
97 }
98
99 static void
100 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
101 {
102         struct nvkm_device *device = gr->base.engine.subdev.device;
103         if (gr->zbc_depth[zbc].format)
104                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
105         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
106         nvkm_wr32(device, 0x405820, zbc);
107         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
108 }
109
110 static int
111 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
112                        const u32 ds, const u32 l2)
113 {
114         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
115         int zbc = -ENOSPC, i;
116
117         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
118                 if (gr->zbc_depth[i].format) {
119                         if (gr->zbc_depth[i].format != format)
120                                 continue;
121                         if (gr->zbc_depth[i].ds != ds)
122                                 continue;
123                         if (gr->zbc_depth[i].l2 != l2) {
124                                 WARN_ON(1);
125                                 return -EINVAL;
126                         }
127                         return i;
128                 } else {
129                         zbc = (zbc < 0) ? i : zbc;
130                 }
131         }
132
133         if (zbc < 0)
134                 return zbc;
135
136         gr->zbc_depth[zbc].format = format;
137         gr->zbc_depth[zbc].ds = ds;
138         gr->zbc_depth[zbc].l2 = l2;
139         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
140         gr->func->zbc->clear_depth(gr, zbc);
141         return zbc;
142 }
143
144 const struct gf100_gr_func_zbc
145 gf100_gr_zbc = {
146         .clear_color = gf100_gr_zbc_clear_color,
147         .clear_depth = gf100_gr_zbc_clear_depth,
148 };
149
150 /*******************************************************************************
151  * Graphics object classes
152  ******************************************************************************/
153 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
154
155 struct gf100_gr_object {
156         struct nvkm_object object;
157         struct gf100_gr_chan *chan;
158 };
159
160 static int
161 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
162 {
163         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
164         union {
165                 struct fermi_a_zbc_color_v0 v0;
166         } *args = data;
167         int ret = -ENOSYS;
168
169         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
170                 switch (args->v0.format) {
171                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
172                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
173                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
174                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
175                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
176                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
177                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
178                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
179                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
180                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
181                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
182                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
183                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
184                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
185                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
186                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
187                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
188                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
189                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
190                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
191                                                            args->v0.ds,
192                                                            args->v0.l2);
193                         if (ret >= 0) {
194                                 args->v0.index = ret;
195                                 return 0;
196                         }
197                         break;
198                 default:
199                         return -EINVAL;
200                 }
201         }
202
203         return ret;
204 }
205
206 static int
207 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
208 {
209         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
210         union {
211                 struct fermi_a_zbc_depth_v0 v0;
212         } *args = data;
213         int ret = -ENOSYS;
214
215         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
216                 switch (args->v0.format) {
217                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
218                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
219                                                            args->v0.ds,
220                                                            args->v0.l2);
221                         return (ret >= 0) ? 0 : -ENOSPC;
222                 default:
223                         return -EINVAL;
224                 }
225         }
226
227         return ret;
228 }
229
230 static int
231 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
232 {
233         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
234         switch (mthd) {
235         case FERMI_A_ZBC_COLOR:
236                 return gf100_fermi_mthd_zbc_color(object, data, size);
237         case FERMI_A_ZBC_DEPTH:
238                 return gf100_fermi_mthd_zbc_depth(object, data, size);
239         default:
240                 break;
241         }
242         return -EINVAL;
243 }
244
245 const struct nvkm_object_func
246 gf100_fermi = {
247         .mthd = gf100_fermi_mthd,
248 };
249
250 static void
251 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
252 {
253         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
254         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
255 }
256
257 static bool
258 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
259 {
260         switch (class & 0x00ff) {
261         case 0x97:
262         case 0xc0:
263                 switch (mthd) {
264                 case 0x1528:
265                         gf100_gr_mthd_set_shader_exceptions(device, data);
266                         return true;
267                 default:
268                         break;
269                 }
270                 break;
271         default:
272                 break;
273         }
274         return false;
275 }
276
277 static const struct nvkm_object_func
278 gf100_gr_object_func = {
279 };
280
281 static int
282 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
283                     struct nvkm_object **pobject)
284 {
285         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
286         struct gf100_gr_object *object;
287
288         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
289                 return -ENOMEM;
290         *pobject = &object->object;
291
292         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
293                          &gf100_gr_object_func, oclass, &object->object);
294         object->chan = chan;
295         return 0;
296 }
297
298 static int
299 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
300 {
301         struct gf100_gr *gr = gf100_gr(base);
302         int c = 0;
303
304         while (gr->func->sclass[c].oclass) {
305                 if (c++ == index) {
306                         *sclass = gr->func->sclass[index];
307                         sclass->ctor = gf100_gr_object_new;
308                         return index;
309                 }
310         }
311
312         return c;
313 }
314
315 /*******************************************************************************
316  * PGRAPH context
317  ******************************************************************************/
318
319 static int
320 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
321                    int align, struct nvkm_gpuobj **pgpuobj)
322 {
323         struct gf100_gr_chan *chan = gf100_gr_chan(object);
324         struct gf100_gr *gr = chan->gr;
325         int ret, i;
326
327         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
328                               align, false, parent, pgpuobj);
329         if (ret)
330                 return ret;
331
332         nvkm_kmap(*pgpuobj);
333         for (i = 0; i < gr->size; i += 4)
334                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
335
336         if (!gr->firmware) {
337                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
338                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
339         } else {
340                 nvkm_wo32(*pgpuobj, 0xf4, 0);
341                 nvkm_wo32(*pgpuobj, 0xf8, 0);
342                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
343                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
344                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
345                 nvkm_wo32(*pgpuobj, 0x1c, 1);
346                 nvkm_wo32(*pgpuobj, 0x20, 0);
347                 nvkm_wo32(*pgpuobj, 0x28, 0);
348                 nvkm_wo32(*pgpuobj, 0x2c, 0);
349         }
350         nvkm_done(*pgpuobj);
351         return 0;
352 }
353
354 static void *
355 gf100_gr_chan_dtor(struct nvkm_object *object)
356 {
357         struct gf100_gr_chan *chan = gf100_gr_chan(object);
358         int i;
359
360         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
361                 nvkm_vmm_put(chan->vmm, &chan->data[i].vma);
362                 nvkm_memory_unref(&chan->data[i].mem);
363         }
364
365         nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
366         nvkm_memory_unref(&chan->mmio);
367         nvkm_vmm_unref(&chan->vmm);
368         return chan;
369 }
370
371 static const struct nvkm_object_func
372 gf100_gr_chan = {
373         .dtor = gf100_gr_chan_dtor,
374         .bind = gf100_gr_chan_bind,
375 };
376
377 static int
378 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
379                   const struct nvkm_oclass *oclass,
380                   struct nvkm_object **pobject)
381 {
382         struct gf100_gr *gr = gf100_gr(base);
383         struct gf100_gr_data *data = gr->mmio_data;
384         struct gf100_gr_mmio *mmio = gr->mmio_list;
385         struct gf100_gr_chan *chan;
386         struct gf100_vmm_map_v0 args = { .priv = 1 };
387         struct nvkm_device *device = gr->base.engine.subdev.device;
388         int ret, i;
389
390         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
391                 return -ENOMEM;
392         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
393         chan->gr = gr;
394         chan->vmm = nvkm_vmm_ref(fifoch->vmm);
395         *pobject = &chan->object;
396
397         /* allocate memory for a "mmio list" buffer that's used by the HUB
398          * fuc to modify some per-context register settings on first load
399          * of the context.
400          */
401         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
402                               false, &chan->mmio);
403         if (ret)
404                 return ret;
405
406         ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
407         if (ret)
408                 return ret;
409
410         ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
411                               chan->mmio_vma, &args, sizeof(args));
412         if (ret)
413                 return ret;
414
415         /* allocate buffers referenced by mmio list */
416         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
417                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
418                                       data->size, data->align, false,
419                                       &chan->data[i].mem);
420                 if (ret)
421                         return ret;
422
423                 ret = nvkm_vmm_get(fifoch->vmm, 12,
424                                    nvkm_memory_size(chan->data[i].mem),
425                                    &chan->data[i].vma);
426                 if (ret)
427                         return ret;
428
429                 args.priv = data->priv;
430
431                 ret = nvkm_memory_map(chan->data[i].mem, 0, chan->vmm,
432                                       chan->data[i].vma, &args, sizeof(args));
433                 if (ret)
434                         return ret;
435
436                 data++;
437         }
438
439         /* finally, fill in the mmio list and point the context at it */
440         nvkm_kmap(chan->mmio);
441         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
442                 u32 addr = mmio->addr;
443                 u32 data = mmio->data;
444
445                 if (mmio->buffer >= 0) {
446                         u64 info = chan->data[mmio->buffer].vma->addr;
447                         data |= info >> mmio->shift;
448                 }
449
450                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
451                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
452                 mmio++;
453         }
454         nvkm_done(chan->mmio);
455         return 0;
456 }
457
458 /*******************************************************************************
459  * PGRAPH register lists
460  ******************************************************************************/
461
462 const struct gf100_gr_init
463 gf100_gr_init_main_0[] = {
464         { 0x400080,   1, 0x04, 0x003083c2 },
465         { 0x400088,   1, 0x04, 0x00006fe7 },
466         { 0x40008c,   1, 0x04, 0x00000000 },
467         { 0x400090,   1, 0x04, 0x00000030 },
468         { 0x40013c,   1, 0x04, 0x013901f7 },
469         { 0x400140,   1, 0x04, 0x00000100 },
470         { 0x400144,   1, 0x04, 0x00000000 },
471         { 0x400148,   1, 0x04, 0x00000110 },
472         { 0x400138,   1, 0x04, 0x00000000 },
473         { 0x400130,   2, 0x04, 0x00000000 },
474         { 0x400124,   1, 0x04, 0x00000002 },
475         {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_fe_0[] = {
480         { 0x40415c,   1, 0x04, 0x00000000 },
481         { 0x404170,   1, 0x04, 0x00000000 },
482         {}
483 };
484
485 const struct gf100_gr_init
486 gf100_gr_init_pri_0[] = {
487         { 0x404488,   2, 0x04, 0x00000000 },
488         {}
489 };
490
491 const struct gf100_gr_init
492 gf100_gr_init_rstr2d_0[] = {
493         { 0x407808,   1, 0x04, 0x00000000 },
494         {}
495 };
496
497 const struct gf100_gr_init
498 gf100_gr_init_pd_0[] = {
499         { 0x406024,   1, 0x04, 0x00000000 },
500         {}
501 };
502
503 const struct gf100_gr_init
504 gf100_gr_init_ds_0[] = {
505         { 0x405844,   1, 0x04, 0x00ffffff },
506         { 0x405850,   1, 0x04, 0x00000000 },
507         { 0x405908,   1, 0x04, 0x00000000 },
508         {}
509 };
510
511 const struct gf100_gr_init
512 gf100_gr_init_scc_0[] = {
513         { 0x40803c,   1, 0x04, 0x00000000 },
514         {}
515 };
516
517 const struct gf100_gr_init
518 gf100_gr_init_prop_0[] = {
519         { 0x4184a0,   1, 0x04, 0x00000000 },
520         {}
521 };
522
523 const struct gf100_gr_init
524 gf100_gr_init_gpc_unk_0[] = {
525         { 0x418604,   1, 0x04, 0x00000000 },
526         { 0x418680,   1, 0x04, 0x00000000 },
527         { 0x418714,   1, 0x04, 0x80000000 },
528         { 0x418384,   1, 0x04, 0x00000000 },
529         {}
530 };
531
532 const struct gf100_gr_init
533 gf100_gr_init_setup_0[] = {
534         { 0x418814,   3, 0x04, 0x00000000 },
535         {}
536 };
537
538 const struct gf100_gr_init
539 gf100_gr_init_crstr_0[] = {
540         { 0x418b04,   1, 0x04, 0x00000000 },
541         {}
542 };
543
544 const struct gf100_gr_init
545 gf100_gr_init_setup_1[] = {
546         { 0x4188c8,   1, 0x04, 0x80000000 },
547         { 0x4188cc,   1, 0x04, 0x00000000 },
548         { 0x4188d0,   1, 0x04, 0x00010000 },
549         { 0x4188d4,   1, 0x04, 0x00000001 },
550         {}
551 };
552
553 const struct gf100_gr_init
554 gf100_gr_init_zcull_0[] = {
555         { 0x418910,   1, 0x04, 0x00010001 },
556         { 0x418914,   1, 0x04, 0x00000301 },
557         { 0x418918,   1, 0x04, 0x00800000 },
558         { 0x418980,   1, 0x04, 0x77777770 },
559         { 0x418984,   3, 0x04, 0x77777777 },
560         {}
561 };
562
563 const struct gf100_gr_init
564 gf100_gr_init_gpm_0[] = {
565         { 0x418c04,   1, 0x04, 0x00000000 },
566         { 0x418c88,   1, 0x04, 0x00000000 },
567         {}
568 };
569
570 const struct gf100_gr_init
571 gf100_gr_init_gpc_unk_1[] = {
572         { 0x418d00,   1, 0x04, 0x00000000 },
573         { 0x418f08,   1, 0x04, 0x00000000 },
574         { 0x418e00,   1, 0x04, 0x00000050 },
575         { 0x418e08,   1, 0x04, 0x00000000 },
576         {}
577 };
578
579 const struct gf100_gr_init
580 gf100_gr_init_gcc_0[] = {
581         { 0x41900c,   1, 0x04, 0x00000000 },
582         { 0x419018,   1, 0x04, 0x00000000 },
583         {}
584 };
585
586 const struct gf100_gr_init
587 gf100_gr_init_tpccs_0[] = {
588         { 0x419d08,   2, 0x04, 0x00000000 },
589         { 0x419d10,   1, 0x04, 0x00000014 },
590         {}
591 };
592
593 const struct gf100_gr_init
594 gf100_gr_init_tex_0[] = {
595         { 0x419ab0,   1, 0x04, 0x00000000 },
596         { 0x419ab8,   1, 0x04, 0x000000e7 },
597         { 0x419abc,   2, 0x04, 0x00000000 },
598         {}
599 };
600
601 const struct gf100_gr_init
602 gf100_gr_init_pe_0[] = {
603         { 0x41980c,   3, 0x04, 0x00000000 },
604         { 0x419844,   1, 0x04, 0x00000000 },
605         { 0x41984c,   1, 0x04, 0x00005bc5 },
606         { 0x419850,   4, 0x04, 0x00000000 },
607         {}
608 };
609
610 const struct gf100_gr_init
611 gf100_gr_init_l1c_0[] = {
612         { 0x419c98,   1, 0x04, 0x00000000 },
613         { 0x419ca8,   1, 0x04, 0x80000000 },
614         { 0x419cb4,   1, 0x04, 0x00000000 },
615         { 0x419cb8,   1, 0x04, 0x00008bf4 },
616         { 0x419cbc,   1, 0x04, 0x28137606 },
617         { 0x419cc0,   2, 0x04, 0x00000000 },
618         {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_wwdx_0[] = {
623         { 0x419bd4,   1, 0x04, 0x00800000 },
624         { 0x419bdc,   1, 0x04, 0x00000000 },
625         {}
626 };
627
628 const struct gf100_gr_init
629 gf100_gr_init_tpccs_1[] = {
630         { 0x419d2c,   1, 0x04, 0x00000000 },
631         {}
632 };
633
634 const struct gf100_gr_init
635 gf100_gr_init_mpc_0[] = {
636         { 0x419c0c,   1, 0x04, 0x00000000 },
637         {}
638 };
639
640 static const struct gf100_gr_init
641 gf100_gr_init_sm_0[] = {
642         { 0x419e00,   1, 0x04, 0x00000000 },
643         { 0x419ea0,   1, 0x04, 0x00000000 },
644         { 0x419ea4,   1, 0x04, 0x00000100 },
645         { 0x419ea8,   1, 0x04, 0x00001100 },
646         { 0x419eac,   1, 0x04, 0x11100702 },
647         { 0x419eb0,   1, 0x04, 0x00000003 },
648         { 0x419eb4,   4, 0x04, 0x00000000 },
649         { 0x419ec8,   1, 0x04, 0x06060618 },
650         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
651         { 0x419ed4,   1, 0x04, 0x011104f1 },
652         { 0x419edc,   1, 0x04, 0x00000000 },
653         { 0x419f00,   1, 0x04, 0x00000000 },
654         { 0x419f2c,   1, 0x04, 0x00000000 },
655         {}
656 };
657
658 const struct gf100_gr_init
659 gf100_gr_init_be_0[] = {
660         { 0x40880c,   1, 0x04, 0x00000000 },
661         { 0x408910,   9, 0x04, 0x00000000 },
662         { 0x408950,   1, 0x04, 0x00000000 },
663         { 0x408954,   1, 0x04, 0x0000ffff },
664         { 0x408984,   1, 0x04, 0x00000000 },
665         { 0x408988,   1, 0x04, 0x08040201 },
666         { 0x40898c,   1, 0x04, 0x80402010 },
667         {}
668 };
669
670 const struct gf100_gr_init
671 gf100_gr_init_fe_1[] = {
672         { 0x4040f0,   1, 0x04, 0x00000000 },
673         {}
674 };
675
676 const struct gf100_gr_init
677 gf100_gr_init_pe_1[] = {
678         { 0x419880,   1, 0x04, 0x00000002 },
679         {}
680 };
681
682 static const struct gf100_gr_pack
683 gf100_gr_pack_mmio[] = {
684         { gf100_gr_init_main_0 },
685         { gf100_gr_init_fe_0 },
686         { gf100_gr_init_pri_0 },
687         { gf100_gr_init_rstr2d_0 },
688         { gf100_gr_init_pd_0 },
689         { gf100_gr_init_ds_0 },
690         { gf100_gr_init_scc_0 },
691         { gf100_gr_init_prop_0 },
692         { gf100_gr_init_gpc_unk_0 },
693         { gf100_gr_init_setup_0 },
694         { gf100_gr_init_crstr_0 },
695         { gf100_gr_init_setup_1 },
696         { gf100_gr_init_zcull_0 },
697         { gf100_gr_init_gpm_0 },
698         { gf100_gr_init_gpc_unk_1 },
699         { gf100_gr_init_gcc_0 },
700         { gf100_gr_init_tpccs_0 },
701         { gf100_gr_init_tex_0 },
702         { gf100_gr_init_pe_0 },
703         { gf100_gr_init_l1c_0 },
704         { gf100_gr_init_wwdx_0 },
705         { gf100_gr_init_tpccs_1 },
706         { gf100_gr_init_mpc_0 },
707         { gf100_gr_init_sm_0 },
708         { gf100_gr_init_be_0 },
709         { gf100_gr_init_fe_1 },
710         { gf100_gr_init_pe_1 },
711         {}
712 };
713
714 /*******************************************************************************
715  * PGRAPH engine/subdev functions
716  ******************************************************************************/
717
718 static bool
719 gf100_gr_chsw_load(struct nvkm_gr *base)
720 {
721         struct gf100_gr *gr = gf100_gr(base);
722         if (!gr->firmware) {
723                 u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
724                 if (trace & 0x00000040)
725                         return true;
726         } else {
727                 u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
728                 if (mthd & 0x00080000)
729                         return true;
730         }
731         return false;
732 }
733
734 int
735 gf100_gr_rops(struct gf100_gr *gr)
736 {
737         struct nvkm_device *device = gr->base.engine.subdev.device;
738         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
739 }
740
741 void
742 gf100_gr_zbc_init(struct gf100_gr *gr)
743 {
744         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
745                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
746         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
747                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
748         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
749                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
750         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
751                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
752         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
753         int index, c = ltc->zbc_min, d = ltc->zbc_min, s = ltc->zbc_min;
754
755         if (!gr->zbc_color[0].format) {
756                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
757                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
758                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
759                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
760                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
761                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
762                 if (gr->func->zbc->stencil_get) {
763                         gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
764                         gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
765                         gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
766                 }
767         }
768
769         for (index = c; index <= ltc->zbc_max; index++)
770                 gr->func->zbc->clear_color(gr, index);
771         for (index = d; index <= ltc->zbc_max; index++)
772                 gr->func->zbc->clear_depth(gr, index);
773
774         if (gr->func->zbc->clear_stencil) {
775                 for (index = s; index <= ltc->zbc_max; index++)
776                         gr->func->zbc->clear_stencil(gr, index);
777         }
778 }
779
780 /**
781  * Wait until GR goes idle. GR is considered idle if it is disabled by the
782  * MC (0x200) register, or GR is not busy and a context switch is not in
783  * progress.
784  */
785 int
786 gf100_gr_wait_idle(struct gf100_gr *gr)
787 {
788         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
789         struct nvkm_device *device = subdev->device;
790         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
791         bool gr_enabled, ctxsw_active, gr_busy;
792
793         do {
794                 /*
795                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
796                  * up-to-date
797                  */
798                 nvkm_rd32(device, 0x400700);
799
800                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
801                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
802                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
803
804                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
805                         return 0;
806         } while (time_before(jiffies, end_jiffies));
807
808         nvkm_error(subdev,
809                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
810                    gr_enabled, ctxsw_active, gr_busy);
811         return -EAGAIN;
812 }
813
814 void
815 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
816 {
817         struct nvkm_device *device = gr->base.engine.subdev.device;
818         const struct gf100_gr_pack *pack;
819         const struct gf100_gr_init *init;
820
821         pack_for_each_init(init, pack, p) {
822                 u32 next = init->addr + init->count * init->pitch;
823                 u32 addr = init->addr;
824                 while (addr < next) {
825                         nvkm_wr32(device, addr, init->data);
826                         addr += init->pitch;
827                 }
828         }
829 }
830
831 void
832 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
833 {
834         struct nvkm_device *device = gr->base.engine.subdev.device;
835         const struct gf100_gr_pack *pack;
836         const struct gf100_gr_init *init;
837         u32 data = 0;
838
839         nvkm_wr32(device, 0x400208, 0x80000000);
840
841         pack_for_each_init(init, pack, p) {
842                 u32 next = init->addr + init->count * init->pitch;
843                 u32 addr = init->addr;
844
845                 if ((pack == p && init == p->init) || data != init->data) {
846                         nvkm_wr32(device, 0x400204, init->data);
847                         data = init->data;
848                 }
849
850                 while (addr < next) {
851                         nvkm_wr32(device, 0x400200, addr);
852                         /**
853                          * Wait for GR to go idle after submitting a
854                          * GO_IDLE bundle
855                          */
856                         if ((addr & 0xffff) == 0xe100)
857                                 gf100_gr_wait_idle(gr);
858                         nvkm_msec(device, 2000,
859                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
860                                         break;
861                         );
862                         addr += init->pitch;
863                 }
864         }
865
866         nvkm_wr32(device, 0x400208, 0x00000000);
867 }
868
869 void
870 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
871 {
872         struct nvkm_device *device = gr->base.engine.subdev.device;
873         const struct gf100_gr_pack *pack;
874         const struct gf100_gr_init *init;
875         u32 data = 0;
876
877         pack_for_each_init(init, pack, p) {
878                 u32 ctrl = 0x80000000 | pack->type;
879                 u32 next = init->addr + init->count * init->pitch;
880                 u32 addr = init->addr;
881
882                 if ((pack == p && init == p->init) || data != init->data) {
883                         nvkm_wr32(device, 0x40448c, init->data);
884                         data = init->data;
885                 }
886
887                 while (addr < next) {
888                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
889                         addr += init->pitch;
890                 }
891         }
892 }
893
894 u64
895 gf100_gr_units(struct nvkm_gr *base)
896 {
897         struct gf100_gr *gr = gf100_gr(base);
898         u64 cfg;
899
900         cfg  = (u32)gr->gpc_nr;
901         cfg |= (u32)gr->tpc_total << 8;
902         cfg |= (u64)gr->rop_nr << 32;
903
904         return cfg;
905 }
906
907 static const struct nvkm_bitfield gf100_dispatch_error[] = {
908         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
909         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
910         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
911         {}
912 };
913
914 static const struct nvkm_bitfield gf100_m2mf_error[] = {
915         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
916         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
917         {}
918 };
919
920 static const struct nvkm_bitfield gf100_unk6_error[] = {
921         { 0x00000001, "TEMP_TOO_SMALL" },
922         {}
923 };
924
925 static const struct nvkm_bitfield gf100_ccache_error[] = {
926         { 0x00000001, "INTR" },
927         { 0x00000002, "LDCONST_OOB" },
928         {}
929 };
930
931 static const struct nvkm_bitfield gf100_macro_error[] = {
932         { 0x00000001, "TOO_FEW_PARAMS" },
933         { 0x00000002, "TOO_MANY_PARAMS" },
934         { 0x00000004, "ILLEGAL_OPCODE" },
935         { 0x00000008, "DOUBLE_BRANCH" },
936         { 0x00000010, "WATCHDOG" },
937         {}
938 };
939
940 static const struct nvkm_bitfield gk104_sked_error[] = {
941         { 0x00000040, "CTA_RESUME" },
942         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
943         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
944         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
945         { 0x00000800, "WARP_CSTACK_SIZE" },
946         { 0x00001000, "TOTAL_TEMP_SIZE" },
947         { 0x00002000, "REGISTER_COUNT" },
948         { 0x00040000, "TOTAL_THREADS" },
949         { 0x00100000, "PROGRAM_OFFSET" },
950         { 0x00200000, "SHARED_MEMORY_SIZE" },
951         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
952         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
953         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
954         { 0x04000000, "TOTAL_REGISTER_COUNT" },
955         {}
956 };
957
958 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
959         { 0x00000002, "RT_PITCH_OVERRUN" },
960         { 0x00000010, "RT_WIDTH_OVERRUN" },
961         { 0x00000020, "RT_HEIGHT_OVERRUN" },
962         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
963         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
964         { 0x00000400, "RT_LINEAR_MISMATCH" },
965         {}
966 };
967
968 static void
969 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
970 {
971         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
972         struct nvkm_device *device = subdev->device;
973         char error[128];
974         u32 trap[4];
975
976         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
977         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
978         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
979         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
980
981         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
982
983         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
984                            "format = %x, storage type = %x\n",
985                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
986                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
987         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
988 }
989
990 const struct nvkm_enum gf100_mp_warp_error[] = {
991         { 0x01, "STACK_ERROR" },
992         { 0x02, "API_STACK_ERROR" },
993         { 0x03, "RET_EMPTY_STACK_ERROR" },
994         { 0x04, "PC_WRAP" },
995         { 0x05, "MISALIGNED_PC" },
996         { 0x06, "PC_OVERFLOW" },
997         { 0x07, "MISALIGNED_IMMC_ADDR" },
998         { 0x08, "MISALIGNED_REG" },
999         { 0x09, "ILLEGAL_INSTR_ENCODING" },
1000         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
1001         { 0x0b, "ILLEGAL_INSTR_PARAM" },
1002         { 0x0c, "INVALID_CONST_ADDR" },
1003         { 0x0d, "OOR_REG" },
1004         { 0x0e, "OOR_ADDR" },
1005         { 0x0f, "MISALIGNED_ADDR" },
1006         { 0x10, "INVALID_ADDR_SPACE" },
1007         { 0x11, "ILLEGAL_INSTR_PARAM2" },
1008         { 0x12, "INVALID_CONST_ADDR_LDC" },
1009         { 0x13, "GEOMETRY_SM_ERROR" },
1010         { 0x14, "DIVERGENT" },
1011         { 0x15, "WARP_EXIT" },
1012         {}
1013 };
1014
1015 const struct nvkm_bitfield gf100_mp_global_error[] = {
1016         { 0x00000001, "SM_TO_SM_FAULT" },
1017         { 0x00000002, "L1_ERROR" },
1018         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
1019         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
1020         { 0x00000010, "BPT_INT" },
1021         { 0x00000020, "BPT_PAUSE" },
1022         { 0x00000040, "SINGLE_STEP_COMPLETE" },
1023         { 0x20000000, "ECC_SEC_ERROR" },
1024         { 0x40000000, "ECC_DED_ERROR" },
1025         { 0x80000000, "TIMEOUT" },
1026         {}
1027 };
1028
1029 void
1030 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1031 {
1032         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1033         struct nvkm_device *device = subdev->device;
1034         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1035         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1036         const struct nvkm_enum *warp;
1037         char glob[128];
1038
1039         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1040         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1041
1042         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1043                            "global %08x [%s] warp %04x [%s]\n",
1044                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1045
1046         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1047         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1048 }
1049
1050 static void
1051 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1052 {
1053         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1054         struct nvkm_device *device = subdev->device;
1055         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1056
1057         if (stat & 0x00000001) {
1058                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1059                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1060                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1061                 stat &= ~0x00000001;
1062         }
1063
1064         if (stat & 0x00000002) {
1065                 gr->func->trap_mp(gr, gpc, tpc);
1066                 stat &= ~0x00000002;
1067         }
1068
1069         if (stat & 0x00000004) {
1070                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1071                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1072                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1073                 stat &= ~0x00000004;
1074         }
1075
1076         if (stat & 0x00000008) {
1077                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1078                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1079                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1080                 stat &= ~0x00000008;
1081         }
1082
1083         if (stat & 0x00000010) {
1084                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1085                 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1086                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1087                 stat &= ~0x00000010;
1088         }
1089
1090         if (stat) {
1091                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1092         }
1093 }
1094
1095 static void
1096 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1097 {
1098         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1099         struct nvkm_device *device = subdev->device;
1100         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1101         int tpc;
1102
1103         if (stat & 0x00000001) {
1104                 gf100_gr_trap_gpc_rop(gr, gpc);
1105                 stat &= ~0x00000001;
1106         }
1107
1108         if (stat & 0x00000002) {
1109                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1110                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1111                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1112                 stat &= ~0x00000002;
1113         }
1114
1115         if (stat & 0x00000004) {
1116                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1117                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1118                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1119                 stat &= ~0x00000004;
1120         }
1121
1122         if (stat & 0x00000008) {
1123                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1124                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1125                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1126                 stat &= ~0x00000009;
1127         }
1128
1129         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1130                 u32 mask = 0x00010000 << tpc;
1131                 if (stat & mask) {
1132                         gf100_gr_trap_tpc(gr, gpc, tpc);
1133                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1134                         stat &= ~mask;
1135                 }
1136         }
1137
1138         if (stat) {
1139                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1140         }
1141 }
1142
1143 static void
1144 gf100_gr_trap_intr(struct gf100_gr *gr)
1145 {
1146         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1147         struct nvkm_device *device = subdev->device;
1148         char error[128];
1149         u32 trap = nvkm_rd32(device, 0x400108);
1150         int rop, gpc;
1151
1152         if (trap & 0x00000001) {
1153                 u32 stat = nvkm_rd32(device, 0x404000);
1154
1155                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1156                                stat & 0x3fffffff);
1157                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1158                 nvkm_wr32(device, 0x404000, 0xc0000000);
1159                 nvkm_wr32(device, 0x400108, 0x00000001);
1160                 trap &= ~0x00000001;
1161         }
1162
1163         if (trap & 0x00000002) {
1164                 u32 stat = nvkm_rd32(device, 0x404600);
1165
1166                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1167                                stat & 0x3fffffff);
1168                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1169
1170                 nvkm_wr32(device, 0x404600, 0xc0000000);
1171                 nvkm_wr32(device, 0x400108, 0x00000002);
1172                 trap &= ~0x00000002;
1173         }
1174
1175         if (trap & 0x00000008) {
1176                 u32 stat = nvkm_rd32(device, 0x408030);
1177
1178                 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1179                                stat & 0x3fffffff);
1180                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1181                 nvkm_wr32(device, 0x408030, 0xc0000000);
1182                 nvkm_wr32(device, 0x400108, 0x00000008);
1183                 trap &= ~0x00000008;
1184         }
1185
1186         if (trap & 0x00000010) {
1187                 u32 stat = nvkm_rd32(device, 0x405840);
1188                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1189                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1190                 nvkm_wr32(device, 0x405840, 0xc0000000);
1191                 nvkm_wr32(device, 0x400108, 0x00000010);
1192                 trap &= ~0x00000010;
1193         }
1194
1195         if (trap & 0x00000040) {
1196                 u32 stat = nvkm_rd32(device, 0x40601c);
1197
1198                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1199                                stat & 0x3fffffff);
1200                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1201
1202                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1203                 nvkm_wr32(device, 0x400108, 0x00000040);
1204                 trap &= ~0x00000040;
1205         }
1206
1207         if (trap & 0x00000080) {
1208                 u32 stat = nvkm_rd32(device, 0x404490);
1209                 u32 pc = nvkm_rd32(device, 0x404494);
1210                 u32 op = nvkm_rd32(device, 0x40449c);
1211
1212                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1213                                stat & 0x1fffffff);
1214                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1215                            stat, error, pc & 0x7ff,
1216                            (pc & 0x10000000) ? "" : " (invalid)",
1217                            op);
1218
1219                 nvkm_wr32(device, 0x404490, 0xc0000000);
1220                 nvkm_wr32(device, 0x400108, 0x00000080);
1221                 trap &= ~0x00000080;
1222         }
1223
1224         if (trap & 0x00000100) {
1225                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1226
1227                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1228                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1229
1230                 if (stat)
1231                         nvkm_wr32(device, 0x407020, 0x40000000);
1232                 nvkm_wr32(device, 0x400108, 0x00000100);
1233                 trap &= ~0x00000100;
1234         }
1235
1236         if (trap & 0x01000000) {
1237                 u32 stat = nvkm_rd32(device, 0x400118);
1238                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1239                         u32 mask = 0x00000001 << gpc;
1240                         if (stat & mask) {
1241                                 gf100_gr_trap_gpc(gr, gpc);
1242                                 nvkm_wr32(device, 0x400118, mask);
1243                                 stat &= ~mask;
1244                         }
1245                 }
1246                 nvkm_wr32(device, 0x400108, 0x01000000);
1247                 trap &= ~0x01000000;
1248         }
1249
1250         if (trap & 0x02000000) {
1251                 for (rop = 0; rop < gr->rop_nr; rop++) {
1252                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1253                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1254                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1255                                  rop, statz, statc);
1256                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1257                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1258                 }
1259                 nvkm_wr32(device, 0x400108, 0x02000000);
1260                 trap &= ~0x02000000;
1261         }
1262
1263         if (trap) {
1264                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1265                 nvkm_wr32(device, 0x400108, trap);
1266         }
1267 }
1268
1269 static void
1270 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1271 {
1272         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1273         struct nvkm_device *device = subdev->device;
1274         nvkm_error(subdev, "%06x - done %08x\n", base,
1275                    nvkm_rd32(device, base + 0x400));
1276         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1277                    nvkm_rd32(device, base + 0x800),
1278                    nvkm_rd32(device, base + 0x804),
1279                    nvkm_rd32(device, base + 0x808),
1280                    nvkm_rd32(device, base + 0x80c));
1281         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1282                    nvkm_rd32(device, base + 0x810),
1283                    nvkm_rd32(device, base + 0x814),
1284                    nvkm_rd32(device, base + 0x818),
1285                    nvkm_rd32(device, base + 0x81c));
1286 }
1287
1288 void
1289 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1290 {
1291         struct nvkm_device *device = gr->base.engine.subdev.device;
1292         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1293         u32 gpc;
1294
1295         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1296         for (gpc = 0; gpc < gpcnr; gpc++)
1297                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1298 }
1299
1300 static void
1301 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1302 {
1303         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1304         struct nvkm_device *device = subdev->device;
1305         u32 stat = nvkm_rd32(device, 0x409c18);
1306
1307         if (!gr->firmware && (stat & 0x00000001)) {
1308                 u32 code = nvkm_rd32(device, 0x409814);
1309                 if (code == E_BAD_FWMTHD) {
1310                         u32 class = nvkm_rd32(device, 0x409808);
1311                         u32  addr = nvkm_rd32(device, 0x40980c);
1312                         u32  subc = (addr & 0x00070000) >> 16;
1313                         u32  mthd = (addr & 0x00003ffc);
1314                         u32  data = nvkm_rd32(device, 0x409810);
1315
1316                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1317                                            "mthd %04x data %08x\n",
1318                                    subc, class, mthd, data);
1319                 } else {
1320                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1321                 }
1322                 nvkm_wr32(device, 0x409c20, 0x00000001);
1323                 stat &= ~0x00000001;
1324         }
1325
1326         if (!gr->firmware && (stat & 0x00080000)) {
1327                 nvkm_error(subdev, "FECS watchdog timeout\n");
1328                 gf100_gr_ctxctl_debug(gr);
1329                 nvkm_wr32(device, 0x409c20, 0x00080000);
1330                 stat &= ~0x00080000;
1331         }
1332
1333         if (stat) {
1334                 nvkm_error(subdev, "FECS %08x\n", stat);
1335                 gf100_gr_ctxctl_debug(gr);
1336                 nvkm_wr32(device, 0x409c20, stat);
1337         }
1338 }
1339
1340 static void
1341 gf100_gr_intr(struct nvkm_gr *base)
1342 {
1343         struct gf100_gr *gr = gf100_gr(base);
1344         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1345         struct nvkm_device *device = subdev->device;
1346         struct nvkm_fifo_chan *chan;
1347         unsigned long flags;
1348         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1349         u32 stat = nvkm_rd32(device, 0x400100);
1350         u32 addr = nvkm_rd32(device, 0x400704);
1351         u32 mthd = (addr & 0x00003ffc);
1352         u32 subc = (addr & 0x00070000) >> 16;
1353         u32 data = nvkm_rd32(device, 0x400708);
1354         u32 code = nvkm_rd32(device, 0x400110);
1355         u32 class;
1356         const char *name = "unknown";
1357         int chid = -1;
1358
1359         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1360         if (chan) {
1361                 name = chan->object.client->name;
1362                 chid = chan->chid;
1363         }
1364
1365         if (device->card_type < NV_E0 || subc < 4)
1366                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1367         else
1368                 class = 0x0000;
1369
1370         if (stat & 0x00000001) {
1371                 /*
1372                  * notifier interrupt, only needed for cyclestats
1373                  * can be safely ignored
1374                  */
1375                 nvkm_wr32(device, 0x400100, 0x00000001);
1376                 stat &= ~0x00000001;
1377         }
1378
1379         if (stat & 0x00000010) {
1380                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1381                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1382                                    "subc %d class %04x mthd %04x data %08x\n",
1383                                    chid, inst << 12, name, subc,
1384                                    class, mthd, data);
1385                 }
1386                 nvkm_wr32(device, 0x400100, 0x00000010);
1387                 stat &= ~0x00000010;
1388         }
1389
1390         if (stat & 0x00000020) {
1391                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1392                            "subc %d class %04x mthd %04x data %08x\n",
1393                            chid, inst << 12, name, subc, class, mthd, data);
1394                 nvkm_wr32(device, 0x400100, 0x00000020);
1395                 stat &= ~0x00000020;
1396         }
1397
1398         if (stat & 0x00100000) {
1399                 const struct nvkm_enum *en =
1400                         nvkm_enum_find(nv50_data_error_names, code);
1401                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1402                                    "subc %d class %04x mthd %04x data %08x\n",
1403                            code, en ? en->name : "", chid, inst << 12,
1404                            name, subc, class, mthd, data);
1405                 nvkm_wr32(device, 0x400100, 0x00100000);
1406                 stat &= ~0x00100000;
1407         }
1408
1409         if (stat & 0x00200000) {
1410                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1411                            chid, inst << 12, name);
1412                 gf100_gr_trap_intr(gr);
1413                 nvkm_wr32(device, 0x400100, 0x00200000);
1414                 stat &= ~0x00200000;
1415         }
1416
1417         if (stat & 0x00080000) {
1418                 gf100_gr_ctxctl_isr(gr);
1419                 nvkm_wr32(device, 0x400100, 0x00080000);
1420                 stat &= ~0x00080000;
1421         }
1422
1423         if (stat) {
1424                 nvkm_error(subdev, "intr %08x\n", stat);
1425                 nvkm_wr32(device, 0x400100, stat);
1426         }
1427
1428         nvkm_wr32(device, 0x400500, 0x00010001);
1429         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1430 }
1431
1432 static void
1433 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1434                  struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1435 {
1436         nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1437         nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1438 }
1439
1440 static void
1441 gf100_gr_init_csdata(struct gf100_gr *gr,
1442                      const struct gf100_gr_pack *pack,
1443                      u32 falcon, u32 starstar, u32 base)
1444 {
1445         struct nvkm_device *device = gr->base.engine.subdev.device;
1446         const struct gf100_gr_pack *iter;
1447         const struct gf100_gr_init *init;
1448         u32 addr = ~0, prev = ~0, xfer = 0;
1449         u32 star, temp;
1450
1451         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1452         star = nvkm_rd32(device, falcon + 0x01c4);
1453         temp = nvkm_rd32(device, falcon + 0x01c4);
1454         if (temp > star)
1455                 star = temp;
1456         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1457
1458         pack_for_each_init(init, iter, pack) {
1459                 u32 head = init->addr - base;
1460                 u32 tail = head + init->count * init->pitch;
1461                 while (head < tail) {
1462                         if (head != prev + 4 || xfer >= 32) {
1463                                 if (xfer) {
1464                                         u32 data = ((--xfer << 26) | addr);
1465                                         nvkm_wr32(device, falcon + 0x01c4, data);
1466                                         star += 4;
1467                                 }
1468                                 addr = head;
1469                                 xfer = 0;
1470                         }
1471                         prev = head;
1472                         xfer = xfer + 1;
1473                         head = head + init->pitch;
1474                 }
1475         }
1476
1477         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1478         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1479         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1480 }
1481
1482 /* Initialize context from an external (secure or not) firmware */
1483 static int
1484 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1485 {
1486         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1487         struct nvkm_device *device = subdev->device;
1488         struct nvkm_secboot *sb = device->secboot;
1489         u32 secboot_mask = 0;
1490
1491         /* load fuc microcode */
1492         nvkm_mc_unk260(device, 0);
1493
1494         /* securely-managed falcons must be reset using secure boot */
1495         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1496                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1497         else
1498                 gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d);
1499
1500         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1501                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1502         else
1503                 gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad);
1504
1505         if (secboot_mask != 0) {
1506                 int ret = nvkm_secboot_reset(sb, secboot_mask);
1507                 if (ret)
1508                         return ret;
1509         }
1510
1511         nvkm_mc_unk260(device, 1);
1512
1513         /* start both of them running */
1514         nvkm_wr32(device, 0x409840, 0xffffffff);
1515         nvkm_wr32(device, 0x41a10c, 0x00000000);
1516         nvkm_wr32(device, 0x40910c, 0x00000000);
1517
1518         nvkm_falcon_start(gr->gpccs);
1519         nvkm_falcon_start(gr->fecs);
1520
1521         if (nvkm_msec(device, 2000,
1522                 if (nvkm_rd32(device, 0x409800) & 0x00000001)
1523                         break;
1524         ) < 0)
1525                 return -EBUSY;
1526
1527         nvkm_wr32(device, 0x409840, 0xffffffff);
1528         nvkm_wr32(device, 0x409500, 0x7fffffff);
1529         nvkm_wr32(device, 0x409504, 0x00000021);
1530
1531         nvkm_wr32(device, 0x409840, 0xffffffff);
1532         nvkm_wr32(device, 0x409500, 0x00000000);
1533         nvkm_wr32(device, 0x409504, 0x00000010);
1534         if (nvkm_msec(device, 2000,
1535                 if ((gr->size = nvkm_rd32(device, 0x409800)))
1536                         break;
1537         ) < 0)
1538                 return -EBUSY;
1539
1540         nvkm_wr32(device, 0x409840, 0xffffffff);
1541         nvkm_wr32(device, 0x409500, 0x00000000);
1542         nvkm_wr32(device, 0x409504, 0x00000016);
1543         if (nvkm_msec(device, 2000,
1544                 if (nvkm_rd32(device, 0x409800))
1545                         break;
1546         ) < 0)
1547                 return -EBUSY;
1548
1549         nvkm_wr32(device, 0x409840, 0xffffffff);
1550         nvkm_wr32(device, 0x409500, 0x00000000);
1551         nvkm_wr32(device, 0x409504, 0x00000025);
1552         if (nvkm_msec(device, 2000,
1553                 if (nvkm_rd32(device, 0x409800))
1554                         break;
1555         ) < 0)
1556                 return -EBUSY;
1557
1558         if (device->chipset >= 0xe0) {
1559                 nvkm_wr32(device, 0x409800, 0x00000000);
1560                 nvkm_wr32(device, 0x409500, 0x00000001);
1561                 nvkm_wr32(device, 0x409504, 0x00000030);
1562                 if (nvkm_msec(device, 2000,
1563                         if (nvkm_rd32(device, 0x409800))
1564                                 break;
1565                 ) < 0)
1566                         return -EBUSY;
1567
1568                 nvkm_wr32(device, 0x409810, 0xb00095c8);
1569                 nvkm_wr32(device, 0x409800, 0x00000000);
1570                 nvkm_wr32(device, 0x409500, 0x00000001);
1571                 nvkm_wr32(device, 0x409504, 0x00000031);
1572                 if (nvkm_msec(device, 2000,
1573                         if (nvkm_rd32(device, 0x409800))
1574                                 break;
1575                 ) < 0)
1576                         return -EBUSY;
1577
1578                 nvkm_wr32(device, 0x409810, 0x00080420);
1579                 nvkm_wr32(device, 0x409800, 0x00000000);
1580                 nvkm_wr32(device, 0x409500, 0x00000001);
1581                 nvkm_wr32(device, 0x409504, 0x00000032);
1582                 if (nvkm_msec(device, 2000,
1583                         if (nvkm_rd32(device, 0x409800))
1584                                 break;
1585                 ) < 0)
1586                         return -EBUSY;
1587
1588                 nvkm_wr32(device, 0x409614, 0x00000070);
1589                 nvkm_wr32(device, 0x409614, 0x00000770);
1590                 nvkm_wr32(device, 0x40802c, 0x00000001);
1591         }
1592
1593         if (gr->data == NULL) {
1594                 int ret = gf100_grctx_generate(gr);
1595                 if (ret) {
1596                         nvkm_error(subdev, "failed to construct context\n");
1597                         return ret;
1598                 }
1599         }
1600
1601         return 0;
1602 }
1603
1604 static int
1605 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1606 {
1607         const struct gf100_grctx_func *grctx = gr->func->grctx;
1608         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1609         struct nvkm_device *device = subdev->device;
1610
1611         if (!gr->func->fecs.ucode) {
1612                 return -ENOSYS;
1613         }
1614
1615         /* load HUB microcode */
1616         nvkm_mc_unk260(device, 0);
1617         nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0,
1618                               gr->func->fecs.ucode->data.size, 0);
1619         nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0,
1620                               gr->func->fecs.ucode->code.size, 0, 0, false);
1621
1622         /* load GPC microcode */
1623         nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0,
1624                               gr->func->gpccs.ucode->data.size, 0);
1625         nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0,
1626                               gr->func->gpccs.ucode->code.size, 0, 0, false);
1627         nvkm_mc_unk260(device, 1);
1628
1629         /* load register lists */
1630         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1631         gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
1632         gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
1633         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1634         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1635
1636         /* start HUB ucode running, it'll init the GPCs */
1637         nvkm_wr32(device, 0x40910c, 0x00000000);
1638         nvkm_wr32(device, 0x409100, 0x00000002);
1639         if (nvkm_msec(device, 2000,
1640                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1641                         break;
1642         ) < 0) {
1643                 gf100_gr_ctxctl_debug(gr);
1644                 return -EBUSY;
1645         }
1646
1647         gr->size = nvkm_rd32(device, 0x409804);
1648         if (gr->data == NULL) {
1649                 int ret = gf100_grctx_generate(gr);
1650                 if (ret) {
1651                         nvkm_error(subdev, "failed to construct context\n");
1652                         return ret;
1653                 }
1654         }
1655
1656         return 0;
1657 }
1658
1659 int
1660 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1661 {
1662         int ret;
1663
1664         if (gr->firmware)
1665                 ret = gf100_gr_init_ctxctl_ext(gr);
1666         else
1667                 ret = gf100_gr_init_ctxctl_int(gr);
1668
1669         return ret;
1670 }
1671
1672 void
1673 gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
1674 {
1675         int tpc, gpc;
1676         for (tpc = 0; tpc < gr->tpc_max; tpc++) {
1677                 for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1678                         if (tpc < gr->tpc_nr[gpc]) {
1679                                 gr->sm[gr->sm_nr].gpc = gpc;
1680                                 gr->sm[gr->sm_nr].tpc = tpc;
1681                                 gr->sm_nr++;
1682                         }
1683                 }
1684         }
1685 }
1686
1687 void
1688 gf100_gr_oneinit_tiles(struct gf100_gr *gr)
1689 {
1690         static const u8 primes[] = {
1691                 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
1692         };
1693         int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
1694         u32 mul_factor, comm_denom;
1695         u8  gpc_map[GPC_MAX];
1696         bool sorted;
1697
1698         switch (gr->tpc_total) {
1699         case 15: gr->screen_tile_row_offset = 0x06; break;
1700         case 14: gr->screen_tile_row_offset = 0x05; break;
1701         case 13: gr->screen_tile_row_offset = 0x02; break;
1702         case 11: gr->screen_tile_row_offset = 0x07; break;
1703         case 10: gr->screen_tile_row_offset = 0x06; break;
1704         case  7:
1705         case  5: gr->screen_tile_row_offset = 0x01; break;
1706         case  3: gr->screen_tile_row_offset = 0x02; break;
1707         case  2:
1708         case  1: gr->screen_tile_row_offset = 0x01; break;
1709         default: gr->screen_tile_row_offset = 0x03;
1710                 for (i = 0; i < ARRAY_SIZE(primes); i++) {
1711                         if (gr->tpc_total % primes[i]) {
1712                                 gr->screen_tile_row_offset = primes[i];
1713                                 break;
1714                         }
1715                 }
1716                 break;
1717         }
1718
1719         /* Sort GPCs by TPC count, highest-to-lowest. */
1720         for (i = 0; i < gr->gpc_nr; i++)
1721                 gpc_map[i] = i;
1722         sorted = false;
1723
1724         while (!sorted) {
1725                 for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
1726                         if (gr->tpc_nr[gpc_map[i + 1]] >
1727                             gr->tpc_nr[gpc_map[i + 0]]) {
1728                                 u8 swap = gpc_map[i];
1729                                 gpc_map[i + 0] = gpc_map[i + 1];
1730                                 gpc_map[i + 1] = swap;
1731                                 sorted = false;
1732                         }
1733                 }
1734         }
1735
1736         /* Determine tile->GPC mapping */
1737         mul_factor = gr->gpc_nr * gr->tpc_max;
1738         if (mul_factor & 1)
1739                 mul_factor = 2;
1740         else
1741                 mul_factor = 1;
1742
1743         comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;
1744
1745         for (i = 0; i < gr->gpc_nr; i++) {
1746                 init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
1747                  init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
1748                   run_err[i] = init_frac[i] + init_err[i];
1749         }
1750
1751         for (i = 0; i < gr->tpc_total;) {
1752                 for (j = 0; j < gr->gpc_nr; j++) {
1753                         if ((run_err[j] * 2) >= comm_denom) {
1754                                 gr->tile[i++] = gpc_map[j];
1755                                 run_err[j] += init_frac[j] - comm_denom;
1756                         } else {
1757                                 run_err[j] += init_frac[j];
1758                         }
1759                 }
1760         }
1761 }
1762
1763 static int
1764 gf100_gr_oneinit(struct nvkm_gr *base)
1765 {
1766         struct gf100_gr *gr = gf100_gr(base);
1767         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1768         struct nvkm_device *device = subdev->device;
1769         int i, j;
1770         int ret;
1771
1772         ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs);
1773         if (ret)
1774                 return ret;
1775
1776         ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs);
1777         if (ret)
1778                 return ret;
1779
1780         nvkm_pmu_pgob(device->pmu, false);
1781
1782         gr->rop_nr = gr->func->rops(gr);
1783         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1784         for (i = 0; i < gr->gpc_nr; i++) {
1785                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1786                 gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
1787                 gr->tpc_total += gr->tpc_nr[i];
1788                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1789                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1790                         gr->ppc_tpc_mask[i][j] =
1791                                 nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1792                         if (gr->ppc_tpc_mask[i][j] == 0)
1793                                 continue;
1794                         gr->ppc_mask[i] |= (1 << j);
1795                         gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
1796                         if (gr->ppc_tpc_min == 0 ||
1797                             gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
1798                                 gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
1799                         if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
1800                                 gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
1801                 }
1802         }
1803
1804         memset(gr->tile, 0xff, sizeof(gr->tile));
1805         gr->func->oneinit_tiles(gr);
1806         gr->func->oneinit_sm_id(gr);
1807         return 0;
1808 }
1809
1810 static int
1811 gf100_gr_init_(struct nvkm_gr *base)
1812 {
1813         struct gf100_gr *gr = gf100_gr(base);
1814         struct nvkm_subdev *subdev = &base->engine.subdev;
1815         u32 ret;
1816
1817         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1818
1819         ret = nvkm_falcon_get(gr->fecs, subdev);
1820         if (ret)
1821                 return ret;
1822
1823         ret = nvkm_falcon_get(gr->gpccs, subdev);
1824         if (ret)
1825                 return ret;
1826
1827         return gr->func->init(gr);
1828 }
1829
1830 static int
1831 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
1832 {
1833         struct gf100_gr *gr = gf100_gr(base);
1834         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1835         nvkm_falcon_put(gr->gpccs, subdev);
1836         nvkm_falcon_put(gr->fecs, subdev);
1837         return 0;
1838 }
1839
1840 void
1841 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1842 {
1843         kfree(fuc->data);
1844         fuc->data = NULL;
1845 }
1846
1847 static void
1848 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1849 {
1850         vfree(pack);
1851 }
1852
1853 void *
1854 gf100_gr_dtor(struct nvkm_gr *base)
1855 {
1856         struct gf100_gr *gr = gf100_gr(base);
1857
1858         if (gr->func->dtor)
1859                 gr->func->dtor(gr);
1860         kfree(gr->data);
1861
1862         nvkm_falcon_del(&gr->gpccs);
1863         nvkm_falcon_del(&gr->fecs);
1864
1865         gf100_gr_dtor_fw(&gr->fuc409c);
1866         gf100_gr_dtor_fw(&gr->fuc409d);
1867         gf100_gr_dtor_fw(&gr->fuc41ac);
1868         gf100_gr_dtor_fw(&gr->fuc41ad);
1869
1870         gf100_gr_dtor_init(gr->fuc_bundle);
1871         gf100_gr_dtor_init(gr->fuc_method);
1872         gf100_gr_dtor_init(gr->fuc_sw_ctx);
1873         gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1874
1875         return gr;
1876 }
1877
1878 static const struct nvkm_gr_func
1879 gf100_gr_ = {
1880         .dtor = gf100_gr_dtor,
1881         .oneinit = gf100_gr_oneinit,
1882         .init = gf100_gr_init_,
1883         .fini = gf100_gr_fini_,
1884         .intr = gf100_gr_intr,
1885         .units = gf100_gr_units,
1886         .chan_new = gf100_gr_chan_new,
1887         .object_get = gf100_gr_object_get,
1888         .chsw_load = gf100_gr_chsw_load,
1889 };
1890
1891 int
1892 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1893                         struct gf100_gr_fuc *fuc, int ret)
1894 {
1895         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1896         struct nvkm_device *device = subdev->device;
1897         const struct firmware *fw;
1898         char f[32];
1899
1900         /* see if this firmware has a legacy path */
1901         if (!strcmp(fwname, "fecs_inst"))
1902                 fwname = "fuc409c";
1903         else if (!strcmp(fwname, "fecs_data"))
1904                 fwname = "fuc409d";
1905         else if (!strcmp(fwname, "gpccs_inst"))
1906                 fwname = "fuc41ac";
1907         else if (!strcmp(fwname, "gpccs_data"))
1908                 fwname = "fuc41ad";
1909         else {
1910                 /* nope, let's just return the error we got */
1911                 nvkm_error(subdev, "failed to load %s\n", fwname);
1912                 return ret;
1913         }
1914
1915         /* yes, try to load from the legacy path */
1916         nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1917
1918         snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1919         ret = request_firmware(&fw, f, device->dev);
1920         if (ret) {
1921                 snprintf(f, sizeof(f), "nouveau/%s", fwname);
1922                 ret = request_firmware(&fw, f, device->dev);
1923                 if (ret) {
1924                         nvkm_error(subdev, "failed to load %s\n", fwname);
1925                         return ret;
1926                 }
1927         }
1928
1929         fuc->size = fw->size;
1930         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1931         release_firmware(fw);
1932         return (fuc->data != NULL) ? 0 : -ENOMEM;
1933 }
1934
1935 int
1936 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1937                  struct gf100_gr_fuc *fuc)
1938 {
1939         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1940         struct nvkm_device *device = subdev->device;
1941         const struct firmware *fw;
1942         int ret;
1943
1944         ret = nvkm_firmware_get(device, fwname, &fw);
1945         if (ret) {
1946                 ret = gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1947                 if (ret)
1948                         return -ENODEV;
1949                 return 0;
1950         }
1951
1952         fuc->size = fw->size;
1953         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1954         nvkm_firmware_put(fw);
1955         return (fuc->data != NULL) ? 0 : -ENOMEM;
1956 }
1957
1958 int
1959 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1960               int index, struct gf100_gr *gr)
1961 {
1962         gr->func = func;
1963         gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1964                                     func->fecs.ucode == NULL);
1965
1966         return nvkm_gr_ctor(&gf100_gr_, device, index,
1967                             gr->firmware || func->fecs.ucode != NULL,
1968                             &gr->base);
1969 }
1970
1971 int
1972 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1973               int index, struct nvkm_gr **pgr)
1974 {
1975         struct gf100_gr *gr;
1976         int ret;
1977
1978         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1979                 return -ENOMEM;
1980         *pgr = &gr->base;
1981
1982         ret = gf100_gr_ctor(func, device, index, gr);
1983         if (ret)
1984                 return ret;
1985
1986         if (gr->firmware) {
1987                 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1988                     gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1989                     gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1990                     gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1991                         return -ENODEV;
1992         }
1993
1994         return 0;
1995 }
1996
1997 void
1998 gf100_gr_init_400054(struct gf100_gr *gr)
1999 {
2000         nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
2001 }
2002
2003 void
2004 gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
2005 {
2006         struct nvkm_device *device = gr->base.engine.subdev.device;
2007         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
2008         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
2009 }
2010
2011 void
2012 gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
2013 {
2014         struct nvkm_device *device = gr->base.engine.subdev.device;
2015         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
2016 }
2017
2018 void
2019 gf100_gr_init_419eb4(struct gf100_gr *gr)
2020 {
2021         struct nvkm_device *device = gr->base.engine.subdev.device;
2022         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
2023 }
2024
2025 void
2026 gf100_gr_init_419cc0(struct gf100_gr *gr)
2027 {
2028         struct nvkm_device *device = gr->base.engine.subdev.device;
2029         int gpc, tpc;
2030
2031         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
2032
2033         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2034                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
2035                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
2036         }
2037 }
2038
2039 void
2040 gf100_gr_init_40601c(struct gf100_gr *gr)
2041 {
2042         nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
2043 }
2044
2045 void
2046 gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
2047 {
2048         const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
2049         nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
2050 }
2051
2052 void
2053 gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
2054 {
2055         struct nvkm_device *device = gr->base.engine.subdev.device;
2056         struct nvkm_fb *fb = device->fb;
2057
2058         nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
2059         nvkm_wr32(device, 0x4188a4, 0x03000000);
2060         nvkm_wr32(device, 0x418888, 0x00000000);
2061         nvkm_wr32(device, 0x41888c, 0x00000000);
2062         nvkm_wr32(device, 0x418890, 0x00000000);
2063         nvkm_wr32(device, 0x418894, 0x00000000);
2064         nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
2065         nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
2066 }
2067
2068 void
2069 gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
2070 {
2071         struct nvkm_device *device = gr->base.engine.subdev.device;
2072         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
2073 }
2074
2075 void
2076 gf100_gr_init_zcull(struct gf100_gr *gr)
2077 {
2078         struct nvkm_device *device = gr->base.engine.subdev.device;
2079         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
2080         const u8 tile_nr = ALIGN(gr->tpc_total, 32);
2081         u8 bank[GPC_MAX] = {}, gpc, i, j;
2082         u32 data;
2083
2084         for (i = 0; i < tile_nr; i += 8) {
2085                 for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
2086                         data |= bank[gr->tile[i + j]] << (j * 4);
2087                         bank[gr->tile[i + j]]++;
2088                 }
2089                 nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
2090         }
2091
2092         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2093                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
2094                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
2095                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
2096                                                          gr->tpc_total);
2097                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
2098         }
2099
2100         nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
2101 }
2102
2103 void
2104 gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
2105 {
2106         struct nvkm_device *device = gr->base.engine.subdev.device;
2107         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
2108 }
2109
2110 int
2111 gf100_gr_init(struct gf100_gr *gr)
2112 {
2113         struct nvkm_device *device = gr->base.engine.subdev.device;
2114         int gpc, tpc, rop;
2115
2116         if (gr->func->init_419bd8)
2117                 gr->func->init_419bd8(gr);
2118
2119         gr->func->init_gpc_mmu(gr);
2120
2121         if (gr->fuc_sw_nonctx)
2122                 gf100_gr_mmio(gr, gr->fuc_sw_nonctx);
2123         else
2124                 gf100_gr_mmio(gr, gr->func->mmio);
2125
2126         gf100_gr_wait_idle(gr);
2127
2128         if (gr->func->init_r405a14)
2129                 gr->func->init_r405a14(gr);
2130
2131         if (gr->func->clkgate_pack)
2132                 nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);
2133
2134         if (gr->func->init_bios)
2135                 gr->func->init_bios(gr);
2136
2137         gr->func->init_vsc_stream_master(gr);
2138         gr->func->init_zcull(gr);
2139         gr->func->init_num_active_ltcs(gr);
2140         if (gr->func->init_rop_active_fbps)
2141                 gr->func->init_rop_active_fbps(gr);
2142         if (gr->func->init_bios_2)
2143                 gr->func->init_bios_2(gr);
2144         if (gr->func->init_swdx_pes_mask)
2145                 gr->func->init_swdx_pes_mask(gr);
2146
2147         nvkm_wr32(device, 0x400500, 0x00010001);
2148
2149         nvkm_wr32(device, 0x400100, 0xffffffff);
2150         nvkm_wr32(device, 0x40013c, 0xffffffff);
2151         nvkm_wr32(device, 0x400124, 0x00000002);
2152
2153         gr->func->init_fecs_exceptions(gr);
2154         if (gr->func->init_ds_hww_esr_2)
2155                 gr->func->init_ds_hww_esr_2(gr);
2156
2157         nvkm_wr32(device, 0x404000, 0xc0000000);
2158         nvkm_wr32(device, 0x404600, 0xc0000000);
2159         nvkm_wr32(device, 0x408030, 0xc0000000);
2160
2161         if (gr->func->init_40601c)
2162                 gr->func->init_40601c(gr);
2163
2164         nvkm_wr32(device, 0x404490, 0xc0000000);
2165         nvkm_wr32(device, 0x406018, 0xc0000000);
2166
2167         if (gr->func->init_sked_hww_esr)
2168                 gr->func->init_sked_hww_esr(gr);
2169
2170         nvkm_wr32(device, 0x405840, 0xc0000000);
2171         nvkm_wr32(device, 0x405844, 0x00ffffff);
2172
2173         if (gr->func->init_419cc0)
2174                 gr->func->init_419cc0(gr);
2175         if (gr->func->init_419eb4)
2176                 gr->func->init_419eb4(gr);
2177         if (gr->func->init_419c9c)
2178                 gr->func->init_419c9c(gr);
2179
2180         if (gr->func->init_ppc_exceptions)
2181                 gr->func->init_ppc_exceptions(gr);
2182
2183         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
2184                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
2185                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
2186                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
2187                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
2188                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
2189                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
2190                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
2191                         if (gr->func->init_tex_hww_esr)
2192                                 gr->func->init_tex_hww_esr(gr, gpc, tpc);
2193                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
2194                         if (gr->func->init_504430)
2195                                 gr->func->init_504430(gr, gpc, tpc);
2196                         gr->func->init_shader_exceptions(gr, gpc, tpc);
2197                 }
2198                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
2199                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
2200         }
2201
2202         for (rop = 0; rop < gr->rop_nr; rop++) {
2203                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
2204                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
2205                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
2206                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2207         }
2208
2209         nvkm_wr32(device, 0x400108, 0xffffffff);
2210         nvkm_wr32(device, 0x400138, 0xffffffff);
2211         nvkm_wr32(device, 0x400118, 0xffffffff);
2212         nvkm_wr32(device, 0x400130, 0xffffffff);
2213         nvkm_wr32(device, 0x40011c, 0xffffffff);
2214         nvkm_wr32(device, 0x400134, 0xffffffff);
2215
2216         if (gr->func->init_400054)
2217                 gr->func->init_400054(gr);
2218
2219         gf100_gr_zbc_init(gr);
2220
2221         if (gr->func->init_4188a4)
2222                 gr->func->init_4188a4(gr);
2223
2224         return gf100_gr_init_ctxctl(gr);
2225 }
2226
2227 #include "fuc/hubgf100.fuc3.h"
2228
2229 struct gf100_gr_ucode
2230 gf100_gr_fecs_ucode = {
2231         .code.data = gf100_grhub_code,
2232         .code.size = sizeof(gf100_grhub_code),
2233         .data.data = gf100_grhub_data,
2234         .data.size = sizeof(gf100_grhub_data),
2235 };
2236
2237 #include "fuc/gpcgf100.fuc3.h"
2238
2239 struct gf100_gr_ucode
2240 gf100_gr_gpccs_ucode = {
2241         .code.data = gf100_grgpc_code,
2242         .code.size = sizeof(gf100_grgpc_code),
2243         .data.data = gf100_grgpc_data,
2244         .data.size = sizeof(gf100_grgpc_data),
2245 };
2246
2247 static const struct gf100_gr_func
2248 gf100_gr = {
2249         .oneinit_tiles = gf100_gr_oneinit_tiles,
2250         .oneinit_sm_id = gf100_gr_oneinit_sm_id,
2251         .init = gf100_gr_init,
2252         .init_gpc_mmu = gf100_gr_init_gpc_mmu,
2253         .init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
2254         .init_zcull = gf100_gr_init_zcull,
2255         .init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
2256         .init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
2257         .init_40601c = gf100_gr_init_40601c,
2258         .init_419cc0 = gf100_gr_init_419cc0,
2259         .init_419eb4 = gf100_gr_init_419eb4,
2260         .init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
2261         .init_shader_exceptions = gf100_gr_init_shader_exceptions,
2262         .init_400054 = gf100_gr_init_400054,
2263         .trap_mp = gf100_gr_trap_mp,
2264         .mmio = gf100_gr_pack_mmio,
2265         .fecs.ucode = &gf100_gr_fecs_ucode,
2266         .gpccs.ucode = &gf100_gr_gpccs_ucode,
2267         .rops = gf100_gr_rops,
2268         .grctx = &gf100_grctx,
2269         .zbc = &gf100_gr_zbc,
2270         .sclass = {
2271                 { -1, -1, FERMI_TWOD_A },
2272                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2273                 { -1, -1, FERMI_A, &gf100_fermi },
2274                 { -1, -1, FERMI_COMPUTE_A },
2275                 {}
2276         }
2277 };
2278
2279 int
2280 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2281 {
2282         return gf100_gr_new_(&gf100_gr, device, index, pgr);
2283 }