GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <soc/tegra/pmc.h>
18
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 #include "hub.h"
23 #include "plane.h"
24
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
28
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30 {
31         stats->frames = 0;
32         stats->vblank = 0;
33         stats->underflow = 0;
34         stats->overflow = 0;
35 }
36
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39 {
40         u32 value;
41
42         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43         value = tegra_dc_readl(dc, offset);
44         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45
46         return value;
47 }
48
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50                                               unsigned int offset)
51 {
52         if (offset >= 0x500 && offset <= 0x638) {
53                 offset = 0x000 + (offset - 0x500);
54                 return plane->offset + offset;
55         }
56
57         if (offset >= 0x700 && offset <= 0x719) {
58                 offset = 0x180 + (offset - 0x700);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x800 && offset <= 0x839) {
63                 offset = 0x1c0 + (offset - 0x800);
64                 return plane->offset + offset;
65         }
66
67         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68
69         return plane->offset + offset;
70 }
71
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73                                     unsigned int offset)
74 {
75         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76 }
77
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79                                       unsigned int offset)
80 {
81         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82 }
83
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85 {
86         struct device_node *np = dc->dev->of_node;
87         struct of_phandle_iterator it;
88         int err;
89
90         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91                 if (it.node == dev->of_node)
92                         return true;
93
94         return false;
95 }
96
97 /*
98  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100  * Latching happens mmediately if the display controller is in STOP mode or
101  * on the next frame boundary otherwise.
102  *
103  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106  * into the ACTIVE copy, either immediately if the display controller is in
107  * STOP mode, or at the next frame boundary otherwise.
108  */
109 void tegra_dc_commit(struct tegra_dc *dc)
110 {
111         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113 }
114
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116                                   unsigned int bpp)
117 {
118         fixed20_12 outf = dfixed_init(out);
119         fixed20_12 inf = dfixed_init(in);
120         u32 dda_inc;
121         int max;
122
123         if (v)
124                 max = 15;
125         else {
126                 switch (bpp) {
127                 case 2:
128                         max = 8;
129                         break;
130
131                 default:
132                         WARN_ON_ONCE(1);
133                         /* fallthrough */
134                 case 4:
135                         max = 4;
136                         break;
137                 }
138         }
139
140         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141         inf.full -= dfixed_const(1);
142
143         dda_inc = dfixed_div(inf, outf);
144         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145
146         return dda_inc;
147 }
148
149 static inline u32 compute_initial_dda(unsigned int in)
150 {
151         fixed20_12 inf = dfixed_init(in);
152         return dfixed_frac(inf);
153 }
154
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156 {
157         u32 background[3] = {
158                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161         };
162         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163                          BLEND_COLOR_KEY_NONE;
164         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165         struct tegra_plane_state *state;
166         u32 blending[2];
167         unsigned int i;
168
169         /* disable blending for non-overlapping case */
170         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
171         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
172
173         state = to_tegra_plane_state(plane->base.state);
174
175         if (state->opaque) {
176                 /*
177                  * Since custom fix-weight blending isn't utilized and weight
178                  * of top window is set to max, we can enforce dependent
179                  * blending which in this case results in transparent bottom
180                  * window if top window is opaque and if top window enables
181                  * alpha blending, then bottom window is getting alpha value
182                  * of 1 minus the sum of alpha components of the overlapping
183                  * plane.
184                  */
185                 background[0] |= BLEND_CONTROL_DEPENDENT;
186                 background[1] |= BLEND_CONTROL_DEPENDENT;
187
188                 /*
189                  * The region where three windows overlap is the intersection
190                  * of the two regions where two windows overlap. It contributes
191                  * to the area if all of the windows on top of it have an alpha
192                  * component.
193                  */
194                 switch (state->base.normalized_zpos) {
195                 case 0:
196                         if (state->blending[0].alpha &&
197                             state->blending[1].alpha)
198                                 background[2] |= BLEND_CONTROL_DEPENDENT;
199                         break;
200
201                 case 1:
202                         background[2] |= BLEND_CONTROL_DEPENDENT;
203                         break;
204                 }
205         } else {
206                 /*
207                  * Enable alpha blending if pixel format has an alpha
208                  * component.
209                  */
210                 foreground |= BLEND_CONTROL_ALPHA;
211
212                 /*
213                  * If any of the windows on top of this window is opaque, it
214                  * will completely conceal this window within that area. If
215                  * top window has an alpha component, it is blended over the
216                  * bottom window.
217                  */
218                 for (i = 0; i < 2; i++) {
219                         if (state->blending[i].alpha &&
220                             state->blending[i].top)
221                                 background[i] |= BLEND_CONTROL_DEPENDENT;
222                 }
223
224                 switch (state->base.normalized_zpos) {
225                 case 0:
226                         if (state->blending[0].alpha &&
227                             state->blending[1].alpha)
228                                 background[2] |= BLEND_CONTROL_DEPENDENT;
229                         break;
230
231                 case 1:
232                         /*
233                          * When both middle and topmost windows have an alpha,
234                          * these windows a mixed together and then the result
235                          * is blended over the bottom window.
236                          */
237                         if (state->blending[0].alpha &&
238                             state->blending[0].top)
239                                 background[2] |= BLEND_CONTROL_ALPHA;
240
241                         if (state->blending[1].alpha &&
242                             state->blending[1].top)
243                                 background[2] |= BLEND_CONTROL_ALPHA;
244                         break;
245                 }
246         }
247
248         switch (state->base.normalized_zpos) {
249         case 0:
250                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
251                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
252                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
253                 break;
254
255         case 1:
256                 /*
257                  * If window B / C is topmost, then X / Y registers are
258                  * matching the order of blending[...] state indices,
259                  * otherwise a swap is required.
260                  */
261                 if (!state->blending[0].top && state->blending[1].top) {
262                         blending[0] = foreground;
263                         blending[1] = background[1];
264                 } else {
265                         blending[0] = background[0];
266                         blending[1] = foreground;
267                 }
268
269                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
270                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
271                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
272                 break;
273
274         case 2:
275                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
276                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
277                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
278                 break;
279         }
280 }
281
282 static void tegra_plane_setup_blending(struct tegra_plane *plane,
283                                        const struct tegra_dc_window *window)
284 {
285         u32 value;
286
287         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
288                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
289                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
290         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
291
292         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
296
297         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
298         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
299 }
300
301 static bool
302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
303                                      const struct tegra_dc_window *window)
304 {
305         struct tegra_dc *dc = plane->dc;
306
307         if (window->src.w == window->dst.w)
308                 return false;
309
310         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
311                 return false;
312
313         return true;
314 }
315
316 static bool
317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
318                                    const struct tegra_dc_window *window)
319 {
320         struct tegra_dc *dc = plane->dc;
321
322         if (window->src.h == window->dst.h)
323                 return false;
324
325         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326                 return false;
327
328         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
329                 return false;
330
331         return true;
332 }
333
334 static void tegra_dc_setup_window(struct tegra_plane *plane,
335                                   const struct tegra_dc_window *window)
336 {
337         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
338         struct tegra_dc *dc = plane->dc;
339         bool yuv, planar;
340         u32 value;
341
342         /*
343          * For YUV planar modes, the number of bytes per pixel takes into
344          * account only the luma component and therefore is 1.
345          */
346         yuv = tegra_plane_format_is_yuv(window->format, &planar);
347         if (!yuv)
348                 bpp = window->bits_per_pixel / 8;
349         else
350                 bpp = planar ? 1 : 2;
351
352         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
353         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
354
355         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
356         tegra_plane_writel(plane, value, DC_WIN_POSITION);
357
358         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
359         tegra_plane_writel(plane, value, DC_WIN_SIZE);
360
361         h_offset = window->src.x * bpp;
362         v_offset = window->src.y;
363         h_size = window->src.w * bpp;
364         v_size = window->src.h;
365
366         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
367         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
368
369         /*
370          * For DDA computations the number of bytes per pixel for YUV planar
371          * modes needs to take into account all Y, U and V components.
372          */
373         if (yuv && planar)
374                 bpp = 2;
375
376         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
377         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
378
379         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
380         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
381
382         h_dda = compute_initial_dda(window->src.x);
383         v_dda = compute_initial_dda(window->src.y);
384
385         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
386         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
387
388         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
389         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
390
391         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
392
393         if (yuv && planar) {
394                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
395                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
396                 value = window->stride[1] << 16 | window->stride[0];
397                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
398         } else {
399                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
400         }
401
402         if (window->bottom_up)
403                 v_offset += window->src.h - 1;
404
405         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
406         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
407
408         if (dc->soc->supports_block_linear) {
409                 unsigned long height = window->tiling.value;
410
411                 switch (window->tiling.mode) {
412                 case TEGRA_BO_TILING_MODE_PITCH:
413                         value = DC_WINBUF_SURFACE_KIND_PITCH;
414                         break;
415
416                 case TEGRA_BO_TILING_MODE_TILED:
417                         value = DC_WINBUF_SURFACE_KIND_TILED;
418                         break;
419
420                 case TEGRA_BO_TILING_MODE_BLOCK:
421                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
422                                 DC_WINBUF_SURFACE_KIND_BLOCK;
423                         break;
424                 }
425
426                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
427         } else {
428                 switch (window->tiling.mode) {
429                 case TEGRA_BO_TILING_MODE_PITCH:
430                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
431                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
432                         break;
433
434                 case TEGRA_BO_TILING_MODE_TILED:
435                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
436                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
437                         break;
438
439                 case TEGRA_BO_TILING_MODE_BLOCK:
440                         /*
441                          * No need to handle this here because ->atomic_check
442                          * will already have filtered it out.
443                          */
444                         break;
445                 }
446
447                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
448         }
449
450         value = WIN_ENABLE;
451
452         if (yuv) {
453                 /* setup default colorspace conversion coefficients */
454                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
455                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
456                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
457                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
458                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
459                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
460                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
461                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
462
463                 value |= CSC_ENABLE;
464         } else if (window->bits_per_pixel < 24) {
465                 value |= COLOR_EXPAND;
466         }
467
468         if (window->bottom_up)
469                 value |= V_DIRECTION;
470
471         if (tegra_plane_use_horizontal_filtering(plane, window)) {
472                 /*
473                  * Enable horizontal 6-tap filter and set filtering
474                  * coefficients to the default values defined in TRM.
475                  */
476                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
477                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
478                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
479                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
480                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
481                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
482                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
483                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
484                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
485                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
486                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
487                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
488                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
489                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
490                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
491                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
492
493                 value |= H_FILTER;
494         }
495
496         if (tegra_plane_use_vertical_filtering(plane, window)) {
497                 unsigned int i, k;
498
499                 /*
500                  * Enable vertical 2-tap filter and set filtering
501                  * coefficients to the default values defined in TRM.
502                  */
503                 for (i = 0, k = 128; i < 16; i++, k -= 8)
504                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
505
506                 value |= V_FILTER;
507         }
508
509         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
510
511         if (dc->soc->has_legacy_blending)
512                 tegra_plane_setup_blending_legacy(plane);
513         else
514                 tegra_plane_setup_blending(plane, window);
515 }
516
517 static const u32 tegra20_primary_formats[] = {
518         DRM_FORMAT_ARGB4444,
519         DRM_FORMAT_ARGB1555,
520         DRM_FORMAT_RGB565,
521         DRM_FORMAT_RGBA5551,
522         DRM_FORMAT_ABGR8888,
523         DRM_FORMAT_ARGB8888,
524         /* non-native formats */
525         DRM_FORMAT_XRGB1555,
526         DRM_FORMAT_RGBX5551,
527         DRM_FORMAT_XBGR8888,
528         DRM_FORMAT_XRGB8888,
529 };
530
531 static const u64 tegra20_modifiers[] = {
532         DRM_FORMAT_MOD_LINEAR,
533         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
534         DRM_FORMAT_MOD_INVALID
535 };
536
537 static const u32 tegra114_primary_formats[] = {
538         DRM_FORMAT_ARGB4444,
539         DRM_FORMAT_ARGB1555,
540         DRM_FORMAT_RGB565,
541         DRM_FORMAT_RGBA5551,
542         DRM_FORMAT_ABGR8888,
543         DRM_FORMAT_ARGB8888,
544         /* new on Tegra114 */
545         DRM_FORMAT_ABGR4444,
546         DRM_FORMAT_ABGR1555,
547         DRM_FORMAT_BGRA5551,
548         DRM_FORMAT_XRGB1555,
549         DRM_FORMAT_RGBX5551,
550         DRM_FORMAT_XBGR1555,
551         DRM_FORMAT_BGRX5551,
552         DRM_FORMAT_BGR565,
553         DRM_FORMAT_BGRA8888,
554         DRM_FORMAT_RGBA8888,
555         DRM_FORMAT_XRGB8888,
556         DRM_FORMAT_XBGR8888,
557 };
558
559 static const u32 tegra124_primary_formats[] = {
560         DRM_FORMAT_ARGB4444,
561         DRM_FORMAT_ARGB1555,
562         DRM_FORMAT_RGB565,
563         DRM_FORMAT_RGBA5551,
564         DRM_FORMAT_ABGR8888,
565         DRM_FORMAT_ARGB8888,
566         /* new on Tegra114 */
567         DRM_FORMAT_ABGR4444,
568         DRM_FORMAT_ABGR1555,
569         DRM_FORMAT_BGRA5551,
570         DRM_FORMAT_XRGB1555,
571         DRM_FORMAT_RGBX5551,
572         DRM_FORMAT_XBGR1555,
573         DRM_FORMAT_BGRX5551,
574         DRM_FORMAT_BGR565,
575         DRM_FORMAT_BGRA8888,
576         DRM_FORMAT_RGBA8888,
577         DRM_FORMAT_XRGB8888,
578         DRM_FORMAT_XBGR8888,
579         /* new on Tegra124 */
580         DRM_FORMAT_RGBX8888,
581         DRM_FORMAT_BGRX8888,
582 };
583
584 static const u64 tegra124_modifiers[] = {
585         DRM_FORMAT_MOD_LINEAR,
586         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
587         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
588         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
589         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
590         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
591         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
592         DRM_FORMAT_MOD_INVALID
593 };
594
595 static int tegra_plane_atomic_check(struct drm_plane *plane,
596                                     struct drm_plane_state *state)
597 {
598         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
599         unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
600         struct tegra_bo_tiling *tiling = &plane_state->tiling;
601         struct tegra_plane *tegra = to_tegra_plane(plane);
602         struct tegra_dc *dc = to_tegra_dc(state->crtc);
603         int err;
604
605         /* no need for further checks if the plane is being disabled */
606         if (!state->crtc)
607                 return 0;
608
609         err = tegra_plane_format(state->fb->format->format,
610                                  &plane_state->format,
611                                  &plane_state->swap);
612         if (err < 0)
613                 return err;
614
615         /*
616          * Tegra20 and Tegra30 are special cases here because they support
617          * only variants of specific formats with an alpha component, but not
618          * the corresponding opaque formats. However, the opaque formats can
619          * be emulated by disabling alpha blending for the plane.
620          */
621         if (dc->soc->has_legacy_blending) {
622                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
623                 if (err < 0)
624                         return err;
625         }
626
627         err = tegra_fb_get_tiling(state->fb, tiling);
628         if (err < 0)
629                 return err;
630
631         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
632             !dc->soc->supports_block_linear) {
633                 DRM_ERROR("hardware doesn't support block linear mode\n");
634                 return -EINVAL;
635         }
636
637         rotation = drm_rotation_simplify(state->rotation, rotation);
638
639         if (rotation & DRM_MODE_REFLECT_Y)
640                 plane_state->bottom_up = true;
641         else
642                 plane_state->bottom_up = false;
643
644         /*
645          * Tegra doesn't support different strides for U and V planes so we
646          * error out if the user tries to display a framebuffer with such a
647          * configuration.
648          */
649         if (state->fb->format->num_planes > 2) {
650                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
651                         DRM_ERROR("unsupported UV-plane configuration\n");
652                         return -EINVAL;
653                 }
654         }
655
656         err = tegra_plane_state_add(tegra, state);
657         if (err < 0)
658                 return err;
659
660         return 0;
661 }
662
663 static void tegra_plane_atomic_disable(struct drm_plane *plane,
664                                        struct drm_plane_state *old_state)
665 {
666         struct tegra_plane *p = to_tegra_plane(plane);
667         u32 value;
668
669         /* rien ne va plus */
670         if (!old_state || !old_state->crtc)
671                 return;
672
673         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
674         value &= ~WIN_ENABLE;
675         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
676 }
677
678 static void tegra_plane_atomic_update(struct drm_plane *plane,
679                                       struct drm_plane_state *old_state)
680 {
681         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
682         struct drm_framebuffer *fb = plane->state->fb;
683         struct tegra_plane *p = to_tegra_plane(plane);
684         struct tegra_dc_window window;
685         unsigned int i;
686
687         /* rien ne va plus */
688         if (!plane->state->crtc || !plane->state->fb)
689                 return;
690
691         if (!plane->state->visible)
692                 return tegra_plane_atomic_disable(plane, old_state);
693
694         memset(&window, 0, sizeof(window));
695         window.src.x = plane->state->src.x1 >> 16;
696         window.src.y = plane->state->src.y1 >> 16;
697         window.src.w = drm_rect_width(&plane->state->src) >> 16;
698         window.src.h = drm_rect_height(&plane->state->src) >> 16;
699         window.dst.x = plane->state->dst.x1;
700         window.dst.y = plane->state->dst.y1;
701         window.dst.w = drm_rect_width(&plane->state->dst);
702         window.dst.h = drm_rect_height(&plane->state->dst);
703         window.bits_per_pixel = fb->format->cpp[0] * 8;
704         window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
705
706         /* copy from state */
707         window.zpos = plane->state->normalized_zpos;
708         window.tiling = state->tiling;
709         window.format = state->format;
710         window.swap = state->swap;
711
712         for (i = 0; i < fb->format->num_planes; i++) {
713                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
714
715                 window.base[i] = bo->paddr + fb->offsets[i];
716
717                 /*
718                  * Tegra uses a shared stride for UV planes. Framebuffers are
719                  * already checked for this in the tegra_plane_atomic_check()
720                  * function, so it's safe to ignore the V-plane pitch here.
721                  */
722                 if (i < 2)
723                         window.stride[i] = fb->pitches[i];
724         }
725
726         tegra_dc_setup_window(p, &window);
727 }
728
729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
730         .atomic_check = tegra_plane_atomic_check,
731         .atomic_disable = tegra_plane_atomic_disable,
732         .atomic_update = tegra_plane_atomic_update,
733 };
734
735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
736 {
737         /*
738          * Ideally this would use drm_crtc_mask(), but that would require the
739          * CRTC to already be in the mode_config's list of CRTCs. However, it
740          * will only be added to that list in the drm_crtc_init_with_planes()
741          * (in tegra_dc_init()), which in turn requires registration of these
742          * planes. So we have ourselves a nice little chicken and egg problem
743          * here.
744          *
745          * We work around this by manually creating the mask from the number
746          * of CRTCs that have been registered, and should therefore always be
747          * the same as drm_crtc_index() after registration.
748          */
749         return 1 << drm->mode_config.num_crtc;
750 }
751
752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
753                                                     struct tegra_dc *dc)
754 {
755         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
756         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
757         struct tegra_plane *plane;
758         unsigned int num_formats;
759         const u64 *modifiers;
760         const u32 *formats;
761         int err;
762
763         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
764         if (!plane)
765                 return ERR_PTR(-ENOMEM);
766
767         /* Always use window A as primary window */
768         plane->offset = 0xa00;
769         plane->index = 0;
770         plane->dc = dc;
771
772         num_formats = dc->soc->num_primary_formats;
773         formats = dc->soc->primary_formats;
774         modifiers = dc->soc->modifiers;
775
776         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
777                                        &tegra_plane_funcs, formats,
778                                        num_formats, modifiers, type, NULL);
779         if (err < 0) {
780                 kfree(plane);
781                 return ERR_PTR(err);
782         }
783
784         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
785         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
786
787         err = drm_plane_create_rotation_property(&plane->base,
788                                                  DRM_MODE_ROTATE_0,
789                                                  DRM_MODE_ROTATE_0 |
790                                                  DRM_MODE_REFLECT_Y);
791         if (err < 0)
792                 dev_err(dc->dev, "failed to create rotation property: %d\n",
793                         err);
794
795         return &plane->base;
796 }
797
798 static const u32 tegra_cursor_plane_formats[] = {
799         DRM_FORMAT_RGBA8888,
800 };
801
802 static int tegra_cursor_atomic_check(struct drm_plane *plane,
803                                      struct drm_plane_state *state)
804 {
805         struct tegra_plane *tegra = to_tegra_plane(plane);
806         int err;
807
808         /* no need for further checks if the plane is being disabled */
809         if (!state->crtc)
810                 return 0;
811
812         /* scaling not supported for cursor */
813         if ((state->src_w >> 16 != state->crtc_w) ||
814             (state->src_h >> 16 != state->crtc_h))
815                 return -EINVAL;
816
817         /* only square cursors supported */
818         if (state->src_w != state->src_h)
819                 return -EINVAL;
820
821         if (state->crtc_w != 32 && state->crtc_w != 64 &&
822             state->crtc_w != 128 && state->crtc_w != 256)
823                 return -EINVAL;
824
825         err = tegra_plane_state_add(tegra, state);
826         if (err < 0)
827                 return err;
828
829         return 0;
830 }
831
832 static void tegra_cursor_atomic_update(struct drm_plane *plane,
833                                        struct drm_plane_state *old_state)
834 {
835         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
836         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
837         struct drm_plane_state *state = plane->state;
838         u32 value = CURSOR_CLIP_DISPLAY;
839
840         /* rien ne va plus */
841         if (!plane->state->crtc || !plane->state->fb)
842                 return;
843
844         switch (state->crtc_w) {
845         case 32:
846                 value |= CURSOR_SIZE_32x32;
847                 break;
848
849         case 64:
850                 value |= CURSOR_SIZE_64x64;
851                 break;
852
853         case 128:
854                 value |= CURSOR_SIZE_128x128;
855                 break;
856
857         case 256:
858                 value |= CURSOR_SIZE_256x256;
859                 break;
860
861         default:
862                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
863                      state->crtc_h);
864                 return;
865         }
866
867         value |= (bo->paddr >> 10) & 0x3fffff;
868         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
869
870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871         value = (bo->paddr >> 32) & 0x3;
872         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
873 #endif
874
875         /* enable cursor and set blend mode */
876         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
877         value |= CURSOR_ENABLE;
878         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
879
880         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
881         value &= ~CURSOR_DST_BLEND_MASK;
882         value &= ~CURSOR_SRC_BLEND_MASK;
883         value |= CURSOR_MODE_NORMAL;
884         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
885         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
886         value |= CURSOR_ALPHA;
887         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
888
889         /* position the cursor */
890         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
891         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
892 }
893
894 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
895                                         struct drm_plane_state *old_state)
896 {
897         struct tegra_dc *dc;
898         u32 value;
899
900         /* rien ne va plus */
901         if (!old_state || !old_state->crtc)
902                 return;
903
904         dc = to_tegra_dc(old_state->crtc);
905
906         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907         value &= ~CURSOR_ENABLE;
908         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909 }
910
911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
912         .atomic_check = tegra_cursor_atomic_check,
913         .atomic_update = tegra_cursor_atomic_update,
914         .atomic_disable = tegra_cursor_atomic_disable,
915 };
916
917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
918                                                       struct tegra_dc *dc)
919 {
920         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
921         struct tegra_plane *plane;
922         unsigned int num_formats;
923         const u32 *formats;
924         int err;
925
926         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
927         if (!plane)
928                 return ERR_PTR(-ENOMEM);
929
930         /*
931          * This index is kind of fake. The cursor isn't a regular plane, but
932          * its update and activation request bits in DC_CMD_STATE_CONTROL do
933          * use the same programming. Setting this fake index here allows the
934          * code in tegra_add_plane_state() to do the right thing without the
935          * need to special-casing the cursor plane.
936          */
937         plane->index = 6;
938         plane->dc = dc;
939
940         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
941         formats = tegra_cursor_plane_formats;
942
943         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
944                                        &tegra_plane_funcs, formats,
945                                        num_formats, NULL,
946                                        DRM_PLANE_TYPE_CURSOR, NULL);
947         if (err < 0) {
948                 kfree(plane);
949                 return ERR_PTR(err);
950         }
951
952         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
953
954         return &plane->base;
955 }
956
957 static const u32 tegra20_overlay_formats[] = {
958         DRM_FORMAT_ARGB4444,
959         DRM_FORMAT_ARGB1555,
960         DRM_FORMAT_RGB565,
961         DRM_FORMAT_RGBA5551,
962         DRM_FORMAT_ABGR8888,
963         DRM_FORMAT_ARGB8888,
964         /* non-native formats */
965         DRM_FORMAT_XRGB1555,
966         DRM_FORMAT_RGBX5551,
967         DRM_FORMAT_XBGR8888,
968         DRM_FORMAT_XRGB8888,
969         /* planar formats */
970         DRM_FORMAT_UYVY,
971         DRM_FORMAT_YUYV,
972         DRM_FORMAT_YUV420,
973         DRM_FORMAT_YUV422,
974 };
975
976 static const u32 tegra114_overlay_formats[] = {
977         DRM_FORMAT_ARGB4444,
978         DRM_FORMAT_ARGB1555,
979         DRM_FORMAT_RGB565,
980         DRM_FORMAT_RGBA5551,
981         DRM_FORMAT_ABGR8888,
982         DRM_FORMAT_ARGB8888,
983         /* new on Tegra114 */
984         DRM_FORMAT_ABGR4444,
985         DRM_FORMAT_ABGR1555,
986         DRM_FORMAT_BGRA5551,
987         DRM_FORMAT_XRGB1555,
988         DRM_FORMAT_RGBX5551,
989         DRM_FORMAT_XBGR1555,
990         DRM_FORMAT_BGRX5551,
991         DRM_FORMAT_BGR565,
992         DRM_FORMAT_BGRA8888,
993         DRM_FORMAT_RGBA8888,
994         DRM_FORMAT_XRGB8888,
995         DRM_FORMAT_XBGR8888,
996         /* planar formats */
997         DRM_FORMAT_UYVY,
998         DRM_FORMAT_YUYV,
999         DRM_FORMAT_YUV420,
1000         DRM_FORMAT_YUV422,
1001 };
1002
1003 static const u32 tegra124_overlay_formats[] = {
1004         DRM_FORMAT_ARGB4444,
1005         DRM_FORMAT_ARGB1555,
1006         DRM_FORMAT_RGB565,
1007         DRM_FORMAT_RGBA5551,
1008         DRM_FORMAT_ABGR8888,
1009         DRM_FORMAT_ARGB8888,
1010         /* new on Tegra114 */
1011         DRM_FORMAT_ABGR4444,
1012         DRM_FORMAT_ABGR1555,
1013         DRM_FORMAT_BGRA5551,
1014         DRM_FORMAT_XRGB1555,
1015         DRM_FORMAT_RGBX5551,
1016         DRM_FORMAT_XBGR1555,
1017         DRM_FORMAT_BGRX5551,
1018         DRM_FORMAT_BGR565,
1019         DRM_FORMAT_BGRA8888,
1020         DRM_FORMAT_RGBA8888,
1021         DRM_FORMAT_XRGB8888,
1022         DRM_FORMAT_XBGR8888,
1023         /* new on Tegra124 */
1024         DRM_FORMAT_RGBX8888,
1025         DRM_FORMAT_BGRX8888,
1026         /* planar formats */
1027         DRM_FORMAT_UYVY,
1028         DRM_FORMAT_YUYV,
1029         DRM_FORMAT_YUV420,
1030         DRM_FORMAT_YUV422,
1031 };
1032
1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1034                                                        struct tegra_dc *dc,
1035                                                        unsigned int index,
1036                                                        bool cursor)
1037 {
1038         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1039         struct tegra_plane *plane;
1040         unsigned int num_formats;
1041         enum drm_plane_type type;
1042         const u32 *formats;
1043         int err;
1044
1045         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1046         if (!plane)
1047                 return ERR_PTR(-ENOMEM);
1048
1049         plane->offset = 0xa00 + 0x200 * index;
1050         plane->index = index;
1051         plane->dc = dc;
1052
1053         num_formats = dc->soc->num_overlay_formats;
1054         formats = dc->soc->overlay_formats;
1055
1056         if (!cursor)
1057                 type = DRM_PLANE_TYPE_OVERLAY;
1058         else
1059                 type = DRM_PLANE_TYPE_CURSOR;
1060
1061         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1062                                        &tegra_plane_funcs, formats,
1063                                        num_formats, NULL, type, NULL);
1064         if (err < 0) {
1065                 kfree(plane);
1066                 return ERR_PTR(err);
1067         }
1068
1069         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1070         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1071
1072         err = drm_plane_create_rotation_property(&plane->base,
1073                                                  DRM_MODE_ROTATE_0,
1074                                                  DRM_MODE_ROTATE_0 |
1075                                                  DRM_MODE_REFLECT_Y);
1076         if (err < 0)
1077                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1078                         err);
1079
1080         return &plane->base;
1081 }
1082
1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1084                                                     struct tegra_dc *dc)
1085 {
1086         struct drm_plane *plane, *primary = NULL;
1087         unsigned int i, j;
1088
1089         for (i = 0; i < dc->soc->num_wgrps; i++) {
1090                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1091
1092                 if (wgrp->dc == dc->pipe) {
1093                         for (j = 0; j < wgrp->num_windows; j++) {
1094                                 unsigned int index = wgrp->windows[j];
1095
1096                                 plane = tegra_shared_plane_create(drm, dc,
1097                                                                   wgrp->index,
1098                                                                   index);
1099                                 if (IS_ERR(plane))
1100                                         return plane;
1101
1102                                 /*
1103                                  * Choose the first shared plane owned by this
1104                                  * head as the primary plane.
1105                                  */
1106                                 if (!primary) {
1107                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1108                                         primary = plane;
1109                                 }
1110                         }
1111                 }
1112         }
1113
1114         return primary;
1115 }
1116
1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1118                                              struct tegra_dc *dc)
1119 {
1120         struct drm_plane *planes[2], *primary;
1121         unsigned int planes_num;
1122         unsigned int i;
1123         int err;
1124
1125         primary = tegra_primary_plane_create(drm, dc);
1126         if (IS_ERR(primary))
1127                 return primary;
1128
1129         if (dc->soc->supports_cursor)
1130                 planes_num = 2;
1131         else
1132                 planes_num = 1;
1133
1134         for (i = 0; i < planes_num; i++) {
1135                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1136                                                           false);
1137                 if (IS_ERR(planes[i])) {
1138                         err = PTR_ERR(planes[i]);
1139
1140                         while (i--)
1141                                 tegra_plane_funcs.destroy(planes[i]);
1142
1143                         tegra_plane_funcs.destroy(primary);
1144                         return ERR_PTR(err);
1145                 }
1146         }
1147
1148         return primary;
1149 }
1150
1151 static void tegra_dc_destroy(struct drm_crtc *crtc)
1152 {
1153         drm_crtc_cleanup(crtc);
1154 }
1155
1156 static void tegra_crtc_reset(struct drm_crtc *crtc)
1157 {
1158         struct tegra_dc_state *state;
1159
1160         if (crtc->state)
1161                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1162
1163         kfree(crtc->state);
1164         crtc->state = NULL;
1165
1166         state = kzalloc(sizeof(*state), GFP_KERNEL);
1167         if (state) {
1168                 crtc->state = &state->base;
1169                 crtc->state->crtc = crtc;
1170         }
1171
1172         drm_crtc_vblank_reset(crtc);
1173 }
1174
1175 static struct drm_crtc_state *
1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1177 {
1178         struct tegra_dc_state *state = to_dc_state(crtc->state);
1179         struct tegra_dc_state *copy;
1180
1181         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1182         if (!copy)
1183                 return NULL;
1184
1185         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1186         copy->clk = state->clk;
1187         copy->pclk = state->pclk;
1188         copy->div = state->div;
1189         copy->planes = state->planes;
1190
1191         return &copy->base;
1192 }
1193
1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1195                                             struct drm_crtc_state *state)
1196 {
1197         __drm_atomic_helper_crtc_destroy_state(state);
1198         kfree(state);
1199 }
1200
1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1202
1203 static const struct debugfs_reg32 tegra_dc_regs[] = {
1204         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1205         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1206         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1207         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1208         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1209         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1210         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1211         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1212         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1213         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1214         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1215         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1216         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1217         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1218         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1219         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1220         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1221         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1222         DEBUGFS_REG32(DC_CMD_INT_MASK),
1223         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1224         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1225         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1226         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1227         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1228         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1229         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1230         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1231         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1232         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1233         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1234         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1235         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1236         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1237         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1238         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1239         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1240         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1241         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1242         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1243         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1244         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1245         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1246         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1247         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1248         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1249         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1250         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1251         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1252         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1253         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1254         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1255         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1256         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1257         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1258         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1259         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1260         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1261         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1262         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1263         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1264         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1265         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1266         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1267         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1268         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1269         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1270         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1271         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1272         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1273         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1274         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1275         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1276         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1277         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1278         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1279         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1280         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1281         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1282         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1283         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1284         DEBUGFS_REG32(DC_DISP_ACTIVE),
1285         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1286         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1287         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1288         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1289         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1290         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1291         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1292         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1293         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1294         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1295         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1296         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1297         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1298         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1299         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1300         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1301         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1302         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1303         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1304         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1305         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1306         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1307         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1308         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1309         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1310         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1311         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1312         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1313         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1314         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1315         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1316         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1317         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1318         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1319         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1320         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1321         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1322         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1323         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1324         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1325         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1326         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1327         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1328         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1329         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1330         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1331         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1332         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1333         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1334         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1335         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1336         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1337         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1338         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1339         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1340         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1341         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1342         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1343         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1344         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1345         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1346         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1347         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1348         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1349         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1350         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1351         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1352         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1353         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1354         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1355         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1356         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1357         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1358         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1359         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1360         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1361         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1362         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1363         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1364         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1365         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1366         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1367         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1368         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1369         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1370         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1371         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1372         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1373         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1374         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1375         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1376         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1377         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1378         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1379         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1380         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1381         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1382         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1383         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1384         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1385         DEBUGFS_REG32(DC_WIN_POSITION),
1386         DEBUGFS_REG32(DC_WIN_SIZE),
1387         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1388         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1389         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1390         DEBUGFS_REG32(DC_WIN_DDA_INC),
1391         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1392         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1393         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1394         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1395         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1396         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1397         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1398         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1399         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1400         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1401         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1402         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1403         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1404         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1405         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1406         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1407         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1408         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1409         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1410         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1411         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1412         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1413         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1414         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1415         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1416 };
1417
1418 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1419 {
1420         struct drm_info_node *node = s->private;
1421         struct tegra_dc *dc = node->info_ent->data;
1422         unsigned int i;
1423         int err = 0;
1424
1425         drm_modeset_lock(&dc->base.mutex, NULL);
1426
1427         if (!dc->base.state->active) {
1428                 err = -EBUSY;
1429                 goto unlock;
1430         }
1431
1432         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1433                 unsigned int offset = tegra_dc_regs[i].offset;
1434
1435                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1436                            offset, tegra_dc_readl(dc, offset));
1437         }
1438
1439 unlock:
1440         drm_modeset_unlock(&dc->base.mutex);
1441         return err;
1442 }
1443
1444 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1445 {
1446         struct drm_info_node *node = s->private;
1447         struct tegra_dc *dc = node->info_ent->data;
1448         int err = 0;
1449         u32 value;
1450
1451         drm_modeset_lock(&dc->base.mutex, NULL);
1452
1453         if (!dc->base.state->active) {
1454                 err = -EBUSY;
1455                 goto unlock;
1456         }
1457
1458         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1459         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1460         tegra_dc_commit(dc);
1461
1462         drm_crtc_wait_one_vblank(&dc->base);
1463         drm_crtc_wait_one_vblank(&dc->base);
1464
1465         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1466         seq_printf(s, "%08x\n", value);
1467
1468         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1469
1470 unlock:
1471         drm_modeset_unlock(&dc->base.mutex);
1472         return err;
1473 }
1474
1475 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1476 {
1477         struct drm_info_node *node = s->private;
1478         struct tegra_dc *dc = node->info_ent->data;
1479
1480         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1481         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1482         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1483         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1484
1485         return 0;
1486 }
1487
1488 static struct drm_info_list debugfs_files[] = {
1489         { "regs", tegra_dc_show_regs, 0, NULL },
1490         { "crc", tegra_dc_show_crc, 0, NULL },
1491         { "stats", tegra_dc_show_stats, 0, NULL },
1492 };
1493
1494 static int tegra_dc_late_register(struct drm_crtc *crtc)
1495 {
1496         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1497         struct drm_minor *minor = crtc->dev->primary;
1498         struct dentry *root;
1499         struct tegra_dc *dc = to_tegra_dc(crtc);
1500         int err;
1501
1502 #ifdef CONFIG_DEBUG_FS
1503         root = crtc->debugfs_entry;
1504 #else
1505         root = NULL;
1506 #endif
1507
1508         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1509                                     GFP_KERNEL);
1510         if (!dc->debugfs_files)
1511                 return -ENOMEM;
1512
1513         for (i = 0; i < count; i++)
1514                 dc->debugfs_files[i].data = dc;
1515
1516         err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1517         if (err < 0)
1518                 goto free;
1519
1520         return 0;
1521
1522 free:
1523         kfree(dc->debugfs_files);
1524         dc->debugfs_files = NULL;
1525
1526         return err;
1527 }
1528
1529 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1530 {
1531         unsigned int count = ARRAY_SIZE(debugfs_files);
1532         struct drm_minor *minor = crtc->dev->primary;
1533         struct tegra_dc *dc = to_tegra_dc(crtc);
1534
1535         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1536         kfree(dc->debugfs_files);
1537         dc->debugfs_files = NULL;
1538 }
1539
1540 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1541 {
1542         struct tegra_dc *dc = to_tegra_dc(crtc);
1543
1544         /* XXX vblank syncpoints don't work with nvdisplay yet */
1545         if (dc->syncpt && !dc->soc->has_nvdisplay)
1546                 return host1x_syncpt_read(dc->syncpt);
1547
1548         /* fallback to software emulated VBLANK counter */
1549         return (u32)drm_crtc_vblank_count(&dc->base);
1550 }
1551
1552 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1553 {
1554         struct tegra_dc *dc = to_tegra_dc(crtc);
1555         u32 value;
1556
1557         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1558         value |= VBLANK_INT;
1559         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1560
1561         return 0;
1562 }
1563
1564 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1565 {
1566         struct tegra_dc *dc = to_tegra_dc(crtc);
1567         u32 value;
1568
1569         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1570         value &= ~VBLANK_INT;
1571         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1572 }
1573
1574 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1575         .page_flip = drm_atomic_helper_page_flip,
1576         .set_config = drm_atomic_helper_set_config,
1577         .destroy = tegra_dc_destroy,
1578         .reset = tegra_crtc_reset,
1579         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1580         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1581         .late_register = tegra_dc_late_register,
1582         .early_unregister = tegra_dc_early_unregister,
1583         .get_vblank_counter = tegra_dc_get_vblank_counter,
1584         .enable_vblank = tegra_dc_enable_vblank,
1585         .disable_vblank = tegra_dc_disable_vblank,
1586 };
1587
1588 static int tegra_dc_set_timings(struct tegra_dc *dc,
1589                                 struct drm_display_mode *mode)
1590 {
1591         unsigned int h_ref_to_sync = 1;
1592         unsigned int v_ref_to_sync = 1;
1593         unsigned long value;
1594
1595         if (!dc->soc->has_nvdisplay) {
1596                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1597
1598                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1599                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1600         }
1601
1602         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1603                 ((mode->hsync_end - mode->hsync_start) <<  0);
1604         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1605
1606         value = ((mode->vtotal - mode->vsync_end) << 16) |
1607                 ((mode->htotal - mode->hsync_end) <<  0);
1608         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1609
1610         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1611                 ((mode->hsync_start - mode->hdisplay) <<  0);
1612         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1613
1614         value = (mode->vdisplay << 16) | mode->hdisplay;
1615         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1616
1617         return 0;
1618 }
1619
1620 /**
1621  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1622  *     state
1623  * @dc: display controller
1624  * @crtc_state: CRTC atomic state
1625  * @clk: parent clock for display controller
1626  * @pclk: pixel clock
1627  * @div: shift clock divider
1628  *
1629  * Returns:
1630  * 0 on success or a negative error-code on failure.
1631  */
1632 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1633                                struct drm_crtc_state *crtc_state,
1634                                struct clk *clk, unsigned long pclk,
1635                                unsigned int div)
1636 {
1637         struct tegra_dc_state *state = to_dc_state(crtc_state);
1638
1639         if (!clk_has_parent(dc->clk, clk))
1640                 return -EINVAL;
1641
1642         state->clk = clk;
1643         state->pclk = pclk;
1644         state->div = div;
1645
1646         return 0;
1647 }
1648
1649 static void tegra_dc_commit_state(struct tegra_dc *dc,
1650                                   struct tegra_dc_state *state)
1651 {
1652         u32 value;
1653         int err;
1654
1655         err = clk_set_parent(dc->clk, state->clk);
1656         if (err < 0)
1657                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1658
1659         /*
1660          * Outputs may not want to change the parent clock rate. This is only
1661          * relevant to Tegra20 where only a single display PLL is available.
1662          * Since that PLL would typically be used for HDMI, an internal LVDS
1663          * panel would need to be driven by some other clock such as PLL_P
1664          * which is shared with other peripherals. Changing the clock rate
1665          * should therefore be avoided.
1666          */
1667         if (state->pclk > 0) {
1668                 err = clk_set_rate(state->clk, state->pclk);
1669                 if (err < 0)
1670                         dev_err(dc->dev,
1671                                 "failed to set clock rate to %lu Hz\n",
1672                                 state->pclk);
1673
1674                 err = clk_set_rate(dc->clk, state->pclk);
1675                 if (err < 0)
1676                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1677                                 dc->clk, state->pclk, err);
1678         }
1679
1680         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1681                       state->div);
1682         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1683
1684         if (!dc->soc->has_nvdisplay) {
1685                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1686                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1687         }
1688 }
1689
1690 static void tegra_dc_stop(struct tegra_dc *dc)
1691 {
1692         u32 value;
1693
1694         /* stop the display controller */
1695         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1696         value &= ~DISP_CTRL_MODE_MASK;
1697         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1698
1699         tegra_dc_commit(dc);
1700 }
1701
1702 static bool tegra_dc_idle(struct tegra_dc *dc)
1703 {
1704         u32 value;
1705
1706         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1707
1708         return (value & DISP_CTRL_MODE_MASK) == 0;
1709 }
1710
1711 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1712 {
1713         timeout = jiffies + msecs_to_jiffies(timeout);
1714
1715         while (time_before(jiffies, timeout)) {
1716                 if (tegra_dc_idle(dc))
1717                         return 0;
1718
1719                 usleep_range(1000, 2000);
1720         }
1721
1722         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1723         return -ETIMEDOUT;
1724 }
1725
1726 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1727                                       struct drm_crtc_state *old_state)
1728 {
1729         struct tegra_dc *dc = to_tegra_dc(crtc);
1730         u32 value;
1731
1732         if (!tegra_dc_idle(dc)) {
1733                 tegra_dc_stop(dc);
1734
1735                 /*
1736                  * Ignore the return value, there isn't anything useful to do
1737                  * in case this fails.
1738                  */
1739                 tegra_dc_wait_idle(dc, 100);
1740         }
1741
1742         /*
1743          * This should really be part of the RGB encoder driver, but clearing
1744          * these bits has the side-effect of stopping the display controller.
1745          * When that happens no VBLANK interrupts will be raised. At the same
1746          * time the encoder is disabled before the display controller, so the
1747          * above code is always going to timeout waiting for the controller
1748          * to go idle.
1749          *
1750          * Given the close coupling between the RGB encoder and the display
1751          * controller doing it here is still kind of okay. None of the other
1752          * encoder drivers require these bits to be cleared.
1753          *
1754          * XXX: Perhaps given that the display controller is switched off at
1755          * this point anyway maybe clearing these bits isn't even useful for
1756          * the RGB encoder?
1757          */
1758         if (dc->rgb) {
1759                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1760                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1761                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1762                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1763         }
1764
1765         tegra_dc_stats_reset(&dc->stats);
1766         drm_crtc_vblank_off(crtc);
1767
1768         spin_lock_irq(&crtc->dev->event_lock);
1769
1770         if (crtc->state->event) {
1771                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1772                 crtc->state->event = NULL;
1773         }
1774
1775         spin_unlock_irq(&crtc->dev->event_lock);
1776
1777         pm_runtime_put_sync(dc->dev);
1778 }
1779
1780 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1781                                      struct drm_crtc_state *old_state)
1782 {
1783         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1784         struct tegra_dc_state *state = to_dc_state(crtc->state);
1785         struct tegra_dc *dc = to_tegra_dc(crtc);
1786         u32 value;
1787
1788         pm_runtime_get_sync(dc->dev);
1789
1790         /* initialize display controller */
1791         if (dc->syncpt) {
1792                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1793
1794                 if (dc->soc->has_nvdisplay)
1795                         enable = 1 << 31;
1796                 else
1797                         enable = 1 << 8;
1798
1799                 value = SYNCPT_CNTRL_NO_STALL;
1800                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1801
1802                 value = enable | syncpt;
1803                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1804         }
1805
1806         if (dc->soc->has_nvdisplay) {
1807                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1808                         DSC_OBUF_UF_INT;
1809                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1810
1811                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1812                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1813                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1814                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1815                         VBLANK_INT | FRAME_END_INT;
1816                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1817
1818                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1819                         FRAME_END_INT;
1820                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1821
1822                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1823                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1824
1825                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1826         } else {
1827                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1828                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1829                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1830
1831                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1832                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1833                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1834
1835                 /* initialize timer */
1836                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1837                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1838                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1839
1840                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1841                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1842                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1843
1844                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1845                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1846                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847
1848                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1849                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1850                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1851         }
1852
1853         if (dc->soc->supports_background_color)
1854                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1855         else
1856                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1857
1858         /* apply PLL and pixel clock changes */
1859         tegra_dc_commit_state(dc, state);
1860
1861         /* program display mode */
1862         tegra_dc_set_timings(dc, mode);
1863
1864         /* interlacing isn't supported yet, so disable it */
1865         if (dc->soc->supports_interlacing) {
1866                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1867                 value &= ~INTERLACE_ENABLE;
1868                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1869         }
1870
1871         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1872         value &= ~DISP_CTRL_MODE_MASK;
1873         value |= DISP_CTRL_MODE_C_DISPLAY;
1874         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1875
1876         if (!dc->soc->has_nvdisplay) {
1877                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1878                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1879                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1880                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1881         }
1882
1883         /* enable underflow reporting and display red for missing pixels */
1884         if (dc->soc->has_nvdisplay) {
1885                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1886                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1887         }
1888
1889         tegra_dc_commit(dc);
1890
1891         drm_crtc_vblank_on(crtc);
1892 }
1893
1894 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1895                                     struct drm_crtc_state *old_crtc_state)
1896 {
1897         unsigned long flags;
1898
1899         if (crtc->state->event) {
1900                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1901
1902                 if (drm_crtc_vblank_get(crtc) != 0)
1903                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1904                 else
1905                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1906
1907                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1908
1909                 crtc->state->event = NULL;
1910         }
1911 }
1912
1913 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1914                                     struct drm_crtc_state *old_crtc_state)
1915 {
1916         struct tegra_dc_state *state = to_dc_state(crtc->state);
1917         struct tegra_dc *dc = to_tegra_dc(crtc);
1918         u32 value;
1919
1920         value = state->planes << 8 | GENERAL_UPDATE;
1921         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1922         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1923
1924         value = state->planes | GENERAL_ACT_REQ;
1925         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1926         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1927 }
1928
1929 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1930         .atomic_begin = tegra_crtc_atomic_begin,
1931         .atomic_flush = tegra_crtc_atomic_flush,
1932         .atomic_enable = tegra_crtc_atomic_enable,
1933         .atomic_disable = tegra_crtc_atomic_disable,
1934 };
1935
1936 static irqreturn_t tegra_dc_irq(int irq, void *data)
1937 {
1938         struct tegra_dc *dc = data;
1939         unsigned long status;
1940
1941         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1942         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1943
1944         if (status & FRAME_END_INT) {
1945                 /*
1946                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1947                 */
1948                 dc->stats.frames++;
1949         }
1950
1951         if (status & VBLANK_INT) {
1952                 /*
1953                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1954                 */
1955                 drm_crtc_handle_vblank(&dc->base);
1956                 dc->stats.vblank++;
1957         }
1958
1959         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1960                 /*
1961                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1962                 */
1963                 dc->stats.underflow++;
1964         }
1965
1966         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1967                 /*
1968                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1969                 */
1970                 dc->stats.overflow++;
1971         }
1972
1973         if (status & HEAD_UF_INT) {
1974                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1975                 dc->stats.underflow++;
1976         }
1977
1978         return IRQ_HANDLED;
1979 }
1980
1981 static int tegra_dc_init(struct host1x_client *client)
1982 {
1983         struct drm_device *drm = dev_get_drvdata(client->parent);
1984         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1985         struct tegra_dc *dc = host1x_client_to_dc(client);
1986         struct tegra_drm *tegra = drm->dev_private;
1987         struct drm_plane *primary = NULL;
1988         struct drm_plane *cursor = NULL;
1989         int err;
1990
1991         dc->syncpt = host1x_syncpt_request(client, flags);
1992         if (!dc->syncpt)
1993                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1994
1995         dc->group = host1x_client_iommu_attach(client, true);
1996         if (IS_ERR(dc->group)) {
1997                 err = PTR_ERR(dc->group);
1998                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
1999                 return err;
2000         }
2001
2002         if (dc->soc->wgrps)
2003                 primary = tegra_dc_add_shared_planes(drm, dc);
2004         else
2005                 primary = tegra_dc_add_planes(drm, dc);
2006
2007         if (IS_ERR(primary)) {
2008                 err = PTR_ERR(primary);
2009                 goto cleanup;
2010         }
2011
2012         if (dc->soc->supports_cursor) {
2013                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2014                 if (IS_ERR(cursor)) {
2015                         err = PTR_ERR(cursor);
2016                         goto cleanup;
2017                 }
2018         } else {
2019                 /* dedicate one overlay to mouse cursor */
2020                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2021                 if (IS_ERR(cursor)) {
2022                         err = PTR_ERR(cursor);
2023                         goto cleanup;
2024                 }
2025         }
2026
2027         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2028                                         &tegra_crtc_funcs, NULL);
2029         if (err < 0)
2030                 goto cleanup;
2031
2032         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2033
2034         /*
2035          * Keep track of the minimum pitch alignment across all display
2036          * controllers.
2037          */
2038         if (dc->soc->pitch_align > tegra->pitch_align)
2039                 tegra->pitch_align = dc->soc->pitch_align;
2040
2041         err = tegra_dc_rgb_init(drm, dc);
2042         if (err < 0 && err != -ENODEV) {
2043                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2044                 goto cleanup;
2045         }
2046
2047         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2048                                dev_name(dc->dev), dc);
2049         if (err < 0) {
2050                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2051                         err);
2052                 goto cleanup;
2053         }
2054
2055         return 0;
2056
2057 cleanup:
2058         if (!IS_ERR_OR_NULL(cursor))
2059                 drm_plane_cleanup(cursor);
2060
2061         if (!IS_ERR(primary))
2062                 drm_plane_cleanup(primary);
2063
2064         host1x_client_iommu_detach(client, dc->group);
2065         host1x_syncpt_free(dc->syncpt);
2066
2067         return err;
2068 }
2069
2070 static int tegra_dc_exit(struct host1x_client *client)
2071 {
2072         struct tegra_dc *dc = host1x_client_to_dc(client);
2073         int err;
2074
2075         devm_free_irq(dc->dev, dc->irq, dc);
2076
2077         err = tegra_dc_rgb_exit(dc);
2078         if (err) {
2079                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2080                 return err;
2081         }
2082
2083         host1x_client_iommu_detach(client, dc->group);
2084         host1x_syncpt_free(dc->syncpt);
2085
2086         return 0;
2087 }
2088
2089 static const struct host1x_client_ops dc_client_ops = {
2090         .init = tegra_dc_init,
2091         .exit = tegra_dc_exit,
2092 };
2093
2094 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2095         .supports_background_color = false,
2096         .supports_interlacing = false,
2097         .supports_cursor = false,
2098         .supports_block_linear = false,
2099         .has_legacy_blending = true,
2100         .pitch_align = 8,
2101         .has_powergate = false,
2102         .coupled_pm = true,
2103         .has_nvdisplay = false,
2104         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2105         .primary_formats = tegra20_primary_formats,
2106         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2107         .overlay_formats = tegra20_overlay_formats,
2108         .modifiers = tegra20_modifiers,
2109         .has_win_a_without_filters = true,
2110         .has_win_c_without_vert_filter = true,
2111 };
2112
2113 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2114         .supports_background_color = false,
2115         .supports_interlacing = false,
2116         .supports_cursor = false,
2117         .supports_block_linear = false,
2118         .has_legacy_blending = true,
2119         .pitch_align = 8,
2120         .has_powergate = false,
2121         .coupled_pm = false,
2122         .has_nvdisplay = false,
2123         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2124         .primary_formats = tegra20_primary_formats,
2125         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2126         .overlay_formats = tegra20_overlay_formats,
2127         .modifiers = tegra20_modifiers,
2128         .has_win_a_without_filters = false,
2129         .has_win_c_without_vert_filter = false,
2130 };
2131
2132 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2133         .supports_background_color = false,
2134         .supports_interlacing = false,
2135         .supports_cursor = false,
2136         .supports_block_linear = false,
2137         .has_legacy_blending = true,
2138         .pitch_align = 64,
2139         .has_powergate = true,
2140         .coupled_pm = false,
2141         .has_nvdisplay = false,
2142         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2143         .primary_formats = tegra114_primary_formats,
2144         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2145         .overlay_formats = tegra114_overlay_formats,
2146         .modifiers = tegra20_modifiers,
2147         .has_win_a_without_filters = false,
2148         .has_win_c_without_vert_filter = false,
2149 };
2150
2151 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2152         .supports_background_color = true,
2153         .supports_interlacing = true,
2154         .supports_cursor = true,
2155         .supports_block_linear = true,
2156         .has_legacy_blending = false,
2157         .pitch_align = 64,
2158         .has_powergate = true,
2159         .coupled_pm = false,
2160         .has_nvdisplay = false,
2161         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2162         .primary_formats = tegra124_primary_formats,
2163         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2164         .overlay_formats = tegra124_overlay_formats,
2165         .modifiers = tegra124_modifiers,
2166         .has_win_a_without_filters = false,
2167         .has_win_c_without_vert_filter = false,
2168 };
2169
2170 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2171         .supports_background_color = true,
2172         .supports_interlacing = true,
2173         .supports_cursor = true,
2174         .supports_block_linear = true,
2175         .has_legacy_blending = false,
2176         .pitch_align = 64,
2177         .has_powergate = true,
2178         .coupled_pm = false,
2179         .has_nvdisplay = false,
2180         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2181         .primary_formats = tegra114_primary_formats,
2182         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2183         .overlay_formats = tegra114_overlay_formats,
2184         .modifiers = tegra124_modifiers,
2185         .has_win_a_without_filters = false,
2186         .has_win_c_without_vert_filter = false,
2187 };
2188
2189 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2190         {
2191                 .index = 0,
2192                 .dc = 0,
2193                 .windows = (const unsigned int[]) { 0 },
2194                 .num_windows = 1,
2195         }, {
2196                 .index = 1,
2197                 .dc = 1,
2198                 .windows = (const unsigned int[]) { 1 },
2199                 .num_windows = 1,
2200         }, {
2201                 .index = 2,
2202                 .dc = 1,
2203                 .windows = (const unsigned int[]) { 2 },
2204                 .num_windows = 1,
2205         }, {
2206                 .index = 3,
2207                 .dc = 2,
2208                 .windows = (const unsigned int[]) { 3 },
2209                 .num_windows = 1,
2210         }, {
2211                 .index = 4,
2212                 .dc = 2,
2213                 .windows = (const unsigned int[]) { 4 },
2214                 .num_windows = 1,
2215         }, {
2216                 .index = 5,
2217                 .dc = 2,
2218                 .windows = (const unsigned int[]) { 5 },
2219                 .num_windows = 1,
2220         },
2221 };
2222
2223 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2224         .supports_background_color = true,
2225         .supports_interlacing = true,
2226         .supports_cursor = true,
2227         .supports_block_linear = true,
2228         .has_legacy_blending = false,
2229         .pitch_align = 64,
2230         .has_powergate = false,
2231         .coupled_pm = false,
2232         .has_nvdisplay = true,
2233         .wgrps = tegra186_dc_wgrps,
2234         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2235 };
2236
2237 static const struct of_device_id tegra_dc_of_match[] = {
2238         {
2239                 .compatible = "nvidia,tegra186-dc",
2240                 .data = &tegra186_dc_soc_info,
2241         }, {
2242                 .compatible = "nvidia,tegra210-dc",
2243                 .data = &tegra210_dc_soc_info,
2244         }, {
2245                 .compatible = "nvidia,tegra124-dc",
2246                 .data = &tegra124_dc_soc_info,
2247         }, {
2248                 .compatible = "nvidia,tegra114-dc",
2249                 .data = &tegra114_dc_soc_info,
2250         }, {
2251                 .compatible = "nvidia,tegra30-dc",
2252                 .data = &tegra30_dc_soc_info,
2253         }, {
2254                 .compatible = "nvidia,tegra20-dc",
2255                 .data = &tegra20_dc_soc_info,
2256         }, {
2257                 /* sentinel */
2258         }
2259 };
2260 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2261
2262 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2263 {
2264         struct device_node *np;
2265         u32 value = 0;
2266         int err;
2267
2268         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2269         if (err < 0) {
2270                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2271
2272                 /*
2273                  * If the nvidia,head property isn't present, try to find the
2274                  * correct head number by looking up the position of this
2275                  * display controller's node within the device tree. Assuming
2276                  * that the nodes are ordered properly in the DTS file and
2277                  * that the translation into a flattened device tree blob
2278                  * preserves that ordering this will actually yield the right
2279                  * head number.
2280                  *
2281                  * If those assumptions don't hold, this will still work for
2282                  * cases where only a single display controller is used.
2283                  */
2284                 for_each_matching_node(np, tegra_dc_of_match) {
2285                         if (np == dc->dev->of_node) {
2286                                 of_node_put(np);
2287                                 break;
2288                         }
2289
2290                         value++;
2291                 }
2292         }
2293
2294         dc->pipe = value;
2295
2296         return 0;
2297 }
2298
2299 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2300 {
2301         struct tegra_dc *dc = dev_get_drvdata(dev);
2302         unsigned int pipe = (unsigned long)data;
2303
2304         return dc->pipe == pipe;
2305 }
2306
2307 static int tegra_dc_couple(struct tegra_dc *dc)
2308 {
2309         /*
2310          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2311          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2312          * POWER_CONTROL registers during CRTC enabling.
2313          */
2314         if (dc->soc->coupled_pm && dc->pipe == 1) {
2315                 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2316                 struct device_link *link;
2317                 struct device *partner;
2318
2319                 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2320                                              tegra_dc_match_by_pipe);
2321                 if (!partner)
2322                         return -EPROBE_DEFER;
2323
2324                 link = device_link_add(dc->dev, partner, flags);
2325                 if (!link) {
2326                         dev_err(dc->dev, "failed to link controllers\n");
2327                         return -EINVAL;
2328                 }
2329
2330                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2331         }
2332
2333         return 0;
2334 }
2335
2336 static int tegra_dc_probe(struct platform_device *pdev)
2337 {
2338         struct resource *regs;
2339         struct tegra_dc *dc;
2340         int err;
2341
2342         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2343         if (!dc)
2344                 return -ENOMEM;
2345
2346         dc->soc = of_device_get_match_data(&pdev->dev);
2347
2348         INIT_LIST_HEAD(&dc->list);
2349         dc->dev = &pdev->dev;
2350
2351         err = tegra_dc_parse_dt(dc);
2352         if (err < 0)
2353                 return err;
2354
2355         err = tegra_dc_couple(dc);
2356         if (err < 0)
2357                 return err;
2358
2359         dc->clk = devm_clk_get(&pdev->dev, NULL);
2360         if (IS_ERR(dc->clk)) {
2361                 dev_err(&pdev->dev, "failed to get clock\n");
2362                 return PTR_ERR(dc->clk);
2363         }
2364
2365         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2366         if (IS_ERR(dc->rst)) {
2367                 dev_err(&pdev->dev, "failed to get reset\n");
2368                 return PTR_ERR(dc->rst);
2369         }
2370
2371         /* assert reset and disable clock */
2372         err = clk_prepare_enable(dc->clk);
2373         if (err < 0)
2374                 return err;
2375
2376         usleep_range(2000, 4000);
2377
2378         err = reset_control_assert(dc->rst);
2379         if (err < 0) {
2380                 clk_disable_unprepare(dc->clk);
2381                 return err;
2382         }
2383
2384         usleep_range(2000, 4000);
2385
2386         clk_disable_unprepare(dc->clk);
2387
2388         if (dc->soc->has_powergate) {
2389                 if (dc->pipe == 0)
2390                         dc->powergate = TEGRA_POWERGATE_DIS;
2391                 else
2392                         dc->powergate = TEGRA_POWERGATE_DISB;
2393
2394                 tegra_powergate_power_off(dc->powergate);
2395         }
2396
2397         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2398         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2399         if (IS_ERR(dc->regs))
2400                 return PTR_ERR(dc->regs);
2401
2402         dc->irq = platform_get_irq(pdev, 0);
2403         if (dc->irq < 0) {
2404                 dev_err(&pdev->dev, "failed to get IRQ\n");
2405                 return -ENXIO;
2406         }
2407
2408         err = tegra_dc_rgb_probe(dc);
2409         if (err < 0 && err != -ENODEV) {
2410                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2411                 return err;
2412         }
2413
2414         platform_set_drvdata(pdev, dc);
2415         pm_runtime_enable(&pdev->dev);
2416
2417         INIT_LIST_HEAD(&dc->client.list);
2418         dc->client.ops = &dc_client_ops;
2419         dc->client.dev = &pdev->dev;
2420
2421         err = host1x_client_register(&dc->client);
2422         if (err < 0) {
2423                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2424                         err);
2425                 return err;
2426         }
2427
2428         return 0;
2429 }
2430
2431 static int tegra_dc_remove(struct platform_device *pdev)
2432 {
2433         struct tegra_dc *dc = platform_get_drvdata(pdev);
2434         int err;
2435
2436         err = host1x_client_unregister(&dc->client);
2437         if (err < 0) {
2438                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2439                         err);
2440                 return err;
2441         }
2442
2443         err = tegra_dc_rgb_remove(dc);
2444         if (err < 0) {
2445                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2446                 return err;
2447         }
2448
2449         pm_runtime_disable(&pdev->dev);
2450
2451         return 0;
2452 }
2453
2454 #ifdef CONFIG_PM
2455 static int tegra_dc_suspend(struct device *dev)
2456 {
2457         struct tegra_dc *dc = dev_get_drvdata(dev);
2458         int err;
2459
2460         err = reset_control_assert(dc->rst);
2461         if (err < 0) {
2462                 dev_err(dev, "failed to assert reset: %d\n", err);
2463                 return err;
2464         }
2465
2466         if (dc->soc->has_powergate)
2467                 tegra_powergate_power_off(dc->powergate);
2468
2469         clk_disable_unprepare(dc->clk);
2470
2471         return 0;
2472 }
2473
2474 static int tegra_dc_resume(struct device *dev)
2475 {
2476         struct tegra_dc *dc = dev_get_drvdata(dev);
2477         int err;
2478
2479         if (dc->soc->has_powergate) {
2480                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2481                                                         dc->rst);
2482                 if (err < 0) {
2483                         dev_err(dev, "failed to power partition: %d\n", err);
2484                         return err;
2485                 }
2486         } else {
2487                 err = clk_prepare_enable(dc->clk);
2488                 if (err < 0) {
2489                         dev_err(dev, "failed to enable clock: %d\n", err);
2490                         return err;
2491                 }
2492
2493                 err = reset_control_deassert(dc->rst);
2494                 if (err < 0) {
2495                         dev_err(dev, "failed to deassert reset: %d\n", err);
2496                         return err;
2497                 }
2498         }
2499
2500         return 0;
2501 }
2502 #endif
2503
2504 static const struct dev_pm_ops tegra_dc_pm_ops = {
2505         SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2506 };
2507
2508 struct platform_driver tegra_dc_driver = {
2509         .driver = {
2510                 .name = "tegra-dc",
2511                 .of_match_table = tegra_dc_of_match,
2512                 .pm = &tegra_dc_pm_ops,
2513         },
2514         .probe = tegra_dc_probe,
2515         .remove = tegra_dc_remove,
2516 };