GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc_state {
46         struct drm_crtc_state base;
47         /* Dlist area for this CRTC configuration. */
48         struct drm_mm_node mm;
49         bool feed_txp;
50         bool txp_armed;
51 };
52
53 static inline struct vc4_crtc_state *
54 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
55 {
56         return (struct vc4_crtc_state *)crtc_state;
57 }
58
59 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
60 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
61
62 #define CRTC_REG(reg) { reg, #reg }
63 static const struct {
64         u32 reg;
65         const char *name;
66 } crtc_regs[] = {
67         CRTC_REG(PV_CONTROL),
68         CRTC_REG(PV_V_CONTROL),
69         CRTC_REG(PV_VSYNCD_EVEN),
70         CRTC_REG(PV_HORZA),
71         CRTC_REG(PV_HORZB),
72         CRTC_REG(PV_VERTA),
73         CRTC_REG(PV_VERTB),
74         CRTC_REG(PV_VERTA_EVEN),
75         CRTC_REG(PV_VERTB_EVEN),
76         CRTC_REG(PV_INTEN),
77         CRTC_REG(PV_INTSTAT),
78         CRTC_REG(PV_STAT),
79         CRTC_REG(PV_HACT_ACT),
80 };
81
82 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
83 {
84         int i;
85
86         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
87                 DRM_INFO("0x%04x (%s): 0x%08x\n",
88                          crtc_regs[i].reg, crtc_regs[i].name,
89                          CRTC_READ(crtc_regs[i].reg));
90         }
91 }
92
93 #ifdef CONFIG_DEBUG_FS
94 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
95 {
96         struct drm_info_node *node = (struct drm_info_node *)m->private;
97         struct drm_device *dev = node->minor->dev;
98         int crtc_index = (uintptr_t)node->info_ent->data;
99         struct drm_crtc *crtc;
100         struct vc4_crtc *vc4_crtc;
101         int i;
102
103         i = 0;
104         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
105                 if (i == crtc_index)
106                         break;
107                 i++;
108         }
109         if (!crtc)
110                 return 0;
111         vc4_crtc = to_vc4_crtc(crtc);
112
113         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
114                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
115                            crtc_regs[i].name, crtc_regs[i].reg,
116                            CRTC_READ(crtc_regs[i].reg));
117         }
118
119         return 0;
120 }
121 #endif
122
123 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
124                              bool in_vblank_irq, int *vpos, int *hpos,
125                              ktime_t *stime, ktime_t *etime,
126                              const struct drm_display_mode *mode)
127 {
128         struct vc4_dev *vc4 = to_vc4_dev(dev);
129         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
130         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
131         u32 val;
132         int fifo_lines;
133         int vblank_lines;
134         bool ret = false;
135
136         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
137
138         /* Get optional system timestamp before query. */
139         if (stime)
140                 *stime = ktime_get();
141
142         /*
143          * Read vertical scanline which is currently composed for our
144          * pixelvalve by the HVS, and also the scaler status.
145          */
146         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
147
148         /* Get optional system timestamp after query. */
149         if (etime)
150                 *etime = ktime_get();
151
152         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
153
154         /* Vertical position of hvs composed scanline. */
155         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
156         *hpos = 0;
157
158         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
159                 *vpos /= 2;
160
161                 /* Use hpos to correct for field offset in interlaced mode. */
162                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
163                         *hpos += mode->crtc_htotal / 2;
164         }
165
166         /* This is the offset we need for translating hvs -> pv scanout pos. */
167         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
168
169         if (fifo_lines > 0)
170                 ret = true;
171
172         /* HVS more than fifo_lines into frame for compositing? */
173         if (*vpos > fifo_lines) {
174                 /*
175                  * We are in active scanout and can get some meaningful results
176                  * from HVS. The actual PV scanout can not trail behind more
177                  * than fifo_lines as that is the fifo's capacity. Assume that
178                  * in active scanout the HVS and PV work in lockstep wrt. HVS
179                  * refilling the fifo and PV consuming from the fifo, ie.
180                  * whenever the PV consumes and frees up a scanline in the
181                  * fifo, the HVS will immediately refill it, therefore
182                  * incrementing vpos. Therefore we choose HVS read position -
183                  * fifo size in scanlines as a estimate of the real scanout
184                  * position of the PV.
185                  */
186                 *vpos -= fifo_lines + 1;
187
188                 return ret;
189         }
190
191         /*
192          * Less: This happens when we are in vblank and the HVS, after getting
193          * the VSTART restart signal from the PV, just started refilling its
194          * fifo with new lines from the top-most lines of the new framebuffers.
195          * The PV does not scan out in vblank, so does not remove lines from
196          * the fifo, so the fifo will be full quickly and the HVS has to pause.
197          * We can't get meaningful readings wrt. scanline position of the PV
198          * and need to make things up in a approximative but consistent way.
199          */
200         vblank_lines = mode->vtotal - mode->vdisplay;
201
202         if (in_vblank_irq) {
203                 /*
204                  * Assume the irq handler got called close to first
205                  * line of vblank, so PV has about a full vblank
206                  * scanlines to go, and as a base timestamp use the
207                  * one taken at entry into vblank irq handler, so it
208                  * is not affected by random delays due to lock
209                  * contention on event_lock or vblank_time lock in
210                  * the core.
211                  */
212                 *vpos = -vblank_lines;
213
214                 if (stime)
215                         *stime = vc4_crtc->t_vblank;
216                 if (etime)
217                         *etime = vc4_crtc->t_vblank;
218
219                 /*
220                  * If the HVS fifo is not yet full then we know for certain
221                  * we are at the very beginning of vblank, as the hvs just
222                  * started refilling, and the stime and etime timestamps
223                  * truly correspond to start of vblank.
224                  *
225                  * Unfortunately there's no way to report this to upper levels
226                  * and make it more useful.
227                  */
228         } else {
229                 /*
230                  * No clue where we are inside vblank. Return a vpos of zero,
231                  * which will cause calling code to just return the etime
232                  * timestamp uncorrected. At least this is no worse than the
233                  * standard fallback.
234                  */
235                 *vpos = 0;
236         }
237
238         return ret;
239 }
240
241 static void vc4_crtc_destroy(struct drm_crtc *crtc)
242 {
243         drm_crtc_cleanup(crtc);
244 }
245
246 static void
247 vc4_crtc_lut_load(struct drm_crtc *crtc)
248 {
249         struct drm_device *dev = crtc->dev;
250         struct vc4_dev *vc4 = to_vc4_dev(dev);
251         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
252         u32 i;
253
254         /* The LUT memory is laid out with each HVS channel in order,
255          * each of which takes 256 writes for R, 256 for G, then 256
256          * for B.
257          */
258         HVS_WRITE(SCALER_GAMADDR,
259                   SCALER_GAMADDR_AUTOINC |
260                   (vc4_crtc->channel * 3 * crtc->gamma_size));
261
262         for (i = 0; i < crtc->gamma_size; i++)
263                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
264         for (i = 0; i < crtc->gamma_size; i++)
265                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
266         for (i = 0; i < crtc->gamma_size; i++)
267                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
268 }
269
270 static void
271 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
272 {
273         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
274         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
275         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
276         u32 i;
277
278         for (i = 0; i < length; i++) {
279                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
280                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
281                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
282         }
283
284         vc4_crtc_lut_load(crtc);
285 }
286
287 static u32 vc4_get_fifo_full_level(u32 format)
288 {
289         static const u32 fifo_len_bytes = 64;
290         static const u32 hvs_latency_pix = 6;
291
292         switch (format) {
293         case PV_CONTROL_FORMAT_DSIV_16:
294         case PV_CONTROL_FORMAT_DSIC_16:
295                 return fifo_len_bytes - 2 * hvs_latency_pix;
296         case PV_CONTROL_FORMAT_DSIV_18:
297                 return fifo_len_bytes - 14;
298         case PV_CONTROL_FORMAT_24:
299         case PV_CONTROL_FORMAT_DSIV_24:
300         default:
301                 return fifo_len_bytes - 3 * hvs_latency_pix;
302         }
303 }
304
305 /*
306  * Returns the encoder attached to the CRTC.
307  *
308  * VC4 can only scan out to one encoder at a time, while the DRM core
309  * allows drivers to push pixels to more than one encoder from the
310  * same CRTC.
311  */
312 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
313 {
314         struct drm_connector *connector;
315         struct drm_connector_list_iter conn_iter;
316
317         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
318         drm_for_each_connector_iter(connector, &conn_iter) {
319                 if (connector->state->crtc == crtc) {
320                         drm_connector_list_iter_end(&conn_iter);
321                         return connector->encoder;
322                 }
323         }
324         drm_connector_list_iter_end(&conn_iter);
325
326         return NULL;
327 }
328
329 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
330 {
331         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
332         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
333         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334         struct drm_crtc_state *state = crtc->state;
335         struct drm_display_mode *mode = &state->adjusted_mode;
336         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
337         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
338         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
339                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
340         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341
342         /* Reset the PV fifo. */
343         CRTC_WRITE(PV_CONTROL, 0);
344         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
345         CRTC_WRITE(PV_CONTROL, 0);
346
347         CRTC_WRITE(PV_HORZA,
348                    VC4_SET_FIELD((mode->htotal -
349                                   mode->hsync_end) * pixel_rep,
350                                  PV_HORZA_HBP) |
351                    VC4_SET_FIELD((mode->hsync_end -
352                                   mode->hsync_start) * pixel_rep,
353                                  PV_HORZA_HSYNC));
354         CRTC_WRITE(PV_HORZB,
355                    VC4_SET_FIELD((mode->hsync_start -
356                                   mode->hdisplay) * pixel_rep,
357                                  PV_HORZB_HFP) |
358                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
359
360         CRTC_WRITE(PV_VERTA,
361                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
362                                  PV_VERTA_VBP) |
363                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
364                                  PV_VERTA_VSYNC));
365         CRTC_WRITE(PV_VERTB,
366                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
367                                  PV_VERTB_VFP) |
368                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
369
370         if (interlace) {
371                 CRTC_WRITE(PV_VERTA_EVEN,
372                            VC4_SET_FIELD(mode->crtc_vtotal -
373                                          mode->crtc_vsync_end - 1,
374                                          PV_VERTA_VBP) |
375                            VC4_SET_FIELD(mode->crtc_vsync_end -
376                                          mode->crtc_vsync_start,
377                                          PV_VERTA_VSYNC));
378                 CRTC_WRITE(PV_VERTB_EVEN,
379                            VC4_SET_FIELD(mode->crtc_vsync_start -
380                                          mode->crtc_vdisplay,
381                                          PV_VERTB_VFP) |
382                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
383
384                 /* We set up first field even mode for HDMI.  VEC's
385                  * NTSC mode would want first field odd instead, once
386                  * we support it (to do so, set ODD_FIRST and put the
387                  * delay in VSYNCD_EVEN instead).
388                  */
389                 CRTC_WRITE(PV_V_CONTROL,
390                            PV_VCONTROL_CONTINUOUS |
391                            (is_dsi ? PV_VCONTROL_DSI : 0) |
392                            PV_VCONTROL_INTERLACE |
393                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
394                                          PV_VCONTROL_ODD_DELAY));
395                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
396         } else {
397                 CRTC_WRITE(PV_V_CONTROL,
398                            PV_VCONTROL_CONTINUOUS |
399                            (is_dsi ? PV_VCONTROL_DSI : 0));
400         }
401
402         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
403
404         CRTC_WRITE(PV_CONTROL,
405                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
406                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
407                                  PV_CONTROL_FIFO_LEVEL) |
408                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
409                    PV_CONTROL_CLR_AT_START |
410                    PV_CONTROL_TRIGGER_UNDERFLOW |
411                    PV_CONTROL_WAIT_HSTART |
412                    VC4_SET_FIELD(vc4_encoder->clock_select,
413                                  PV_CONTROL_CLK_SELECT) |
414                    PV_CONTROL_FIFO_CLR |
415                    PV_CONTROL_EN);
416 }
417
418 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
419 {
420         struct drm_device *dev = crtc->dev;
421         struct vc4_dev *vc4 = to_vc4_dev(dev);
422         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
423         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
424         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
425         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
426         bool debug_dump_regs = false;
427
428         if (debug_dump_regs) {
429                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
430                 vc4_crtc_dump_regs(vc4_crtc);
431         }
432
433         if (vc4_crtc->channel == 2) {
434                 u32 dispctrl;
435                 u32 dsp3_mux;
436
437                 /*
438                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
439                  * FIFO X'.
440                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
441                  *
442                  * DSP3 is connected to FIFO2 unless the transposer is
443                  * enabled. In this case, FIFO 2 is directly accessed by the
444                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
445                  * route.
446                  */
447                 if (vc4_state->feed_txp)
448                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
449                 else
450                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
451
452                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
453                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
454                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
455         }
456
457         if (!vc4_state->feed_txp)
458                 vc4_crtc_config_pv(crtc);
459
460         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
461                   SCALER_DISPBKGND_AUTOHS |
462                   SCALER_DISPBKGND_GAMMA |
463                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
464
465         /* Reload the LUT, since the SRAMs would have been disabled if
466          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
467          */
468         vc4_crtc_lut_load(crtc);
469
470         if (debug_dump_regs) {
471                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
472                 vc4_crtc_dump_regs(vc4_crtc);
473         }
474 }
475
476 static void require_hvs_enabled(struct drm_device *dev)
477 {
478         struct vc4_dev *vc4 = to_vc4_dev(dev);
479
480         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
481                      SCALER_DISPCTRL_ENABLE);
482 }
483
484 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
485                                     struct drm_crtc_state *old_state)
486 {
487         struct drm_device *dev = crtc->dev;
488         struct vc4_dev *vc4 = to_vc4_dev(dev);
489         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490         u32 chan = vc4_crtc->channel;
491         int ret;
492         require_hvs_enabled(dev);
493
494         /* Disable vblank irq handling before crtc is disabled. */
495         drm_crtc_vblank_off(crtc);
496
497         CRTC_WRITE(PV_V_CONTROL,
498                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
499         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
500         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
501
502         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
503             SCALER_DISPCTRLX_ENABLE) {
504                 HVS_WRITE(SCALER_DISPCTRLX(chan),
505                           SCALER_DISPCTRLX_RESET);
506
507                 /* While the docs say that reset is self-clearing, it
508                  * seems it doesn't actually.
509                  */
510                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
511         }
512
513         /* Once we leave, the scaler should be disabled and its fifo empty. */
514
515         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
516
517         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
518                                    SCALER_DISPSTATX_MODE) !=
519                      SCALER_DISPSTATX_MODE_DISABLED);
520
521         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
522                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
523                      SCALER_DISPSTATX_EMPTY);
524
525         /*
526          * Make sure we issue a vblank event after disabling the CRTC if
527          * someone was waiting it.
528          */
529         if (crtc->state->event) {
530                 unsigned long flags;
531
532                 spin_lock_irqsave(&dev->event_lock, flags);
533                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
534                 crtc->state->event = NULL;
535                 spin_unlock_irqrestore(&dev->event_lock, flags);
536         }
537 }
538
539 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
540 {
541         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
542
543         vc4_state->txp_armed = true;
544 }
545
546 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
547 {
548         struct drm_device *dev = crtc->dev;
549         struct vc4_dev *vc4 = to_vc4_dev(dev);
550         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552
553         if (crtc->state->event) {
554                 unsigned long flags;
555
556                 crtc->state->event->pipe = drm_crtc_index(crtc);
557
558                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
559
560                 spin_lock_irqsave(&dev->event_lock, flags);
561
562                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
563                         vc4_crtc->event = crtc->state->event;
564                         crtc->state->event = NULL;
565                 }
566
567                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
568                           vc4_state->mm.start);
569
570                 spin_unlock_irqrestore(&dev->event_lock, flags);
571         } else {
572                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
573                           vc4_state->mm.start);
574         }
575 }
576
577 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
578                                    struct drm_crtc_state *old_state)
579 {
580         struct drm_device *dev = crtc->dev;
581         struct vc4_dev *vc4 = to_vc4_dev(dev);
582         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
583         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
584         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
585
586         require_hvs_enabled(dev);
587
588         /* Enable vblank irq handling before crtc is started otherwise
589          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
590          */
591         drm_crtc_vblank_on(crtc);
592         vc4_crtc_update_dlist(crtc);
593
594         /* Turn on the scaler, which will wait for vstart to start
595          * compositing.
596          * When feeding the transposer, we should operate in oneshot
597          * mode.
598          */
599         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
600                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
601                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
602                   SCALER_DISPCTRLX_ENABLE |
603                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
604
605         /* When feeding the transposer block the pixelvalve is unneeded and
606          * should not be enabled.
607          */
608         if (!vc4_state->feed_txp)
609                 CRTC_WRITE(PV_V_CONTROL,
610                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
611 }
612
613 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
614                                                 const struct drm_display_mode *mode)
615 {
616         /* Do not allow doublescan modes from user space */
617         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
618                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
619                               crtc->base.id);
620                 return MODE_NO_DBLESCAN;
621         }
622
623         return MODE_OK;
624 }
625
626 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
627                                  struct drm_crtc_state *state)
628 {
629         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
630         struct drm_device *dev = crtc->dev;
631         struct vc4_dev *vc4 = to_vc4_dev(dev);
632         struct drm_plane *plane;
633         unsigned long flags;
634         const struct drm_plane_state *plane_state;
635         struct drm_connector *conn;
636         struct drm_connector_state *conn_state;
637         u32 dlist_count = 0;
638         int ret, i;
639
640         /* The pixelvalve can only feed one encoder (and encoders are
641          * 1:1 with connectors.)
642          */
643         if (hweight32(state->connector_mask) > 1)
644                 return -EINVAL;
645
646         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
647                 dlist_count += vc4_plane_dlist_size(plane_state);
648
649         dlist_count++; /* Account for SCALER_CTL0_END. */
650
651         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
652         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
653                                  dlist_count);
654         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
655         if (ret)
656                 return ret;
657
658         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
659                 if (conn_state->crtc != crtc)
660                         continue;
661
662                 /* The writeback connector is implemented using the transposer
663                  * block which is directly taking its data from the HVS FIFO.
664                  */
665                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
666                         state->no_vblank = true;
667                         vc4_state->feed_txp = true;
668                 } else {
669                         state->no_vblank = false;
670                         vc4_state->feed_txp = false;
671                 }
672
673                 break;
674         }
675
676         return 0;
677 }
678
679 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
680                                   struct drm_crtc_state *old_state)
681 {
682         struct drm_device *dev = crtc->dev;
683         struct vc4_dev *vc4 = to_vc4_dev(dev);
684         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
685         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
686         struct drm_plane *plane;
687         struct vc4_plane_state *vc4_plane_state;
688         bool debug_dump_regs = false;
689         bool enable_bg_fill = false;
690         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
691         u32 __iomem *dlist_next = dlist_start;
692
693         if (debug_dump_regs) {
694                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
695                 vc4_hvs_dump_state(dev);
696         }
697
698         /* Copy all the active planes' dlist contents to the hardware dlist. */
699         drm_atomic_crtc_for_each_plane(plane, crtc) {
700                 /* Is this the first active plane? */
701                 if (dlist_next == dlist_start) {
702                         /* We need to enable background fill when a plane
703                          * could be alpha blending from the background, i.e.
704                          * where no other plane is underneath. It suffices to
705                          * consider the first active plane here since we set
706                          * needs_bg_fill such that either the first plane
707                          * already needs it or all planes on top blend from
708                          * the first or a lower plane.
709                          */
710                         vc4_plane_state = to_vc4_plane_state(plane->state);
711                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
712                 }
713
714                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
715         }
716
717         writel(SCALER_CTL0_END, dlist_next);
718         dlist_next++;
719
720         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
721
722         if (enable_bg_fill)
723                 /* This sets a black background color fill, as is the case
724                  * with other DRM drivers.
725                  */
726                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
727                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
728                           SCALER_DISPBKGND_FILL);
729
730         /* Only update DISPLIST if the CRTC was already running and is not
731          * being disabled.
732          * vc4_crtc_enable() takes care of updating the dlist just after
733          * re-enabling VBLANK interrupts and before enabling the engine.
734          * If the CRTC is being disabled, there's no point in updating this
735          * information.
736          */
737         if (crtc->state->active && old_state->active)
738                 vc4_crtc_update_dlist(crtc);
739
740         if (crtc->state->color_mgmt_changed) {
741                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
742
743                 if (crtc->state->gamma_lut) {
744                         vc4_crtc_update_gamma_lut(crtc);
745                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
746                 } else {
747                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
748                          * in hardware, which is the same as a linear lut that
749                          * DRM expects us to use in absence of a user lut.
750                          */
751                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
752                 }
753                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
754         }
755
756         if (debug_dump_regs) {
757                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
758                 vc4_hvs_dump_state(dev);
759         }
760 }
761
762 static int vc4_enable_vblank(struct drm_crtc *crtc)
763 {
764         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
765
766         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
767
768         return 0;
769 }
770
771 static void vc4_disable_vblank(struct drm_crtc *crtc)
772 {
773         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
774
775         CRTC_WRITE(PV_INTEN, 0);
776 }
777
778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
779 {
780         struct drm_crtc *crtc = &vc4_crtc->base;
781         struct drm_device *dev = crtc->dev;
782         struct vc4_dev *vc4 = to_vc4_dev(dev);
783         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
784         u32 chan = vc4_crtc->channel;
785         unsigned long flags;
786
787         spin_lock_irqsave(&dev->event_lock, flags);
788         if (vc4_crtc->event &&
789             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
790              vc4_state->feed_txp)) {
791                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
792                 vc4_crtc->event = NULL;
793                 drm_crtc_vblank_put(crtc);
794         }
795         spin_unlock_irqrestore(&dev->event_lock, flags);
796 }
797
798 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
799 {
800         crtc->t_vblank = ktime_get();
801         drm_crtc_handle_vblank(&crtc->base);
802         vc4_crtc_handle_page_flip(crtc);
803 }
804
805 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
806 {
807         struct vc4_crtc *vc4_crtc = data;
808         u32 stat = CRTC_READ(PV_INTSTAT);
809         irqreturn_t ret = IRQ_NONE;
810
811         if (stat & PV_INT_VFP_START) {
812                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
813                 vc4_crtc_handle_vblank(vc4_crtc);
814                 ret = IRQ_HANDLED;
815         }
816
817         return ret;
818 }
819
820 struct vc4_async_flip_state {
821         struct drm_crtc *crtc;
822         struct drm_framebuffer *fb;
823         struct drm_framebuffer *old_fb;
824         struct drm_pending_vblank_event *event;
825
826         struct vc4_seqno_cb cb;
827 };
828
829 /* Called when the V3D execution for the BO being flipped to is done, so that
830  * we can actually update the plane's address to point to it.
831  */
832 static void
833 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
834 {
835         struct vc4_async_flip_state *flip_state =
836                 container_of(cb, struct vc4_async_flip_state, cb);
837         struct drm_crtc *crtc = flip_state->crtc;
838         struct drm_device *dev = crtc->dev;
839         struct vc4_dev *vc4 = to_vc4_dev(dev);
840         struct drm_plane *plane = crtc->primary;
841
842         vc4_plane_async_set_fb(plane, flip_state->fb);
843         if (flip_state->event) {
844                 unsigned long flags;
845
846                 spin_lock_irqsave(&dev->event_lock, flags);
847                 drm_crtc_send_vblank_event(crtc, flip_state->event);
848                 spin_unlock_irqrestore(&dev->event_lock, flags);
849         }
850
851         drm_crtc_vblank_put(crtc);
852         drm_framebuffer_put(flip_state->fb);
853
854         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
855          * when the planes are updated through the async update path.
856          * FIXME: we should move to generic async-page-flip when it's
857          * available, so that we can get rid of this hand-made cleanup_fb()
858          * logic.
859          */
860         if (flip_state->old_fb) {
861                 struct drm_gem_cma_object *cma_bo;
862                 struct vc4_bo *bo;
863
864                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
865                 bo = to_vc4_bo(&cma_bo->base);
866                 vc4_bo_dec_usecnt(bo);
867                 drm_framebuffer_put(flip_state->old_fb);
868         }
869
870         kfree(flip_state);
871
872         up(&vc4->async_modeset);
873 }
874
875 /* Implements async (non-vblank-synced) page flips.
876  *
877  * The page flip ioctl needs to return immediately, so we grab the
878  * modeset semaphore on the pipe, and queue the address update for
879  * when V3D is done with the BO being flipped to.
880  */
881 static int vc4_async_page_flip(struct drm_crtc *crtc,
882                                struct drm_framebuffer *fb,
883                                struct drm_pending_vblank_event *event,
884                                uint32_t flags)
885 {
886         struct drm_device *dev = crtc->dev;
887         struct vc4_dev *vc4 = to_vc4_dev(dev);
888         struct drm_plane *plane = crtc->primary;
889         int ret = 0;
890         struct vc4_async_flip_state *flip_state;
891         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
892         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
893
894         /* Increment the BO usecnt here, so that we never end up with an
895          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
896          * plane is later updated through the non-async path.
897          * FIXME: we should move to generic async-page-flip when it's
898          * available, so that we can get rid of this hand-made prepare_fb()
899          * logic.
900          */
901         ret = vc4_bo_inc_usecnt(bo);
902         if (ret)
903                 return ret;
904
905         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
906         if (!flip_state) {
907                 vc4_bo_dec_usecnt(bo);
908                 return -ENOMEM;
909         }
910
911         drm_framebuffer_get(fb);
912         flip_state->fb = fb;
913         flip_state->crtc = crtc;
914         flip_state->event = event;
915
916         /* Make sure all other async modesetes have landed. */
917         ret = down_interruptible(&vc4->async_modeset);
918         if (ret) {
919                 drm_framebuffer_put(fb);
920                 vc4_bo_dec_usecnt(bo);
921                 kfree(flip_state);
922                 return ret;
923         }
924
925         /* Save the current FB before it's replaced by the new one in
926          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
927          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
928          * it consistent.
929          * FIXME: we should move to generic async-page-flip when it's
930          * available, so that we can get rid of this hand-made cleanup_fb()
931          * logic.
932          */
933         flip_state->old_fb = plane->state->fb;
934         if (flip_state->old_fb)
935                 drm_framebuffer_get(flip_state->old_fb);
936
937         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
938
939         /* Immediately update the plane's legacy fb pointer, so that later
940          * modeset prep sees the state that will be present when the semaphore
941          * is released.
942          */
943         drm_atomic_set_fb_for_plane(plane->state, fb);
944
945         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
946                            vc4_async_page_flip_complete);
947
948         /* Driver takes ownership of state on successful async commit. */
949         return 0;
950 }
951
952 static int vc4_page_flip(struct drm_crtc *crtc,
953                          struct drm_framebuffer *fb,
954                          struct drm_pending_vblank_event *event,
955                          uint32_t flags,
956                          struct drm_modeset_acquire_ctx *ctx)
957 {
958         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
959                 return vc4_async_page_flip(crtc, fb, event, flags);
960         else
961                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
962 }
963
964 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
965 {
966         struct vc4_crtc_state *vc4_state, *old_vc4_state;
967
968         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
969         if (!vc4_state)
970                 return NULL;
971
972         old_vc4_state = to_vc4_crtc_state(crtc->state);
973         vc4_state->feed_txp = old_vc4_state->feed_txp;
974
975         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
976         return &vc4_state->base;
977 }
978
979 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
980                                    struct drm_crtc_state *state)
981 {
982         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
983         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
984
985         if (vc4_state->mm.allocated) {
986                 unsigned long flags;
987
988                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
989                 drm_mm_remove_node(&vc4_state->mm);
990                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
991
992         }
993
994         drm_atomic_helper_crtc_destroy_state(crtc, state);
995 }
996
997 static void
998 vc4_crtc_reset(struct drm_crtc *crtc)
999 {
1000         if (crtc->state)
1001                 vc4_crtc_destroy_state(crtc, crtc->state);
1002
1003         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1004         if (crtc->state)
1005                 crtc->state->crtc = crtc;
1006 }
1007
1008 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1009         .set_config = drm_atomic_helper_set_config,
1010         .destroy = vc4_crtc_destroy,
1011         .page_flip = vc4_page_flip,
1012         .set_property = NULL,
1013         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1014         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1015         .reset = vc4_crtc_reset,
1016         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1017         .atomic_destroy_state = vc4_crtc_destroy_state,
1018         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1019         .enable_vblank = vc4_enable_vblank,
1020         .disable_vblank = vc4_disable_vblank,
1021 };
1022
1023 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1024         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1025         .mode_valid = vc4_crtc_mode_valid,
1026         .atomic_check = vc4_crtc_atomic_check,
1027         .atomic_flush = vc4_crtc_atomic_flush,
1028         .atomic_enable = vc4_crtc_atomic_enable,
1029         .atomic_disable = vc4_crtc_atomic_disable,
1030 };
1031
1032 static const struct vc4_crtc_data pv0_data = {
1033         .hvs_channel = 0,
1034         .encoder_types = {
1035                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1036                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1037         },
1038 };
1039
1040 static const struct vc4_crtc_data pv1_data = {
1041         .hvs_channel = 2,
1042         .encoder_types = {
1043                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1044                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1045         },
1046 };
1047
1048 static const struct vc4_crtc_data pv2_data = {
1049         .hvs_channel = 1,
1050         .encoder_types = {
1051                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1052                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1053         },
1054 };
1055
1056 static const struct of_device_id vc4_crtc_dt_match[] = {
1057         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1058         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1059         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1060         {}
1061 };
1062
1063 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1064                                         struct drm_crtc *crtc)
1065 {
1066         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1067         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1068         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1069         struct drm_encoder *encoder;
1070
1071         drm_for_each_encoder(encoder, drm) {
1072                 struct vc4_encoder *vc4_encoder;
1073                 int i;
1074
1075                 /* HVS FIFO2 can feed the TXP IP. */
1076                 if (crtc_data->hvs_channel == 2 &&
1077                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1078                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1079                         continue;
1080                 }
1081
1082                 vc4_encoder = to_vc4_encoder(encoder);
1083                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1084                         if (vc4_encoder->type == encoder_types[i]) {
1085                                 vc4_encoder->clock_select = i;
1086                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087                                 break;
1088                         }
1089                 }
1090         }
1091 }
1092
1093 static void
1094 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1095 {
1096         struct drm_device *drm = vc4_crtc->base.dev;
1097         struct vc4_dev *vc4 = to_vc4_dev(drm);
1098         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1099         /* Top/base are supposed to be 4-pixel aligned, but the
1100          * Raspberry Pi firmware fills the low bits (which are
1101          * presumably ignored).
1102          */
1103         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1104         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1105
1106         vc4_crtc->cob_size = top - base + 4;
1107 }
1108
1109 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1110 {
1111         struct platform_device *pdev = to_platform_device(dev);
1112         struct drm_device *drm = dev_get_drvdata(master);
1113         struct vc4_crtc *vc4_crtc;
1114         struct drm_crtc *crtc;
1115         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1116         const struct of_device_id *match;
1117         int ret, i;
1118
1119         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1120         if (!vc4_crtc)
1121                 return -ENOMEM;
1122         crtc = &vc4_crtc->base;
1123
1124         match = of_match_device(vc4_crtc_dt_match, dev);
1125         if (!match)
1126                 return -ENODEV;
1127         vc4_crtc->data = match->data;
1128
1129         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1130         if (IS_ERR(vc4_crtc->regs))
1131                 return PTR_ERR(vc4_crtc->regs);
1132
1133         /* For now, we create just the primary and the legacy cursor
1134          * planes.  We should be able to stack more planes on easily,
1135          * but to do that we would need to compute the bandwidth
1136          * requirement of the plane configuration, and reject ones
1137          * that will take too much.
1138          */
1139         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1140         if (IS_ERR(primary_plane)) {
1141                 dev_err(dev, "failed to construct primary plane\n");
1142                 ret = PTR_ERR(primary_plane);
1143                 goto err;
1144         }
1145
1146         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1147                                   &vc4_crtc_funcs, NULL);
1148         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1149         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1150         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1151         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1152
1153         /* We support CTM, but only for one CRTC at a time. It's therefore
1154          * implemented as private driver state in vc4_kms, not here.
1155          */
1156         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1157
1158         /* Set up some arbitrary number of planes.  We're not limited
1159          * by a set number of physical registers, just the space in
1160          * the HVS (16k) and how small an plane can be (28 bytes).
1161          * However, each plane we set up takes up some memory, and
1162          * increases the cost of looping over planes, which atomic
1163          * modesetting does quite a bit.  As a result, we pick a
1164          * modest number of planes to expose, that should hopefully
1165          * still cover any sane usecase.
1166          */
1167         for (i = 0; i < 8; i++) {
1168                 struct drm_plane *plane =
1169                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1170
1171                 if (IS_ERR(plane))
1172                         continue;
1173
1174                 plane->possible_crtcs = drm_crtc_mask(crtc);
1175         }
1176
1177         /* Set up the legacy cursor after overlay initialization,
1178          * since we overlay planes on the CRTC in the order they were
1179          * initialized.
1180          */
1181         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1182         if (!IS_ERR(cursor_plane)) {
1183                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1184                 crtc->cursor = cursor_plane;
1185         }
1186
1187         vc4_crtc_get_cob_allocation(vc4_crtc);
1188
1189         CRTC_WRITE(PV_INTEN, 0);
1190         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1191         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1192                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1193         if (ret)
1194                 goto err_destroy_planes;
1195
1196         vc4_set_crtc_possible_masks(drm, crtc);
1197
1198         for (i = 0; i < crtc->gamma_size; i++) {
1199                 vc4_crtc->lut_r[i] = i;
1200                 vc4_crtc->lut_g[i] = i;
1201                 vc4_crtc->lut_b[i] = i;
1202         }
1203
1204         platform_set_drvdata(pdev, vc4_crtc);
1205
1206         return 0;
1207
1208 err_destroy_planes:
1209         list_for_each_entry_safe(destroy_plane, temp,
1210                                  &drm->mode_config.plane_list, head) {
1211                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1212                     destroy_plane->funcs->destroy(destroy_plane);
1213         }
1214 err:
1215         return ret;
1216 }
1217
1218 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1219                             void *data)
1220 {
1221         struct platform_device *pdev = to_platform_device(dev);
1222         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1223
1224         vc4_crtc_destroy(&vc4_crtc->base);
1225
1226         CRTC_WRITE(PV_INTEN, 0);
1227
1228         platform_set_drvdata(pdev, NULL);
1229 }
1230
1231 static const struct component_ops vc4_crtc_ops = {
1232         .bind   = vc4_crtc_bind,
1233         .unbind = vc4_crtc_unbind,
1234 };
1235
1236 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1237 {
1238         return component_add(&pdev->dev, &vc4_crtc_ops);
1239 }
1240
1241 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1242 {
1243         component_del(&pdev->dev, &vc4_crtc_ops);
1244         return 0;
1245 }
1246
1247 struct platform_driver vc4_crtc_driver = {
1248         .probe = vc4_crtc_dev_probe,
1249         .remove = vc4_crtc_dev_remove,
1250         .driver = {
1251                 .name = "vc4_crtc",
1252                 .of_match_table = vc4_crtc_dt_match,
1253         },
1254 };