GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31
32 #include "uapi/drm/vc4_drm.h"
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 #include "vc4_trace.h"
36
37 static void
38 vc4_queue_hangcheck(struct drm_device *dev)
39 {
40         struct vc4_dev *vc4 = to_vc4_dev(dev);
41
42         mod_timer(&vc4->hangcheck.timer,
43                   round_jiffies_up(jiffies + msecs_to_jiffies(100)));
44 }
45
46 struct vc4_hang_state {
47         struct drm_vc4_get_hang_state user_state;
48
49         u32 bo_count;
50         struct drm_gem_object **bo;
51 };
52
53 static void
54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
55 {
56         unsigned int i;
57
58         for (i = 0; i < state->user_state.bo_count; i++)
59                 drm_gem_object_put_unlocked(state->bo[i]);
60
61         kfree(state);
62 }
63
64 int
65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
66                          struct drm_file *file_priv)
67 {
68         struct drm_vc4_get_hang_state *get_state = data;
69         struct drm_vc4_get_hang_state_bo *bo_state;
70         struct vc4_hang_state *kernel_state;
71         struct drm_vc4_get_hang_state *state;
72         struct vc4_dev *vc4 = to_vc4_dev(dev);
73         unsigned long irqflags;
74         u32 i;
75         int ret = 0;
76
77         spin_lock_irqsave(&vc4->job_lock, irqflags);
78         kernel_state = vc4->hang_state;
79         if (!kernel_state) {
80                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
81                 return -ENOENT;
82         }
83         state = &kernel_state->user_state;
84
85         /* If the user's array isn't big enough, just return the
86          * required array size.
87          */
88         if (get_state->bo_count < state->bo_count) {
89                 get_state->bo_count = state->bo_count;
90                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91                 return 0;
92         }
93
94         vc4->hang_state = NULL;
95         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
96
97         /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
98         state->bo = get_state->bo;
99         memcpy(get_state, state, sizeof(*state));
100
101         bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
102         if (!bo_state) {
103                 ret = -ENOMEM;
104                 goto err_free;
105         }
106
107         for (i = 0; i < state->bo_count; i++) {
108                 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
109                 u32 handle;
110
111                 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
112                                             &handle);
113
114                 if (ret) {
115                         state->bo_count = i;
116                         goto err_delete_handle;
117                 }
118                 bo_state[i].handle = handle;
119                 bo_state[i].paddr = vc4_bo->base.paddr;
120                 bo_state[i].size = vc4_bo->base.base.size;
121         }
122
123         if (copy_to_user(u64_to_user_ptr(get_state->bo),
124                          bo_state,
125                          state->bo_count * sizeof(*bo_state)))
126                 ret = -EFAULT;
127
128 err_delete_handle:
129         if (ret) {
130                 for (i = 0; i < state->bo_count; i++)
131                         drm_gem_handle_delete(file_priv, bo_state[i].handle);
132         }
133
134 err_free:
135         vc4_free_hang_state(dev, kernel_state);
136         kfree(bo_state);
137
138         return ret;
139 }
140
141 static void
142 vc4_save_hang_state(struct drm_device *dev)
143 {
144         struct vc4_dev *vc4 = to_vc4_dev(dev);
145         struct drm_vc4_get_hang_state *state;
146         struct vc4_hang_state *kernel_state;
147         struct vc4_exec_info *exec[2];
148         struct vc4_bo *bo;
149         unsigned long irqflags;
150         unsigned int i, j, k, unref_list_count;
151
152         kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
153         if (!kernel_state)
154                 return;
155
156         state = &kernel_state->user_state;
157
158         spin_lock_irqsave(&vc4->job_lock, irqflags);
159         exec[0] = vc4_first_bin_job(vc4);
160         exec[1] = vc4_first_render_job(vc4);
161         if (!exec[0] && !exec[1]) {
162                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
163                 return;
164         }
165
166         /* Get the bos from both binner and renderer into hang state. */
167         state->bo_count = 0;
168         for (i = 0; i < 2; i++) {
169                 if (!exec[i])
170                         continue;
171
172                 unref_list_count = 0;
173                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
174                         unref_list_count++;
175                 state->bo_count += exec[i]->bo_count + unref_list_count;
176         }
177
178         kernel_state->bo = kcalloc(state->bo_count,
179                                    sizeof(*kernel_state->bo), GFP_ATOMIC);
180
181         if (!kernel_state->bo) {
182                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
183                 return;
184         }
185
186         k = 0;
187         for (i = 0; i < 2; i++) {
188                 if (!exec[i])
189                         continue;
190
191                 for (j = 0; j < exec[i]->bo_count; j++) {
192                         bo = to_vc4_bo(&exec[i]->bo[j]->base);
193
194                         /* Retain BOs just in case they were marked purgeable.
195                          * This prevents the BO from being purged before
196                          * someone had a chance to dump the hang state.
197                          */
198                         WARN_ON(!refcount_read(&bo->usecnt));
199                         refcount_inc(&bo->usecnt);
200                         drm_gem_object_get(&exec[i]->bo[j]->base);
201                         kernel_state->bo[k++] = &exec[i]->bo[j]->base;
202                 }
203
204                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
205                         /* No need to retain BOs coming from the ->unref_list
206                          * because they are naturally unpurgeable.
207                          */
208                         drm_gem_object_get(&bo->base.base);
209                         kernel_state->bo[k++] = &bo->base.base;
210                 }
211         }
212
213         WARN_ON_ONCE(k != state->bo_count);
214
215         if (exec[0])
216                 state->start_bin = exec[0]->ct0ca;
217         if (exec[1])
218                 state->start_render = exec[1]->ct1ca;
219
220         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
221
222         state->ct0ca = V3D_READ(V3D_CTNCA(0));
223         state->ct0ea = V3D_READ(V3D_CTNEA(0));
224
225         state->ct1ca = V3D_READ(V3D_CTNCA(1));
226         state->ct1ea = V3D_READ(V3D_CTNEA(1));
227
228         state->ct0cs = V3D_READ(V3D_CTNCS(0));
229         state->ct1cs = V3D_READ(V3D_CTNCS(1));
230
231         state->ct0ra0 = V3D_READ(V3D_CT00RA0);
232         state->ct1ra0 = V3D_READ(V3D_CT01RA0);
233
234         state->bpca = V3D_READ(V3D_BPCA);
235         state->bpcs = V3D_READ(V3D_BPCS);
236         state->bpoa = V3D_READ(V3D_BPOA);
237         state->bpos = V3D_READ(V3D_BPOS);
238
239         state->vpmbase = V3D_READ(V3D_VPMBASE);
240
241         state->dbge = V3D_READ(V3D_DBGE);
242         state->fdbgo = V3D_READ(V3D_FDBGO);
243         state->fdbgb = V3D_READ(V3D_FDBGB);
244         state->fdbgr = V3D_READ(V3D_FDBGR);
245         state->fdbgs = V3D_READ(V3D_FDBGS);
246         state->errstat = V3D_READ(V3D_ERRSTAT);
247
248         /* We need to turn purgeable BOs into unpurgeable ones so that
249          * userspace has a chance to dump the hang state before the kernel
250          * decides to purge those BOs.
251          * Note that BO consistency at dump time cannot be guaranteed. For
252          * example, if the owner of these BOs decides to re-use them or mark
253          * them purgeable again there's nothing we can do to prevent it.
254          */
255         for (i = 0; i < kernel_state->user_state.bo_count; i++) {
256                 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
257
258                 if (bo->madv == __VC4_MADV_NOTSUPP)
259                         continue;
260
261                 mutex_lock(&bo->madv_lock);
262                 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
263                         bo->madv = VC4_MADV_WILLNEED;
264                 refcount_dec(&bo->usecnt);
265                 mutex_unlock(&bo->madv_lock);
266         }
267
268         spin_lock_irqsave(&vc4->job_lock, irqflags);
269         if (vc4->hang_state) {
270                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
271                 vc4_free_hang_state(dev, kernel_state);
272         } else {
273                 vc4->hang_state = kernel_state;
274                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
275         }
276 }
277
278 static void
279 vc4_reset(struct drm_device *dev)
280 {
281         struct vc4_dev *vc4 = to_vc4_dev(dev);
282
283         DRM_INFO("Resetting GPU.\n");
284
285         mutex_lock(&vc4->power_lock);
286         if (vc4->power_refcount) {
287                 /* Power the device off and back on the by dropping the
288                  * reference on runtime PM.
289                  */
290                 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
291                 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
292         }
293         mutex_unlock(&vc4->power_lock);
294
295         vc4_irq_reset(dev);
296
297         /* Rearm the hangcheck -- another job might have been waiting
298          * for our hung one to get kicked off, and vc4_irq_reset()
299          * would have started it.
300          */
301         vc4_queue_hangcheck(dev);
302 }
303
304 static void
305 vc4_reset_work(struct work_struct *work)
306 {
307         struct vc4_dev *vc4 =
308                 container_of(work, struct vc4_dev, hangcheck.reset_work);
309
310         vc4_save_hang_state(vc4->dev);
311
312         vc4_reset(vc4->dev);
313 }
314
315 static void
316 vc4_hangcheck_elapsed(struct timer_list *t)
317 {
318         struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
319         struct drm_device *dev = vc4->dev;
320         uint32_t ct0ca, ct1ca;
321         unsigned long irqflags;
322         struct vc4_exec_info *bin_exec, *render_exec;
323
324         spin_lock_irqsave(&vc4->job_lock, irqflags);
325
326         bin_exec = vc4_first_bin_job(vc4);
327         render_exec = vc4_first_render_job(vc4);
328
329         /* If idle, we can stop watching for hangs. */
330         if (!bin_exec && !render_exec) {
331                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
332                 return;
333         }
334
335         ct0ca = V3D_READ(V3D_CTNCA(0));
336         ct1ca = V3D_READ(V3D_CTNCA(1));
337
338         /* If we've made any progress in execution, rearm the timer
339          * and wait.
340          */
341         if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
342             (render_exec && ct1ca != render_exec->last_ct1ca)) {
343                 if (bin_exec)
344                         bin_exec->last_ct0ca = ct0ca;
345                 if (render_exec)
346                         render_exec->last_ct1ca = ct1ca;
347                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
348                 vc4_queue_hangcheck(dev);
349                 return;
350         }
351
352         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
353
354         /* We've gone too long with no progress, reset.  This has to
355          * be done from a work struct, since resetting can sleep and
356          * this timer hook isn't allowed to.
357          */
358         schedule_work(&vc4->hangcheck.reset_work);
359 }
360
361 static void
362 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
363 {
364         struct vc4_dev *vc4 = to_vc4_dev(dev);
365
366         /* Set the current and end address of the control list.
367          * Writing the end register is what starts the job.
368          */
369         V3D_WRITE(V3D_CTNCA(thread), start);
370         V3D_WRITE(V3D_CTNEA(thread), end);
371 }
372
373 int
374 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
375                    bool interruptible)
376 {
377         struct vc4_dev *vc4 = to_vc4_dev(dev);
378         int ret = 0;
379         unsigned long timeout_expire;
380         DEFINE_WAIT(wait);
381
382         if (vc4->finished_seqno >= seqno)
383                 return 0;
384
385         if (timeout_ns == 0)
386                 return -ETIME;
387
388         timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
389
390         trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
391         for (;;) {
392                 prepare_to_wait(&vc4->job_wait_queue, &wait,
393                                 interruptible ? TASK_INTERRUPTIBLE :
394                                 TASK_UNINTERRUPTIBLE);
395
396                 if (interruptible && signal_pending(current)) {
397                         ret = -ERESTARTSYS;
398                         break;
399                 }
400
401                 if (vc4->finished_seqno >= seqno)
402                         break;
403
404                 if (timeout_ns != ~0ull) {
405                         if (time_after_eq(jiffies, timeout_expire)) {
406                                 ret = -ETIME;
407                                 break;
408                         }
409                         schedule_timeout(timeout_expire - jiffies);
410                 } else {
411                         schedule();
412                 }
413         }
414
415         finish_wait(&vc4->job_wait_queue, &wait);
416         trace_vc4_wait_for_seqno_end(dev, seqno);
417
418         return ret;
419 }
420
421 static void
422 vc4_flush_caches(struct drm_device *dev)
423 {
424         struct vc4_dev *vc4 = to_vc4_dev(dev);
425
426         /* Flush the GPU L2 caches.  These caches sit on top of system
427          * L3 (the 128kb or so shared with the CPU), and are
428          * non-allocating in the L3.
429          */
430         V3D_WRITE(V3D_L2CACTL,
431                   V3D_L2CACTL_L2CCLR);
432
433         V3D_WRITE(V3D_SLCACTL,
434                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
435                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
436                   VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
437                   VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
438 }
439
440 static void
441 vc4_flush_texture_caches(struct drm_device *dev)
442 {
443         struct vc4_dev *vc4 = to_vc4_dev(dev);
444
445         V3D_WRITE(V3D_L2CACTL,
446                   V3D_L2CACTL_L2CCLR);
447
448         V3D_WRITE(V3D_SLCACTL,
449                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
450                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
451 }
452
453 /* Sets the registers for the next job to be actually be executed in
454  * the hardware.
455  *
456  * The job_lock should be held during this.
457  */
458 void
459 vc4_submit_next_bin_job(struct drm_device *dev)
460 {
461         struct vc4_dev *vc4 = to_vc4_dev(dev);
462         struct vc4_exec_info *exec;
463
464 again:
465         exec = vc4_first_bin_job(vc4);
466         if (!exec)
467                 return;
468
469         vc4_flush_caches(dev);
470
471         /* Only start the perfmon if it was not already started by a previous
472          * job.
473          */
474         if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
475                 vc4_perfmon_start(vc4, exec->perfmon);
476
477         /* Either put the job in the binner if it uses the binner, or
478          * immediately move it to the to-be-rendered queue.
479          */
480         if (exec->ct0ca != exec->ct0ea) {
481                 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
482         } else {
483                 struct vc4_exec_info *next;
484
485                 vc4_move_job_to_render(dev, exec);
486                 next = vc4_first_bin_job(vc4);
487
488                 /* We can't start the next bin job if the previous job had a
489                  * different perfmon instance attached to it. The same goes
490                  * if one of them had a perfmon attached to it and the other
491                  * one doesn't.
492                  */
493                 if (next && next->perfmon == exec->perfmon)
494                         goto again;
495         }
496 }
497
498 void
499 vc4_submit_next_render_job(struct drm_device *dev)
500 {
501         struct vc4_dev *vc4 = to_vc4_dev(dev);
502         struct vc4_exec_info *exec = vc4_first_render_job(vc4);
503
504         if (!exec)
505                 return;
506
507         /* A previous RCL may have written to one of our textures, and
508          * our full cache flush at bin time may have occurred before
509          * that RCL completed.  Flush the texture cache now, but not
510          * the instructions or uniforms (since we don't write those
511          * from an RCL).
512          */
513         vc4_flush_texture_caches(dev);
514
515         submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
516 }
517
518 void
519 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
520 {
521         struct vc4_dev *vc4 = to_vc4_dev(dev);
522         bool was_empty = list_empty(&vc4->render_job_list);
523
524         list_move_tail(&exec->head, &vc4->render_job_list);
525         if (was_empty)
526                 vc4_submit_next_render_job(dev);
527 }
528
529 static void
530 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
531 {
532         struct vc4_bo *bo;
533         unsigned i;
534
535         for (i = 0; i < exec->bo_count; i++) {
536                 bo = to_vc4_bo(&exec->bo[i]->base);
537                 bo->seqno = seqno;
538
539                 reservation_object_add_shared_fence(bo->resv, exec->fence);
540         }
541
542         list_for_each_entry(bo, &exec->unref_list, unref_head) {
543                 bo->seqno = seqno;
544         }
545
546         for (i = 0; i < exec->rcl_write_bo_count; i++) {
547                 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
548                 bo->write_seqno = seqno;
549
550                 reservation_object_add_excl_fence(bo->resv, exec->fence);
551         }
552 }
553
554 static void
555 vc4_unlock_bo_reservations(struct drm_device *dev,
556                            struct vc4_exec_info *exec,
557                            struct ww_acquire_ctx *acquire_ctx)
558 {
559         int i;
560
561         for (i = 0; i < exec->bo_count; i++) {
562                 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
563
564                 ww_mutex_unlock(&bo->resv->lock);
565         }
566
567         ww_acquire_fini(acquire_ctx);
568 }
569
570 /* Takes the reservation lock on all the BOs being referenced, so that
571  * at queue submit time we can update the reservations.
572  *
573  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
574  * (all of which are on exec->unref_list).  They're entirely private
575  * to vc4, so we don't attach dma-buf fences to them.
576  */
577 static int
578 vc4_lock_bo_reservations(struct drm_device *dev,
579                          struct vc4_exec_info *exec,
580                          struct ww_acquire_ctx *acquire_ctx)
581 {
582         int contended_lock = -1;
583         int i, ret;
584         struct vc4_bo *bo;
585
586         ww_acquire_init(acquire_ctx, &reservation_ww_class);
587
588 retry:
589         if (contended_lock != -1) {
590                 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
591                 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
592                                                        acquire_ctx);
593                 if (ret) {
594                         ww_acquire_done(acquire_ctx);
595                         return ret;
596                 }
597         }
598
599         for (i = 0; i < exec->bo_count; i++) {
600                 if (i == contended_lock)
601                         continue;
602
603                 bo = to_vc4_bo(&exec->bo[i]->base);
604
605                 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
606                 if (ret) {
607                         int j;
608
609                         for (j = 0; j < i; j++) {
610                                 bo = to_vc4_bo(&exec->bo[j]->base);
611                                 ww_mutex_unlock(&bo->resv->lock);
612                         }
613
614                         if (contended_lock != -1 && contended_lock >= i) {
615                                 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
616
617                                 ww_mutex_unlock(&bo->resv->lock);
618                         }
619
620                         if (ret == -EDEADLK) {
621                                 contended_lock = i;
622                                 goto retry;
623                         }
624
625                         ww_acquire_done(acquire_ctx);
626                         return ret;
627                 }
628         }
629
630         ww_acquire_done(acquire_ctx);
631
632         /* Reserve space for our shared (read-only) fence references,
633          * before we commit the CL to the hardware.
634          */
635         for (i = 0; i < exec->bo_count; i++) {
636                 bo = to_vc4_bo(&exec->bo[i]->base);
637
638                 ret = reservation_object_reserve_shared(bo->resv);
639                 if (ret) {
640                         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
641                         return ret;
642                 }
643         }
644
645         return 0;
646 }
647
648 /* Queues a struct vc4_exec_info for execution.  If no job is
649  * currently executing, then submits it.
650  *
651  * Unlike most GPUs, our hardware only handles one command list at a
652  * time.  To queue multiple jobs at once, we'd need to edit the
653  * previous command list to have a jump to the new one at the end, and
654  * then bump the end address.  That's a change for a later date,
655  * though.
656  */
657 static int
658 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
659                  struct ww_acquire_ctx *acquire_ctx,
660                  struct drm_syncobj *out_sync)
661 {
662         struct vc4_dev *vc4 = to_vc4_dev(dev);
663         struct vc4_exec_info *renderjob;
664         uint64_t seqno;
665         unsigned long irqflags;
666         struct vc4_fence *fence;
667
668         fence = kzalloc(sizeof(*fence), GFP_KERNEL);
669         if (!fence)
670                 return -ENOMEM;
671         fence->dev = dev;
672
673         spin_lock_irqsave(&vc4->job_lock, irqflags);
674
675         seqno = ++vc4->emit_seqno;
676         exec->seqno = seqno;
677
678         dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
679                        vc4->dma_fence_context, exec->seqno);
680         fence->seqno = exec->seqno;
681         exec->fence = &fence->base;
682
683         if (out_sync)
684                 drm_syncobj_replace_fence(out_sync, exec->fence);
685
686         vc4_update_bo_seqnos(exec, seqno);
687
688         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
689
690         list_add_tail(&exec->head, &vc4->bin_job_list);
691
692         /* If no bin job was executing and if the render job (if any) has the
693          * same perfmon as our job attached to it (or if both jobs don't have
694          * perfmon activated), then kick ours off.  Otherwise, it'll get
695          * started when the previous job's flush/render done interrupt occurs.
696          */
697         renderjob = vc4_first_render_job(vc4);
698         if (vc4_first_bin_job(vc4) == exec &&
699             (!renderjob || renderjob->perfmon == exec->perfmon)) {
700                 vc4_submit_next_bin_job(dev);
701                 vc4_queue_hangcheck(dev);
702         }
703
704         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
705
706         return 0;
707 }
708
709 /**
710  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
711  * referenced by the job.
712  * @dev: DRM device
713  * @file_priv: DRM file for this fd
714  * @exec: V3D job being set up
715  *
716  * The command validator needs to reference BOs by their index within
717  * the submitted job's BO list.  This does the validation of the job's
718  * BO list and reference counting for the lifetime of the job.
719  */
720 static int
721 vc4_cl_lookup_bos(struct drm_device *dev,
722                   struct drm_file *file_priv,
723                   struct vc4_exec_info *exec)
724 {
725         struct drm_vc4_submit_cl *args = exec->args;
726         uint32_t *handles;
727         int ret = 0;
728         int i;
729
730         exec->bo_count = args->bo_handle_count;
731
732         if (!exec->bo_count) {
733                 /* See comment on bo_index for why we have to check
734                  * this.
735                  */
736                 DRM_DEBUG("Rendering requires BOs to validate\n");
737                 return -EINVAL;
738         }
739
740         exec->bo = kvmalloc_array(exec->bo_count,
741                                     sizeof(struct drm_gem_cma_object *),
742                                     GFP_KERNEL | __GFP_ZERO);
743         if (!exec->bo) {
744                 DRM_ERROR("Failed to allocate validated BO pointers\n");
745                 return -ENOMEM;
746         }
747
748         handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
749         if (!handles) {
750                 ret = -ENOMEM;
751                 DRM_ERROR("Failed to allocate incoming GEM handles\n");
752                 goto fail;
753         }
754
755         if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
756                            exec->bo_count * sizeof(uint32_t))) {
757                 ret = -EFAULT;
758                 DRM_ERROR("Failed to copy in GEM handles\n");
759                 goto fail;
760         }
761
762         spin_lock(&file_priv->table_lock);
763         for (i = 0; i < exec->bo_count; i++) {
764                 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
765                                                      handles[i]);
766                 if (!bo) {
767                         DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
768                                   i, handles[i]);
769                         ret = -EINVAL;
770                         break;
771                 }
772
773                 drm_gem_object_get(bo);
774                 exec->bo[i] = (struct drm_gem_cma_object *)bo;
775         }
776         spin_unlock(&file_priv->table_lock);
777
778         if (ret)
779                 goto fail_put_bo;
780
781         for (i = 0; i < exec->bo_count; i++) {
782                 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
783                 if (ret)
784                         goto fail_dec_usecnt;
785         }
786
787         kvfree(handles);
788         return 0;
789
790 fail_dec_usecnt:
791         /* Decrease usecnt on acquired objects.
792          * We cannot rely on  vc4_complete_exec() to release resources here,
793          * because vc4_complete_exec() has no information about which BO has
794          * had its ->usecnt incremented.
795          * To make things easier we just free everything explicitly and set
796          * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
797          * step.
798          */
799         for (i-- ; i >= 0; i--)
800                 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
801
802 fail_put_bo:
803         /* Release any reference to acquired objects. */
804         for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
805                 drm_gem_object_put_unlocked(&exec->bo[i]->base);
806
807 fail:
808         kvfree(handles);
809         kvfree(exec->bo);
810         exec->bo = NULL;
811         return ret;
812 }
813
814 static int
815 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
816 {
817         struct drm_vc4_submit_cl *args = exec->args;
818         void *temp = NULL;
819         void *bin;
820         int ret = 0;
821         uint32_t bin_offset = 0;
822         uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
823                                              16);
824         uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
825         uint32_t exec_size = uniforms_offset + args->uniforms_size;
826         uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
827                                           args->shader_rec_count);
828         struct vc4_bo *bo;
829
830         if (shader_rec_offset < args->bin_cl_size ||
831             uniforms_offset < shader_rec_offset ||
832             exec_size < uniforms_offset ||
833             args->shader_rec_count >= (UINT_MAX /
834                                           sizeof(struct vc4_shader_state)) ||
835             temp_size < exec_size) {
836                 DRM_DEBUG("overflow in exec arguments\n");
837                 ret = -EINVAL;
838                 goto fail;
839         }
840
841         /* Allocate space where we'll store the copied in user command lists
842          * and shader records.
843          *
844          * We don't just copy directly into the BOs because we need to
845          * read the contents back for validation, and I think the
846          * bo->vaddr is uncached access.
847          */
848         temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
849         if (!temp) {
850                 DRM_ERROR("Failed to allocate storage for copying "
851                           "in bin/render CLs.\n");
852                 ret = -ENOMEM;
853                 goto fail;
854         }
855         bin = temp + bin_offset;
856         exec->shader_rec_u = temp + shader_rec_offset;
857         exec->uniforms_u = temp + uniforms_offset;
858         exec->shader_state = temp + exec_size;
859         exec->shader_state_size = args->shader_rec_count;
860
861         if (copy_from_user(bin,
862                            u64_to_user_ptr(args->bin_cl),
863                            args->bin_cl_size)) {
864                 ret = -EFAULT;
865                 goto fail;
866         }
867
868         if (copy_from_user(exec->shader_rec_u,
869                            u64_to_user_ptr(args->shader_rec),
870                            args->shader_rec_size)) {
871                 ret = -EFAULT;
872                 goto fail;
873         }
874
875         if (copy_from_user(exec->uniforms_u,
876                            u64_to_user_ptr(args->uniforms),
877                            args->uniforms_size)) {
878                 ret = -EFAULT;
879                 goto fail;
880         }
881
882         bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
883         if (IS_ERR(bo)) {
884                 DRM_ERROR("Couldn't allocate BO for binning\n");
885                 ret = PTR_ERR(bo);
886                 goto fail;
887         }
888         exec->exec_bo = &bo->base;
889
890         list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
891                       &exec->unref_list);
892
893         exec->ct0ca = exec->exec_bo->paddr + bin_offset;
894
895         exec->bin_u = bin;
896
897         exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
898         exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
899         exec->shader_rec_size = args->shader_rec_size;
900
901         exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
902         exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
903         exec->uniforms_size = args->uniforms_size;
904
905         ret = vc4_validate_bin_cl(dev,
906                                   exec->exec_bo->vaddr + bin_offset,
907                                   bin,
908                                   exec);
909         if (ret)
910                 goto fail;
911
912         ret = vc4_validate_shader_recs(dev, exec);
913         if (ret)
914                 goto fail;
915
916         /* Block waiting on any previous rendering into the CS's VBO,
917          * IB, or textures, so that pixels are actually written by the
918          * time we try to read them.
919          */
920         ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
921
922 fail:
923         kvfree(temp);
924         return ret;
925 }
926
927 static void
928 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
929 {
930         struct vc4_dev *vc4 = to_vc4_dev(dev);
931         unsigned long irqflags;
932         unsigned i;
933
934         /* If we got force-completed because of GPU reset rather than
935          * through our IRQ handler, signal the fence now.
936          */
937         if (exec->fence) {
938                 dma_fence_signal(exec->fence);
939                 dma_fence_put(exec->fence);
940         }
941
942         if (exec->bo) {
943                 for (i = 0; i < exec->bo_count; i++) {
944                         struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
945
946                         vc4_bo_dec_usecnt(bo);
947                         drm_gem_object_put_unlocked(&exec->bo[i]->base);
948                 }
949                 kvfree(exec->bo);
950         }
951
952         while (!list_empty(&exec->unref_list)) {
953                 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
954                                                      struct vc4_bo, unref_head);
955                 list_del(&bo->unref_head);
956                 drm_gem_object_put_unlocked(&bo->base.base);
957         }
958
959         /* Free up the allocation of any bin slots we used. */
960         spin_lock_irqsave(&vc4->job_lock, irqflags);
961         vc4->bin_alloc_used &= ~exec->bin_slots;
962         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
963
964         /* Release the reference we had on the perf monitor. */
965         vc4_perfmon_put(exec->perfmon);
966
967         mutex_lock(&vc4->power_lock);
968         if (--vc4->power_refcount == 0) {
969                 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
970                 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
971         }
972         mutex_unlock(&vc4->power_lock);
973
974         kfree(exec);
975 }
976
977 void
978 vc4_job_handle_completed(struct vc4_dev *vc4)
979 {
980         unsigned long irqflags;
981         struct vc4_seqno_cb *cb, *cb_temp;
982
983         spin_lock_irqsave(&vc4->job_lock, irqflags);
984         while (!list_empty(&vc4->job_done_list)) {
985                 struct vc4_exec_info *exec =
986                         list_first_entry(&vc4->job_done_list,
987                                          struct vc4_exec_info, head);
988                 list_del(&exec->head);
989
990                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
991                 vc4_complete_exec(vc4->dev, exec);
992                 spin_lock_irqsave(&vc4->job_lock, irqflags);
993         }
994
995         list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
996                 if (cb->seqno <= vc4->finished_seqno) {
997                         list_del_init(&cb->work.entry);
998                         schedule_work(&cb->work);
999                 }
1000         }
1001
1002         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1003 }
1004
1005 static void vc4_seqno_cb_work(struct work_struct *work)
1006 {
1007         struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1008
1009         cb->func(cb);
1010 }
1011
1012 int vc4_queue_seqno_cb(struct drm_device *dev,
1013                        struct vc4_seqno_cb *cb, uint64_t seqno,
1014                        void (*func)(struct vc4_seqno_cb *cb))
1015 {
1016         struct vc4_dev *vc4 = to_vc4_dev(dev);
1017         int ret = 0;
1018         unsigned long irqflags;
1019
1020         cb->func = func;
1021         INIT_WORK(&cb->work, vc4_seqno_cb_work);
1022
1023         spin_lock_irqsave(&vc4->job_lock, irqflags);
1024         if (seqno > vc4->finished_seqno) {
1025                 cb->seqno = seqno;
1026                 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1027         } else {
1028                 schedule_work(&cb->work);
1029         }
1030         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1031
1032         return ret;
1033 }
1034
1035 /* Scheduled when any job has been completed, this walks the list of
1036  * jobs that had completed and unrefs their BOs and frees their exec
1037  * structs.
1038  */
1039 static void
1040 vc4_job_done_work(struct work_struct *work)
1041 {
1042         struct vc4_dev *vc4 =
1043                 container_of(work, struct vc4_dev, job_done_work);
1044
1045         vc4_job_handle_completed(vc4);
1046 }
1047
1048 static int
1049 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1050                                 uint64_t seqno,
1051                                 uint64_t *timeout_ns)
1052 {
1053         unsigned long start = jiffies;
1054         int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1055
1056         if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1057                 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1058
1059                 if (*timeout_ns >= delta)
1060                         *timeout_ns -= delta;
1061         }
1062
1063         return ret;
1064 }
1065
1066 int
1067 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1068                      struct drm_file *file_priv)
1069 {
1070         struct drm_vc4_wait_seqno *args = data;
1071
1072         return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1073                                                &args->timeout_ns);
1074 }
1075
1076 int
1077 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1078                   struct drm_file *file_priv)
1079 {
1080         int ret;
1081         struct drm_vc4_wait_bo *args = data;
1082         struct drm_gem_object *gem_obj;
1083         struct vc4_bo *bo;
1084
1085         if (args->pad != 0)
1086                 return -EINVAL;
1087
1088         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1089         if (!gem_obj) {
1090                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1091                 return -EINVAL;
1092         }
1093         bo = to_vc4_bo(gem_obj);
1094
1095         ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1096                                               &args->timeout_ns);
1097
1098         drm_gem_object_put_unlocked(gem_obj);
1099         return ret;
1100 }
1101
1102 /**
1103  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1104  * @dev: DRM device
1105  * @data: ioctl argument
1106  * @file_priv: DRM file for this fd
1107  *
1108  * This is the main entrypoint for userspace to submit a 3D frame to
1109  * the GPU.  Userspace provides the binner command list (if
1110  * applicable), and the kernel sets up the render command list to draw
1111  * to the framebuffer described in the ioctl, using the command lists
1112  * that the 3D engine's binner will produce.
1113  */
1114 int
1115 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1116                     struct drm_file *file_priv)
1117 {
1118         struct vc4_dev *vc4 = to_vc4_dev(dev);
1119         struct vc4_file *vc4file = file_priv->driver_priv;
1120         struct drm_vc4_submit_cl *args = data;
1121         struct drm_syncobj *out_sync = NULL;
1122         struct vc4_exec_info *exec;
1123         struct ww_acquire_ctx acquire_ctx;
1124         struct dma_fence *in_fence;
1125         int ret = 0;
1126
1127         if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1128                              VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1129                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1130                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1131                 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1132                 return -EINVAL;
1133         }
1134
1135         if (args->pad2 != 0) {
1136                 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1137                 return -EINVAL;
1138         }
1139
1140         exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1141         if (!exec) {
1142                 DRM_ERROR("malloc failure on exec struct\n");
1143                 return -ENOMEM;
1144         }
1145
1146         mutex_lock(&vc4->power_lock);
1147         if (vc4->power_refcount++ == 0) {
1148                 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1149                 if (ret < 0) {
1150                         mutex_unlock(&vc4->power_lock);
1151                         vc4->power_refcount--;
1152                         kfree(exec);
1153                         return ret;
1154                 }
1155         }
1156         mutex_unlock(&vc4->power_lock);
1157
1158         exec->args = args;
1159         INIT_LIST_HEAD(&exec->unref_list);
1160
1161         ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1162         if (ret)
1163                 goto fail;
1164
1165         if (args->perfmonid) {
1166                 exec->perfmon = vc4_perfmon_find(vc4file,
1167                                                  args->perfmonid);
1168                 if (!exec->perfmon) {
1169                         ret = -ENOENT;
1170                         goto fail;
1171                 }
1172         }
1173
1174         if (args->in_sync) {
1175                 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1176                                              &in_fence);
1177                 if (ret)
1178                         goto fail;
1179
1180                 /* When the fence (or fence array) is exclusively from our
1181                  * context we can skip the wait since jobs are executed in
1182                  * order of their submission through this ioctl and this can
1183                  * only have fences from a prior job.
1184                  */
1185                 if (!dma_fence_match_context(in_fence,
1186                                              vc4->dma_fence_context)) {
1187                         ret = dma_fence_wait(in_fence, true);
1188                         if (ret) {
1189                                 dma_fence_put(in_fence);
1190                                 goto fail;
1191                         }
1192                 }
1193
1194                 dma_fence_put(in_fence);
1195         }
1196
1197         if (exec->args->bin_cl_size != 0) {
1198                 ret = vc4_get_bcl(dev, exec);
1199                 if (ret)
1200                         goto fail;
1201         } else {
1202                 exec->ct0ca = 0;
1203                 exec->ct0ea = 0;
1204         }
1205
1206         ret = vc4_get_rcl(dev, exec);
1207         if (ret)
1208                 goto fail;
1209
1210         ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1211         if (ret)
1212                 goto fail;
1213
1214         if (args->out_sync) {
1215                 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1216                 if (!out_sync) {
1217                         ret = -EINVAL;
1218                         goto fail;
1219                 }
1220
1221                 /* We replace the fence in out_sync in vc4_queue_submit since
1222                  * the render job could execute immediately after that call.
1223                  * If it finishes before our ioctl processing resumes the
1224                  * render job fence could already have been freed.
1225                  */
1226         }
1227
1228         /* Clear this out of the struct we'll be putting in the queue,
1229          * since it's part of our stack.
1230          */
1231         exec->args = NULL;
1232
1233         ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1234
1235         /* The syncobj isn't part of the exec data and we need to free our
1236          * reference even if job submission failed.
1237          */
1238         if (out_sync)
1239                 drm_syncobj_put(out_sync);
1240
1241         if (ret)
1242                 goto fail;
1243
1244         /* Return the seqno for our job. */
1245         args->seqno = vc4->emit_seqno;
1246
1247         return 0;
1248
1249 fail:
1250         vc4_complete_exec(vc4->dev, exec);
1251
1252         return ret;
1253 }
1254
1255 void
1256 vc4_gem_init(struct drm_device *dev)
1257 {
1258         struct vc4_dev *vc4 = to_vc4_dev(dev);
1259
1260         vc4->dma_fence_context = dma_fence_context_alloc(1);
1261
1262         INIT_LIST_HEAD(&vc4->bin_job_list);
1263         INIT_LIST_HEAD(&vc4->render_job_list);
1264         INIT_LIST_HEAD(&vc4->job_done_list);
1265         INIT_LIST_HEAD(&vc4->seqno_cb_list);
1266         spin_lock_init(&vc4->job_lock);
1267
1268         INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1269         timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1270
1271         INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1272
1273         mutex_init(&vc4->power_lock);
1274
1275         INIT_LIST_HEAD(&vc4->purgeable.list);
1276         mutex_init(&vc4->purgeable.lock);
1277 }
1278
1279 void
1280 vc4_gem_destroy(struct drm_device *dev)
1281 {
1282         struct vc4_dev *vc4 = to_vc4_dev(dev);
1283
1284         /* Waiting for exec to finish would need to be done before
1285          * unregistering V3D.
1286          */
1287         WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1288
1289         /* V3D should already have disabled its interrupt and cleared
1290          * the overflow allocation registers.  Now free the object.
1291          */
1292         if (vc4->bin_bo) {
1293                 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1294                 vc4->bin_bo = NULL;
1295         }
1296
1297         if (vc4->hang_state)
1298                 vc4_free_hang_state(dev, vc4->hang_state);
1299 }
1300
1301 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1302                           struct drm_file *file_priv)
1303 {
1304         struct drm_vc4_gem_madvise *args = data;
1305         struct drm_gem_object *gem_obj;
1306         struct vc4_bo *bo;
1307         int ret;
1308
1309         switch (args->madv) {
1310         case VC4_MADV_DONTNEED:
1311         case VC4_MADV_WILLNEED:
1312                 break;
1313         default:
1314                 return -EINVAL;
1315         }
1316
1317         if (args->pad != 0)
1318                 return -EINVAL;
1319
1320         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1321         if (!gem_obj) {
1322                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1323                 return -ENOENT;
1324         }
1325
1326         bo = to_vc4_bo(gem_obj);
1327
1328         /* Only BOs exposed to userspace can be purged. */
1329         if (bo->madv == __VC4_MADV_NOTSUPP) {
1330                 DRM_DEBUG("madvise not supported on this BO\n");
1331                 ret = -EINVAL;
1332                 goto out_put_gem;
1333         }
1334
1335         /* Not sure it's safe to purge imported BOs. Let's just assume it's
1336          * not until proven otherwise.
1337          */
1338         if (gem_obj->import_attach) {
1339                 DRM_DEBUG("madvise not supported on imported BOs\n");
1340                 ret = -EINVAL;
1341                 goto out_put_gem;
1342         }
1343
1344         mutex_lock(&bo->madv_lock);
1345
1346         if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1347             !refcount_read(&bo->usecnt)) {
1348                 /* If the BO is about to be marked as purgeable, is not used
1349                  * and is not already purgeable or purged, add it to the
1350                  * purgeable list.
1351                  */
1352                 vc4_bo_add_to_purgeable_pool(bo);
1353         } else if (args->madv == VC4_MADV_WILLNEED &&
1354                    bo->madv == VC4_MADV_DONTNEED &&
1355                    !refcount_read(&bo->usecnt)) {
1356                 /* The BO has not been purged yet, just remove it from
1357                  * the purgeable list.
1358                  */
1359                 vc4_bo_remove_from_purgeable_pool(bo);
1360         }
1361
1362         /* Save the purged state. */
1363         args->retained = bo->madv != __VC4_MADV_PURGED;
1364
1365         /* Update internal madv state only if the bo was not purged. */
1366         if (bo->madv != __VC4_MADV_PURGED)
1367                 bo->madv = args->madv;
1368
1369         mutex_unlock(&bo->madv_lock);
1370
1371         ret = 0;
1372
1373 out_put_gem:
1374         drm_gem_object_put_unlocked(gem_obj);
1375
1376         return ret;
1377 }