GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / hv / channel_mgmt.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  */
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/hyperv.h>
34 #include <asm/mshyperv.h>
35
36 #include "hyperv_vmbus.h"
37
38 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type);
39
40 static const struct vmbus_device vmbus_devs[] = {
41         /* IDE */
42         { .dev_type = HV_IDE,
43           HV_IDE_GUID,
44           .perf_device = true,
45         },
46
47         /* SCSI */
48         { .dev_type = HV_SCSI,
49           HV_SCSI_GUID,
50           .perf_device = true,
51         },
52
53         /* Fibre Channel */
54         { .dev_type = HV_FC,
55           HV_SYNTHFC_GUID,
56           .perf_device = true,
57         },
58
59         /* Synthetic NIC */
60         { .dev_type = HV_NIC,
61           HV_NIC_GUID,
62           .perf_device = true,
63         },
64
65         /* Network Direct */
66         { .dev_type = HV_ND,
67           HV_ND_GUID,
68           .perf_device = true,
69         },
70
71         /* PCIE */
72         { .dev_type = HV_PCIE,
73           HV_PCIE_GUID,
74           .perf_device = false,
75         },
76
77         /* Synthetic Frame Buffer */
78         { .dev_type = HV_FB,
79           HV_SYNTHVID_GUID,
80           .perf_device = false,
81         },
82
83         /* Synthetic Keyboard */
84         { .dev_type = HV_KBD,
85           HV_KBD_GUID,
86           .perf_device = false,
87         },
88
89         /* Synthetic MOUSE */
90         { .dev_type = HV_MOUSE,
91           HV_MOUSE_GUID,
92           .perf_device = false,
93         },
94
95         /* KVP */
96         { .dev_type = HV_KVP,
97           HV_KVP_GUID,
98           .perf_device = false,
99         },
100
101         /* Time Synch */
102         { .dev_type = HV_TS,
103           HV_TS_GUID,
104           .perf_device = false,
105         },
106
107         /* Heartbeat */
108         { .dev_type = HV_HB,
109           HV_HEART_BEAT_GUID,
110           .perf_device = false,
111         },
112
113         /* Shutdown */
114         { .dev_type = HV_SHUTDOWN,
115           HV_SHUTDOWN_GUID,
116           .perf_device = false,
117         },
118
119         /* File copy */
120         { .dev_type = HV_FCOPY,
121           HV_FCOPY_GUID,
122           .perf_device = false,
123         },
124
125         /* Backup */
126         { .dev_type = HV_BACKUP,
127           HV_VSS_GUID,
128           .perf_device = false,
129         },
130
131         /* Dynamic Memory */
132         { .dev_type = HV_DM,
133           HV_DM_GUID,
134           .perf_device = false,
135         },
136
137         /* Unknown GUID */
138         { .dev_type = HV_UNKNOWN,
139           .perf_device = false,
140         },
141 };
142
143 static const struct {
144         uuid_le guid;
145 } vmbus_unsupported_devs[] = {
146         { HV_AVMA1_GUID },
147         { HV_AVMA2_GUID },
148         { HV_RDV_GUID   },
149 };
150
151 /*
152  * The rescinded channel may be blocked waiting for a response from the host;
153  * take care of that.
154  */
155 static void vmbus_rescind_cleanup(struct vmbus_channel *channel)
156 {
157         struct vmbus_channel_msginfo *msginfo;
158         unsigned long flags;
159
160
161         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
162         channel->rescind = true;
163         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
164                                 msglistentry) {
165
166                 if (msginfo->waiting_channel == channel) {
167                         complete(&msginfo->waitevent);
168                         break;
169                 }
170         }
171         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
172 }
173
174 static bool is_unsupported_vmbus_devs(const uuid_le *guid)
175 {
176         int i;
177
178         for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++)
179                 if (!uuid_le_cmp(*guid, vmbus_unsupported_devs[i].guid))
180                         return true;
181         return false;
182 }
183
184 static u16 hv_get_dev_type(const struct vmbus_channel *channel)
185 {
186         const uuid_le *guid = &channel->offermsg.offer.if_type;
187         u16 i;
188
189         if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid))
190                 return HV_UNKNOWN;
191
192         for (i = HV_IDE; i < HV_UNKNOWN; i++) {
193                 if (!uuid_le_cmp(*guid, vmbus_devs[i].guid))
194                         return i;
195         }
196         pr_info("Unknown GUID: %pUl\n", guid);
197         return i;
198 }
199
200 /**
201  * vmbus_prep_negotiate_resp() - Create default response for Hyper-V Negotiate message
202  * @icmsghdrp: Pointer to msg header structure
203  * @icmsg_negotiate: Pointer to negotiate message structure
204  * @buf: Raw buffer channel data
205  *
206  * @icmsghdrp is of type &struct icmsg_hdr.
207  * Set up and fill in default negotiate response message.
208  *
209  * The fw_version and fw_vercnt specifies the framework version that
210  * we can support.
211  *
212  * The srv_version and srv_vercnt specifies the service
213  * versions we can support.
214  *
215  * Versions are given in decreasing order.
216  *
217  * nego_fw_version and nego_srv_version store the selected protocol versions.
218  *
219  * Mainly used by Hyper-V drivers.
220  */
221 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp,
222                                 u8 *buf, const int *fw_version, int fw_vercnt,
223                                 const int *srv_version, int srv_vercnt,
224                                 int *nego_fw_version, int *nego_srv_version)
225 {
226         int icframe_major, icframe_minor;
227         int icmsg_major, icmsg_minor;
228         int fw_major, fw_minor;
229         int srv_major, srv_minor;
230         int i, j;
231         bool found_match = false;
232         struct icmsg_negotiate *negop;
233
234         icmsghdrp->icmsgsize = 0x10;
235         negop = (struct icmsg_negotiate *)&buf[
236                 sizeof(struct vmbuspipe_hdr) +
237                 sizeof(struct icmsg_hdr)];
238
239         icframe_major = negop->icframe_vercnt;
240         icframe_minor = 0;
241
242         icmsg_major = negop->icmsg_vercnt;
243         icmsg_minor = 0;
244
245         /*
246          * Select the framework version number we will
247          * support.
248          */
249
250         for (i = 0; i < fw_vercnt; i++) {
251                 fw_major = (fw_version[i] >> 16);
252                 fw_minor = (fw_version[i] & 0xFFFF);
253
254                 for (j = 0; j < negop->icframe_vercnt; j++) {
255                         if ((negop->icversion_data[j].major == fw_major) &&
256                             (negop->icversion_data[j].minor == fw_minor)) {
257                                 icframe_major = negop->icversion_data[j].major;
258                                 icframe_minor = negop->icversion_data[j].minor;
259                                 found_match = true;
260                                 break;
261                         }
262                 }
263
264                 if (found_match)
265                         break;
266         }
267
268         if (!found_match)
269                 goto fw_error;
270
271         found_match = false;
272
273         for (i = 0; i < srv_vercnt; i++) {
274                 srv_major = (srv_version[i] >> 16);
275                 srv_minor = (srv_version[i] & 0xFFFF);
276
277                 for (j = negop->icframe_vercnt;
278                         (j < negop->icframe_vercnt + negop->icmsg_vercnt);
279                         j++) {
280
281                         if ((negop->icversion_data[j].major == srv_major) &&
282                                 (negop->icversion_data[j].minor == srv_minor)) {
283
284                                 icmsg_major = negop->icversion_data[j].major;
285                                 icmsg_minor = negop->icversion_data[j].minor;
286                                 found_match = true;
287                                 break;
288                         }
289                 }
290
291                 if (found_match)
292                         break;
293         }
294
295         /*
296          * Respond with the framework and service
297          * version numbers we can support.
298          */
299
300 fw_error:
301         if (!found_match) {
302                 negop->icframe_vercnt = 0;
303                 negop->icmsg_vercnt = 0;
304         } else {
305                 negop->icframe_vercnt = 1;
306                 negop->icmsg_vercnt = 1;
307         }
308
309         if (nego_fw_version)
310                 *nego_fw_version = (icframe_major << 16) | icframe_minor;
311
312         if (nego_srv_version)
313                 *nego_srv_version = (icmsg_major << 16) | icmsg_minor;
314
315         negop->icversion_data[0].major = icframe_major;
316         negop->icversion_data[0].minor = icframe_minor;
317         negop->icversion_data[1].major = icmsg_major;
318         negop->icversion_data[1].minor = icmsg_minor;
319         return found_match;
320 }
321
322 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp);
323
324 /*
325  * alloc_channel - Allocate and initialize a vmbus channel object
326  */
327 static struct vmbus_channel *alloc_channel(void)
328 {
329         struct vmbus_channel *channel;
330
331         channel = kzalloc(sizeof(*channel), GFP_ATOMIC);
332         if (!channel)
333                 return NULL;
334
335         spin_lock_init(&channel->lock);
336         init_completion(&channel->rescind_event);
337
338         INIT_LIST_HEAD(&channel->sc_list);
339         INIT_LIST_HEAD(&channel->percpu_list);
340
341         tasklet_init(&channel->callback_event,
342                      vmbus_on_event, (unsigned long)channel);
343
344         return channel;
345 }
346
347 /*
348  * free_channel - Release the resources used by the vmbus channel object
349  */
350 static void free_channel(struct vmbus_channel *channel)
351 {
352         tasklet_kill(&channel->callback_event);
353
354         kfree_rcu(channel, rcu);
355 }
356
357 static void percpu_channel_enq(void *arg)
358 {
359         struct vmbus_channel *channel = arg;
360         struct hv_per_cpu_context *hv_cpu
361                 = this_cpu_ptr(hv_context.cpu_context);
362
363         list_add_tail_rcu(&channel->percpu_list, &hv_cpu->chan_list);
364 }
365
366 static void percpu_channel_deq(void *arg)
367 {
368         struct vmbus_channel *channel = arg;
369
370         list_del_rcu(&channel->percpu_list);
371 }
372
373
374 static void vmbus_release_relid(u32 relid)
375 {
376         struct vmbus_channel_relid_released msg;
377
378         memset(&msg, 0, sizeof(struct vmbus_channel_relid_released));
379         msg.child_relid = relid;
380         msg.header.msgtype = CHANNELMSG_RELID_RELEASED;
381         vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released),
382                        true);
383 }
384
385 void hv_process_channel_removal(u32 relid)
386 {
387         unsigned long flags;
388         struct vmbus_channel *primary_channel, *channel;
389
390         BUG_ON(!mutex_is_locked(&vmbus_connection.channel_mutex));
391
392         /*
393          * Make sure channel is valid as we may have raced.
394          */
395         channel = relid2channel(relid);
396         if (!channel)
397                 return;
398
399         BUG_ON(!channel->rescind);
400         if (channel->target_cpu != get_cpu()) {
401                 put_cpu();
402                 smp_call_function_single(channel->target_cpu,
403                                          percpu_channel_deq, channel, true);
404         } else {
405                 percpu_channel_deq(channel);
406                 put_cpu();
407         }
408
409         if (channel->primary_channel == NULL) {
410                 list_del(&channel->listentry);
411
412                 primary_channel = channel;
413         } else {
414                 primary_channel = channel->primary_channel;
415                 spin_lock_irqsave(&primary_channel->lock, flags);
416                 list_del(&channel->sc_list);
417                 primary_channel->num_sc--;
418                 spin_unlock_irqrestore(&primary_channel->lock, flags);
419         }
420
421         /*
422          * We need to free the bit for init_vp_index() to work in the case
423          * of sub-channel, when we reload drivers like hv_netvsc.
424          */
425         if (channel->affinity_policy == HV_LOCALIZED)
426                 cpumask_clear_cpu(channel->target_cpu,
427                                   &primary_channel->alloced_cpus_in_node);
428
429         vmbus_release_relid(relid);
430
431         free_channel(channel);
432 }
433
434 void vmbus_free_channels(void)
435 {
436         struct vmbus_channel *channel, *tmp;
437
438         list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list,
439                 listentry) {
440                 /* hv_process_channel_removal() needs this */
441                 channel->rescind = true;
442
443                 vmbus_device_unregister(channel->device_obj);
444         }
445 }
446
447 /* Note: the function can run concurrently for primary/sub channels. */
448 static void vmbus_add_channel_work(struct work_struct *work)
449 {
450         struct vmbus_channel *newchannel =
451                 container_of(work, struct vmbus_channel, add_channel_work);
452         struct vmbus_channel *primary_channel = newchannel->primary_channel;
453         unsigned long flags;
454         u16 dev_type;
455         int ret;
456
457         dev_type = hv_get_dev_type(newchannel);
458
459         init_vp_index(newchannel, dev_type);
460
461         if (newchannel->target_cpu != get_cpu()) {
462                 put_cpu();
463                 smp_call_function_single(newchannel->target_cpu,
464                                          percpu_channel_enq,
465                                          newchannel, true);
466         } else {
467                 percpu_channel_enq(newchannel);
468                 put_cpu();
469         }
470
471         /*
472          * This state is used to indicate a successful open
473          * so that when we do close the channel normally, we
474          * can cleanup properly.
475          */
476         newchannel->state = CHANNEL_OPEN_STATE;
477
478         if (primary_channel != NULL) {
479                 /* newchannel is a sub-channel. */
480
481                 if (primary_channel->sc_creation_callback != NULL)
482                         primary_channel->sc_creation_callback(newchannel);
483
484                 newchannel->probe_done = true;
485                 return;
486         }
487
488         /*
489          * Start the process of binding the primary channel to the driver
490          */
491         newchannel->device_obj = vmbus_device_create(
492                 &newchannel->offermsg.offer.if_type,
493                 &newchannel->offermsg.offer.if_instance,
494                 newchannel);
495         if (!newchannel->device_obj)
496                 goto err_deq_chan;
497
498         newchannel->device_obj->device_id = dev_type;
499         /*
500          * Add the new device to the bus. This will kick off device-driver
501          * binding which eventually invokes the device driver's AddDevice()
502          * method.
503          */
504         ret = vmbus_device_register(newchannel->device_obj);
505
506         if (ret != 0) {
507                 pr_err("unable to add child device object (relid %d)\n",
508                         newchannel->offermsg.child_relid);
509                 kfree(newchannel->device_obj);
510                 goto err_deq_chan;
511         }
512
513         newchannel->probe_done = true;
514         return;
515
516 err_deq_chan:
517         mutex_lock(&vmbus_connection.channel_mutex);
518
519         /*
520          * We need to set the flag, otherwise
521          * vmbus_onoffer_rescind() can be blocked.
522          */
523         newchannel->probe_done = true;
524
525         if (primary_channel == NULL) {
526                 list_del(&newchannel->listentry);
527         } else {
528                 spin_lock_irqsave(&primary_channel->lock, flags);
529                 list_del(&newchannel->sc_list);
530                 spin_unlock_irqrestore(&primary_channel->lock, flags);
531         }
532
533         mutex_unlock(&vmbus_connection.channel_mutex);
534
535         if (newchannel->target_cpu != get_cpu()) {
536                 put_cpu();
537                 smp_call_function_single(newchannel->target_cpu,
538                                          percpu_channel_deq,
539                                          newchannel, true);
540         } else {
541                 percpu_channel_deq(newchannel);
542                 put_cpu();
543         }
544
545         vmbus_release_relid(newchannel->offermsg.child_relid);
546
547         free_channel(newchannel);
548 }
549
550 /*
551  * vmbus_process_offer - Process the offer by creating a channel/device
552  * associated with this offer
553  */
554 static void vmbus_process_offer(struct vmbus_channel *newchannel)
555 {
556         struct vmbus_channel *channel;
557         struct workqueue_struct *wq;
558         unsigned long flags;
559         bool fnew = true;
560
561         mutex_lock(&vmbus_connection.channel_mutex);
562
563         /*
564          * Now that we have acquired the channel_mutex,
565          * we can release the potentially racing rescind thread.
566          */
567         atomic_dec(&vmbus_connection.offer_in_progress);
568
569         list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
570                 if (!uuid_le_cmp(channel->offermsg.offer.if_type,
571                                  newchannel->offermsg.offer.if_type) &&
572                     !uuid_le_cmp(channel->offermsg.offer.if_instance,
573                                  newchannel->offermsg.offer.if_instance)) {
574                         fnew = false;
575                         break;
576                 }
577         }
578
579         if (fnew)
580                 list_add_tail(&newchannel->listentry,
581                               &vmbus_connection.chn_list);
582         else {
583                 /*
584                  * Check to see if this is a valid sub-channel.
585                  */
586                 if (newchannel->offermsg.offer.sub_channel_index == 0) {
587                         mutex_unlock(&vmbus_connection.channel_mutex);
588                         /*
589                          * Don't call free_channel(), because newchannel->kobj
590                          * is not initialized yet.
591                          */
592                         kfree(newchannel);
593                         WARN_ON_ONCE(1);
594                         return;
595                 }
596                 /*
597                  * Process the sub-channel.
598                  */
599                 newchannel->primary_channel = channel;
600                 spin_lock_irqsave(&channel->lock, flags);
601                 list_add_tail(&newchannel->sc_list, &channel->sc_list);
602                 spin_unlock_irqrestore(&channel->lock, flags);
603         }
604
605         mutex_unlock(&vmbus_connection.channel_mutex);
606
607         /*
608          * vmbus_process_offer() mustn't call channel->sc_creation_callback()
609          * directly for sub-channels, because sc_creation_callback() ->
610          * vmbus_open() may never get the host's response to the
611          * OPEN_CHANNEL message (the host may rescind a channel at any time,
612          * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind()
613          * may not wake up the vmbus_open() as it's blocked due to a non-zero
614          * vmbus_connection.offer_in_progress, and finally we have a deadlock.
615          *
616          * The above is also true for primary channels, if the related device
617          * drivers use sync probing mode by default.
618          *
619          * And, usually the handling of primary channels and sub-channels can
620          * depend on each other, so we should offload them to different
621          * workqueues to avoid possible deadlock, e.g. in sync-probing mode,
622          * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() ->
623          * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock
624          * and waits for all the sub-channels to appear, but the latter
625          * can't get the rtnl_lock and this blocks the handling of
626          * sub-channels.
627          */
628         INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work);
629         wq = fnew ? vmbus_connection.handle_primary_chan_wq :
630                     vmbus_connection.handle_sub_chan_wq;
631         queue_work(wq, &newchannel->add_channel_work);
632 }
633
634 /*
635  * We use this state to statically distribute the channel interrupt load.
636  */
637 static int next_numa_node_id;
638 /*
639  * init_vp_index() accesses global variables like next_numa_node_id, and
640  * it can run concurrently for primary channels and sub-channels: see
641  * vmbus_process_offer(), so we need the lock to protect the global
642  * variables.
643  */
644 static DEFINE_SPINLOCK(bind_channel_to_cpu_lock);
645
646 /*
647  * Starting with Win8, we can statically distribute the incoming
648  * channel interrupt load by binding a channel to VCPU.
649  * We do this in a hierarchical fashion:
650  * First distribute the primary channels across available NUMA nodes
651  * and then distribute the subchannels amongst the CPUs in the NUMA
652  * node assigned to the primary channel.
653  *
654  * For pre-win8 hosts or non-performance critical channels we assign the
655  * first CPU in the first NUMA node.
656  */
657 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type)
658 {
659         u32 cur_cpu;
660         bool perf_chn = vmbus_devs[dev_type].perf_device;
661         struct vmbus_channel *primary = channel->primary_channel;
662         int next_node;
663         cpumask_var_t available_mask;
664         struct cpumask *alloced_mask;
665
666         if ((vmbus_proto_version == VERSION_WS2008) ||
667             (vmbus_proto_version == VERSION_WIN7) || (!perf_chn) ||
668             !alloc_cpumask_var(&available_mask, GFP_KERNEL)) {
669                 /*
670                  * Prior to win8, all channel interrupts are
671                  * delivered on cpu 0.
672                  * Also if the channel is not a performance critical
673                  * channel, bind it to cpu 0.
674                  * In case alloc_cpumask_var() fails, bind it to cpu 0.
675                  */
676                 channel->numa_node = 0;
677                 channel->target_cpu = 0;
678                 channel->target_vp = hv_cpu_number_to_vp_number(0);
679                 return;
680         }
681
682         spin_lock(&bind_channel_to_cpu_lock);
683
684         /*
685          * Based on the channel affinity policy, we will assign the NUMA
686          * nodes.
687          */
688
689         if ((channel->affinity_policy == HV_BALANCED) || (!primary)) {
690                 while (true) {
691                         next_node = next_numa_node_id++;
692                         if (next_node == nr_node_ids) {
693                                 next_node = next_numa_node_id = 0;
694                                 continue;
695                         }
696                         if (cpumask_empty(cpumask_of_node(next_node)))
697                                 continue;
698                         break;
699                 }
700                 channel->numa_node = next_node;
701                 primary = channel;
702         }
703         alloced_mask = &hv_context.hv_numa_map[primary->numa_node];
704
705         if (cpumask_weight(alloced_mask) ==
706             cpumask_weight(cpumask_of_node(primary->numa_node))) {
707                 /*
708                  * We have cycled through all the CPUs in the node;
709                  * reset the alloced map.
710                  */
711                 cpumask_clear(alloced_mask);
712         }
713
714         cpumask_xor(available_mask, alloced_mask,
715                     cpumask_of_node(primary->numa_node));
716
717         cur_cpu = -1;
718
719         if (primary->affinity_policy == HV_LOCALIZED) {
720                 /*
721                  * Normally Hyper-V host doesn't create more subchannels
722                  * than there are VCPUs on the node but it is possible when not
723                  * all present VCPUs on the node are initialized by guest.
724                  * Clear the alloced_cpus_in_node to start over.
725                  */
726                 if (cpumask_equal(&primary->alloced_cpus_in_node,
727                                   cpumask_of_node(primary->numa_node)))
728                         cpumask_clear(&primary->alloced_cpus_in_node);
729         }
730
731         while (true) {
732                 cur_cpu = cpumask_next(cur_cpu, available_mask);
733                 if (cur_cpu >= nr_cpu_ids) {
734                         cur_cpu = -1;
735                         cpumask_copy(available_mask,
736                                      cpumask_of_node(primary->numa_node));
737                         continue;
738                 }
739
740                 if (primary->affinity_policy == HV_LOCALIZED) {
741                         /*
742                          * NOTE: in the case of sub-channel, we clear the
743                          * sub-channel related bit(s) in
744                          * primary->alloced_cpus_in_node in
745                          * hv_process_channel_removal(), so when we
746                          * reload drivers like hv_netvsc in SMP guest, here
747                          * we're able to re-allocate
748                          * bit from primary->alloced_cpus_in_node.
749                          */
750                         if (!cpumask_test_cpu(cur_cpu,
751                                               &primary->alloced_cpus_in_node)) {
752                                 cpumask_set_cpu(cur_cpu,
753                                                 &primary->alloced_cpus_in_node);
754                                 cpumask_set_cpu(cur_cpu, alloced_mask);
755                                 break;
756                         }
757                 } else {
758                         cpumask_set_cpu(cur_cpu, alloced_mask);
759                         break;
760                 }
761         }
762
763         channel->target_cpu = cur_cpu;
764         channel->target_vp = hv_cpu_number_to_vp_number(cur_cpu);
765
766         spin_unlock(&bind_channel_to_cpu_lock);
767
768         free_cpumask_var(available_mask);
769 }
770
771 #define UNLOAD_DELAY_UNIT_MS    10              /* 10 milliseconds */
772 #define UNLOAD_WAIT_MS          (100*1000)      /* 100 seconds */
773 #define UNLOAD_WAIT_LOOPS       (UNLOAD_WAIT_MS/UNLOAD_DELAY_UNIT_MS)
774 #define UNLOAD_MSG_MS           (5*1000)        /* Every 5 seconds */
775 #define UNLOAD_MSG_LOOPS        (UNLOAD_MSG_MS/UNLOAD_DELAY_UNIT_MS)
776
777 static void vmbus_wait_for_unload(void)
778 {
779         int cpu;
780         void *page_addr;
781         struct hv_message *msg;
782         struct vmbus_channel_message_header *hdr;
783         u32 message_type, i;
784
785         /*
786          * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was
787          * used for initial contact or to CPU0 depending on host version. When
788          * we're crashing on a different CPU let's hope that IRQ handler on
789          * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still
790          * functional and vmbus_unload_response() will complete
791          * vmbus_connection.unload_event. If not, the last thing we can do is
792          * read message pages for all CPUs directly.
793          *
794          * Wait up to 100 seconds since an Azure host must writeback any dirty
795          * data in its disk cache before the VMbus UNLOAD request will
796          * complete. This flushing has been empirically observed to take up
797          * to 50 seconds in cases with a lot of dirty data, so allow additional
798          * leeway and for inaccuracies in mdelay(). But eventually time out so
799          * that the panic path can't get hung forever in case the response
800          * message isn't seen.
801          */
802         for (i = 1; i <= UNLOAD_WAIT_LOOPS; i++) {
803                 if (completion_done(&vmbus_connection.unload_event))
804                         goto completed;
805
806                 for_each_online_cpu(cpu) {
807                         struct hv_per_cpu_context *hv_cpu
808                                 = per_cpu_ptr(hv_context.cpu_context, cpu);
809
810                         page_addr = hv_cpu->synic_message_page;
811                         msg = (struct hv_message *)page_addr
812                                 + VMBUS_MESSAGE_SINT;
813
814                         message_type = READ_ONCE(msg->header.message_type);
815                         if (message_type == HVMSG_NONE)
816                                 continue;
817
818                         hdr = (struct vmbus_channel_message_header *)
819                                 msg->u.payload;
820
821                         if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE)
822                                 complete(&vmbus_connection.unload_event);
823
824                         vmbus_signal_eom(msg, message_type);
825                 }
826
827                 /*
828                  * Give a notice periodically so someone watching the
829                  * serial output won't think it is completely hung.
830                  */
831                 if (!(i % UNLOAD_MSG_LOOPS))
832                         pr_notice("Waiting for VMBus UNLOAD to complete\n");
833
834                 mdelay(UNLOAD_DELAY_UNIT_MS);
835         }
836         pr_err("Continuing even though VMBus UNLOAD did not complete\n");
837
838 completed:
839         /*
840          * We're crashing and already got the UNLOAD_RESPONSE, cleanup all
841          * maybe-pending messages on all CPUs to be able to receive new
842          * messages after we reconnect.
843          */
844         for_each_online_cpu(cpu) {
845                 struct hv_per_cpu_context *hv_cpu
846                         = per_cpu_ptr(hv_context.cpu_context, cpu);
847
848                 page_addr = hv_cpu->synic_message_page;
849                 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
850                 msg->header.message_type = HVMSG_NONE;
851         }
852 }
853
854 /*
855  * vmbus_unload_response - Handler for the unload response.
856  */
857 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr)
858 {
859         /*
860          * This is a global event; just wakeup the waiting thread.
861          * Once we successfully unload, we can cleanup the monitor state.
862          */
863         complete(&vmbus_connection.unload_event);
864 }
865
866 void vmbus_initiate_unload(bool crash)
867 {
868         struct vmbus_channel_message_header hdr;
869
870         /* Pre-Win2012R2 hosts don't support reconnect */
871         if (vmbus_proto_version < VERSION_WIN8_1)
872                 return;
873
874         init_completion(&vmbus_connection.unload_event);
875         memset(&hdr, 0, sizeof(struct vmbus_channel_message_header));
876         hdr.msgtype = CHANNELMSG_UNLOAD;
877         vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header),
878                        !crash);
879
880         /*
881          * vmbus_initiate_unload() is also called on crash and the crash can be
882          * happening in an interrupt context, where scheduling is impossible.
883          */
884         if (!crash)
885                 wait_for_completion(&vmbus_connection.unload_event);
886         else
887                 vmbus_wait_for_unload();
888 }
889
890 /*
891  * vmbus_onoffer - Handler for channel offers from vmbus in parent partition.
892  *
893  */
894 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr)
895 {
896         struct vmbus_channel_offer_channel *offer;
897         struct vmbus_channel *newchannel;
898
899         offer = (struct vmbus_channel_offer_channel *)hdr;
900
901         /* Allocate the channel object and save this offer. */
902         newchannel = alloc_channel();
903         if (!newchannel) {
904                 vmbus_release_relid(offer->child_relid);
905                 atomic_dec(&vmbus_connection.offer_in_progress);
906                 pr_err("Unable to allocate channel object\n");
907                 return;
908         }
909
910         /*
911          * Setup state for signalling the host.
912          */
913         newchannel->sig_event = VMBUS_EVENT_CONNECTION_ID;
914
915         if (vmbus_proto_version != VERSION_WS2008) {
916                 newchannel->is_dedicated_interrupt =
917                                 (offer->is_dedicated_interrupt != 0);
918                 newchannel->sig_event = offer->connection_id;
919         }
920
921         memcpy(&newchannel->offermsg, offer,
922                sizeof(struct vmbus_channel_offer_channel));
923         newchannel->monitor_grp = (u8)offer->monitorid / 32;
924         newchannel->monitor_bit = (u8)offer->monitorid % 32;
925
926         vmbus_process_offer(newchannel);
927 }
928
929 /*
930  * vmbus_onoffer_rescind - Rescind offer handler.
931  *
932  * We queue a work item to process this offer synchronously
933  */
934 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr)
935 {
936         struct vmbus_channel_rescind_offer *rescind;
937         struct vmbus_channel *channel;
938         struct device *dev;
939
940         rescind = (struct vmbus_channel_rescind_offer *)hdr;
941
942         /*
943          * The offer msg and the corresponding rescind msg
944          * from the host are guranteed to be ordered -
945          * offer comes in first and then the rescind.
946          * Since we process these events in work elements,
947          * and with preemption, we may end up processing
948          * the events out of order. Given that we handle these
949          * work elements on the same CPU, this is possible only
950          * in the case of preemption. In any case wait here
951          * until the offer processing has moved beyond the
952          * point where the channel is discoverable.
953          */
954
955         while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
956                 /*
957                  * We wait here until any channel offer is currently
958                  * being processed.
959                  */
960                 msleep(1);
961         }
962
963         mutex_lock(&vmbus_connection.channel_mutex);
964         channel = relid2channel(rescind->child_relid);
965         mutex_unlock(&vmbus_connection.channel_mutex);
966
967         if (channel == NULL) {
968                 /*
969                  * We failed in processing the offer message;
970                  * we would have cleaned up the relid in that
971                  * failure path.
972                  */
973                 return;
974         }
975
976         /*
977          * Before setting channel->rescind in vmbus_rescind_cleanup(), we
978          * should make sure the channel callback is not running any more.
979          */
980         vmbus_reset_channel_cb(channel);
981
982         /*
983          * Now wait for offer handling to complete.
984          */
985         vmbus_rescind_cleanup(channel);
986         while (READ_ONCE(channel->probe_done) == false) {
987                 /*
988                  * We wait here until any channel offer is currently
989                  * being processed.
990                  */
991                 msleep(1);
992         }
993
994         /*
995          * At this point, the rescind handling can proceed safely.
996          */
997
998         if (channel->device_obj) {
999                 if (channel->chn_rescind_callback) {
1000                         channel->chn_rescind_callback(channel);
1001                         return;
1002                 }
1003                 /*
1004                  * We will have to unregister this device from the
1005                  * driver core.
1006                  */
1007                 dev = get_device(&channel->device_obj->device);
1008                 if (dev) {
1009                         vmbus_device_unregister(channel->device_obj);
1010                         put_device(dev);
1011                 }
1012         } else if (channel->primary_channel != NULL) {
1013                 /*
1014                  * Sub-channel is being rescinded. Following is the channel
1015                  * close sequence when initiated from the driveri (refer to
1016                  * vmbus_close() for details):
1017                  * 1. Close all sub-channels first
1018                  * 2. Then close the primary channel.
1019                  */
1020                 mutex_lock(&vmbus_connection.channel_mutex);
1021                 if (channel->state == CHANNEL_OPEN_STATE) {
1022                         /*
1023                          * The channel is currently not open;
1024                          * it is safe for us to cleanup the channel.
1025                          */
1026                         hv_process_channel_removal(rescind->child_relid);
1027                 } else {
1028                         complete(&channel->rescind_event);
1029                 }
1030                 mutex_unlock(&vmbus_connection.channel_mutex);
1031         }
1032 }
1033
1034 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel)
1035 {
1036         BUG_ON(!is_hvsock_channel(channel));
1037
1038         /* We always get a rescind msg when a connection is closed. */
1039         while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind))
1040                 msleep(1);
1041
1042         vmbus_device_unregister(channel->device_obj);
1043 }
1044 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister);
1045
1046
1047 /*
1048  * vmbus_onoffers_delivered -
1049  * This is invoked when all offers have been delivered.
1050  *
1051  * Nothing to do here.
1052  */
1053 static void vmbus_onoffers_delivered(
1054                         struct vmbus_channel_message_header *hdr)
1055 {
1056 }
1057
1058 /*
1059  * vmbus_onopen_result - Open result handler.
1060  *
1061  * This is invoked when we received a response to our channel open request.
1062  * Find the matching request, copy the response and signal the requesting
1063  * thread.
1064  */
1065 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr)
1066 {
1067         struct vmbus_channel_open_result *result;
1068         struct vmbus_channel_msginfo *msginfo;
1069         struct vmbus_channel_message_header *requestheader;
1070         struct vmbus_channel_open_channel *openmsg;
1071         unsigned long flags;
1072
1073         result = (struct vmbus_channel_open_result *)hdr;
1074
1075         /*
1076          * Find the open msg, copy the result and signal/unblock the wait event
1077          */
1078         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1079
1080         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1081                                 msglistentry) {
1082                 requestheader =
1083                         (struct vmbus_channel_message_header *)msginfo->msg;
1084
1085                 if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) {
1086                         openmsg =
1087                         (struct vmbus_channel_open_channel *)msginfo->msg;
1088                         if (openmsg->child_relid == result->child_relid &&
1089                             openmsg->openid == result->openid) {
1090                                 memcpy(&msginfo->response.open_result,
1091                                        result,
1092                                        sizeof(
1093                                         struct vmbus_channel_open_result));
1094                                 complete(&msginfo->waitevent);
1095                                 break;
1096                         }
1097                 }
1098         }
1099         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1100 }
1101
1102 /*
1103  * vmbus_ongpadl_created - GPADL created handler.
1104  *
1105  * This is invoked when we received a response to our gpadl create request.
1106  * Find the matching request, copy the response and signal the requesting
1107  * thread.
1108  */
1109 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr)
1110 {
1111         struct vmbus_channel_gpadl_created *gpadlcreated;
1112         struct vmbus_channel_msginfo *msginfo;
1113         struct vmbus_channel_message_header *requestheader;
1114         struct vmbus_channel_gpadl_header *gpadlheader;
1115         unsigned long flags;
1116
1117         gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr;
1118
1119         /*
1120          * Find the establish msg, copy the result and signal/unblock the wait
1121          * event
1122          */
1123         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1124
1125         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1126                                 msglistentry) {
1127                 requestheader =
1128                         (struct vmbus_channel_message_header *)msginfo->msg;
1129
1130                 if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) {
1131                         gpadlheader =
1132                         (struct vmbus_channel_gpadl_header *)requestheader;
1133
1134                         if ((gpadlcreated->child_relid ==
1135                              gpadlheader->child_relid) &&
1136                             (gpadlcreated->gpadl == gpadlheader->gpadl)) {
1137                                 memcpy(&msginfo->response.gpadl_created,
1138                                        gpadlcreated,
1139                                        sizeof(
1140                                         struct vmbus_channel_gpadl_created));
1141                                 complete(&msginfo->waitevent);
1142                                 break;
1143                         }
1144                 }
1145         }
1146         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1147 }
1148
1149 /*
1150  * vmbus_ongpadl_torndown - GPADL torndown handler.
1151  *
1152  * This is invoked when we received a response to our gpadl teardown request.
1153  * Find the matching request, copy the response and signal the requesting
1154  * thread.
1155  */
1156 static void vmbus_ongpadl_torndown(
1157                         struct vmbus_channel_message_header *hdr)
1158 {
1159         struct vmbus_channel_gpadl_torndown *gpadl_torndown;
1160         struct vmbus_channel_msginfo *msginfo;
1161         struct vmbus_channel_message_header *requestheader;
1162         struct vmbus_channel_gpadl_teardown *gpadl_teardown;
1163         unsigned long flags;
1164
1165         gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr;
1166
1167         /*
1168          * Find the open msg, copy the result and signal/unblock the wait event
1169          */
1170         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1171
1172         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1173                                 msglistentry) {
1174                 requestheader =
1175                         (struct vmbus_channel_message_header *)msginfo->msg;
1176
1177                 if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) {
1178                         gpadl_teardown =
1179                         (struct vmbus_channel_gpadl_teardown *)requestheader;
1180
1181                         if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) {
1182                                 memcpy(&msginfo->response.gpadl_torndown,
1183                                        gpadl_torndown,
1184                                        sizeof(
1185                                         struct vmbus_channel_gpadl_torndown));
1186                                 complete(&msginfo->waitevent);
1187                                 break;
1188                         }
1189                 }
1190         }
1191         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1192 }
1193
1194 /*
1195  * vmbus_onversion_response - Version response handler
1196  *
1197  * This is invoked when we received a response to our initiate contact request.
1198  * Find the matching request, copy the response and signal the requesting
1199  * thread.
1200  */
1201 static void vmbus_onversion_response(
1202                 struct vmbus_channel_message_header *hdr)
1203 {
1204         struct vmbus_channel_msginfo *msginfo;
1205         struct vmbus_channel_message_header *requestheader;
1206         struct vmbus_channel_version_response *version_response;
1207         unsigned long flags;
1208
1209         version_response = (struct vmbus_channel_version_response *)hdr;
1210         spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1211
1212         list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1213                                 msglistentry) {
1214                 requestheader =
1215                         (struct vmbus_channel_message_header *)msginfo->msg;
1216
1217                 if (requestheader->msgtype ==
1218                     CHANNELMSG_INITIATE_CONTACT) {
1219                         memcpy(&msginfo->response.version_response,
1220                               version_response,
1221                               sizeof(struct vmbus_channel_version_response));
1222                         complete(&msginfo->waitevent);
1223                 }
1224         }
1225         spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1226 }
1227
1228 /* Channel message dispatch table */
1229 const struct vmbus_channel_message_table_entry
1230 channel_message_table[CHANNELMSG_COUNT] = {
1231         { CHANNELMSG_INVALID,                   0, NULL },
1232         { CHANNELMSG_OFFERCHANNEL,              0, vmbus_onoffer },
1233         { CHANNELMSG_RESCIND_CHANNELOFFER,      0, vmbus_onoffer_rescind },
1234         { CHANNELMSG_REQUESTOFFERS,             0, NULL },
1235         { CHANNELMSG_ALLOFFERS_DELIVERED,       1, vmbus_onoffers_delivered },
1236         { CHANNELMSG_OPENCHANNEL,               0, NULL },
1237         { CHANNELMSG_OPENCHANNEL_RESULT,        1, vmbus_onopen_result },
1238         { CHANNELMSG_CLOSECHANNEL,              0, NULL },
1239         { CHANNELMSG_GPADL_HEADER,              0, NULL },
1240         { CHANNELMSG_GPADL_BODY,                0, NULL },
1241         { CHANNELMSG_GPADL_CREATED,             1, vmbus_ongpadl_created },
1242         { CHANNELMSG_GPADL_TEARDOWN,            0, NULL },
1243         { CHANNELMSG_GPADL_TORNDOWN,            1, vmbus_ongpadl_torndown },
1244         { CHANNELMSG_RELID_RELEASED,            0, NULL },
1245         { CHANNELMSG_INITIATE_CONTACT,          0, NULL },
1246         { CHANNELMSG_VERSION_RESPONSE,          1, vmbus_onversion_response },
1247         { CHANNELMSG_UNLOAD,                    0, NULL },
1248         { CHANNELMSG_UNLOAD_RESPONSE,           1, vmbus_unload_response },
1249         { CHANNELMSG_18,                        0, NULL },
1250         { CHANNELMSG_19,                        0, NULL },
1251         { CHANNELMSG_20,                        0, NULL },
1252         { CHANNELMSG_TL_CONNECT_REQUEST,        0, NULL },
1253         { CHANNELMSG_22,                        0, NULL },
1254         { CHANNELMSG_TL_CONNECT_RESULT,         0, NULL },
1255 };
1256
1257 /*
1258  * vmbus_onmessage - Handler for channel protocol messages.
1259  *
1260  * This is invoked in the vmbus worker thread context.
1261  */
1262 void vmbus_onmessage(void *context)
1263 {
1264         struct hv_message *msg = context;
1265         struct vmbus_channel_message_header *hdr;
1266
1267         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1268
1269         /*
1270          * vmbus_on_msg_dpc() makes sure the hdr->msgtype here can not go
1271          * out of bound and the message_handler pointer can not be NULL.
1272          */
1273         channel_message_table[hdr->msgtype].message_handler(hdr);
1274 }
1275
1276 /*
1277  * vmbus_request_offers - Send a request to get all our pending offers.
1278  */
1279 int vmbus_request_offers(void)
1280 {
1281         struct vmbus_channel_message_header *msg;
1282         struct vmbus_channel_msginfo *msginfo;
1283         int ret;
1284
1285         msginfo = kmalloc(sizeof(*msginfo) +
1286                           sizeof(struct vmbus_channel_message_header),
1287                           GFP_KERNEL);
1288         if (!msginfo)
1289                 return -ENOMEM;
1290
1291         msg = (struct vmbus_channel_message_header *)msginfo->msg;
1292
1293         msg->msgtype = CHANNELMSG_REQUESTOFFERS;
1294
1295
1296         ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header),
1297                              true);
1298         if (ret != 0) {
1299                 pr_err("Unable to request offers - %d\n", ret);
1300
1301                 goto cleanup;
1302         }
1303
1304 cleanup:
1305         kfree(msginfo);
1306
1307         return ret;
1308 }
1309
1310 /*
1311  * Retrieve the (sub) channel on which to send an outgoing request.
1312  * When a primary channel has multiple sub-channels, we try to
1313  * distribute the load equally amongst all available channels.
1314  */
1315 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary)
1316 {
1317         struct list_head *cur, *tmp;
1318         int cur_cpu;
1319         struct vmbus_channel *cur_channel;
1320         struct vmbus_channel *outgoing_channel = primary;
1321         int next_channel;
1322         int i = 1;
1323
1324         if (list_empty(&primary->sc_list))
1325                 return outgoing_channel;
1326
1327         next_channel = primary->next_oc++;
1328
1329         if (next_channel > (primary->num_sc)) {
1330                 primary->next_oc = 0;
1331                 return outgoing_channel;
1332         }
1333
1334         cur_cpu = hv_cpu_number_to_vp_number(smp_processor_id());
1335         list_for_each_safe(cur, tmp, &primary->sc_list) {
1336                 cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1337                 if (cur_channel->state != CHANNEL_OPENED_STATE)
1338                         continue;
1339
1340                 if (cur_channel->target_vp == cur_cpu)
1341                         return cur_channel;
1342
1343                 if (i == next_channel)
1344                         return cur_channel;
1345
1346                 i++;
1347         }
1348
1349         return outgoing_channel;
1350 }
1351 EXPORT_SYMBOL_GPL(vmbus_get_outgoing_channel);
1352
1353 static void invoke_sc_cb(struct vmbus_channel *primary_channel)
1354 {
1355         struct list_head *cur, *tmp;
1356         struct vmbus_channel *cur_channel;
1357
1358         if (primary_channel->sc_creation_callback == NULL)
1359                 return;
1360
1361         list_for_each_safe(cur, tmp, &primary_channel->sc_list) {
1362                 cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1363
1364                 primary_channel->sc_creation_callback(cur_channel);
1365         }
1366 }
1367
1368 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1369                                 void (*sc_cr_cb)(struct vmbus_channel *new_sc))
1370 {
1371         primary_channel->sc_creation_callback = sc_cr_cb;
1372 }
1373 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback);
1374
1375 bool vmbus_are_subchannels_present(struct vmbus_channel *primary)
1376 {
1377         bool ret;
1378
1379         ret = !list_empty(&primary->sc_list);
1380
1381         if (ret) {
1382                 /*
1383                  * Invoke the callback on sub-channel creation.
1384                  * This will present a uniform interface to the
1385                  * clients.
1386                  */
1387                 invoke_sc_cb(primary);
1388         }
1389
1390         return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(vmbus_are_subchannels_present);
1393
1394 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1395                 void (*chn_rescind_cb)(struct vmbus_channel *))
1396 {
1397         channel->chn_rescind_callback = chn_rescind_cb;
1398 }
1399 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback);