GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73
74
75
76 /*
77  * Message Types
78  */
79
80 enum dm_message_type {
81         /*
82          * Version 0.3
83          */
84         DM_ERROR                        = 0,
85         DM_VERSION_REQUEST              = 1,
86         DM_VERSION_RESPONSE             = 2,
87         DM_CAPABILITIES_REPORT          = 3,
88         DM_CAPABILITIES_RESPONSE        = 4,
89         DM_STATUS_REPORT                = 5,
90         DM_BALLOON_REQUEST              = 6,
91         DM_BALLOON_RESPONSE             = 7,
92         DM_UNBALLOON_REQUEST            = 8,
93         DM_UNBALLOON_RESPONSE           = 9,
94         DM_MEM_HOT_ADD_REQUEST          = 10,
95         DM_MEM_HOT_ADD_RESPONSE         = 11,
96         DM_VERSION_03_MAX               = 11,
97         /*
98          * Version 1.0.
99          */
100         DM_INFO_MESSAGE                 = 12,
101         DM_VERSION_1_MAX                = 12
102 };
103
104
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109
110 union dm_version {
111         struct {
112                 __u16 minor_version;
113                 __u16 major_version;
114         };
115         __u32 version;
116 } __packed;
117
118
119 union dm_caps {
120         struct {
121                 __u64 balloon:1;
122                 __u64 hot_add:1;
123                 /*
124                  * To support guests that may have alignment
125                  * limitations on hot-add, the guest can specify
126                  * its alignment requirements; a value of n
127                  * represents an alignment of 2^n in mega bytes.
128                  */
129                 __u64 hot_add_alignment:4;
130                 __u64 reservedz:58;
131         } cap_bits;
132         __u64 caps;
133 } __packed;
134
135 union dm_mem_page_range {
136         struct  {
137                 /*
138                  * The PFN number of the first page in the range.
139                  * 40 bits is the architectural limit of a PFN
140                  * number for AMD64.
141                  */
142                 __u64 start_page:40;
143                 /*
144                  * The number of pages in the range.
145                  */
146                 __u64 page_cnt:24;
147         } finfo;
148         __u64  page_range;
149 } __packed;
150
151
152
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160
161 struct dm_header {
162         __u16 type;
163         __u16 size;
164         __u32 trans_id;
165 } __packed;
166
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171
172 struct dm_message {
173         struct dm_header hdr;
174         __u8 data[]; /* enclosed message */
175 } __packed;
176
177
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191
192 struct dm_version_request {
193         struct dm_header hdr;
194         union dm_version version;
195         __u32 is_last_attempt:1;
196         __u32 reservedz:31;
197 } __packed;
198
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209
210 struct dm_version_response {
211         struct dm_header hdr;
212         __u64 is_accepted:1;
213         __u64 reservedz:63;
214 } __packed;
215
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220
221 struct dm_capabilities {
222         struct dm_header hdr;
223         union dm_caps caps;
224         __u64 min_page_cnt;
225         __u64 max_page_number;
226 } __packed;
227
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237
238 struct dm_capabilities_resp_msg {
239         struct dm_header hdr;
240         __u64 is_accepted:1;
241         __u64 reservedz:63;
242 } __packed;
243
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *                 in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *          calculated as File Cache Page Fault Count - Page Read Count.
257  *          This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263
264 struct dm_status {
265         struct dm_header hdr;
266         __u64 num_avail;
267         __u64 num_committed;
268         __u64 page_file_size;
269         __u64 zero_free;
270         __u32 page_file_writes;
271         __u32 io_diff;
272 } __packed;
273
274
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282
283 struct dm_balloon {
284         struct dm_header hdr;
285         __u32 num_pages;
286         __u32 reservedz;
287 } __packed;
288
289
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303
304 struct dm_balloon_response {
305         struct dm_header hdr;
306         __u32 reservedz;
307         __u32 more_pages:1;
308         __u32 range_count:31;
309         union dm_mem_page_range range_array[];
310 } __packed;
311
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326
327 struct dm_unballoon_request {
328         struct dm_header hdr;
329         __u32 more_pages:1;
330         __u32 reservedz:31;
331         __u32 range_count;
332         union dm_mem_page_range range_array[];
333 } __packed;
334
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340
341 struct dm_unballoon_response {
342         struct dm_header hdr;
343 } __packed;
344
345
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354
355 struct dm_hot_add {
356         struct dm_header hdr;
357         union dm_mem_page_range range;
358 } __packed;
359
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379
380 struct dm_hot_add_response {
381         struct dm_header hdr;
382         __u32 page_count;
383         __u32 result;
384 } __packed;
385
386 /*
387  * Types of information sent from host to the guest.
388  */
389
390 enum dm_info_type {
391         INFO_TYPE_MAX_PAGE_CNT = 0,
392         MAX_INFO_TYPE
393 };
394
395
396 /*
397  * Header for the information message.
398  */
399
400 struct dm_info_header {
401         enum dm_info_type type;
402         __u32 data_size;
403 } __packed;
404
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413
414 struct dm_info_msg {
415         struct dm_header hdr;
416         __u32 reserved;
417         __u32 info_size;
418         __u8  info[];
419 };
420
421 /*
422  * End protocol definitions.
423  */
424
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436
437 struct hv_hotadd_state {
438         struct list_head list;
439         unsigned long start_pfn;
440         unsigned long covered_start_pfn;
441         unsigned long covered_end_pfn;
442         unsigned long ha_end_pfn;
443         unsigned long end_pfn;
444         /*
445          * A list of gaps.
446          */
447         struct list_head gap_list;
448 };
449
450 struct hv_hotadd_gap {
451         struct list_head list;
452         unsigned long start_pfn;
453         unsigned long end_pfn;
454 };
455
456 struct balloon_state {
457         __u32 num_pages;
458         struct work_struct wrk;
459 };
460
461 struct hot_add_wrk {
462         union dm_mem_page_range ha_page_range;
463         union dm_mem_page_range ha_region_range;
464         struct work_struct wrk;
465 };
466
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486
487 static int dm_ring_size = (5 * PAGE_SIZE);
488
489 /*
490  * Driver specific state.
491  */
492
493 enum hv_dm_state {
494         DM_INITIALIZING = 0,
495         DM_INITIALIZED,
496         DM_BALLOON_UP,
497         DM_BALLOON_DOWN,
498         DM_HOT_ADD,
499         DM_INIT_ERROR
500 };
501
502
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M     512
506 #define HA_CHUNK (32 * 1024)
507
508 struct hv_dynmem_device {
509         struct hv_device *dev;
510         enum hv_dm_state state;
511         struct completion host_event;
512         struct completion config_event;
513
514         /*
515          * Number of pages we have currently ballooned out.
516          */
517         unsigned int num_pages_ballooned;
518         unsigned int num_pages_onlined;
519         unsigned int num_pages_added;
520
521         /*
522          * State to manage the ballooning (up) operation.
523          */
524         struct balloon_state balloon_wrk;
525
526         /*
527          * State to execute the "hot-add" operation.
528          */
529         struct hot_add_wrk ha_wrk;
530
531         /*
532          * This state tracks if the host has specified a hot-add
533          * region.
534          */
535         bool host_specified_ha_region;
536
537         /*
538          * State to synchronize hot-add.
539          */
540         struct completion  ol_waitevent;
541         bool ha_waiting;
542         /*
543          * This thread handles hot-add
544          * requests from the host as well as notifying
545          * the host with regards to memory pressure in
546          * the guest.
547          */
548         struct task_struct *thread;
549
550         /*
551          * Protects ha_region_list, num_pages_onlined counter and individual
552          * regions from ha_region_list.
553          */
554         spinlock_t ha_lock;
555
556         /*
557          * A list of hot-add regions.
558          */
559         struct list_head ha_region_list;
560
561         /*
562          * We start with the highest version we can support
563          * and downgrade based on the host; we save here the
564          * next version to try.
565          */
566         __u32 next_version;
567
568         /*
569          * The negotiated version agreed by host.
570          */
571         __u32 version;
572 };
573
574 static struct hv_dynmem_device dm_device;
575
576 static void post_status(struct hv_dynmem_device *dm);
577
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
580                               void *v)
581 {
582         struct memory_notify *mem = (struct memory_notify *)v;
583         unsigned long flags;
584
585         switch (val) {
586         case MEM_ONLINE:
587         case MEM_CANCEL_ONLINE:
588                 if (dm_device.ha_waiting) {
589                         dm_device.ha_waiting = false;
590                         complete(&dm_device.ol_waitevent);
591                 }
592                 break;
593
594         case MEM_OFFLINE:
595                 spin_lock_irqsave(&dm_device.ha_lock, flags);
596                 dm_device.num_pages_onlined -= mem->nr_pages;
597                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
598                 break;
599         case MEM_GOING_ONLINE:
600         case MEM_GOING_OFFLINE:
601         case MEM_CANCEL_OFFLINE:
602                 break;
603         }
604         return NOTIFY_OK;
605 }
606
607 static struct notifier_block hv_memory_nb = {
608         .notifier_call = hv_memory_notifier,
609         .priority = 0
610 };
611
612 /* Check if the particular page is backed and can be onlined and online it. */
613 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
614 {
615         unsigned long cur_start_pgp;
616         unsigned long cur_end_pgp;
617         struct hv_hotadd_gap *gap;
618
619         cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
620         cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
621
622         /* The page is not backed. */
623         if (((unsigned long)pg < cur_start_pgp) ||
624             ((unsigned long)pg >= cur_end_pgp))
625                 return;
626
627         /* Check for gaps. */
628         list_for_each_entry(gap, &has->gap_list, list) {
629                 cur_start_pgp = (unsigned long)
630                         pfn_to_page(gap->start_pfn);
631                 cur_end_pgp = (unsigned long)
632                         pfn_to_page(gap->end_pfn);
633                 if (((unsigned long)pg >= cur_start_pgp) &&
634                     ((unsigned long)pg < cur_end_pgp)) {
635                         return;
636                 }
637         }
638
639         /* This frame is currently backed; online the page. */
640         __online_page_set_limits(pg);
641         __online_page_increment_counters(pg);
642         __online_page_free(pg);
643
644         WARN_ON_ONCE(!spin_is_locked(&dm_device.ha_lock));
645         dm_device.num_pages_onlined++;
646 }
647
648 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
649                                 unsigned long start_pfn, unsigned long size)
650 {
651         int i;
652
653         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
654         for (i = 0; i < size; i++)
655                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
656 }
657
658 static void hv_mem_hot_add(unsigned long start, unsigned long size,
659                                 unsigned long pfn_count,
660                                 struct hv_hotadd_state *has)
661 {
662         int ret = 0;
663         int i, nid;
664         unsigned long start_pfn;
665         unsigned long processed_pfn;
666         unsigned long total_pfn = pfn_count;
667         unsigned long flags;
668
669         for (i = 0; i < (size/HA_CHUNK); i++) {
670                 start_pfn = start + (i * HA_CHUNK);
671
672                 spin_lock_irqsave(&dm_device.ha_lock, flags);
673                 has->ha_end_pfn +=  HA_CHUNK;
674
675                 if (total_pfn > HA_CHUNK) {
676                         processed_pfn = HA_CHUNK;
677                         total_pfn -= HA_CHUNK;
678                 } else {
679                         processed_pfn = total_pfn;
680                         total_pfn = 0;
681                 }
682
683                 has->covered_end_pfn +=  processed_pfn;
684                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
685
686                 init_completion(&dm_device.ol_waitevent);
687                 dm_device.ha_waiting = !memhp_auto_online;
688
689                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
690                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
691                                 (HA_CHUNK << PAGE_SHIFT));
692
693                 if (ret) {
694                         pr_warn("hot_add memory failed error is %d\n", ret);
695                         if (ret == -EEXIST) {
696                                 /*
697                                  * This error indicates that the error
698                                  * is not a transient failure. This is the
699                                  * case where the guest's physical address map
700                                  * precludes hot adding memory. Stop all further
701                                  * memory hot-add.
702                                  */
703                                 do_hot_add = false;
704                         }
705                         spin_lock_irqsave(&dm_device.ha_lock, flags);
706                         has->ha_end_pfn -= HA_CHUNK;
707                         has->covered_end_pfn -=  processed_pfn;
708                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
709                         break;
710                 }
711
712                 /*
713                  * Wait for the memory block to be onlined when memory onlining
714                  * is done outside of kernel (memhp_auto_online). Since the hot
715                  * add has succeeded, it is ok to proceed even if the pages in
716                  * the hot added region have not been "onlined" within the
717                  * allowed time.
718                  */
719                 if (dm_device.ha_waiting)
720                         wait_for_completion_timeout(&dm_device.ol_waitevent,
721                                                     5*HZ);
722                 post_status(&dm_device);
723         }
724 }
725
726 static void hv_online_page(struct page *pg)
727 {
728         struct hv_hotadd_state *has;
729         unsigned long cur_start_pgp;
730         unsigned long cur_end_pgp;
731         unsigned long flags;
732
733         spin_lock_irqsave(&dm_device.ha_lock, flags);
734         list_for_each_entry(has, &dm_device.ha_region_list, list) {
735                 cur_start_pgp = (unsigned long)
736                         pfn_to_page(has->start_pfn);
737                 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
738
739                 /* The page belongs to a different HAS. */
740                 if (((unsigned long)pg < cur_start_pgp) ||
741                     ((unsigned long)pg >= cur_end_pgp))
742                         continue;
743
744                 hv_page_online_one(has, pg);
745                 break;
746         }
747         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
748 }
749
750 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
751 {
752         struct hv_hotadd_state *has;
753         struct hv_hotadd_gap *gap;
754         unsigned long residual, new_inc;
755         int ret = 0;
756         unsigned long flags;
757
758         spin_lock_irqsave(&dm_device.ha_lock, flags);
759         list_for_each_entry(has, &dm_device.ha_region_list, list) {
760                 /*
761                  * If the pfn range we are dealing with is not in the current
762                  * "hot add block", move on.
763                  */
764                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
765                         continue;
766
767                 /*
768                  * If the current start pfn is not where the covered_end
769                  * is, create a gap and update covered_end_pfn.
770                  */
771                 if (has->covered_end_pfn != start_pfn) {
772                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
773                         if (!gap) {
774                                 ret = -ENOMEM;
775                                 break;
776                         }
777
778                         INIT_LIST_HEAD(&gap->list);
779                         gap->start_pfn = has->covered_end_pfn;
780                         gap->end_pfn = start_pfn;
781                         list_add_tail(&gap->list, &has->gap_list);
782
783                         has->covered_end_pfn = start_pfn;
784                 }
785
786                 /*
787                  * If the current hot add-request extends beyond
788                  * our current limit; extend it.
789                  */
790                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
791                         residual = (start_pfn + pfn_cnt - has->end_pfn);
792                         /*
793                          * Extend the region by multiples of HA_CHUNK.
794                          */
795                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
796                         if (residual % HA_CHUNK)
797                                 new_inc += HA_CHUNK;
798
799                         has->end_pfn += new_inc;
800                 }
801
802                 ret = 1;
803                 break;
804         }
805         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
806
807         return ret;
808 }
809
810 static unsigned long handle_pg_range(unsigned long pg_start,
811                                         unsigned long pg_count)
812 {
813         unsigned long start_pfn = pg_start;
814         unsigned long pfn_cnt = pg_count;
815         unsigned long size;
816         struct hv_hotadd_state *has;
817         unsigned long pgs_ol = 0;
818         unsigned long old_covered_state;
819         unsigned long res = 0, flags;
820
821         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
822                 pg_start);
823
824         spin_lock_irqsave(&dm_device.ha_lock, flags);
825         list_for_each_entry(has, &dm_device.ha_region_list, list) {
826                 /*
827                  * If the pfn range we are dealing with is not in the current
828                  * "hot add block", move on.
829                  */
830                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
831                         continue;
832
833                 old_covered_state = has->covered_end_pfn;
834
835                 if (start_pfn < has->ha_end_pfn) {
836                         /*
837                          * This is the case where we are backing pages
838                          * in an already hot added region. Bring
839                          * these pages online first.
840                          */
841                         pgs_ol = has->ha_end_pfn - start_pfn;
842                         if (pgs_ol > pfn_cnt)
843                                 pgs_ol = pfn_cnt;
844
845                         has->covered_end_pfn +=  pgs_ol;
846                         pfn_cnt -= pgs_ol;
847                         /*
848                          * Check if the corresponding memory block is already
849                          * online. It is possible to observe struct pages still
850                          * being uninitialized here so check section instead.
851                          * In case the section is online we need to bring the
852                          * rest of pfns (which were not backed previously)
853                          * online too.
854                          */
855                         if (start_pfn > has->start_pfn &&
856                             online_section_nr(pfn_to_section_nr(start_pfn)))
857                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
858
859                 }
860
861                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
862                         /*
863                          * We have some residual hot add range
864                          * that needs to be hot added; hot add
865                          * it now. Hot add a multiple of
866                          * of HA_CHUNK that fully covers the pages
867                          * we have.
868                          */
869                         size = (has->end_pfn - has->ha_end_pfn);
870                         if (pfn_cnt <= size) {
871                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
872                                 if (pfn_cnt % HA_CHUNK)
873                                         size += HA_CHUNK;
874                         } else {
875                                 pfn_cnt = size;
876                         }
877                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
878                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
879                         spin_lock_irqsave(&dm_device.ha_lock, flags);
880                 }
881                 /*
882                  * If we managed to online any pages that were given to us,
883                  * we declare success.
884                  */
885                 res = has->covered_end_pfn - old_covered_state;
886                 break;
887         }
888         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
889
890         return res;
891 }
892
893 static unsigned long process_hot_add(unsigned long pg_start,
894                                         unsigned long pfn_cnt,
895                                         unsigned long rg_start,
896                                         unsigned long rg_size)
897 {
898         struct hv_hotadd_state *ha_region = NULL;
899         int covered;
900         unsigned long flags;
901
902         if (pfn_cnt == 0)
903                 return 0;
904
905         if (!dm_device.host_specified_ha_region) {
906                 covered = pfn_covered(pg_start, pfn_cnt);
907                 if (covered < 0)
908                         return 0;
909
910                 if (covered)
911                         goto do_pg_range;
912         }
913
914         /*
915          * If the host has specified a hot-add range; deal with it first.
916          */
917
918         if (rg_size != 0) {
919                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
920                 if (!ha_region)
921                         return 0;
922
923                 INIT_LIST_HEAD(&ha_region->list);
924                 INIT_LIST_HEAD(&ha_region->gap_list);
925
926                 ha_region->start_pfn = rg_start;
927                 ha_region->ha_end_pfn = rg_start;
928                 ha_region->covered_start_pfn = pg_start;
929                 ha_region->covered_end_pfn = pg_start;
930                 ha_region->end_pfn = rg_start + rg_size;
931
932                 spin_lock_irqsave(&dm_device.ha_lock, flags);
933                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
934                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
935         }
936
937 do_pg_range:
938         /*
939          * Process the page range specified; bringing them
940          * online if possible.
941          */
942         return handle_pg_range(pg_start, pfn_cnt);
943 }
944
945 #endif
946
947 static void hot_add_req(struct work_struct *dummy)
948 {
949         struct dm_hot_add_response resp;
950 #ifdef CONFIG_MEMORY_HOTPLUG
951         unsigned long pg_start, pfn_cnt;
952         unsigned long rg_start, rg_sz;
953 #endif
954         struct hv_dynmem_device *dm = &dm_device;
955
956         memset(&resp, 0, sizeof(struct dm_hot_add_response));
957         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
958         resp.hdr.size = sizeof(struct dm_hot_add_response);
959
960 #ifdef CONFIG_MEMORY_HOTPLUG
961         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
962         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
963
964         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
965         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
966
967         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
968                 unsigned long region_size;
969                 unsigned long region_start;
970
971                 /*
972                  * The host has not specified the hot-add region.
973                  * Based on the hot-add page range being specified,
974                  * compute a hot-add region that can cover the pages
975                  * that need to be hot-added while ensuring the alignment
976                  * and size requirements of Linux as it relates to hot-add.
977                  */
978                 region_start = pg_start;
979                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
980                 if (pfn_cnt % HA_CHUNK)
981                         region_size += HA_CHUNK;
982
983                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
984
985                 rg_start = region_start;
986                 rg_sz = region_size;
987         }
988
989         if (do_hot_add)
990                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
991                                                 rg_start, rg_sz);
992
993         dm->num_pages_added += resp.page_count;
994 #endif
995         /*
996          * The result field of the response structure has the
997          * following semantics:
998          *
999          * 1. If all or some pages hot-added: Guest should return success.
1000          *
1001          * 2. If no pages could be hot-added:
1002          *
1003          * If the guest returns success, then the host
1004          * will not attempt any further hot-add operations. This
1005          * signifies a permanent failure.
1006          *
1007          * If the guest returns failure, then this failure will be
1008          * treated as a transient failure and the host may retry the
1009          * hot-add operation after some delay.
1010          */
1011         if (resp.page_count > 0)
1012                 resp.result = 1;
1013         else if (!do_hot_add)
1014                 resp.result = 1;
1015         else
1016                 resp.result = 0;
1017
1018         if (!do_hot_add || (resp.page_count == 0))
1019                 pr_info("Memory hot add failed\n");
1020
1021         dm->state = DM_INITIALIZED;
1022         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1023         vmbus_sendpacket(dm->dev->channel, &resp,
1024                         sizeof(struct dm_hot_add_response),
1025                         (unsigned long)NULL,
1026                         VM_PKT_DATA_INBAND, 0);
1027 }
1028
1029 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1030 {
1031         struct dm_info_header *info_hdr;
1032
1033         info_hdr = (struct dm_info_header *)msg->info;
1034
1035         switch (info_hdr->type) {
1036         case INFO_TYPE_MAX_PAGE_CNT:
1037                 if (info_hdr->data_size == sizeof(__u64)) {
1038                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1039
1040                         pr_info("Max. dynamic memory size: %llu MB\n",
1041                                 (*max_page_count) >> (20 - PAGE_SHIFT));
1042                 }
1043
1044                 break;
1045         default:
1046                 pr_info("Received Unknown type: %d\n", info_hdr->type);
1047         }
1048 }
1049
1050 static unsigned long compute_balloon_floor(void)
1051 {
1052         unsigned long min_pages;
1053 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1054         /* Simple continuous piecewiese linear function:
1055          *  max MiB -> min MiB  gradient
1056          *       0         0
1057          *      16        16
1058          *      32        24
1059          *     128        72    (1/2)
1060          *     512       168    (1/4)
1061          *    2048       360    (1/8)
1062          *    8192       744    (1/16)
1063          *   32768      1512    (1/32)
1064          */
1065         if (totalram_pages < MB2PAGES(128))
1066                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1067         else if (totalram_pages < MB2PAGES(512))
1068                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1069         else if (totalram_pages < MB2PAGES(2048))
1070                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1071         else if (totalram_pages < MB2PAGES(8192))
1072                 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1073         else
1074                 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1075 #undef MB2PAGES
1076         return min_pages;
1077 }
1078
1079 /*
1080  * Post our status as it relates memory pressure to the
1081  * host. Host expects the guests to post this status
1082  * periodically at 1 second intervals.
1083  *
1084  * The metrics specified in this protocol are very Windows
1085  * specific and so we cook up numbers here to convey our memory
1086  * pressure.
1087  */
1088
1089 static void post_status(struct hv_dynmem_device *dm)
1090 {
1091         struct dm_status status;
1092         unsigned long now = jiffies;
1093         unsigned long last_post = last_post_time;
1094
1095         if (pressure_report_delay > 0) {
1096                 --pressure_report_delay;
1097                 return;
1098         }
1099
1100         if (!time_after(now, (last_post_time + HZ)))
1101                 return;
1102
1103         memset(&status, 0, sizeof(struct dm_status));
1104         status.hdr.type = DM_STATUS_REPORT;
1105         status.hdr.size = sizeof(struct dm_status);
1106         status.hdr.trans_id = atomic_inc_return(&trans_id);
1107
1108         /*
1109          * The host expects the guest to report free and committed memory.
1110          * Furthermore, the host expects the pressure information to include
1111          * the ballooned out pages. For a given amount of memory that we are
1112          * managing we need to compute a floor below which we should not
1113          * balloon. Compute this and add it to the pressure report.
1114          * We also need to report all offline pages (num_pages_added -
1115          * num_pages_onlined) as committed to the host, otherwise it can try
1116          * asking us to balloon them out.
1117          */
1118         status.num_avail = si_mem_available();
1119         status.num_committed = vm_memory_committed() +
1120                 dm->num_pages_ballooned +
1121                 (dm->num_pages_added > dm->num_pages_onlined ?
1122                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1123                 compute_balloon_floor();
1124
1125         /*
1126          * If our transaction ID is no longer current, just don't
1127          * send the status. This can happen if we were interrupted
1128          * after we picked our transaction ID.
1129          */
1130         if (status.hdr.trans_id != atomic_read(&trans_id))
1131                 return;
1132
1133         /*
1134          * If the last post time that we sampled has changed,
1135          * we have raced, don't post the status.
1136          */
1137         if (last_post != last_post_time)
1138                 return;
1139
1140         last_post_time = jiffies;
1141         vmbus_sendpacket(dm->dev->channel, &status,
1142                                 sizeof(struct dm_status),
1143                                 (unsigned long)NULL,
1144                                 VM_PKT_DATA_INBAND, 0);
1145
1146 }
1147
1148 static void free_balloon_pages(struct hv_dynmem_device *dm,
1149                          union dm_mem_page_range *range_array)
1150 {
1151         int num_pages = range_array->finfo.page_cnt;
1152         __u64 start_frame = range_array->finfo.start_page;
1153         struct page *pg;
1154         int i;
1155
1156         for (i = 0; i < num_pages; i++) {
1157                 pg = pfn_to_page(i + start_frame);
1158                 __free_page(pg);
1159                 dm->num_pages_ballooned--;
1160         }
1161 }
1162
1163
1164
1165 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1166                                         unsigned int num_pages,
1167                                         struct dm_balloon_response *bl_resp,
1168                                         int alloc_unit)
1169 {
1170         unsigned int i = 0;
1171         struct page *pg;
1172
1173         for (i = 0; i < num_pages / alloc_unit; i++) {
1174                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1175                         PAGE_SIZE)
1176                         return i * alloc_unit;
1177
1178                 /*
1179                  * We execute this code in a thread context. Furthermore,
1180                  * we don't want the kernel to try too hard.
1181                  */
1182                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1183                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1184                                 get_order(alloc_unit << PAGE_SHIFT));
1185
1186                 if (!pg)
1187                         return i * alloc_unit;
1188
1189                 dm->num_pages_ballooned += alloc_unit;
1190
1191                 /*
1192                  * If we allocatted 2M pages; split them so we
1193                  * can free them in any order we get.
1194                  */
1195
1196                 if (alloc_unit != 1)
1197                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1198
1199                 bl_resp->range_count++;
1200                 bl_resp->range_array[i].finfo.start_page =
1201                         page_to_pfn(pg);
1202                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1203                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1204
1205         }
1206
1207         return i * alloc_unit;
1208 }
1209
1210 static void balloon_up(struct work_struct *dummy)
1211 {
1212         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1213         unsigned int num_ballooned = 0;
1214         struct dm_balloon_response *bl_resp;
1215         int alloc_unit;
1216         int ret;
1217         bool done = false;
1218         int i;
1219         long avail_pages;
1220         unsigned long floor;
1221
1222         /*
1223          * We will attempt 2M allocations. However, if we fail to
1224          * allocate 2M chunks, we will go back to 4k allocations.
1225          */
1226         alloc_unit = 512;
1227
1228         avail_pages = si_mem_available();
1229         floor = compute_balloon_floor();
1230
1231         /* Refuse to balloon below the floor. */
1232         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1233                 pr_info("Balloon request will be partially fulfilled. %s\n",
1234                         avail_pages < num_pages ? "Not enough memory." :
1235                         "Balloon floor reached.");
1236
1237                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1238         }
1239
1240         while (!done) {
1241                 bl_resp = (struct dm_balloon_response *)send_buffer;
1242                 memset(send_buffer, 0, PAGE_SIZE);
1243                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1244                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1245                 bl_resp->more_pages = 1;
1246
1247                 num_pages -= num_ballooned;
1248                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1249                                                     bl_resp, alloc_unit);
1250
1251                 if (alloc_unit != 1 && num_ballooned == 0) {
1252                         alloc_unit = 1;
1253                         continue;
1254                 }
1255
1256                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1257                         pr_debug("Ballooned %u out of %u requested pages.\n",
1258                                 num_pages, dm_device.balloon_wrk.num_pages);
1259
1260                         bl_resp->more_pages = 0;
1261                         done = true;
1262                         dm_device.state = DM_INITIALIZED;
1263                 }
1264
1265                 /*
1266                  * We are pushing a lot of data through the channel;
1267                  * deal with transient failures caused because of the
1268                  * lack of space in the ring buffer.
1269                  */
1270
1271                 do {
1272                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1273                         ret = vmbus_sendpacket(dm_device.dev->channel,
1274                                                 bl_resp,
1275                                                 bl_resp->hdr.size,
1276                                                 (unsigned long)NULL,
1277                                                 VM_PKT_DATA_INBAND, 0);
1278
1279                         if (ret == -EAGAIN)
1280                                 msleep(20);
1281                         post_status(&dm_device);
1282                 } while (ret == -EAGAIN);
1283
1284                 if (ret) {
1285                         /*
1286                          * Free up the memory we allocatted.
1287                          */
1288                         pr_info("Balloon response failed\n");
1289
1290                         for (i = 0; i < bl_resp->range_count; i++)
1291                                 free_balloon_pages(&dm_device,
1292                                                  &bl_resp->range_array[i]);
1293
1294                         done = true;
1295                 }
1296         }
1297
1298 }
1299
1300 static void balloon_down(struct hv_dynmem_device *dm,
1301                         struct dm_unballoon_request *req)
1302 {
1303         union dm_mem_page_range *range_array = req->range_array;
1304         int range_count = req->range_count;
1305         struct dm_unballoon_response resp;
1306         int i;
1307         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1308
1309         for (i = 0; i < range_count; i++) {
1310                 free_balloon_pages(dm, &range_array[i]);
1311                 complete(&dm_device.config_event);
1312         }
1313
1314         pr_debug("Freed %u ballooned pages.\n",
1315                 prev_pages_ballooned - dm->num_pages_ballooned);
1316
1317         if (req->more_pages == 1)
1318                 return;
1319
1320         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1321         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1322         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1323         resp.hdr.size = sizeof(struct dm_unballoon_response);
1324
1325         vmbus_sendpacket(dm_device.dev->channel, &resp,
1326                                 sizeof(struct dm_unballoon_response),
1327                                 (unsigned long)NULL,
1328                                 VM_PKT_DATA_INBAND, 0);
1329
1330         dm->state = DM_INITIALIZED;
1331 }
1332
1333 static void balloon_onchannelcallback(void *context);
1334
1335 static int dm_thread_func(void *dm_dev)
1336 {
1337         struct hv_dynmem_device *dm = dm_dev;
1338
1339         while (!kthread_should_stop()) {
1340                 wait_for_completion_interruptible_timeout(
1341                                                 &dm_device.config_event, 1*HZ);
1342                 /*
1343                  * The host expects us to post information on the memory
1344                  * pressure every second.
1345                  */
1346                 reinit_completion(&dm_device.config_event);
1347                 post_status(dm);
1348         }
1349
1350         return 0;
1351 }
1352
1353
1354 static void version_resp(struct hv_dynmem_device *dm,
1355                         struct dm_version_response *vresp)
1356 {
1357         struct dm_version_request version_req;
1358         int ret;
1359
1360         if (vresp->is_accepted) {
1361                 /*
1362                  * We are done; wakeup the
1363                  * context waiting for version
1364                  * negotiation.
1365                  */
1366                 complete(&dm->host_event);
1367                 return;
1368         }
1369         /*
1370          * If there are more versions to try, continue
1371          * with negotiations; if not
1372          * shutdown the service since we are not able
1373          * to negotiate a suitable version number
1374          * with the host.
1375          */
1376         if (dm->next_version == 0)
1377                 goto version_error;
1378
1379         memset(&version_req, 0, sizeof(struct dm_version_request));
1380         version_req.hdr.type = DM_VERSION_REQUEST;
1381         version_req.hdr.size = sizeof(struct dm_version_request);
1382         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1383         version_req.version.version = dm->next_version;
1384         dm->version = version_req.version.version;
1385
1386         /*
1387          * Set the next version to try in case current version fails.
1388          * Win7 protocol ought to be the last one to try.
1389          */
1390         switch (version_req.version.version) {
1391         case DYNMEM_PROTOCOL_VERSION_WIN8:
1392                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1393                 version_req.is_last_attempt = 0;
1394                 break;
1395         default:
1396                 dm->next_version = 0;
1397                 version_req.is_last_attempt = 1;
1398         }
1399
1400         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1401                                 sizeof(struct dm_version_request),
1402                                 (unsigned long)NULL,
1403                                 VM_PKT_DATA_INBAND, 0);
1404
1405         if (ret)
1406                 goto version_error;
1407
1408         return;
1409
1410 version_error:
1411         dm->state = DM_INIT_ERROR;
1412         complete(&dm->host_event);
1413 }
1414
1415 static void cap_resp(struct hv_dynmem_device *dm,
1416                         struct dm_capabilities_resp_msg *cap_resp)
1417 {
1418         if (!cap_resp->is_accepted) {
1419                 pr_info("Capabilities not accepted by host\n");
1420                 dm->state = DM_INIT_ERROR;
1421         }
1422         complete(&dm->host_event);
1423 }
1424
1425 static void balloon_onchannelcallback(void *context)
1426 {
1427         struct hv_device *dev = context;
1428         u32 recvlen;
1429         u64 requestid;
1430         struct dm_message *dm_msg;
1431         struct dm_header *dm_hdr;
1432         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1433         struct dm_balloon *bal_msg;
1434         struct dm_hot_add *ha_msg;
1435         union dm_mem_page_range *ha_pg_range;
1436         union dm_mem_page_range *ha_region;
1437
1438         memset(recv_buffer, 0, sizeof(recv_buffer));
1439         vmbus_recvpacket(dev->channel, recv_buffer,
1440                          PAGE_SIZE, &recvlen, &requestid);
1441
1442         if (recvlen > 0) {
1443                 dm_msg = (struct dm_message *)recv_buffer;
1444                 dm_hdr = &dm_msg->hdr;
1445
1446                 switch (dm_hdr->type) {
1447                 case DM_VERSION_RESPONSE:
1448                         version_resp(dm,
1449                                  (struct dm_version_response *)dm_msg);
1450                         break;
1451
1452                 case DM_CAPABILITIES_RESPONSE:
1453                         cap_resp(dm,
1454                                  (struct dm_capabilities_resp_msg *)dm_msg);
1455                         break;
1456
1457                 case DM_BALLOON_REQUEST:
1458                         if (dm->state == DM_BALLOON_UP)
1459                                 pr_warn("Currently ballooning\n");
1460                         bal_msg = (struct dm_balloon *)recv_buffer;
1461                         dm->state = DM_BALLOON_UP;
1462                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1463                         schedule_work(&dm_device.balloon_wrk.wrk);
1464                         break;
1465
1466                 case DM_UNBALLOON_REQUEST:
1467                         dm->state = DM_BALLOON_DOWN;
1468                         balloon_down(dm,
1469                                  (struct dm_unballoon_request *)recv_buffer);
1470                         break;
1471
1472                 case DM_MEM_HOT_ADD_REQUEST:
1473                         if (dm->state == DM_HOT_ADD)
1474                                 pr_warn("Currently hot-adding\n");
1475                         dm->state = DM_HOT_ADD;
1476                         ha_msg = (struct dm_hot_add *)recv_buffer;
1477                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1478                                 /*
1479                                  * This is a normal hot-add request specifying
1480                                  * hot-add memory.
1481                                  */
1482                                 dm->host_specified_ha_region = false;
1483                                 ha_pg_range = &ha_msg->range;
1484                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1485                                 dm->ha_wrk.ha_region_range.page_range = 0;
1486                         } else {
1487                                 /*
1488                                  * Host is specifying that we first hot-add
1489                                  * a region and then partially populate this
1490                                  * region.
1491                                  */
1492                                 dm->host_specified_ha_region = true;
1493                                 ha_pg_range = &ha_msg->range;
1494                                 ha_region = &ha_pg_range[1];
1495                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1496                                 dm->ha_wrk.ha_region_range = *ha_region;
1497                         }
1498                         schedule_work(&dm_device.ha_wrk.wrk);
1499                         break;
1500
1501                 case DM_INFO_MESSAGE:
1502                         process_info(dm, (struct dm_info_msg *)dm_msg);
1503                         break;
1504
1505                 default:
1506                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1507
1508                 }
1509         }
1510
1511 }
1512
1513 static int balloon_probe(struct hv_device *dev,
1514                         const struct hv_vmbus_device_id *dev_id)
1515 {
1516         int ret;
1517         unsigned long t;
1518         struct dm_version_request version_req;
1519         struct dm_capabilities cap_msg;
1520
1521 #ifdef CONFIG_MEMORY_HOTPLUG
1522         do_hot_add = hot_add;
1523 #else
1524         do_hot_add = false;
1525 #endif
1526
1527         /*
1528          * First allocate a send buffer.
1529          */
1530
1531         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1532         if (!send_buffer)
1533                 return -ENOMEM;
1534
1535         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1536                         balloon_onchannelcallback, dev);
1537
1538         if (ret)
1539                 goto probe_error0;
1540
1541         dm_device.dev = dev;
1542         dm_device.state = DM_INITIALIZING;
1543         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1544         init_completion(&dm_device.host_event);
1545         init_completion(&dm_device.config_event);
1546         INIT_LIST_HEAD(&dm_device.ha_region_list);
1547         spin_lock_init(&dm_device.ha_lock);
1548         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1549         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1550         dm_device.host_specified_ha_region = false;
1551
1552         dm_device.thread =
1553                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1554         if (IS_ERR(dm_device.thread)) {
1555                 ret = PTR_ERR(dm_device.thread);
1556                 goto probe_error1;
1557         }
1558
1559 #ifdef CONFIG_MEMORY_HOTPLUG
1560         set_online_page_callback(&hv_online_page);
1561         register_memory_notifier(&hv_memory_nb);
1562 #endif
1563
1564         hv_set_drvdata(dev, &dm_device);
1565         /*
1566          * Initiate the hand shake with the host and negotiate
1567          * a version that the host can support. We start with the
1568          * highest version number and go down if the host cannot
1569          * support it.
1570          */
1571         memset(&version_req, 0, sizeof(struct dm_version_request));
1572         version_req.hdr.type = DM_VERSION_REQUEST;
1573         version_req.hdr.size = sizeof(struct dm_version_request);
1574         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1575         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1576         version_req.is_last_attempt = 0;
1577         dm_device.version = version_req.version.version;
1578
1579         ret = vmbus_sendpacket(dev->channel, &version_req,
1580                                 sizeof(struct dm_version_request),
1581                                 (unsigned long)NULL,
1582                                 VM_PKT_DATA_INBAND, 0);
1583         if (ret)
1584                 goto probe_error2;
1585
1586         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1587         if (t == 0) {
1588                 ret = -ETIMEDOUT;
1589                 goto probe_error2;
1590         }
1591
1592         /*
1593          * If we could not negotiate a compatible version with the host
1594          * fail the probe function.
1595          */
1596         if (dm_device.state == DM_INIT_ERROR) {
1597                 ret = -ETIMEDOUT;
1598                 goto probe_error2;
1599         }
1600
1601         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1602                 DYNMEM_MAJOR_VERSION(dm_device.version),
1603                 DYNMEM_MINOR_VERSION(dm_device.version));
1604
1605         /*
1606          * Now submit our capabilities to the host.
1607          */
1608         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1609         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1610         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1611         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1612
1613         cap_msg.caps.cap_bits.balloon = 1;
1614         cap_msg.caps.cap_bits.hot_add = 1;
1615
1616         /*
1617          * Specify our alignment requirements as it relates
1618          * memory hot-add. Specify 128MB alignment.
1619          */
1620         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1621
1622         /*
1623          * Currently the host does not use these
1624          * values and we set them to what is done in the
1625          * Windows driver.
1626          */
1627         cap_msg.min_page_cnt = 0;
1628         cap_msg.max_page_number = -1;
1629
1630         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1631                                 sizeof(struct dm_capabilities),
1632                                 (unsigned long)NULL,
1633                                 VM_PKT_DATA_INBAND, 0);
1634         if (ret)
1635                 goto probe_error2;
1636
1637         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1638         if (t == 0) {
1639                 ret = -ETIMEDOUT;
1640                 goto probe_error2;
1641         }
1642
1643         /*
1644          * If the host does not like our capabilities,
1645          * fail the probe function.
1646          */
1647         if (dm_device.state == DM_INIT_ERROR) {
1648                 ret = -ETIMEDOUT;
1649                 goto probe_error2;
1650         }
1651
1652         dm_device.state = DM_INITIALIZED;
1653         last_post_time = jiffies;
1654
1655         return 0;
1656
1657 probe_error2:
1658 #ifdef CONFIG_MEMORY_HOTPLUG
1659         restore_online_page_callback(&hv_online_page);
1660 #endif
1661         kthread_stop(dm_device.thread);
1662
1663 probe_error1:
1664         vmbus_close(dev->channel);
1665 probe_error0:
1666         kfree(send_buffer);
1667         return ret;
1668 }
1669
1670 static int balloon_remove(struct hv_device *dev)
1671 {
1672         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1673         struct hv_hotadd_state *has, *tmp;
1674         struct hv_hotadd_gap *gap, *tmp_gap;
1675         unsigned long flags;
1676
1677         if (dm->num_pages_ballooned != 0)
1678                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1679
1680         cancel_work_sync(&dm->balloon_wrk.wrk);
1681         cancel_work_sync(&dm->ha_wrk.wrk);
1682
1683         vmbus_close(dev->channel);
1684         kthread_stop(dm->thread);
1685         kfree(send_buffer);
1686 #ifdef CONFIG_MEMORY_HOTPLUG
1687         restore_online_page_callback(&hv_online_page);
1688         unregister_memory_notifier(&hv_memory_nb);
1689 #endif
1690         spin_lock_irqsave(&dm_device.ha_lock, flags);
1691         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1692                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1693                         list_del(&gap->list);
1694                         kfree(gap);
1695                 }
1696                 list_del(&has->list);
1697                 kfree(has);
1698         }
1699         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1700
1701         return 0;
1702 }
1703
1704 static const struct hv_vmbus_device_id id_table[] = {
1705         /* Dynamic Memory Class ID */
1706         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1707         { HV_DM_GUID, },
1708         { },
1709 };
1710
1711 MODULE_DEVICE_TABLE(vmbus, id_table);
1712
1713 static  struct hv_driver balloon_drv = {
1714         .name = "hv_balloon",
1715         .id_table = id_table,
1716         .probe =  balloon_probe,
1717         .remove =  balloon_remove,
1718 };
1719
1720 static int __init init_balloon_drv(void)
1721 {
1722
1723         return vmbus_driver_register(&balloon_drv);
1724 }
1725
1726 module_init(init_balloon_drv);
1727
1728 MODULE_DESCRIPTION("Hyper-V Balloon");
1729 MODULE_LICENSE("GPL");