GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / hv / ring_buffer.c
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
33
34 #include "hyperv_vmbus.h"
35
36 #define VMBUS_PKT_TRAILER       8
37
38 /*
39  * When we write to the ring buffer, check if the host needs to
40  * be signaled. Here is the details of this protocol:
41  *
42  *      1. The host guarantees that while it is draining the
43  *         ring buffer, it will set the interrupt_mask to
44  *         indicate it does not need to be interrupted when
45  *         new data is placed.
46  *
47  *      2. The host guarantees that it will completely drain
48  *         the ring buffer before exiting the read loop. Further,
49  *         once the ring buffer is empty, it will clear the
50  *         interrupt_mask and re-check to see if new data has
51  *         arrived.
52  *
53  * KYS: Oct. 30, 2016:
54  * It looks like Windows hosts have logic to deal with DOS attacks that
55  * can be triggered if it receives interrupts when it is not expecting
56  * the interrupt. The host expects interrupts only when the ring
57  * transitions from empty to non-empty (or full to non full on the guest
58  * to host ring).
59  * So, base the signaling decision solely on the ring state until the
60  * host logic is fixed.
61  */
62
63 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
64 {
65         struct hv_ring_buffer_info *rbi = &channel->outbound;
66
67         virt_mb();
68         if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
69                 return;
70
71         /* check interrupt_mask before read_index */
72         virt_rmb();
73         /*
74          * This is the only case we need to signal when the
75          * ring transitions from being empty to non-empty.
76          */
77         if (old_write == READ_ONCE(rbi->ring_buffer->read_index))
78                 vmbus_setevent(channel);
79 }
80
81 /* Get the next write location for the specified ring buffer. */
82 static inline u32
83 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
84 {
85         u32 next = ring_info->ring_buffer->write_index;
86
87         return next;
88 }
89
90 /* Set the next write location for the specified ring buffer. */
91 static inline void
92 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
93                      u32 next_write_location)
94 {
95         ring_info->ring_buffer->write_index = next_write_location;
96 }
97
98 /* Set the next read location for the specified ring buffer. */
99 static inline void
100 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
101                     u32 next_read_location)
102 {
103         ring_info->ring_buffer->read_index = next_read_location;
104         ring_info->priv_read_index = next_read_location;
105 }
106
107 /* Get the size of the ring buffer. */
108 static inline u32
109 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
110 {
111         return ring_info->ring_datasize;
112 }
113
114 /* Get the read and write indices as u64 of the specified ring buffer. */
115 static inline u64
116 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
117 {
118         return (u64)ring_info->ring_buffer->write_index << 32;
119 }
120
121 /*
122  * Helper routine to copy from source to ring buffer.
123  * Assume there is enough room. Handles wrap-around in dest case only!!
124  */
125 static u32 hv_copyto_ringbuffer(
126         struct hv_ring_buffer_info      *ring_info,
127         u32                             start_write_offset,
128         const void                      *src,
129         u32                             srclen)
130 {
131         void *ring_buffer = hv_get_ring_buffer(ring_info);
132         u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
133
134         memcpy(ring_buffer + start_write_offset, src, srclen);
135
136         start_write_offset += srclen;
137         if (start_write_offset >= ring_buffer_size)
138                 start_write_offset -= ring_buffer_size;
139
140         return start_write_offset;
141 }
142
143 /*
144  *
145  * hv_get_ringbuffer_availbytes()
146  *
147  * Get number of bytes available to read and to write to
148  * for the specified ring buffer
149  */
150 static void
151 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
152                              u32 *read, u32 *write)
153 {
154         u32 read_loc, write_loc, dsize;
155
156         /* Capture the read/write indices before they changed */
157         read_loc = READ_ONCE(rbi->ring_buffer->read_index);
158         write_loc = READ_ONCE(rbi->ring_buffer->write_index);
159         dsize = rbi->ring_datasize;
160
161         *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162                 read_loc - write_loc;
163         *read = dsize - *write;
164 }
165
166 /* Get various debug metrics for the specified ring buffer. */
167 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
168                                 struct hv_ring_buffer_debug_info *debug_info)
169 {
170         u32 bytes_avail_towrite;
171         u32 bytes_avail_toread;
172
173         if (!ring_info->ring_buffer)
174                 return -EINVAL;
175
176         hv_get_ringbuffer_availbytes(ring_info,
177                                      &bytes_avail_toread,
178                                      &bytes_avail_towrite);
179         debug_info->bytes_avail_toread = bytes_avail_toread;
180         debug_info->bytes_avail_towrite = bytes_avail_towrite;
181         debug_info->current_read_index = ring_info->ring_buffer->read_index;
182         debug_info->current_write_index = ring_info->ring_buffer->write_index;
183         debug_info->current_interrupt_mask
184                 = ring_info->ring_buffer->interrupt_mask;
185         return 0;
186 }
187 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
188
189 /* Initialize the ring buffer. */
190 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
191                        struct page *pages, u32 page_cnt)
192 {
193         int i;
194         struct page **pages_wraparound;
195
196         BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
197
198         memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
199
200         /*
201          * First page holds struct hv_ring_buffer, do wraparound mapping for
202          * the rest.
203          */
204         pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205                                    GFP_KERNEL);
206         if (!pages_wraparound)
207                 return -ENOMEM;
208
209         pages_wraparound[0] = pages;
210         for (i = 0; i < 2 * (page_cnt - 1); i++)
211                 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213         ring_info->ring_buffer = (struct hv_ring_buffer *)
214                 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216         kfree(pages_wraparound);
217
218
219         if (!ring_info->ring_buffer)
220                 return -ENOMEM;
221
222         ring_info->ring_buffer->read_index =
223                 ring_info->ring_buffer->write_index = 0;
224
225         /* Set the feature bit for enabling flow control. */
226         ring_info->ring_buffer->feature_bits.value = 1;
227
228         ring_info->ring_size = page_cnt << PAGE_SHIFT;
229         ring_info->ring_size_div10_reciprocal =
230                 reciprocal_value(ring_info->ring_size / 10);
231         ring_info->ring_datasize = ring_info->ring_size -
232                 sizeof(struct hv_ring_buffer);
233
234         spin_lock_init(&ring_info->ring_lock);
235
236         return 0;
237 }
238
239 /* Cleanup the ring buffer. */
240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241 {
242         vunmap(ring_info->ring_buffer);
243 }
244
245 /* Write to the ring buffer. */
246 int hv_ringbuffer_write(struct vmbus_channel *channel,
247                         const struct kvec *kv_list, u32 kv_count)
248 {
249         int i;
250         u32 bytes_avail_towrite;
251         u32 totalbytes_towrite = sizeof(u64);
252         u32 next_write_location;
253         u32 old_write;
254         u64 prev_indices;
255         unsigned long flags;
256         struct hv_ring_buffer_info *outring_info = &channel->outbound;
257
258         if (channel->rescind)
259                 return -ENODEV;
260
261         for (i = 0; i < kv_count; i++)
262                 totalbytes_towrite += kv_list[i].iov_len;
263
264         spin_lock_irqsave(&outring_info->ring_lock, flags);
265
266         bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
267
268         /*
269          * If there is only room for the packet, assume it is full.
270          * Otherwise, the next time around, we think the ring buffer
271          * is empty since the read index == write index.
272          */
273         if (bytes_avail_towrite <= totalbytes_towrite) {
274                 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
275                 return -EAGAIN;
276         }
277
278         /* Write to the ring buffer */
279         next_write_location = hv_get_next_write_location(outring_info);
280
281         old_write = next_write_location;
282
283         for (i = 0; i < kv_count; i++) {
284                 next_write_location = hv_copyto_ringbuffer(outring_info,
285                                                      next_write_location,
286                                                      kv_list[i].iov_base,
287                                                      kv_list[i].iov_len);
288         }
289
290         /* Set previous packet start */
291         prev_indices = hv_get_ring_bufferindices(outring_info);
292
293         next_write_location = hv_copyto_ringbuffer(outring_info,
294                                              next_write_location,
295                                              &prev_indices,
296                                              sizeof(u64));
297
298         /* Issue a full memory barrier before updating the write index */
299         virt_mb();
300
301         /* Now, update the write location */
302         hv_set_next_write_location(outring_info, next_write_location);
303
304
305         spin_unlock_irqrestore(&outring_info->ring_lock, flags);
306
307         hv_signal_on_write(old_write, channel);
308
309         if (channel->rescind)
310                 return -ENODEV;
311
312         return 0;
313 }
314
315 int hv_ringbuffer_read(struct vmbus_channel *channel,
316                        void *buffer, u32 buflen, u32 *buffer_actual_len,
317                        u64 *requestid, bool raw)
318 {
319         struct vmpacket_descriptor *desc;
320         u32 packetlen, offset;
321
322         if (unlikely(buflen == 0))
323                 return -EINVAL;
324
325         *buffer_actual_len = 0;
326         *requestid = 0;
327
328         /* Make sure there is something to read */
329         desc = hv_pkt_iter_first(channel);
330         if (desc == NULL) {
331                 /*
332                  * No error is set when there is even no header, drivers are
333                  * supposed to analyze buffer_actual_len.
334                  */
335                 return 0;
336         }
337
338         offset = raw ? 0 : (desc->offset8 << 3);
339         packetlen = (desc->len8 << 3) - offset;
340         *buffer_actual_len = packetlen;
341         *requestid = desc->trans_id;
342
343         if (unlikely(packetlen > buflen))
344                 return -ENOBUFS;
345
346         /* since ring is double mapped, only one copy is necessary */
347         memcpy(buffer, (const char *)desc + offset, packetlen);
348
349         /* Advance ring index to next packet descriptor */
350         __hv_pkt_iter_next(channel, desc);
351
352         /* Notify host of update */
353         hv_pkt_iter_close(channel);
354
355         return 0;
356 }
357
358 /*
359  * Determine number of bytes available in ring buffer after
360  * the current iterator (priv_read_index) location.
361  *
362  * This is similar to hv_get_bytes_to_read but with private
363  * read index instead.
364  */
365 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
366 {
367         u32 priv_read_loc = rbi->priv_read_index;
368         u32 write_loc;
369
370         /*
371          * The Hyper-V host writes the packet data, then uses
372          * store_release() to update the write_index.  Use load_acquire()
373          * here to prevent loads of the packet data from being re-ordered
374          * before the read of the write_index and potentially getting
375          * stale data.
376          */
377         write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
378
379         if (write_loc >= priv_read_loc)
380                 return write_loc - priv_read_loc;
381         else
382                 return (rbi->ring_datasize - priv_read_loc) + write_loc;
383 }
384
385 /*
386  * Get first vmbus packet from ring buffer after read_index
387  *
388  * If ring buffer is empty, returns NULL and no other action needed.
389  */
390 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
391 {
392         struct hv_ring_buffer_info *rbi = &channel->inbound;
393         struct vmpacket_descriptor *desc;
394
395         if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
396                 return NULL;
397
398         desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
399         if (desc)
400                 prefetch((char *)desc + (desc->len8 << 3));
401
402         return desc;
403 }
404 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
405
406 /*
407  * Get next vmbus packet from ring buffer.
408  *
409  * Advances the current location (priv_read_index) and checks for more
410  * data. If the end of the ring buffer is reached, then return NULL.
411  */
412 struct vmpacket_descriptor *
413 __hv_pkt_iter_next(struct vmbus_channel *channel,
414                    const struct vmpacket_descriptor *desc)
415 {
416         struct hv_ring_buffer_info *rbi = &channel->inbound;
417         u32 packetlen = desc->len8 << 3;
418         u32 dsize = rbi->ring_datasize;
419
420         /* bump offset to next potential packet */
421         rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
422         if (rbi->priv_read_index >= dsize)
423                 rbi->priv_read_index -= dsize;
424
425         /* more data? */
426         return hv_pkt_iter_first(channel);
427 }
428 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
429
430 /* How many bytes were read in this iterator cycle */
431 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
432                                         u32 start_read_index)
433 {
434         if (rbi->priv_read_index >= start_read_index)
435                 return rbi->priv_read_index - start_read_index;
436         else
437                 return rbi->ring_datasize - start_read_index +
438                         rbi->priv_read_index;
439 }
440
441 /*
442  * Update host ring buffer after iterating over packets. If the host has
443  * stopped queuing new entries because it found the ring buffer full, and
444  * sufficient space is being freed up, signal the host. But be careful to
445  * only signal the host when necessary, both for performance reasons and
446  * because Hyper-V protects itself by throttling guests that signal
447  * inappropriately.
448  *
449  * Determining when to signal is tricky. There are three key data inputs
450  * that must be handled in this order to avoid race conditions:
451  *
452  * 1. Update the read_index
453  * 2. Read the pending_send_sz
454  * 3. Read the current write_index
455  *
456  * The interrupt_mask is not used to determine when to signal. The
457  * interrupt_mask is used only on the guest->host ring buffer when
458  * sending requests to the host. The host does not use it on the host->
459  * guest ring buffer to indicate whether it should be signaled.
460  */
461 void hv_pkt_iter_close(struct vmbus_channel *channel)
462 {
463         struct hv_ring_buffer_info *rbi = &channel->inbound;
464         u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
465
466         /*
467          * Make sure all reads are done before we update the read index since
468          * the writer may start writing to the read area once the read index
469          * is updated.
470          */
471         virt_rmb();
472         start_read_index = rbi->ring_buffer->read_index;
473         rbi->ring_buffer->read_index = rbi->priv_read_index;
474
475         /*
476          * Older versions of Hyper-V (before WS2102 and Win8) do not
477          * implement pending_send_sz and simply poll if the host->guest
478          * ring buffer is full.  No signaling is needed or expected.
479          */
480         if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
481                 return;
482
483         /*
484          * Issue a full memory barrier before making the signaling decision.
485          * If reading pending_send_sz were to be reordered and happen
486          * before we commit the new read_index, a race could occur.  If the
487          * host were to set the pending_send_sz after we have sampled
488          * pending_send_sz, and the ring buffer blocks before we commit the
489          * read index, we could miss sending the interrupt. Issue a full
490          * memory barrier to address this.
491          */
492         virt_mb();
493
494         /*
495          * If the pending_send_sz is zero, then the ring buffer is not
496          * blocked and there is no need to signal.  This is far by the
497          * most common case, so exit quickly for best performance.
498          */
499         pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
500         if (!pending_sz)
501                 return;
502
503         /*
504          * Ensure the read of write_index in hv_get_bytes_to_write()
505          * happens after the read of pending_send_sz.
506          */
507         virt_rmb();
508         curr_write_sz = hv_get_bytes_to_write(rbi);
509         bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
510
511         /*
512          * We want to signal the host only if we're transitioning
513          * from a "not enough free space" state to a "enough free
514          * space" state.  For example, it's possible that this function
515          * could run and free up enough space to signal the host, and then
516          * run again and free up additional space before the host has a
517          * chance to clear the pending_send_sz.  The 2nd invocation would
518          * be a null transition from "enough free space" to "enough free
519          * space", which doesn't warrant a signal.
520          *
521          * Exactly filling the ring buffer is treated as "not enough
522          * space". The ring buffer always must have at least one byte
523          * empty so the empty and full conditions are distinguishable.
524          * hv_get_bytes_to_write() doesn't fully tell the truth in
525          * this regard.
526          *
527          * So first check if we were in the "enough free space" state
528          * before we began the iteration. If so, the host was not
529          * blocked, and there's no need to signal.
530          */
531         if (curr_write_sz - bytes_read > pending_sz)
532                 return;
533
534         /*
535          * Similarly, if the new state is "not enough space", then
536          * there's no need to signal.
537          */
538         if (curr_write_sz <= pending_sz)
539                 return;
540
541         vmbus_setevent(channel);
542 }
543 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);