GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         default:               return  -1;
145         }
146 }
147 EXPORT_SYMBOL(ib_rate_to_mult);
148
149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
150 {
151         switch (mult) {
152         case 1:   return IB_RATE_2_5_GBPS;
153         case 2:   return IB_RATE_5_GBPS;
154         case 4:   return IB_RATE_10_GBPS;
155         case 8:   return IB_RATE_20_GBPS;
156         case 12:  return IB_RATE_30_GBPS;
157         case 16:  return IB_RATE_40_GBPS;
158         case 24:  return IB_RATE_60_GBPS;
159         case 32:  return IB_RATE_80_GBPS;
160         case 48:  return IB_RATE_120_GBPS;
161         case 6:   return IB_RATE_14_GBPS;
162         case 22:  return IB_RATE_56_GBPS;
163         case 45:  return IB_RATE_112_GBPS;
164         case 67:  return IB_RATE_168_GBPS;
165         case 10:  return IB_RATE_25_GBPS;
166         case 40:  return IB_RATE_100_GBPS;
167         case 80:  return IB_RATE_200_GBPS;
168         case 120: return IB_RATE_300_GBPS;
169         default:  return IB_RATE_PORT_CURRENT;
170         }
171 }
172 EXPORT_SYMBOL(mult_to_ib_rate);
173
174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
175 {
176         switch (rate) {
177         case IB_RATE_2_5_GBPS: return 2500;
178         case IB_RATE_5_GBPS:   return 5000;
179         case IB_RATE_10_GBPS:  return 10000;
180         case IB_RATE_20_GBPS:  return 20000;
181         case IB_RATE_30_GBPS:  return 30000;
182         case IB_RATE_40_GBPS:  return 40000;
183         case IB_RATE_60_GBPS:  return 60000;
184         case IB_RATE_80_GBPS:  return 80000;
185         case IB_RATE_120_GBPS: return 120000;
186         case IB_RATE_14_GBPS:  return 14062;
187         case IB_RATE_56_GBPS:  return 56250;
188         case IB_RATE_112_GBPS: return 112500;
189         case IB_RATE_168_GBPS: return 168750;
190         case IB_RATE_25_GBPS:  return 25781;
191         case IB_RATE_100_GBPS: return 103125;
192         case IB_RATE_200_GBPS: return 206250;
193         case IB_RATE_300_GBPS: return 309375;
194         default:               return -1;
195         }
196 }
197 EXPORT_SYMBOL(ib_rate_to_mbps);
198
199 __attribute_const__ enum rdma_transport_type
200 rdma_node_get_transport(enum rdma_node_type node_type)
201 {
202
203         if (node_type == RDMA_NODE_USNIC)
204                 return RDMA_TRANSPORT_USNIC;
205         if (node_type == RDMA_NODE_USNIC_UDP)
206                 return RDMA_TRANSPORT_USNIC_UDP;
207         if (node_type == RDMA_NODE_RNIC)
208                 return RDMA_TRANSPORT_IWARP;
209
210         return RDMA_TRANSPORT_IB;
211 }
212 EXPORT_SYMBOL(rdma_node_get_transport);
213
214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
215 {
216         enum rdma_transport_type lt;
217         if (device->get_link_layer)
218                 return device->get_link_layer(device, port_num);
219
220         lt = rdma_node_get_transport(device->node_type);
221         if (lt == RDMA_TRANSPORT_IB)
222                 return IB_LINK_LAYER_INFINIBAND;
223
224         return IB_LINK_LAYER_ETHERNET;
225 }
226 EXPORT_SYMBOL(rdma_port_get_link_layer);
227
228 /* Protection domains */
229
230 /**
231  * ib_alloc_pd - Allocates an unused protection domain.
232  * @device: The device on which to allocate the protection domain.
233  *
234  * A protection domain object provides an association between QPs, shared
235  * receive queues, address handles, memory regions, and memory windows.
236  *
237  * Every PD has a local_dma_lkey which can be used as the lkey value for local
238  * memory operations.
239  */
240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
241                 const char *caller)
242 {
243         struct ib_pd *pd;
244         int mr_access_flags = 0;
245
246         pd = device->alloc_pd(device, NULL, NULL);
247         if (IS_ERR(pd))
248                 return pd;
249
250         pd->device = device;
251         pd->uobject = NULL;
252         pd->__internal_mr = NULL;
253         atomic_set(&pd->usecnt, 0);
254         pd->flags = flags;
255
256         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
257                 pd->local_dma_lkey = device->local_dma_lkey;
258         else
259                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
260
261         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
262                 pr_warn("%s: enabling unsafe global rkey\n", caller);
263                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
264         }
265
266         pd->res.type = RDMA_RESTRACK_PD;
267         pd->res.kern_name = caller;
268         rdma_restrack_add(&pd->res);
269
270         if (mr_access_flags) {
271                 struct ib_mr *mr;
272
273                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
274                 if (IS_ERR(mr)) {
275                         ib_dealloc_pd(pd);
276                         return ERR_CAST(mr);
277                 }
278
279                 mr->device      = pd->device;
280                 mr->pd          = pd;
281                 mr->uobject     = NULL;
282                 mr->need_inval  = false;
283
284                 pd->__internal_mr = mr;
285
286                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
287                         pd->local_dma_lkey = pd->__internal_mr->lkey;
288
289                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
290                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
291         }
292
293         return pd;
294 }
295 EXPORT_SYMBOL(__ib_alloc_pd);
296
297 /**
298  * ib_dealloc_pd - Deallocates a protection domain.
299  * @pd: The protection domain to deallocate.
300  *
301  * It is an error to call this function while any resources in the pd still
302  * exist.  The caller is responsible to synchronously destroy them and
303  * guarantee no new allocations will happen.
304  */
305 void ib_dealloc_pd(struct ib_pd *pd)
306 {
307         int ret;
308
309         if (pd->__internal_mr) {
310                 ret = pd->device->dereg_mr(pd->__internal_mr);
311                 WARN_ON(ret);
312                 pd->__internal_mr = NULL;
313         }
314
315         /* uverbs manipulates usecnt with proper locking, while the kabi
316            requires the caller to guarantee we can't race here. */
317         WARN_ON(atomic_read(&pd->usecnt));
318
319         rdma_restrack_del(&pd->res);
320         /* Making delalloc_pd a void return is a WIP, no driver should return
321            an error here. */
322         ret = pd->device->dealloc_pd(pd);
323         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
324 }
325 EXPORT_SYMBOL(ib_dealloc_pd);
326
327 /* Address handles */
328
329 /**
330  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
331  * @dest:       Pointer to destination ah_attr. Contents of the destination
332  *              pointer is assumed to be invalid and attribute are overwritten.
333  * @src:        Pointer to source ah_attr.
334  */
335 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
336                        const struct rdma_ah_attr *src)
337 {
338         *dest = *src;
339         if (dest->grh.sgid_attr)
340                 rdma_hold_gid_attr(dest->grh.sgid_attr);
341 }
342 EXPORT_SYMBOL(rdma_copy_ah_attr);
343
344 /**
345  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
346  * @old:        Pointer to existing ah_attr which needs to be replaced.
347  *              old is assumed to be valid or zero'd
348  * @new:        Pointer to the new ah_attr.
349  *
350  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
351  * old the ah_attr is valid; after that it copies the new attribute and holds
352  * the reference to the replaced ah_attr.
353  */
354 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
355                           const struct rdma_ah_attr *new)
356 {
357         rdma_destroy_ah_attr(old);
358         *old = *new;
359         if (old->grh.sgid_attr)
360                 rdma_hold_gid_attr(old->grh.sgid_attr);
361 }
362 EXPORT_SYMBOL(rdma_replace_ah_attr);
363
364 /**
365  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
366  * @dest:       Pointer to destination ah_attr to copy to.
367  *              dest is assumed to be valid or zero'd
368  * @src:        Pointer to the new ah_attr.
369  *
370  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
371  * if it is valid. This also transfers ownership of internal references from
372  * src to dest, making src invalid in the process. No new reference of the src
373  * ah_attr is taken.
374  */
375 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
376 {
377         rdma_destroy_ah_attr(dest);
378         *dest = *src;
379         src->grh.sgid_attr = NULL;
380 }
381 EXPORT_SYMBOL(rdma_move_ah_attr);
382
383 /*
384  * Validate that the rdma_ah_attr is valid for the device before passing it
385  * off to the driver.
386  */
387 static int rdma_check_ah_attr(struct ib_device *device,
388                               struct rdma_ah_attr *ah_attr)
389 {
390         if (!rdma_is_port_valid(device, ah_attr->port_num))
391                 return -EINVAL;
392
393         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
394              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
395             !(ah_attr->ah_flags & IB_AH_GRH))
396                 return -EINVAL;
397
398         if (ah_attr->grh.sgid_attr) {
399                 /*
400                  * Make sure the passed sgid_attr is consistent with the
401                  * parameters
402                  */
403                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
404                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
405                         return -EINVAL;
406         }
407         return 0;
408 }
409
410 /*
411  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
412  * On success the caller is responsible to call rdma_unfill_sgid_attr().
413  */
414 static int rdma_fill_sgid_attr(struct ib_device *device,
415                                struct rdma_ah_attr *ah_attr,
416                                const struct ib_gid_attr **old_sgid_attr)
417 {
418         const struct ib_gid_attr *sgid_attr;
419         struct ib_global_route *grh;
420         int ret;
421
422         *old_sgid_attr = ah_attr->grh.sgid_attr;
423
424         ret = rdma_check_ah_attr(device, ah_attr);
425         if (ret)
426                 return ret;
427
428         if (!(ah_attr->ah_flags & IB_AH_GRH))
429                 return 0;
430
431         grh = rdma_ah_retrieve_grh(ah_attr);
432         if (grh->sgid_attr)
433                 return 0;
434
435         sgid_attr =
436                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
437         if (IS_ERR(sgid_attr))
438                 return PTR_ERR(sgid_attr);
439
440         /* Move ownerhip of the kref into the ah_attr */
441         grh->sgid_attr = sgid_attr;
442         return 0;
443 }
444
445 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
446                                   const struct ib_gid_attr *old_sgid_attr)
447 {
448         /*
449          * Fill didn't change anything, the caller retains ownership of
450          * whatever it passed
451          */
452         if (ah_attr->grh.sgid_attr == old_sgid_attr)
453                 return;
454
455         /*
456          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
457          * doesn't see any change in the rdma_ah_attr. If we get here
458          * old_sgid_attr is NULL.
459          */
460         rdma_destroy_ah_attr(ah_attr);
461 }
462
463 static const struct ib_gid_attr *
464 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
465                       const struct ib_gid_attr *old_attr)
466 {
467         if (old_attr)
468                 rdma_put_gid_attr(old_attr);
469         if (ah_attr->ah_flags & IB_AH_GRH) {
470                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
471                 return ah_attr->grh.sgid_attr;
472         }
473         return NULL;
474 }
475
476 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
477                                      struct rdma_ah_attr *ah_attr,
478                                      struct ib_udata *udata)
479 {
480         struct ib_ah *ah;
481
482         if (!pd->device->create_ah)
483                 return ERR_PTR(-EOPNOTSUPP);
484
485         ah = pd->device->create_ah(pd, ah_attr, udata);
486
487         if (!IS_ERR(ah)) {
488                 ah->device  = pd->device;
489                 ah->pd      = pd;
490                 ah->uobject = NULL;
491                 ah->type    = ah_attr->type;
492                 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
493
494                 atomic_inc(&pd->usecnt);
495         }
496
497         return ah;
498 }
499
500 /**
501  * rdma_create_ah - Creates an address handle for the
502  * given address vector.
503  * @pd: The protection domain associated with the address handle.
504  * @ah_attr: The attributes of the address vector.
505  *
506  * It returns 0 on success and returns appropriate error code on error.
507  * The address handle is used to reference a local or global destination
508  * in all UD QP post sends.
509  */
510 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
511 {
512         const struct ib_gid_attr *old_sgid_attr;
513         struct ib_ah *ah;
514         int ret;
515
516         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
517         if (ret)
518                 return ERR_PTR(ret);
519
520         ah = _rdma_create_ah(pd, ah_attr, NULL);
521
522         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
523         return ah;
524 }
525 EXPORT_SYMBOL(rdma_create_ah);
526
527 /**
528  * rdma_create_user_ah - Creates an address handle for the
529  * given address vector.
530  * It resolves destination mac address for ah attribute of RoCE type.
531  * @pd: The protection domain associated with the address handle.
532  * @ah_attr: The attributes of the address vector.
533  * @udata: pointer to user's input output buffer information need by
534  *         provider driver.
535  *
536  * It returns 0 on success and returns appropriate error code on error.
537  * The address handle is used to reference a local or global destination
538  * in all UD QP post sends.
539  */
540 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
541                                   struct rdma_ah_attr *ah_attr,
542                                   struct ib_udata *udata)
543 {
544         const struct ib_gid_attr *old_sgid_attr;
545         struct ib_ah *ah;
546         int err;
547
548         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
549         if (err)
550                 return ERR_PTR(err);
551
552         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
553                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
554                 if (err) {
555                         ah = ERR_PTR(err);
556                         goto out;
557                 }
558         }
559
560         ah = _rdma_create_ah(pd, ah_attr, udata);
561
562 out:
563         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
564         return ah;
565 }
566 EXPORT_SYMBOL(rdma_create_user_ah);
567
568 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
569 {
570         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
571         struct iphdr ip4h_checked;
572         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
573
574         /* If it's IPv6, the version must be 6, otherwise, the first
575          * 20 bytes (before the IPv4 header) are garbled.
576          */
577         if (ip6h->version != 6)
578                 return (ip4h->version == 4) ? 4 : 0;
579         /* version may be 6 or 4 because the first 20 bytes could be garbled */
580
581         /* RoCE v2 requires no options, thus header length
582          * must be 5 words
583          */
584         if (ip4h->ihl != 5)
585                 return 6;
586
587         /* Verify checksum.
588          * We can't write on scattered buffers so we need to copy to
589          * temp buffer.
590          */
591         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
592         ip4h_checked.check = 0;
593         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
594         /* if IPv4 header checksum is OK, believe it */
595         if (ip4h->check == ip4h_checked.check)
596                 return 4;
597         return 6;
598 }
599 EXPORT_SYMBOL(ib_get_rdma_header_version);
600
601 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
602                                                      u8 port_num,
603                                                      const struct ib_grh *grh)
604 {
605         int grh_version;
606
607         if (rdma_protocol_ib(device, port_num))
608                 return RDMA_NETWORK_IB;
609
610         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
611
612         if (grh_version == 4)
613                 return RDMA_NETWORK_IPV4;
614
615         if (grh->next_hdr == IPPROTO_UDP)
616                 return RDMA_NETWORK_IPV6;
617
618         return RDMA_NETWORK_ROCE_V1;
619 }
620
621 struct find_gid_index_context {
622         u16 vlan_id;
623         enum ib_gid_type gid_type;
624 };
625
626 static bool find_gid_index(const union ib_gid *gid,
627                            const struct ib_gid_attr *gid_attr,
628                            void *context)
629 {
630         struct find_gid_index_context *ctx = context;
631
632         if (ctx->gid_type != gid_attr->gid_type)
633                 return false;
634
635         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
636             (is_vlan_dev(gid_attr->ndev) &&
637              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
638                 return false;
639
640         return true;
641 }
642
643 static const struct ib_gid_attr *
644 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
645                        u16 vlan_id, const union ib_gid *sgid,
646                        enum ib_gid_type gid_type)
647 {
648         struct find_gid_index_context context = {.vlan_id = vlan_id,
649                                                  .gid_type = gid_type};
650
651         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
652                                        &context);
653 }
654
655 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
656                               enum rdma_network_type net_type,
657                               union ib_gid *sgid, union ib_gid *dgid)
658 {
659         struct sockaddr_in  src_in;
660         struct sockaddr_in  dst_in;
661         __be32 src_saddr, dst_saddr;
662
663         if (!sgid || !dgid)
664                 return -EINVAL;
665
666         if (net_type == RDMA_NETWORK_IPV4) {
667                 memcpy(&src_in.sin_addr.s_addr,
668                        &hdr->roce4grh.saddr, 4);
669                 memcpy(&dst_in.sin_addr.s_addr,
670                        &hdr->roce4grh.daddr, 4);
671                 src_saddr = src_in.sin_addr.s_addr;
672                 dst_saddr = dst_in.sin_addr.s_addr;
673                 ipv6_addr_set_v4mapped(src_saddr,
674                                        (struct in6_addr *)sgid);
675                 ipv6_addr_set_v4mapped(dst_saddr,
676                                        (struct in6_addr *)dgid);
677                 return 0;
678         } else if (net_type == RDMA_NETWORK_IPV6 ||
679                    net_type == RDMA_NETWORK_IB) {
680                 *dgid = hdr->ibgrh.dgid;
681                 *sgid = hdr->ibgrh.sgid;
682                 return 0;
683         } else {
684                 return -EINVAL;
685         }
686 }
687 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
688
689 /* Resolve destination mac address and hop limit for unicast destination
690  * GID entry, considering the source GID entry as well.
691  * ah_attribute must have have valid port_num, sgid_index.
692  */
693 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
694                                        struct rdma_ah_attr *ah_attr)
695 {
696         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
697         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
698         int hop_limit = 0xff;
699         int ret = 0;
700
701         /* If destination is link local and source GID is RoCEv1,
702          * IP stack is not used.
703          */
704         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
705             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
706                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
707                                 ah_attr->roce.dmac);
708                 return ret;
709         }
710
711         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
712                                            ah_attr->roce.dmac,
713                                            sgid_attr->ndev, &hop_limit);
714
715         grh->hop_limit = hop_limit;
716         return ret;
717 }
718
719 /*
720  * This function initializes address handle attributes from the incoming packet.
721  * Incoming packet has dgid of the receiver node on which this code is
722  * getting executed and, sgid contains the GID of the sender.
723  *
724  * When resolving mac address of destination, the arrived dgid is used
725  * as sgid and, sgid is used as dgid because sgid contains destinations
726  * GID whom to respond to.
727  *
728  * On success the caller is responsible to call rdma_destroy_ah_attr on the
729  * attr.
730  */
731 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
732                             const struct ib_wc *wc, const struct ib_grh *grh,
733                             struct rdma_ah_attr *ah_attr)
734 {
735         u32 flow_class;
736         int ret;
737         enum rdma_network_type net_type = RDMA_NETWORK_IB;
738         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
739         const struct ib_gid_attr *sgid_attr;
740         int hoplimit = 0xff;
741         union ib_gid dgid;
742         union ib_gid sgid;
743
744         might_sleep();
745
746         memset(ah_attr, 0, sizeof *ah_attr);
747         ah_attr->type = rdma_ah_find_type(device, port_num);
748         if (rdma_cap_eth_ah(device, port_num)) {
749                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
750                         net_type = wc->network_hdr_type;
751                 else
752                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
753                 gid_type = ib_network_to_gid_type(net_type);
754         }
755         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
756                                         &sgid, &dgid);
757         if (ret)
758                 return ret;
759
760         rdma_ah_set_sl(ah_attr, wc->sl);
761         rdma_ah_set_port_num(ah_attr, port_num);
762
763         if (rdma_protocol_roce(device, port_num)) {
764                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
765                                 wc->vlan_id : 0xffff;
766
767                 if (!(wc->wc_flags & IB_WC_GRH))
768                         return -EPROTOTYPE;
769
770                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
771                                                    vlan_id, &dgid,
772                                                    gid_type);
773                 if (IS_ERR(sgid_attr))
774                         return PTR_ERR(sgid_attr);
775
776                 flow_class = be32_to_cpu(grh->version_tclass_flow);
777                 rdma_move_grh_sgid_attr(ah_attr,
778                                         &sgid,
779                                         flow_class & 0xFFFFF,
780                                         hoplimit,
781                                         (flow_class >> 20) & 0xFF,
782                                         sgid_attr);
783
784                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
785                 if (ret)
786                         rdma_destroy_ah_attr(ah_attr);
787
788                 return ret;
789         } else {
790                 rdma_ah_set_dlid(ah_attr, wc->slid);
791                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
792
793                 if ((wc->wc_flags & IB_WC_GRH) == 0)
794                         return 0;
795
796                 if (dgid.global.interface_id !=
797                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
798                         sgid_attr = rdma_find_gid_by_port(
799                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
800                 } else
801                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
802
803                 if (IS_ERR(sgid_attr))
804                         return PTR_ERR(sgid_attr);
805                 flow_class = be32_to_cpu(grh->version_tclass_flow);
806                 rdma_move_grh_sgid_attr(ah_attr,
807                                         &sgid,
808                                         flow_class & 0xFFFFF,
809                                         hoplimit,
810                                         (flow_class >> 20) & 0xFF,
811                                         sgid_attr);
812
813                 return 0;
814         }
815 }
816 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
817
818 /**
819  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
820  * of the reference
821  *
822  * @attr:       Pointer to AH attribute structure
823  * @dgid:       Destination GID
824  * @flow_label: Flow label
825  * @hop_limit:  Hop limit
826  * @traffic_class: traffic class
827  * @sgid_attr:  Pointer to SGID attribute
828  *
829  * This takes ownership of the sgid_attr reference. The caller must ensure
830  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
831  * calling this function.
832  */
833 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
834                              u32 flow_label, u8 hop_limit, u8 traffic_class,
835                              const struct ib_gid_attr *sgid_attr)
836 {
837         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
838                         traffic_class);
839         attr->grh.sgid_attr = sgid_attr;
840 }
841 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
842
843 /**
844  * rdma_destroy_ah_attr - Release reference to SGID attribute of
845  * ah attribute.
846  * @ah_attr: Pointer to ah attribute
847  *
848  * Release reference to the SGID attribute of the ah attribute if it is
849  * non NULL. It is safe to call this multiple times, and safe to call it on
850  * a zero initialized ah_attr.
851  */
852 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
853 {
854         if (ah_attr->grh.sgid_attr) {
855                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
856                 ah_attr->grh.sgid_attr = NULL;
857         }
858 }
859 EXPORT_SYMBOL(rdma_destroy_ah_attr);
860
861 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
862                                    const struct ib_grh *grh, u8 port_num)
863 {
864         struct rdma_ah_attr ah_attr;
865         struct ib_ah *ah;
866         int ret;
867
868         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
869         if (ret)
870                 return ERR_PTR(ret);
871
872         ah = rdma_create_ah(pd, &ah_attr);
873
874         rdma_destroy_ah_attr(&ah_attr);
875         return ah;
876 }
877 EXPORT_SYMBOL(ib_create_ah_from_wc);
878
879 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
880 {
881         const struct ib_gid_attr *old_sgid_attr;
882         int ret;
883
884         if (ah->type != ah_attr->type)
885                 return -EINVAL;
886
887         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
888         if (ret)
889                 return ret;
890
891         ret = ah->device->modify_ah ?
892                 ah->device->modify_ah(ah, ah_attr) :
893                 -EOPNOTSUPP;
894
895         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
896         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
897         return ret;
898 }
899 EXPORT_SYMBOL(rdma_modify_ah);
900
901 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
902 {
903         ah_attr->grh.sgid_attr = NULL;
904
905         return ah->device->query_ah ?
906                 ah->device->query_ah(ah, ah_attr) :
907                 -EOPNOTSUPP;
908 }
909 EXPORT_SYMBOL(rdma_query_ah);
910
911 int rdma_destroy_ah(struct ib_ah *ah)
912 {
913         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
914         struct ib_pd *pd;
915         int ret;
916
917         pd = ah->pd;
918         ret = ah->device->destroy_ah(ah);
919         if (!ret) {
920                 atomic_dec(&pd->usecnt);
921                 if (sgid_attr)
922                         rdma_put_gid_attr(sgid_attr);
923         }
924
925         return ret;
926 }
927 EXPORT_SYMBOL(rdma_destroy_ah);
928
929 /* Shared receive queues */
930
931 struct ib_srq *ib_create_srq(struct ib_pd *pd,
932                              struct ib_srq_init_attr *srq_init_attr)
933 {
934         struct ib_srq *srq;
935
936         if (!pd->device->create_srq)
937                 return ERR_PTR(-EOPNOTSUPP);
938
939         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
940
941         if (!IS_ERR(srq)) {
942                 srq->device        = pd->device;
943                 srq->pd            = pd;
944                 srq->uobject       = NULL;
945                 srq->event_handler = srq_init_attr->event_handler;
946                 srq->srq_context   = srq_init_attr->srq_context;
947                 srq->srq_type      = srq_init_attr->srq_type;
948                 if (ib_srq_has_cq(srq->srq_type)) {
949                         srq->ext.cq   = srq_init_attr->ext.cq;
950                         atomic_inc(&srq->ext.cq->usecnt);
951                 }
952                 if (srq->srq_type == IB_SRQT_XRC) {
953                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
954                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
955                 }
956                 atomic_inc(&pd->usecnt);
957                 atomic_set(&srq->usecnt, 0);
958         }
959
960         return srq;
961 }
962 EXPORT_SYMBOL(ib_create_srq);
963
964 int ib_modify_srq(struct ib_srq *srq,
965                   struct ib_srq_attr *srq_attr,
966                   enum ib_srq_attr_mask srq_attr_mask)
967 {
968         return srq->device->modify_srq ?
969                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
970                 -EOPNOTSUPP;
971 }
972 EXPORT_SYMBOL(ib_modify_srq);
973
974 int ib_query_srq(struct ib_srq *srq,
975                  struct ib_srq_attr *srq_attr)
976 {
977         return srq->device->query_srq ?
978                 srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
979 }
980 EXPORT_SYMBOL(ib_query_srq);
981
982 int ib_destroy_srq(struct ib_srq *srq)
983 {
984         struct ib_pd *pd;
985         enum ib_srq_type srq_type;
986         struct ib_xrcd *uninitialized_var(xrcd);
987         struct ib_cq *uninitialized_var(cq);
988         int ret;
989
990         if (atomic_read(&srq->usecnt))
991                 return -EBUSY;
992
993         pd = srq->pd;
994         srq_type = srq->srq_type;
995         if (ib_srq_has_cq(srq_type))
996                 cq = srq->ext.cq;
997         if (srq_type == IB_SRQT_XRC)
998                 xrcd = srq->ext.xrc.xrcd;
999
1000         ret = srq->device->destroy_srq(srq);
1001         if (!ret) {
1002                 atomic_dec(&pd->usecnt);
1003                 if (srq_type == IB_SRQT_XRC)
1004                         atomic_dec(&xrcd->usecnt);
1005                 if (ib_srq_has_cq(srq_type))
1006                         atomic_dec(&cq->usecnt);
1007         }
1008
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(ib_destroy_srq);
1012
1013 /* Queue pairs */
1014
1015 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1016 {
1017         struct ib_qp *qp = context;
1018         unsigned long flags;
1019
1020         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1021         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1022                 if (event->element.qp->event_handler)
1023                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1024         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1025 }
1026
1027 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1028 {
1029         mutex_lock(&xrcd->tgt_qp_mutex);
1030         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1031         mutex_unlock(&xrcd->tgt_qp_mutex);
1032 }
1033
1034 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1035                                   void (*event_handler)(struct ib_event *, void *),
1036                                   void *qp_context)
1037 {
1038         struct ib_qp *qp;
1039         unsigned long flags;
1040         int err;
1041
1042         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1043         if (!qp)
1044                 return ERR_PTR(-ENOMEM);
1045
1046         qp->real_qp = real_qp;
1047         err = ib_open_shared_qp_security(qp, real_qp->device);
1048         if (err) {
1049                 kfree(qp);
1050                 return ERR_PTR(err);
1051         }
1052
1053         qp->real_qp = real_qp;
1054         atomic_inc(&real_qp->usecnt);
1055         qp->device = real_qp->device;
1056         qp->event_handler = event_handler;
1057         qp->qp_context = qp_context;
1058         qp->qp_num = real_qp->qp_num;
1059         qp->qp_type = real_qp->qp_type;
1060
1061         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1062         list_add(&qp->open_list, &real_qp->open_list);
1063         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1064
1065         return qp;
1066 }
1067
1068 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1069                          struct ib_qp_open_attr *qp_open_attr)
1070 {
1071         struct ib_qp *qp, *real_qp;
1072
1073         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1074                 return ERR_PTR(-EINVAL);
1075
1076         qp = ERR_PTR(-EINVAL);
1077         mutex_lock(&xrcd->tgt_qp_mutex);
1078         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1079                 if (real_qp->qp_num == qp_open_attr->qp_num) {
1080                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1081                                           qp_open_attr->qp_context);
1082                         break;
1083                 }
1084         }
1085         mutex_unlock(&xrcd->tgt_qp_mutex);
1086         return qp;
1087 }
1088 EXPORT_SYMBOL(ib_open_qp);
1089
1090 static struct ib_qp *create_xrc_qp(struct ib_qp *qp,
1091                                    struct ib_qp_init_attr *qp_init_attr)
1092 {
1093         struct ib_qp *real_qp = qp;
1094
1095         qp->event_handler = __ib_shared_qp_event_handler;
1096         qp->qp_context = qp;
1097         qp->pd = NULL;
1098         qp->send_cq = qp->recv_cq = NULL;
1099         qp->srq = NULL;
1100         qp->xrcd = qp_init_attr->xrcd;
1101         atomic_inc(&qp_init_attr->xrcd->usecnt);
1102         INIT_LIST_HEAD(&qp->open_list);
1103
1104         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1105                           qp_init_attr->qp_context);
1106         if (IS_ERR(qp))
1107                 return qp;
1108
1109         __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1110         return qp;
1111 }
1112
1113 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1114                            struct ib_qp_init_attr *qp_init_attr)
1115 {
1116         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1117         struct ib_qp *qp;
1118         int ret;
1119
1120         if (qp_init_attr->rwq_ind_tbl &&
1121             (qp_init_attr->recv_cq ||
1122             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1123             qp_init_attr->cap.max_recv_sge))
1124                 return ERR_PTR(-EINVAL);
1125
1126         /*
1127          * If the callers is using the RDMA API calculate the resources
1128          * needed for the RDMA READ/WRITE operations.
1129          *
1130          * Note that these callers need to pass in a port number.
1131          */
1132         if (qp_init_attr->cap.max_rdma_ctxs)
1133                 rdma_rw_init_qp(device, qp_init_attr);
1134
1135         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1136         if (IS_ERR(qp))
1137                 return qp;
1138
1139         ret = ib_create_qp_security(qp, device);
1140         if (ret)
1141                 goto err;
1142
1143         qp->real_qp    = qp;
1144         qp->qp_type    = qp_init_attr->qp_type;
1145         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1146
1147         atomic_set(&qp->usecnt, 0);
1148         qp->mrs_used = 0;
1149         spin_lock_init(&qp->mr_lock);
1150         INIT_LIST_HEAD(&qp->rdma_mrs);
1151         INIT_LIST_HEAD(&qp->sig_mrs);
1152         qp->port = 0;
1153
1154         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1155                 struct ib_qp *xrc_qp = create_xrc_qp(qp, qp_init_attr);
1156
1157                 if (IS_ERR(xrc_qp)) {
1158                         ret = PTR_ERR(xrc_qp);
1159                         goto err;
1160                 }
1161                 return xrc_qp;
1162         }
1163
1164         qp->event_handler = qp_init_attr->event_handler;
1165         qp->qp_context = qp_init_attr->qp_context;
1166         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1167                 qp->recv_cq = NULL;
1168                 qp->srq = NULL;
1169         } else {
1170                 qp->recv_cq = qp_init_attr->recv_cq;
1171                 if (qp_init_attr->recv_cq)
1172                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1173                 qp->srq = qp_init_attr->srq;
1174                 if (qp->srq)
1175                         atomic_inc(&qp_init_attr->srq->usecnt);
1176         }
1177
1178         qp->send_cq = qp_init_attr->send_cq;
1179         qp->xrcd    = NULL;
1180
1181         atomic_inc(&pd->usecnt);
1182         if (qp_init_attr->send_cq)
1183                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1184         if (qp_init_attr->rwq_ind_tbl)
1185                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1186
1187         if (qp_init_attr->cap.max_rdma_ctxs) {
1188                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1189                 if (ret)
1190                         goto err;
1191         }
1192
1193         /*
1194          * Note: all hw drivers guarantee that max_send_sge is lower than
1195          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1196          * max_send_sge <= max_sge_rd.
1197          */
1198         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1199         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1200                                  device->attrs.max_sge_rd);
1201
1202         return qp;
1203
1204 err:
1205         ib_destroy_qp(qp);
1206         return ERR_PTR(ret);
1207
1208 }
1209 EXPORT_SYMBOL(ib_create_qp);
1210
1211 static const struct {
1212         int                     valid;
1213         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1214         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1215 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1216         [IB_QPS_RESET] = {
1217                 [IB_QPS_RESET] = { .valid = 1 },
1218                 [IB_QPS_INIT]  = {
1219                         .valid = 1,
1220                         .req_param = {
1221                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1222                                                 IB_QP_PORT                      |
1223                                                 IB_QP_QKEY),
1224                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1225                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1226                                                 IB_QP_PORT                      |
1227                                                 IB_QP_ACCESS_FLAGS),
1228                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1229                                                 IB_QP_PORT                      |
1230                                                 IB_QP_ACCESS_FLAGS),
1231                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1232                                                 IB_QP_PORT                      |
1233                                                 IB_QP_ACCESS_FLAGS),
1234                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1235                                                 IB_QP_PORT                      |
1236                                                 IB_QP_ACCESS_FLAGS),
1237                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1238                                                 IB_QP_QKEY),
1239                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1240                                                 IB_QP_QKEY),
1241                         }
1242                 },
1243         },
1244         [IB_QPS_INIT]  = {
1245                 [IB_QPS_RESET] = { .valid = 1 },
1246                 [IB_QPS_ERR] =   { .valid = 1 },
1247                 [IB_QPS_INIT]  = {
1248                         .valid = 1,
1249                         .opt_param = {
1250                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1251                                                 IB_QP_PORT                      |
1252                                                 IB_QP_QKEY),
1253                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1254                                                 IB_QP_PORT                      |
1255                                                 IB_QP_ACCESS_FLAGS),
1256                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1257                                                 IB_QP_PORT                      |
1258                                                 IB_QP_ACCESS_FLAGS),
1259                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1260                                                 IB_QP_PORT                      |
1261                                                 IB_QP_ACCESS_FLAGS),
1262                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1263                                                 IB_QP_PORT                      |
1264                                                 IB_QP_ACCESS_FLAGS),
1265                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1266                                                 IB_QP_QKEY),
1267                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1268                                                 IB_QP_QKEY),
1269                         }
1270                 },
1271                 [IB_QPS_RTR]   = {
1272                         .valid = 1,
1273                         .req_param = {
1274                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1275                                                 IB_QP_PATH_MTU                  |
1276                                                 IB_QP_DEST_QPN                  |
1277                                                 IB_QP_RQ_PSN),
1278                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1279                                                 IB_QP_PATH_MTU                  |
1280                                                 IB_QP_DEST_QPN                  |
1281                                                 IB_QP_RQ_PSN                    |
1282                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1283                                                 IB_QP_MIN_RNR_TIMER),
1284                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1285                                                 IB_QP_PATH_MTU                  |
1286                                                 IB_QP_DEST_QPN                  |
1287                                                 IB_QP_RQ_PSN),
1288                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1289                                                 IB_QP_PATH_MTU                  |
1290                                                 IB_QP_DEST_QPN                  |
1291                                                 IB_QP_RQ_PSN                    |
1292                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1293                                                 IB_QP_MIN_RNR_TIMER),
1294                         },
1295                         .opt_param = {
1296                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1297                                                  IB_QP_QKEY),
1298                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1299                                                  IB_QP_ACCESS_FLAGS             |
1300                                                  IB_QP_PKEY_INDEX),
1301                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1302                                                  IB_QP_ACCESS_FLAGS             |
1303                                                  IB_QP_PKEY_INDEX),
1304                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1305                                                  IB_QP_ACCESS_FLAGS             |
1306                                                  IB_QP_PKEY_INDEX),
1307                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1308                                                  IB_QP_ACCESS_FLAGS             |
1309                                                  IB_QP_PKEY_INDEX),
1310                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1311                                                  IB_QP_QKEY),
1312                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1313                                                  IB_QP_QKEY),
1314                          },
1315                 },
1316         },
1317         [IB_QPS_RTR]   = {
1318                 [IB_QPS_RESET] = { .valid = 1 },
1319                 [IB_QPS_ERR] =   { .valid = 1 },
1320                 [IB_QPS_RTS]   = {
1321                         .valid = 1,
1322                         .req_param = {
1323                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1324                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1325                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1326                                                 IB_QP_RETRY_CNT                 |
1327                                                 IB_QP_RNR_RETRY                 |
1328                                                 IB_QP_SQ_PSN                    |
1329                                                 IB_QP_MAX_QP_RD_ATOMIC),
1330                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1331                                                 IB_QP_RETRY_CNT                 |
1332                                                 IB_QP_RNR_RETRY                 |
1333                                                 IB_QP_SQ_PSN                    |
1334                                                 IB_QP_MAX_QP_RD_ATOMIC),
1335                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1336                                                 IB_QP_SQ_PSN),
1337                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1338                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1339                         },
1340                         .opt_param = {
1341                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1342                                                  IB_QP_QKEY),
1343                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1344                                                  IB_QP_ALT_PATH                 |
1345                                                  IB_QP_ACCESS_FLAGS             |
1346                                                  IB_QP_PATH_MIG_STATE),
1347                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1348                                                  IB_QP_ALT_PATH                 |
1349                                                  IB_QP_ACCESS_FLAGS             |
1350                                                  IB_QP_MIN_RNR_TIMER            |
1351                                                  IB_QP_PATH_MIG_STATE),
1352                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1353                                                  IB_QP_ALT_PATH                 |
1354                                                  IB_QP_ACCESS_FLAGS             |
1355                                                  IB_QP_PATH_MIG_STATE),
1356                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1357                                                  IB_QP_ALT_PATH                 |
1358                                                  IB_QP_ACCESS_FLAGS             |
1359                                                  IB_QP_MIN_RNR_TIMER            |
1360                                                  IB_QP_PATH_MIG_STATE),
1361                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1362                                                  IB_QP_QKEY),
1363                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1364                                                  IB_QP_QKEY),
1365                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1366                          }
1367                 }
1368         },
1369         [IB_QPS_RTS]   = {
1370                 [IB_QPS_RESET] = { .valid = 1 },
1371                 [IB_QPS_ERR] =   { .valid = 1 },
1372                 [IB_QPS_RTS]   = {
1373                         .valid = 1,
1374                         .opt_param = {
1375                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1376                                                 IB_QP_QKEY),
1377                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1378                                                 IB_QP_ACCESS_FLAGS              |
1379                                                 IB_QP_ALT_PATH                  |
1380                                                 IB_QP_PATH_MIG_STATE),
1381                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1382                                                 IB_QP_ACCESS_FLAGS              |
1383                                                 IB_QP_ALT_PATH                  |
1384                                                 IB_QP_PATH_MIG_STATE            |
1385                                                 IB_QP_MIN_RNR_TIMER),
1386                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1387                                                 IB_QP_ACCESS_FLAGS              |
1388                                                 IB_QP_ALT_PATH                  |
1389                                                 IB_QP_PATH_MIG_STATE),
1390                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1391                                                 IB_QP_ACCESS_FLAGS              |
1392                                                 IB_QP_ALT_PATH                  |
1393                                                 IB_QP_PATH_MIG_STATE            |
1394                                                 IB_QP_MIN_RNR_TIMER),
1395                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1396                                                 IB_QP_QKEY),
1397                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1398                                                 IB_QP_QKEY),
1399                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1400                         }
1401                 },
1402                 [IB_QPS_SQD]   = {
1403                         .valid = 1,
1404                         .opt_param = {
1405                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1406                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1407                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1408                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1409                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1410                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1411                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1412                         }
1413                 },
1414         },
1415         [IB_QPS_SQD]   = {
1416                 [IB_QPS_RESET] = { .valid = 1 },
1417                 [IB_QPS_ERR] =   { .valid = 1 },
1418                 [IB_QPS_RTS]   = {
1419                         .valid = 1,
1420                         .opt_param = {
1421                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1422                                                 IB_QP_QKEY),
1423                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1424                                                 IB_QP_ALT_PATH                  |
1425                                                 IB_QP_ACCESS_FLAGS              |
1426                                                 IB_QP_PATH_MIG_STATE),
1427                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1428                                                 IB_QP_ALT_PATH                  |
1429                                                 IB_QP_ACCESS_FLAGS              |
1430                                                 IB_QP_MIN_RNR_TIMER             |
1431                                                 IB_QP_PATH_MIG_STATE),
1432                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1433                                                 IB_QP_ALT_PATH                  |
1434                                                 IB_QP_ACCESS_FLAGS              |
1435                                                 IB_QP_PATH_MIG_STATE),
1436                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1437                                                 IB_QP_ALT_PATH                  |
1438                                                 IB_QP_ACCESS_FLAGS              |
1439                                                 IB_QP_MIN_RNR_TIMER             |
1440                                                 IB_QP_PATH_MIG_STATE),
1441                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1442                                                 IB_QP_QKEY),
1443                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1444                                                 IB_QP_QKEY),
1445                         }
1446                 },
1447                 [IB_QPS_SQD]   = {
1448                         .valid = 1,
1449                         .opt_param = {
1450                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1451                                                 IB_QP_QKEY),
1452                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1453                                                 IB_QP_ALT_PATH                  |
1454                                                 IB_QP_ACCESS_FLAGS              |
1455                                                 IB_QP_PKEY_INDEX                |
1456                                                 IB_QP_PATH_MIG_STATE),
1457                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1458                                                 IB_QP_AV                        |
1459                                                 IB_QP_TIMEOUT                   |
1460                                                 IB_QP_RETRY_CNT                 |
1461                                                 IB_QP_RNR_RETRY                 |
1462                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1463                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1464                                                 IB_QP_ALT_PATH                  |
1465                                                 IB_QP_ACCESS_FLAGS              |
1466                                                 IB_QP_PKEY_INDEX                |
1467                                                 IB_QP_MIN_RNR_TIMER             |
1468                                                 IB_QP_PATH_MIG_STATE),
1469                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1470                                                 IB_QP_AV                        |
1471                                                 IB_QP_TIMEOUT                   |
1472                                                 IB_QP_RETRY_CNT                 |
1473                                                 IB_QP_RNR_RETRY                 |
1474                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1475                                                 IB_QP_ALT_PATH                  |
1476                                                 IB_QP_ACCESS_FLAGS              |
1477                                                 IB_QP_PKEY_INDEX                |
1478                                                 IB_QP_PATH_MIG_STATE),
1479                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1480                                                 IB_QP_AV                        |
1481                                                 IB_QP_TIMEOUT                   |
1482                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1483                                                 IB_QP_ALT_PATH                  |
1484                                                 IB_QP_ACCESS_FLAGS              |
1485                                                 IB_QP_PKEY_INDEX                |
1486                                                 IB_QP_MIN_RNR_TIMER             |
1487                                                 IB_QP_PATH_MIG_STATE),
1488                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1489                                                 IB_QP_QKEY),
1490                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1491                                                 IB_QP_QKEY),
1492                         }
1493                 }
1494         },
1495         [IB_QPS_SQE]   = {
1496                 [IB_QPS_RESET] = { .valid = 1 },
1497                 [IB_QPS_ERR] =   { .valid = 1 },
1498                 [IB_QPS_RTS]   = {
1499                         .valid = 1,
1500                         .opt_param = {
1501                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1502                                                 IB_QP_QKEY),
1503                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1504                                                 IB_QP_ACCESS_FLAGS),
1505                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1506                                                 IB_QP_QKEY),
1507                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1508                                                 IB_QP_QKEY),
1509                         }
1510                 }
1511         },
1512         [IB_QPS_ERR] = {
1513                 [IB_QPS_RESET] = { .valid = 1 },
1514                 [IB_QPS_ERR] =   { .valid = 1 }
1515         }
1516 };
1517
1518 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1519                         enum ib_qp_type type, enum ib_qp_attr_mask mask,
1520                         enum rdma_link_layer ll)
1521 {
1522         enum ib_qp_attr_mask req_param, opt_param;
1523
1524         if (mask & IB_QP_CUR_STATE  &&
1525             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1526             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1527                 return false;
1528
1529         if (!qp_state_table[cur_state][next_state].valid)
1530                 return false;
1531
1532         req_param = qp_state_table[cur_state][next_state].req_param[type];
1533         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1534
1535         if ((mask & req_param) != req_param)
1536                 return false;
1537
1538         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1539                 return false;
1540
1541         return true;
1542 }
1543 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1544
1545 /**
1546  * ib_resolve_eth_dmac - Resolve destination mac address
1547  * @device:             Device to consider
1548  * @ah_attr:            address handle attribute which describes the
1549  *                      source and destination parameters
1550  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1551  * returns 0 on success or appropriate error code. It initializes the
1552  * necessary ah_attr fields when call is successful.
1553  */
1554 static int ib_resolve_eth_dmac(struct ib_device *device,
1555                                struct rdma_ah_attr *ah_attr)
1556 {
1557         int ret = 0;
1558
1559         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1560                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1561                         __be32 addr = 0;
1562
1563                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1564                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1565                 } else {
1566                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1567                                         (char *)ah_attr->roce.dmac);
1568                 }
1569         } else {
1570                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1571         }
1572         return ret;
1573 }
1574
1575 static bool is_qp_type_connected(const struct ib_qp *qp)
1576 {
1577         return (qp->qp_type == IB_QPT_UC ||
1578                 qp->qp_type == IB_QPT_RC ||
1579                 qp->qp_type == IB_QPT_XRC_INI ||
1580                 qp->qp_type == IB_QPT_XRC_TGT);
1581 }
1582
1583 /**
1584  * IB core internal function to perform QP attributes modification.
1585  */
1586 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1587                          int attr_mask, struct ib_udata *udata)
1588 {
1589         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1590         const struct ib_gid_attr *old_sgid_attr_av;
1591         const struct ib_gid_attr *old_sgid_attr_alt_av;
1592         int ret;
1593
1594         if (attr_mask & IB_QP_AV) {
1595                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1596                                           &old_sgid_attr_av);
1597                 if (ret)
1598                         return ret;
1599         }
1600         if (attr_mask & IB_QP_ALT_PATH) {
1601                 /*
1602                  * FIXME: This does not track the migration state, so if the
1603                  * user loads a new alternate path after the HW has migrated
1604                  * from primary->alternate we will keep the wrong
1605                  * references. This is OK for IB because the reference
1606                  * counting does not serve any functional purpose.
1607                  */
1608                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1609                                           &old_sgid_attr_alt_av);
1610                 if (ret)
1611                         goto out_av;
1612
1613                 /*
1614                  * Today the core code can only handle alternate paths and APM
1615                  * for IB. Ban them in roce mode.
1616                  */
1617                 if (!(rdma_protocol_ib(qp->device,
1618                                        attr->alt_ah_attr.port_num) &&
1619                       rdma_protocol_ib(qp->device, port))) {
1620                         ret = -EINVAL;
1621                         goto out;
1622                 }
1623         }
1624
1625         /*
1626          * If the user provided the qp_attr then we have to resolve it. Kernel
1627          * users have to provide already resolved rdma_ah_attr's
1628          */
1629         if (udata && (attr_mask & IB_QP_AV) &&
1630             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1631             is_qp_type_connected(qp)) {
1632                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1633                 if (ret)
1634                         goto out;
1635         }
1636
1637         if (rdma_ib_or_roce(qp->device, port)) {
1638                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1639                         pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1640                                 __func__, qp->device->name);
1641                         attr->rq_psn &= 0xffffff;
1642                 }
1643
1644                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1645                         pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1646                                 __func__, qp->device->name);
1647                         attr->sq_psn &= 0xffffff;
1648                 }
1649         }
1650
1651         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1652         if (ret)
1653                 goto out;
1654
1655         if (attr_mask & IB_QP_PORT)
1656                 qp->port = attr->port_num;
1657         if (attr_mask & IB_QP_AV)
1658                 qp->av_sgid_attr =
1659                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1660         if (attr_mask & IB_QP_ALT_PATH)
1661                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1662                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1663
1664 out:
1665         if (attr_mask & IB_QP_ALT_PATH)
1666                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1667 out_av:
1668         if (attr_mask & IB_QP_AV)
1669                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1670         return ret;
1671 }
1672
1673 /**
1674  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1675  * @ib_qp: The QP to modify.
1676  * @attr: On input, specifies the QP attributes to modify.  On output,
1677  *   the current values of selected QP attributes are returned.
1678  * @attr_mask: A bit-mask used to specify which attributes of the QP
1679  *   are being modified.
1680  * @udata: pointer to user's input output buffer information
1681  *   are being modified.
1682  * It returns 0 on success and returns appropriate error code on error.
1683  */
1684 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1685                             int attr_mask, struct ib_udata *udata)
1686 {
1687         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1688 }
1689 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1690
1691 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1692 {
1693         int rc;
1694         u32 netdev_speed;
1695         struct net_device *netdev;
1696         struct ethtool_link_ksettings lksettings;
1697
1698         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1699                 return -EINVAL;
1700
1701         if (!dev->get_netdev)
1702                 return -EOPNOTSUPP;
1703
1704         netdev = dev->get_netdev(dev, port_num);
1705         if (!netdev)
1706                 return -ENODEV;
1707
1708         rtnl_lock();
1709         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1710         rtnl_unlock();
1711
1712         dev_put(netdev);
1713
1714         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1715                 netdev_speed = lksettings.base.speed;
1716         } else {
1717                 netdev_speed = SPEED_1000;
1718                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1719                         netdev_speed);
1720         }
1721
1722         if (netdev_speed <= SPEED_1000) {
1723                 *width = IB_WIDTH_1X;
1724                 *speed = IB_SPEED_SDR;
1725         } else if (netdev_speed <= SPEED_10000) {
1726                 *width = IB_WIDTH_1X;
1727                 *speed = IB_SPEED_FDR10;
1728         } else if (netdev_speed <= SPEED_20000) {
1729                 *width = IB_WIDTH_4X;
1730                 *speed = IB_SPEED_DDR;
1731         } else if (netdev_speed <= SPEED_25000) {
1732                 *width = IB_WIDTH_1X;
1733                 *speed = IB_SPEED_EDR;
1734         } else if (netdev_speed <= SPEED_40000) {
1735                 *width = IB_WIDTH_4X;
1736                 *speed = IB_SPEED_FDR10;
1737         } else {
1738                 *width = IB_WIDTH_4X;
1739                 *speed = IB_SPEED_EDR;
1740         }
1741
1742         return 0;
1743 }
1744 EXPORT_SYMBOL(ib_get_eth_speed);
1745
1746 int ib_modify_qp(struct ib_qp *qp,
1747                  struct ib_qp_attr *qp_attr,
1748                  int qp_attr_mask)
1749 {
1750         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1751 }
1752 EXPORT_SYMBOL(ib_modify_qp);
1753
1754 int ib_query_qp(struct ib_qp *qp,
1755                 struct ib_qp_attr *qp_attr,
1756                 int qp_attr_mask,
1757                 struct ib_qp_init_attr *qp_init_attr)
1758 {
1759         qp_attr->ah_attr.grh.sgid_attr = NULL;
1760         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1761
1762         return qp->device->query_qp ?
1763                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1764                 -EOPNOTSUPP;
1765 }
1766 EXPORT_SYMBOL(ib_query_qp);
1767
1768 int ib_close_qp(struct ib_qp *qp)
1769 {
1770         struct ib_qp *real_qp;
1771         unsigned long flags;
1772
1773         real_qp = qp->real_qp;
1774         if (real_qp == qp)
1775                 return -EINVAL;
1776
1777         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1778         list_del(&qp->open_list);
1779         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1780
1781         atomic_dec(&real_qp->usecnt);
1782         if (qp->qp_sec)
1783                 ib_close_shared_qp_security(qp->qp_sec);
1784         kfree(qp);
1785
1786         return 0;
1787 }
1788 EXPORT_SYMBOL(ib_close_qp);
1789
1790 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1791 {
1792         struct ib_xrcd *xrcd;
1793         struct ib_qp *real_qp;
1794         int ret;
1795
1796         real_qp = qp->real_qp;
1797         xrcd = real_qp->xrcd;
1798
1799         mutex_lock(&xrcd->tgt_qp_mutex);
1800         ib_close_qp(qp);
1801         if (atomic_read(&real_qp->usecnt) == 0)
1802                 list_del(&real_qp->xrcd_list);
1803         else
1804                 real_qp = NULL;
1805         mutex_unlock(&xrcd->tgt_qp_mutex);
1806
1807         if (real_qp) {
1808                 ret = ib_destroy_qp(real_qp);
1809                 if (!ret)
1810                         atomic_dec(&xrcd->usecnt);
1811                 else
1812                         __ib_insert_xrcd_qp(xrcd, real_qp);
1813         }
1814
1815         return 0;
1816 }
1817
1818 int ib_destroy_qp(struct ib_qp *qp)
1819 {
1820         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1821         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1822         struct ib_pd *pd;
1823         struct ib_cq *scq, *rcq;
1824         struct ib_srq *srq;
1825         struct ib_rwq_ind_table *ind_tbl;
1826         struct ib_qp_security *sec;
1827         int ret;
1828
1829         WARN_ON_ONCE(qp->mrs_used > 0);
1830
1831         if (atomic_read(&qp->usecnt))
1832                 return -EBUSY;
1833
1834         if (qp->real_qp != qp)
1835                 return __ib_destroy_shared_qp(qp);
1836
1837         pd   = qp->pd;
1838         scq  = qp->send_cq;
1839         rcq  = qp->recv_cq;
1840         srq  = qp->srq;
1841         ind_tbl = qp->rwq_ind_tbl;
1842         sec  = qp->qp_sec;
1843         if (sec)
1844                 ib_destroy_qp_security_begin(sec);
1845
1846         if (!qp->uobject)
1847                 rdma_rw_cleanup_mrs(qp);
1848
1849         rdma_restrack_del(&qp->res);
1850         ret = qp->device->destroy_qp(qp);
1851         if (!ret) {
1852                 if (alt_path_sgid_attr)
1853                         rdma_put_gid_attr(alt_path_sgid_attr);
1854                 if (av_sgid_attr)
1855                         rdma_put_gid_attr(av_sgid_attr);
1856                 if (pd)
1857                         atomic_dec(&pd->usecnt);
1858                 if (scq)
1859                         atomic_dec(&scq->usecnt);
1860                 if (rcq)
1861                         atomic_dec(&rcq->usecnt);
1862                 if (srq)
1863                         atomic_dec(&srq->usecnt);
1864                 if (ind_tbl)
1865                         atomic_dec(&ind_tbl->usecnt);
1866                 if (sec)
1867                         ib_destroy_qp_security_end(sec);
1868         } else {
1869                 if (sec)
1870                         ib_destroy_qp_security_abort(sec);
1871         }
1872
1873         return ret;
1874 }
1875 EXPORT_SYMBOL(ib_destroy_qp);
1876
1877 /* Completion queues */
1878
1879 struct ib_cq *__ib_create_cq(struct ib_device *device,
1880                              ib_comp_handler comp_handler,
1881                              void (*event_handler)(struct ib_event *, void *),
1882                              void *cq_context,
1883                              const struct ib_cq_init_attr *cq_attr,
1884                              const char *caller)
1885 {
1886         struct ib_cq *cq;
1887
1888         cq = device->create_cq(device, cq_attr, NULL, NULL);
1889
1890         if (!IS_ERR(cq)) {
1891                 cq->device        = device;
1892                 cq->uobject       = NULL;
1893                 cq->comp_handler  = comp_handler;
1894                 cq->event_handler = event_handler;
1895                 cq->cq_context    = cq_context;
1896                 atomic_set(&cq->usecnt, 0);
1897                 cq->res.type = RDMA_RESTRACK_CQ;
1898                 cq->res.kern_name = caller;
1899                 rdma_restrack_add(&cq->res);
1900         }
1901
1902         return cq;
1903 }
1904 EXPORT_SYMBOL(__ib_create_cq);
1905
1906 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1907 {
1908         return cq->device->modify_cq ?
1909                 cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
1910 }
1911 EXPORT_SYMBOL(rdma_set_cq_moderation);
1912
1913 int ib_destroy_cq(struct ib_cq *cq)
1914 {
1915         if (atomic_read(&cq->usecnt))
1916                 return -EBUSY;
1917
1918         rdma_restrack_del(&cq->res);
1919         return cq->device->destroy_cq(cq);
1920 }
1921 EXPORT_SYMBOL(ib_destroy_cq);
1922
1923 int ib_resize_cq(struct ib_cq *cq, int cqe)
1924 {
1925         return cq->device->resize_cq ?
1926                 cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1927 }
1928 EXPORT_SYMBOL(ib_resize_cq);
1929
1930 /* Memory regions */
1931
1932 int ib_dereg_mr(struct ib_mr *mr)
1933 {
1934         struct ib_pd *pd = mr->pd;
1935         struct ib_dm *dm = mr->dm;
1936         int ret;
1937
1938         rdma_restrack_del(&mr->res);
1939         ret = mr->device->dereg_mr(mr);
1940         if (!ret) {
1941                 atomic_dec(&pd->usecnt);
1942                 if (dm)
1943                         atomic_dec(&dm->usecnt);
1944         }
1945
1946         return ret;
1947 }
1948 EXPORT_SYMBOL(ib_dereg_mr);
1949
1950 /**
1951  * ib_alloc_mr() - Allocates a memory region
1952  * @pd:            protection domain associated with the region
1953  * @mr_type:       memory region type
1954  * @max_num_sg:    maximum sg entries available for registration.
1955  *
1956  * Notes:
1957  * Memory registeration page/sg lists must not exceed max_num_sg.
1958  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1959  * max_num_sg * used_page_size.
1960  *
1961  */
1962 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1963                           enum ib_mr_type mr_type,
1964                           u32 max_num_sg)
1965 {
1966         struct ib_mr *mr;
1967
1968         if (!pd->device->alloc_mr)
1969                 return ERR_PTR(-EOPNOTSUPP);
1970
1971         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1972         if (!IS_ERR(mr)) {
1973                 mr->device  = pd->device;
1974                 mr->pd      = pd;
1975                 mr->dm      = NULL;
1976                 mr->uobject = NULL;
1977                 atomic_inc(&pd->usecnt);
1978                 mr->need_inval = false;
1979                 mr->res.type = RDMA_RESTRACK_MR;
1980                 rdma_restrack_add(&mr->res);
1981         }
1982
1983         return mr;
1984 }
1985 EXPORT_SYMBOL(ib_alloc_mr);
1986
1987 /* "Fast" memory regions */
1988
1989 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1990                             int mr_access_flags,
1991                             struct ib_fmr_attr *fmr_attr)
1992 {
1993         struct ib_fmr *fmr;
1994
1995         if (!pd->device->alloc_fmr)
1996                 return ERR_PTR(-EOPNOTSUPP);
1997
1998         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1999         if (!IS_ERR(fmr)) {
2000                 fmr->device = pd->device;
2001                 fmr->pd     = pd;
2002                 atomic_inc(&pd->usecnt);
2003         }
2004
2005         return fmr;
2006 }
2007 EXPORT_SYMBOL(ib_alloc_fmr);
2008
2009 int ib_unmap_fmr(struct list_head *fmr_list)
2010 {
2011         struct ib_fmr *fmr;
2012
2013         if (list_empty(fmr_list))
2014                 return 0;
2015
2016         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2017         return fmr->device->unmap_fmr(fmr_list);
2018 }
2019 EXPORT_SYMBOL(ib_unmap_fmr);
2020
2021 int ib_dealloc_fmr(struct ib_fmr *fmr)
2022 {
2023         struct ib_pd *pd;
2024         int ret;
2025
2026         pd = fmr->pd;
2027         ret = fmr->device->dealloc_fmr(fmr);
2028         if (!ret)
2029                 atomic_dec(&pd->usecnt);
2030
2031         return ret;
2032 }
2033 EXPORT_SYMBOL(ib_dealloc_fmr);
2034
2035 /* Multicast groups */
2036
2037 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2038 {
2039         struct ib_qp_init_attr init_attr = {};
2040         struct ib_qp_attr attr = {};
2041         int num_eth_ports = 0;
2042         int port;
2043
2044         /* If QP state >= init, it is assigned to a port and we can check this
2045          * port only.
2046          */
2047         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2048                 if (attr.qp_state >= IB_QPS_INIT) {
2049                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2050                             IB_LINK_LAYER_INFINIBAND)
2051                                 return true;
2052                         goto lid_check;
2053                 }
2054         }
2055
2056         /* Can't get a quick answer, iterate over all ports */
2057         for (port = 0; port < qp->device->phys_port_cnt; port++)
2058                 if (rdma_port_get_link_layer(qp->device, port) !=
2059                     IB_LINK_LAYER_INFINIBAND)
2060                         num_eth_ports++;
2061
2062         /* If we have at lease one Ethernet port, RoCE annex declares that
2063          * multicast LID should be ignored. We can't tell at this step if the
2064          * QP belongs to an IB or Ethernet port.
2065          */
2066         if (num_eth_ports)
2067                 return true;
2068
2069         /* If all the ports are IB, we can check according to IB spec. */
2070 lid_check:
2071         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2072                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2073 }
2074
2075 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2076 {
2077         int ret;
2078
2079         if (!qp->device->attach_mcast)
2080                 return -EOPNOTSUPP;
2081
2082         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2083             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2084                 return -EINVAL;
2085
2086         ret = qp->device->attach_mcast(qp, gid, lid);
2087         if (!ret)
2088                 atomic_inc(&qp->usecnt);
2089         return ret;
2090 }
2091 EXPORT_SYMBOL(ib_attach_mcast);
2092
2093 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2094 {
2095         int ret;
2096
2097         if (!qp->device->detach_mcast)
2098                 return -EOPNOTSUPP;
2099
2100         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2101             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2102                 return -EINVAL;
2103
2104         ret = qp->device->detach_mcast(qp, gid, lid);
2105         if (!ret)
2106                 atomic_dec(&qp->usecnt);
2107         return ret;
2108 }
2109 EXPORT_SYMBOL(ib_detach_mcast);
2110
2111 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2112 {
2113         struct ib_xrcd *xrcd;
2114
2115         if (!device->alloc_xrcd)
2116                 return ERR_PTR(-EOPNOTSUPP);
2117
2118         xrcd = device->alloc_xrcd(device, NULL, NULL);
2119         if (!IS_ERR(xrcd)) {
2120                 xrcd->device = device;
2121                 xrcd->inode = NULL;
2122                 atomic_set(&xrcd->usecnt, 0);
2123                 mutex_init(&xrcd->tgt_qp_mutex);
2124                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2125         }
2126
2127         return xrcd;
2128 }
2129 EXPORT_SYMBOL(__ib_alloc_xrcd);
2130
2131 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2132 {
2133         struct ib_qp *qp;
2134         int ret;
2135
2136         if (atomic_read(&xrcd->usecnt))
2137                 return -EBUSY;
2138
2139         while (!list_empty(&xrcd->tgt_qp_list)) {
2140                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2141                 ret = ib_destroy_qp(qp);
2142                 if (ret)
2143                         return ret;
2144         }
2145
2146         return xrcd->device->dealloc_xrcd(xrcd);
2147 }
2148 EXPORT_SYMBOL(ib_dealloc_xrcd);
2149
2150 /**
2151  * ib_create_wq - Creates a WQ associated with the specified protection
2152  * domain.
2153  * @pd: The protection domain associated with the WQ.
2154  * @wq_attr: A list of initial attributes required to create the
2155  * WQ. If WQ creation succeeds, then the attributes are updated to
2156  * the actual capabilities of the created WQ.
2157  *
2158  * wq_attr->max_wr and wq_attr->max_sge determine
2159  * the requested size of the WQ, and set to the actual values allocated
2160  * on return.
2161  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2162  * at least as large as the requested values.
2163  */
2164 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2165                            struct ib_wq_init_attr *wq_attr)
2166 {
2167         struct ib_wq *wq;
2168
2169         if (!pd->device->create_wq)
2170                 return ERR_PTR(-EOPNOTSUPP);
2171
2172         wq = pd->device->create_wq(pd, wq_attr, NULL);
2173         if (!IS_ERR(wq)) {
2174                 wq->event_handler = wq_attr->event_handler;
2175                 wq->wq_context = wq_attr->wq_context;
2176                 wq->wq_type = wq_attr->wq_type;
2177                 wq->cq = wq_attr->cq;
2178                 wq->device = pd->device;
2179                 wq->pd = pd;
2180                 wq->uobject = NULL;
2181                 atomic_inc(&pd->usecnt);
2182                 atomic_inc(&wq_attr->cq->usecnt);
2183                 atomic_set(&wq->usecnt, 0);
2184         }
2185         return wq;
2186 }
2187 EXPORT_SYMBOL(ib_create_wq);
2188
2189 /**
2190  * ib_destroy_wq - Destroys the specified WQ.
2191  * @wq: The WQ to destroy.
2192  */
2193 int ib_destroy_wq(struct ib_wq *wq)
2194 {
2195         int err;
2196         struct ib_cq *cq = wq->cq;
2197         struct ib_pd *pd = wq->pd;
2198
2199         if (atomic_read(&wq->usecnt))
2200                 return -EBUSY;
2201
2202         err = wq->device->destroy_wq(wq);
2203         if (!err) {
2204                 atomic_dec(&pd->usecnt);
2205                 atomic_dec(&cq->usecnt);
2206         }
2207         return err;
2208 }
2209 EXPORT_SYMBOL(ib_destroy_wq);
2210
2211 /**
2212  * ib_modify_wq - Modifies the specified WQ.
2213  * @wq: The WQ to modify.
2214  * @wq_attr: On input, specifies the WQ attributes to modify.
2215  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2216  *   are being modified.
2217  * On output, the current values of selected WQ attributes are returned.
2218  */
2219 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2220                  u32 wq_attr_mask)
2221 {
2222         int err;
2223
2224         if (!wq->device->modify_wq)
2225                 return -EOPNOTSUPP;
2226
2227         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2228         return err;
2229 }
2230 EXPORT_SYMBOL(ib_modify_wq);
2231
2232 /*
2233  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2234  * @device: The device on which to create the rwq indirection table.
2235  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2236  * create the Indirection Table.
2237  *
2238  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2239  *      than the created ib_rwq_ind_table object and the caller is responsible
2240  *      for its memory allocation/free.
2241  */
2242 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2243                                                  struct ib_rwq_ind_table_init_attr *init_attr)
2244 {
2245         struct ib_rwq_ind_table *rwq_ind_table;
2246         int i;
2247         u32 table_size;
2248
2249         if (!device->create_rwq_ind_table)
2250                 return ERR_PTR(-EOPNOTSUPP);
2251
2252         table_size = (1 << init_attr->log_ind_tbl_size);
2253         rwq_ind_table = device->create_rwq_ind_table(device,
2254                                 init_attr, NULL);
2255         if (IS_ERR(rwq_ind_table))
2256                 return rwq_ind_table;
2257
2258         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2259         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2260         rwq_ind_table->device = device;
2261         rwq_ind_table->uobject = NULL;
2262         atomic_set(&rwq_ind_table->usecnt, 0);
2263
2264         for (i = 0; i < table_size; i++)
2265                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2266
2267         return rwq_ind_table;
2268 }
2269 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2270
2271 /*
2272  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2273  * @wq_ind_table: The Indirection Table to destroy.
2274 */
2275 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2276 {
2277         int err, i;
2278         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2279         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2280
2281         if (atomic_read(&rwq_ind_table->usecnt))
2282                 return -EBUSY;
2283
2284         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
2285         if (!err) {
2286                 for (i = 0; i < table_size; i++)
2287                         atomic_dec(&ind_tbl[i]->usecnt);
2288         }
2289
2290         return err;
2291 }
2292 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2293
2294 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2295                        struct ib_mr_status *mr_status)
2296 {
2297         return mr->device->check_mr_status ?
2298                 mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
2299 }
2300 EXPORT_SYMBOL(ib_check_mr_status);
2301
2302 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2303                          int state)
2304 {
2305         if (!device->set_vf_link_state)
2306                 return -EOPNOTSUPP;
2307
2308         return device->set_vf_link_state(device, vf, port, state);
2309 }
2310 EXPORT_SYMBOL(ib_set_vf_link_state);
2311
2312 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2313                      struct ifla_vf_info *info)
2314 {
2315         if (!device->get_vf_config)
2316                 return -EOPNOTSUPP;
2317
2318         return device->get_vf_config(device, vf, port, info);
2319 }
2320 EXPORT_SYMBOL(ib_get_vf_config);
2321
2322 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2323                     struct ifla_vf_stats *stats)
2324 {
2325         if (!device->get_vf_stats)
2326                 return -EOPNOTSUPP;
2327
2328         return device->get_vf_stats(device, vf, port, stats);
2329 }
2330 EXPORT_SYMBOL(ib_get_vf_stats);
2331
2332 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2333                    int type)
2334 {
2335         if (!device->set_vf_guid)
2336                 return -EOPNOTSUPP;
2337
2338         return device->set_vf_guid(device, vf, port, guid, type);
2339 }
2340 EXPORT_SYMBOL(ib_set_vf_guid);
2341
2342 /**
2343  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2344  *     and set it the memory region.
2345  * @mr:            memory region
2346  * @sg:            dma mapped scatterlist
2347  * @sg_nents:      number of entries in sg
2348  * @sg_offset:     offset in bytes into sg
2349  * @page_size:     page vector desired page size
2350  *
2351  * Constraints:
2352  * - The first sg element is allowed to have an offset.
2353  * - Each sg element must either be aligned to page_size or virtually
2354  *   contiguous to the previous element. In case an sg element has a
2355  *   non-contiguous offset, the mapping prefix will not include it.
2356  * - The last sg element is allowed to have length less than page_size.
2357  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2358  *   then only max_num_sg entries will be mapped.
2359  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2360  *   constraints holds and the page_size argument is ignored.
2361  *
2362  * Returns the number of sg elements that were mapped to the memory region.
2363  *
2364  * After this completes successfully, the  memory region
2365  * is ready for registration.
2366  */
2367 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2368                  unsigned int *sg_offset, unsigned int page_size)
2369 {
2370         if (unlikely(!mr->device->map_mr_sg))
2371                 return -EOPNOTSUPP;
2372
2373         mr->page_size = page_size;
2374
2375         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2376 }
2377 EXPORT_SYMBOL(ib_map_mr_sg);
2378
2379 /**
2380  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2381  *     to a page vector
2382  * @mr:            memory region
2383  * @sgl:           dma mapped scatterlist
2384  * @sg_nents:      number of entries in sg
2385  * @sg_offset_p:   IN:  start offset in bytes into sg
2386  *                 OUT: offset in bytes for element n of the sg of the first
2387  *                      byte that has not been processed where n is the return
2388  *                      value of this function.
2389  * @set_page:      driver page assignment function pointer
2390  *
2391  * Core service helper for drivers to convert the largest
2392  * prefix of given sg list to a page vector. The sg list
2393  * prefix converted is the prefix that meet the requirements
2394  * of ib_map_mr_sg.
2395  *
2396  * Returns the number of sg elements that were assigned to
2397  * a page vector.
2398  */
2399 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2400                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2401 {
2402         struct scatterlist *sg;
2403         u64 last_end_dma_addr = 0;
2404         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2405         unsigned int last_page_off = 0;
2406         u64 page_mask = ~((u64)mr->page_size - 1);
2407         int i, ret;
2408
2409         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2410                 return -EINVAL;
2411
2412         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2413         mr->length = 0;
2414
2415         for_each_sg(sgl, sg, sg_nents, i) {
2416                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2417                 u64 prev_addr = dma_addr;
2418                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2419                 u64 end_dma_addr = dma_addr + dma_len;
2420                 u64 page_addr = dma_addr & page_mask;
2421
2422                 /*
2423                  * For the second and later elements, check whether either the
2424                  * end of element i-1 or the start of element i is not aligned
2425                  * on a page boundary.
2426                  */
2427                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2428                         /* Stop mapping if there is a gap. */
2429                         if (last_end_dma_addr != dma_addr)
2430                                 break;
2431
2432                         /*
2433                          * Coalesce this element with the last. If it is small
2434                          * enough just update mr->length. Otherwise start
2435                          * mapping from the next page.
2436                          */
2437                         goto next_page;
2438                 }
2439
2440                 do {
2441                         ret = set_page(mr, page_addr);
2442                         if (unlikely(ret < 0)) {
2443                                 sg_offset = prev_addr - sg_dma_address(sg);
2444                                 mr->length += prev_addr - dma_addr;
2445                                 if (sg_offset_p)
2446                                         *sg_offset_p = sg_offset;
2447                                 return i || sg_offset ? i : ret;
2448                         }
2449                         prev_addr = page_addr;
2450 next_page:
2451                         page_addr += mr->page_size;
2452                 } while (page_addr < end_dma_addr);
2453
2454                 mr->length += dma_len;
2455                 last_end_dma_addr = end_dma_addr;
2456                 last_page_off = end_dma_addr & ~page_mask;
2457
2458                 sg_offset = 0;
2459         }
2460
2461         if (sg_offset_p)
2462                 *sg_offset_p = 0;
2463         return i;
2464 }
2465 EXPORT_SYMBOL(ib_sg_to_pages);
2466
2467 struct ib_drain_cqe {
2468         struct ib_cqe cqe;
2469         struct completion done;
2470 };
2471
2472 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2473 {
2474         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2475                                                 cqe);
2476
2477         complete(&cqe->done);
2478 }
2479
2480 /*
2481  * Post a WR and block until its completion is reaped for the SQ.
2482  */
2483 static void __ib_drain_sq(struct ib_qp *qp)
2484 {
2485         struct ib_cq *cq = qp->send_cq;
2486         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2487         struct ib_drain_cqe sdrain;
2488         struct ib_rdma_wr swr = {
2489                 .wr = {
2490                         .next = NULL,
2491                         { .wr_cqe       = &sdrain.cqe, },
2492                         .opcode = IB_WR_RDMA_WRITE,
2493                 },
2494         };
2495         int ret;
2496
2497         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2498         if (ret) {
2499                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2500                 return;
2501         }
2502
2503         sdrain.cqe.done = ib_drain_qp_done;
2504         init_completion(&sdrain.done);
2505
2506         ret = ib_post_send(qp, &swr.wr, NULL);
2507         if (ret) {
2508                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2509                 return;
2510         }
2511
2512         if (cq->poll_ctx == IB_POLL_DIRECT)
2513                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2514                         ib_process_cq_direct(cq, -1);
2515         else
2516                 wait_for_completion(&sdrain.done);
2517 }
2518
2519 /*
2520  * Post a WR and block until its completion is reaped for the RQ.
2521  */
2522 static void __ib_drain_rq(struct ib_qp *qp)
2523 {
2524         struct ib_cq *cq = qp->recv_cq;
2525         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2526         struct ib_drain_cqe rdrain;
2527         struct ib_recv_wr rwr = {};
2528         int ret;
2529
2530         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2531         if (ret) {
2532                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2533                 return;
2534         }
2535
2536         rwr.wr_cqe = &rdrain.cqe;
2537         rdrain.cqe.done = ib_drain_qp_done;
2538         init_completion(&rdrain.done);
2539
2540         ret = ib_post_recv(qp, &rwr, NULL);
2541         if (ret) {
2542                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2543                 return;
2544         }
2545
2546         if (cq->poll_ctx == IB_POLL_DIRECT)
2547                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2548                         ib_process_cq_direct(cq, -1);
2549         else
2550                 wait_for_completion(&rdrain.done);
2551 }
2552
2553 /**
2554  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2555  *                 application.
2556  * @qp:            queue pair to drain
2557  *
2558  * If the device has a provider-specific drain function, then
2559  * call that.  Otherwise call the generic drain function
2560  * __ib_drain_sq().
2561  *
2562  * The caller must:
2563  *
2564  * ensure there is room in the CQ and SQ for the drain work request and
2565  * completion.
2566  *
2567  * allocate the CQ using ib_alloc_cq().
2568  *
2569  * ensure that there are no other contexts that are posting WRs concurrently.
2570  * Otherwise the drain is not guaranteed.
2571  */
2572 void ib_drain_sq(struct ib_qp *qp)
2573 {
2574         if (qp->device->drain_sq)
2575                 qp->device->drain_sq(qp);
2576         else
2577                 __ib_drain_sq(qp);
2578 }
2579 EXPORT_SYMBOL(ib_drain_sq);
2580
2581 /**
2582  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2583  *                 application.
2584  * @qp:            queue pair to drain
2585  *
2586  * If the device has a provider-specific drain function, then
2587  * call that.  Otherwise call the generic drain function
2588  * __ib_drain_rq().
2589  *
2590  * The caller must:
2591  *
2592  * ensure there is room in the CQ and RQ for the drain work request and
2593  * completion.
2594  *
2595  * allocate the CQ using ib_alloc_cq().
2596  *
2597  * ensure that there are no other contexts that are posting WRs concurrently.
2598  * Otherwise the drain is not guaranteed.
2599  */
2600 void ib_drain_rq(struct ib_qp *qp)
2601 {
2602         if (qp->device->drain_rq)
2603                 qp->device->drain_rq(qp);
2604         else
2605                 __ib_drain_rq(qp);
2606 }
2607 EXPORT_SYMBOL(ib_drain_rq);
2608
2609 /**
2610  * ib_drain_qp() - Block until all CQEs have been consumed by the
2611  *                 application on both the RQ and SQ.
2612  * @qp:            queue pair to drain
2613  *
2614  * The caller must:
2615  *
2616  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2617  * and completions.
2618  *
2619  * allocate the CQs using ib_alloc_cq().
2620  *
2621  * ensure that there are no other contexts that are posting WRs concurrently.
2622  * Otherwise the drain is not guaranteed.
2623  */
2624 void ib_drain_qp(struct ib_qp *qp)
2625 {
2626         ib_drain_sq(qp);
2627         if (!qp->srq)
2628                 ib_drain_rq(qp);
2629 }
2630 EXPORT_SYMBOL(ib_drain_qp);