GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
92 MODULE_PARM_DESC(
93         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
94
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
118
119 unsigned int user_credit_return_threshold = 33; /* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124
125 static struct idr hfi1_unit_table;
126 u32 hfi1_cpulist_count;
127 unsigned long *hfi1_cpulist;
128
129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130                              struct hfi1_pportdata *ppd)
131 {
132         struct hfi1_ctxtdata *rcd;
133         int ret;
134
135         /* Control context has to be always 0 */
136         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137
138         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139         if (ret < 0) {
140                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
141                 return ret;
142         }
143
144         /*
145          * Set up the kernel context flags here and now because they use
146          * default values for all receive side memories.  User contexts will
147          * be handled as they are created.
148          */
149         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
152                 HFI1_CAP_KGET(DMA_RTAIL);
153
154         /* Control context must use DMA_RTAIL */
155         if (rcd->ctxt == HFI1_CTRL_CTXT)
156                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
157         rcd->seq_cnt = 1;
158
159         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160         if (!rcd->sc) {
161                 dd_dev_err(dd, "Kernel send context allocation failed\n");
162                 return -ENOMEM;
163         }
164         hfi1_init_ctxt(rcd->sc);
165
166         return 0;
167 }
168
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174         u16 i;
175         int ret;
176
177         dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
178                                GFP_KERNEL, dd->node);
179         if (!dd->rcd)
180                 return -ENOMEM;
181
182         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183                 ret = hfi1_create_kctxt(dd, dd->pport);
184                 if (ret)
185                         goto bail;
186         }
187
188         return 0;
189 bail:
190         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191                 hfi1_free_ctxt(dd->rcd[i]);
192
193         /* All the contexts should be freed, free the array */
194         kfree(dd->rcd);
195         dd->rcd = NULL;
196         return ret;
197 }
198
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204         kref_init(&rcd->kref);
205 }
206
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
212 static void hfi1_rcd_free(struct kref *kref)
213 {
214         unsigned long flags;
215         struct hfi1_ctxtdata *rcd =
216                 container_of(kref, struct hfi1_ctxtdata, kref);
217
218         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219         rcd->dd->rcd[rcd->ctxt] = NULL;
220         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221
222         hfi1_free_ctxtdata(rcd->dd, rcd);
223
224         kfree(rcd);
225 }
226
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235         if (rcd)
236                 return kref_put(&rcd->kref, hfi1_rcd_free);
237
238         return 0;
239 }
240
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  *
247  * Return : reflect kref_get_unless_zero(), which returns non-zero on
248  * increment, otherwise 0.
249  */
250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
251 {
252         return kref_get_unless_zero(&rcd->kref);
253 }
254
255 /**
256  * allocate_rcd_index - allocate an rcd index from the rcd array
257  * @dd: pointer to a valid devdata structure
258  * @rcd: rcd data structure to assign
259  * @index: pointer to index that is allocated
260  *
261  * Find an empty index in the rcd array, and assign the given rcd to it.
262  * If the array is full, we are EBUSY.
263  *
264  */
265 static int allocate_rcd_index(struct hfi1_devdata *dd,
266                               struct hfi1_ctxtdata *rcd, u16 *index)
267 {
268         unsigned long flags;
269         u16 ctxt;
270
271         spin_lock_irqsave(&dd->uctxt_lock, flags);
272         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
273                 if (!dd->rcd[ctxt])
274                         break;
275
276         if (ctxt < dd->num_rcv_contexts) {
277                 rcd->ctxt = ctxt;
278                 dd->rcd[ctxt] = rcd;
279                 hfi1_rcd_init(rcd);
280         }
281         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
282
283         if (ctxt >= dd->num_rcv_contexts)
284                 return -EBUSY;
285
286         *index = ctxt;
287
288         return 0;
289 }
290
291 /**
292  * hfi1_rcd_get_by_index
293  * @dd: pointer to a valid devdata structure
294  * @ctxt: the index of an possilbe rcd
295  *
296  * We need to protect access to the rcd array.  If access is needed to
297  * one or more index, get the protecting spinlock and then increment the
298  * kref.
299  *
300  * The caller is responsible for making the _put().
301  *
302  */
303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
304 {
305         unsigned long flags;
306         struct hfi1_ctxtdata *rcd = NULL;
307
308         spin_lock_irqsave(&dd->uctxt_lock, flags);
309         if (dd->rcd[ctxt]) {
310                 rcd = dd->rcd[ctxt];
311                 if (!hfi1_rcd_get(rcd))
312                         rcd = NULL;
313         }
314         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
315
316         return rcd;
317 }
318
319 /*
320  * Common code for user and kernel context create and setup.
321  * NOTE: the initial kref is done here (hf1_rcd_init()).
322  */
323 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
324                          struct hfi1_ctxtdata **context)
325 {
326         struct hfi1_devdata *dd = ppd->dd;
327         struct hfi1_ctxtdata *rcd;
328         unsigned kctxt_ngroups = 0;
329         u32 base;
330
331         if (dd->rcv_entries.nctxt_extra >
332             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
333                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
334                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
335         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
336         if (rcd) {
337                 u32 rcvtids, max_entries;
338                 u16 ctxt;
339                 int ret;
340
341                 ret = allocate_rcd_index(dd, rcd, &ctxt);
342                 if (ret) {
343                         *context = NULL;
344                         kfree(rcd);
345                         return ret;
346                 }
347
348                 INIT_LIST_HEAD(&rcd->qp_wait_list);
349                 hfi1_exp_tid_group_init(&rcd->tid_group_list);
350                 hfi1_exp_tid_group_init(&rcd->tid_used_list);
351                 hfi1_exp_tid_group_init(&rcd->tid_full_list);
352                 rcd->ppd = ppd;
353                 rcd->dd = dd;
354                 __set_bit(0, rcd->in_use_ctxts);
355                 rcd->numa_id = numa;
356                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
357
358                 mutex_init(&rcd->exp_lock);
359
360                 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
361
362                 /*
363                  * Calculate the context's RcvArray entry starting point.
364                  * We do this here because we have to take into account all
365                  * the RcvArray entries that previous context would have
366                  * taken and we have to account for any extra groups assigned
367                  * to the static (kernel) or dynamic (vnic/user) contexts.
368                  */
369                 if (ctxt < dd->first_dyn_alloc_ctxt) {
370                         if (ctxt < kctxt_ngroups) {
371                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
372                                 rcd->rcv_array_groups++;
373                         } else {
374                                 base = kctxt_ngroups +
375                                         (ctxt * dd->rcv_entries.ngroups);
376                         }
377                 } else {
378                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
379
380                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
381                                 kctxt_ngroups);
382                         if (ct < dd->rcv_entries.nctxt_extra) {
383                                 base += ct * (dd->rcv_entries.ngroups + 1);
384                                 rcd->rcv_array_groups++;
385                         } else {
386                                 base += dd->rcv_entries.nctxt_extra +
387                                         (ct * dd->rcv_entries.ngroups);
388                         }
389                 }
390                 rcd->eager_base = base * dd->rcv_entries.group_size;
391
392                 rcd->rcvhdrq_cnt = rcvhdrcnt;
393                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
394                 /*
395                  * Simple Eager buffer allocation: we have already pre-allocated
396                  * the number of RcvArray entry groups. Each ctxtdata structure
397                  * holds the number of groups for that context.
398                  *
399                  * To follow CSR requirements and maintain cacheline alignment,
400                  * make sure all sizes and bases are multiples of group_size.
401                  *
402                  * The expected entry count is what is left after assigning
403                  * eager.
404                  */
405                 max_entries = rcd->rcv_array_groups *
406                         dd->rcv_entries.group_size;
407                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
408                 rcd->egrbufs.count = round_down(rcvtids,
409                                                 dd->rcv_entries.group_size);
410                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
411                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
412                                    rcd->ctxt);
413                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
414                 }
415                 hfi1_cdbg(PROC,
416                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
417                           rcd->ctxt, rcd->egrbufs.count);
418
419                 /*
420                  * Allocate array that will hold the eager buffer accounting
421                  * data.
422                  * This will allocate the maximum possible buffer count based
423                  * on the value of the RcvArray split parameter.
424                  * The resulting value will be rounded down to the closest
425                  * multiple of dd->rcv_entries.group_size.
426                  */
427                 rcd->egrbufs.buffers = kzalloc_node(
428                         rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
429                         GFP_KERNEL, numa);
430                 if (!rcd->egrbufs.buffers)
431                         goto bail;
432                 rcd->egrbufs.rcvtids = kzalloc_node(
433                                 rcd->egrbufs.count *
434                                 sizeof(*rcd->egrbufs.rcvtids),
435                                 GFP_KERNEL, numa);
436                 if (!rcd->egrbufs.rcvtids)
437                         goto bail;
438                 rcd->egrbufs.size = eager_buffer_size;
439                 /*
440                  * The size of the buffers programmed into the RcvArray
441                  * entries needs to be big enough to handle the highest
442                  * MTU supported.
443                  */
444                 if (rcd->egrbufs.size < hfi1_max_mtu) {
445                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
446                         hfi1_cdbg(PROC,
447                                   "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
448                                     rcd->ctxt, rcd->egrbufs.size);
449                 }
450                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
451
452                 /* Applicable only for statically created kernel contexts */
453                 if (ctxt < dd->first_dyn_alloc_ctxt) {
454                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
455                                                     GFP_KERNEL, numa);
456                         if (!rcd->opstats)
457                                 goto bail;
458                 }
459
460                 *context = rcd;
461                 return 0;
462         }
463
464 bail:
465         *context = NULL;
466         hfi1_free_ctxt(rcd);
467         return -ENOMEM;
468 }
469
470 /**
471  * hfi1_free_ctxt
472  * @rcd: pointer to an initialized rcd data structure
473  *
474  * This wrapper is the free function that matches hfi1_create_ctxtdata().
475  * When a context is done being used (kernel or user), this function is called
476  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
477  * Other users of the context do a get/put sequence to make sure that the
478  * structure isn't removed while in use.
479  */
480 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
481 {
482         hfi1_rcd_put(rcd);
483 }
484
485 /*
486  * Convert a receive header entry size that to the encoding used in the CSR.
487  *
488  * Return a zero if the given size is invalid.
489  */
490 static inline u64 encode_rcv_header_entry_size(u16 size)
491 {
492         /* there are only 3 valid receive header entry sizes */
493         if (size == 2)
494                 return 1;
495         if (size == 16)
496                 return 2;
497         else if (size == 32)
498                 return 4;
499         return 0; /* invalid */
500 }
501
502 /*
503  * Select the largest ccti value over all SLs to determine the intra-
504  * packet gap for the link.
505  *
506  * called with cca_timer_lock held (to protect access to cca_timer
507  * array), and rcu_read_lock() (to protect access to cc_state).
508  */
509 void set_link_ipg(struct hfi1_pportdata *ppd)
510 {
511         struct hfi1_devdata *dd = ppd->dd;
512         struct cc_state *cc_state;
513         int i;
514         u16 cce, ccti_limit, max_ccti = 0;
515         u16 shift, mult;
516         u64 src;
517         u32 current_egress_rate; /* Mbits /sec */
518         u64 max_pkt_time;
519         /*
520          * max_pkt_time is the maximum packet egress time in units
521          * of the fabric clock period 1/(805 MHz).
522          */
523
524         cc_state = get_cc_state(ppd);
525
526         if (!cc_state)
527                 /*
528                  * This should _never_ happen - rcu_read_lock() is held,
529                  * and set_link_ipg() should not be called if cc_state
530                  * is NULL.
531                  */
532                 return;
533
534         for (i = 0; i < OPA_MAX_SLS; i++) {
535                 u16 ccti = ppd->cca_timer[i].ccti;
536
537                 if (ccti > max_ccti)
538                         max_ccti = ccti;
539         }
540
541         ccti_limit = cc_state->cct.ccti_limit;
542         if (max_ccti > ccti_limit)
543                 max_ccti = ccti_limit;
544
545         cce = cc_state->cct.entries[max_ccti].entry;
546         shift = (cce & 0xc000) >> 14;
547         mult = (cce & 0x3fff);
548
549         current_egress_rate = active_egress_rate(ppd);
550
551         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
552
553         src = (max_pkt_time >> shift) * mult;
554
555         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
556         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
557
558         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
559 }
560
561 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
562 {
563         struct cca_timer *cca_timer;
564         struct hfi1_pportdata *ppd;
565         int sl;
566         u16 ccti_timer, ccti_min;
567         struct cc_state *cc_state;
568         unsigned long flags;
569         enum hrtimer_restart ret = HRTIMER_NORESTART;
570
571         cca_timer = container_of(t, struct cca_timer, hrtimer);
572         ppd = cca_timer->ppd;
573         sl = cca_timer->sl;
574
575         rcu_read_lock();
576
577         cc_state = get_cc_state(ppd);
578
579         if (!cc_state) {
580                 rcu_read_unlock();
581                 return HRTIMER_NORESTART;
582         }
583
584         /*
585          * 1) decrement ccti for SL
586          * 2) calculate IPG for link (set_link_ipg())
587          * 3) restart timer, unless ccti is at min value
588          */
589
590         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
591         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
592
593         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
594
595         if (cca_timer->ccti > ccti_min) {
596                 cca_timer->ccti--;
597                 set_link_ipg(ppd);
598         }
599
600         if (cca_timer->ccti > ccti_min) {
601                 unsigned long nsec = 1024 * ccti_timer;
602                 /* ccti_timer is in units of 1.024 usec */
603                 hrtimer_forward_now(t, ns_to_ktime(nsec));
604                 ret = HRTIMER_RESTART;
605         }
606
607         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
608         rcu_read_unlock();
609         return ret;
610 }
611
612 /*
613  * Common code for initializing the physical port structure.
614  */
615 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
616                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
617 {
618         int i;
619         uint default_pkey_idx;
620         struct cc_state *cc_state;
621
622         ppd->dd = dd;
623         ppd->hw_pidx = hw_pidx;
624         ppd->port = port; /* IB port number, not index */
625
626         default_pkey_idx = 1;
627
628         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
629         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
630
631         if (loopback) {
632                 hfi1_early_err(&pdev->dev,
633                                "Faking data partition 0x8001 in idx %u\n",
634                                !default_pkey_idx);
635                 ppd->pkeys[!default_pkey_idx] = 0x8001;
636         }
637
638         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
639         INIT_WORK(&ppd->link_up_work, handle_link_up);
640         INIT_WORK(&ppd->link_down_work, handle_link_down);
641         INIT_WORK(&ppd->freeze_work, handle_freeze);
642         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
643         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
644         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
645         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
646         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
647         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
648
649         mutex_init(&ppd->hls_lock);
650         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
651
652         ppd->qsfp_info.ppd = ppd;
653         ppd->sm_trap_qp = 0x0;
654         ppd->sa_qp = 0x1;
655
656         ppd->hfi1_wq = NULL;
657
658         spin_lock_init(&ppd->cca_timer_lock);
659
660         for (i = 0; i < OPA_MAX_SLS; i++) {
661                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
662                              HRTIMER_MODE_REL);
663                 ppd->cca_timer[i].ppd = ppd;
664                 ppd->cca_timer[i].sl = i;
665                 ppd->cca_timer[i].ccti = 0;
666                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
667         }
668
669         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
670
671         spin_lock_init(&ppd->cc_state_lock);
672         spin_lock_init(&ppd->cc_log_lock);
673         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
674         RCU_INIT_POINTER(ppd->cc_state, cc_state);
675         if (!cc_state)
676                 goto bail;
677         return;
678
679 bail:
680
681         hfi1_early_err(&pdev->dev,
682                        "Congestion Control Agent disabled for port %d\n", port);
683 }
684
685 /*
686  * Do initialization for device that is only needed on
687  * first detect, not on resets.
688  */
689 static int loadtime_init(struct hfi1_devdata *dd)
690 {
691         return 0;
692 }
693
694 /**
695  * init_after_reset - re-initialize after a reset
696  * @dd: the hfi1_ib device
697  *
698  * sanity check at least some of the values after reset, and
699  * ensure no receive or transmit (explicitly, in case reset
700  * failed
701  */
702 static int init_after_reset(struct hfi1_devdata *dd)
703 {
704         int i;
705         struct hfi1_ctxtdata *rcd;
706         /*
707          * Ensure chip does no sends or receives, tail updates, or
708          * pioavail updates while we re-initialize.  This is mostly
709          * for the driver data structures, not chip registers.
710          */
711         for (i = 0; i < dd->num_rcv_contexts; i++) {
712                 rcd = hfi1_rcd_get_by_index(dd, i);
713                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
714                              HFI1_RCVCTRL_INTRAVAIL_DIS |
715                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
716                 hfi1_rcd_put(rcd);
717         }
718         pio_send_control(dd, PSC_GLOBAL_DISABLE);
719         for (i = 0; i < dd->num_send_contexts; i++)
720                 sc_disable(dd->send_contexts[i].sc);
721
722         return 0;
723 }
724
725 static void enable_chip(struct hfi1_devdata *dd)
726 {
727         struct hfi1_ctxtdata *rcd;
728         u32 rcvmask;
729         u16 i;
730
731         /* enable PIO send */
732         pio_send_control(dd, PSC_GLOBAL_ENABLE);
733
734         /*
735          * Enable kernel ctxts' receive and receive interrupt.
736          * Other ctxts done as user opens and initializes them.
737          */
738         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
739                 rcd = hfi1_rcd_get_by_index(dd, i);
740                 if (!rcd)
741                         continue;
742                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
743                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
744                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
745                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
746                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
747                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
748                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
749                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
750                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
751                 hfi1_rcvctrl(dd, rcvmask, rcd);
752                 sc_enable(rcd->sc);
753                 hfi1_rcd_put(rcd);
754         }
755 }
756
757 /**
758  * create_workqueues - create per port workqueues
759  * @dd: the hfi1_ib device
760  */
761 static int create_workqueues(struct hfi1_devdata *dd)
762 {
763         int pidx;
764         struct hfi1_pportdata *ppd;
765
766         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
767                 ppd = dd->pport + pidx;
768                 if (!ppd->hfi1_wq) {
769                         ppd->hfi1_wq =
770                                 alloc_workqueue(
771                                     "hfi%d_%d",
772                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
773                                     WQ_MEM_RECLAIM,
774                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
775                                     dd->unit, pidx);
776                         if (!ppd->hfi1_wq)
777                                 goto wq_error;
778                 }
779                 if (!ppd->link_wq) {
780                         /*
781                          * Make the link workqueue single-threaded to enforce
782                          * serialization.
783                          */
784                         ppd->link_wq =
785                                 alloc_workqueue(
786                                     "hfi_link_%d_%d",
787                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
788                                     1, /* max_active */
789                                     dd->unit, pidx);
790                         if (!ppd->link_wq)
791                                 goto wq_error;
792                 }
793         }
794         return 0;
795 wq_error:
796         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
797         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798                 ppd = dd->pport + pidx;
799                 if (ppd->hfi1_wq) {
800                         destroy_workqueue(ppd->hfi1_wq);
801                         ppd->hfi1_wq = NULL;
802                 }
803                 if (ppd->link_wq) {
804                         destroy_workqueue(ppd->link_wq);
805                         ppd->link_wq = NULL;
806                 }
807         }
808         return -ENOMEM;
809 }
810
811 /**
812  * hfi1_init - do the actual initialization sequence on the chip
813  * @dd: the hfi1_ib device
814  * @reinit: re-initializing, so don't allocate new memory
815  *
816  * Do the actual initialization sequence on the chip.  This is done
817  * both from the init routine called from the PCI infrastructure, and
818  * when we reset the chip, or detect that it was reset internally,
819  * or it's administratively re-enabled.
820  *
821  * Memory allocation here and in called routines is only done in
822  * the first case (reinit == 0).  We have to be careful, because even
823  * without memory allocation, we need to re-write all the chip registers
824  * TIDs, etc. after the reset or enable has completed.
825  */
826 int hfi1_init(struct hfi1_devdata *dd, int reinit)
827 {
828         int ret = 0, pidx, lastfail = 0;
829         unsigned long len;
830         u16 i;
831         struct hfi1_ctxtdata *rcd;
832         struct hfi1_pportdata *ppd;
833
834         /* Set up recv low level handlers */
835         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
836                                                 kdeth_process_expected;
837         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
838                                                 kdeth_process_eager;
839         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
840         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
841                                                 process_receive_error;
842         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
843                                                 process_receive_bypass;
844         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
845                                                 process_receive_invalid;
846         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
847                                                 process_receive_invalid;
848         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
849                                                 process_receive_invalid;
850         dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
851
852         /* Set up send low level handlers */
853         dd->process_pio_send = hfi1_verbs_send_pio;
854         dd->process_dma_send = hfi1_verbs_send_dma;
855         dd->pio_inline_send = pio_copy;
856         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
857
858         if (is_ax(dd)) {
859                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
860                 dd->do_drop = 1;
861         } else {
862                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
863                 dd->do_drop = 0;
864         }
865
866         /* make sure the link is not "up" */
867         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
868                 ppd = dd->pport + pidx;
869                 ppd->linkup = 0;
870         }
871
872         if (reinit)
873                 ret = init_after_reset(dd);
874         else
875                 ret = loadtime_init(dd);
876         if (ret)
877                 goto done;
878
879         /* allocate dummy tail memory for all receive contexts */
880         dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
881                 &dd->pcidev->dev, sizeof(u64),
882                 &dd->rcvhdrtail_dummy_dma,
883                 GFP_KERNEL);
884
885         if (!dd->rcvhdrtail_dummy_kvaddr) {
886                 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
887                 ret = -ENOMEM;
888                 goto done;
889         }
890
891         /* dd->rcd can be NULL if early initialization failed */
892         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
893                 /*
894                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
895                  * re-init, the simplest way to handle this is to free
896                  * existing, and re-allocate.
897                  * Need to re-create rest of ctxt 0 ctxtdata as well.
898                  */
899                 rcd = hfi1_rcd_get_by_index(dd, i);
900                 if (!rcd)
901                         continue;
902
903                 rcd->do_interrupt = &handle_receive_interrupt;
904
905                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
906                 if (!lastfail)
907                         lastfail = hfi1_setup_eagerbufs(rcd);
908                 if (lastfail) {
909                         dd_dev_err(dd,
910                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
911                         ret = lastfail;
912                 }
913                 hfi1_rcd_put(rcd);
914         }
915
916         /* Allocate enough memory for user event notification. */
917         len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
918                          sizeof(*dd->events));
919         dd->events = vmalloc_user(len);
920         if (!dd->events)
921                 dd_dev_err(dd, "Failed to allocate user events page\n");
922         /*
923          * Allocate a page for device and port status.
924          * Page will be shared amongst all user processes.
925          */
926         dd->status = vmalloc_user(PAGE_SIZE);
927         if (!dd->status)
928                 dd_dev_err(dd, "Failed to allocate dev status page\n");
929         else
930                 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
931                                              sizeof(dd->status->freezemsg));
932         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
933                 ppd = dd->pport + pidx;
934                 if (dd->status)
935                         /* Currently, we only have one port */
936                         ppd->statusp = &dd->status->port;
937
938                 set_mtu(ppd);
939         }
940
941         /* enable chip even if we have an error, so we can debug cause */
942         enable_chip(dd);
943
944 done:
945         /*
946          * Set status even if port serdes is not initialized
947          * so that diags will work.
948          */
949         if (dd->status)
950                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
951                         HFI1_STATUS_INITTED;
952         if (!ret) {
953                 /* enable all interrupts from the chip */
954                 set_intr_state(dd, 1);
955
956                 /* chip is OK for user apps; mark it as initialized */
957                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
958                         ppd = dd->pport + pidx;
959
960                         /*
961                          * start the serdes - must be after interrupts are
962                          * enabled so we are notified when the link goes up
963                          */
964                         lastfail = bringup_serdes(ppd);
965                         if (lastfail)
966                                 dd_dev_info(dd,
967                                             "Failed to bring up port %u\n",
968                                             ppd->port);
969
970                         /*
971                          * Set status even if port serdes is not initialized
972                          * so that diags will work.
973                          */
974                         if (ppd->statusp)
975                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
976                                                         HFI1_STATUS_INITTED;
977                         if (!ppd->link_speed_enabled)
978                                 continue;
979                 }
980         }
981
982         /* if ret is non-zero, we probably should do some cleanup here... */
983         return ret;
984 }
985
986 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
987 {
988         return idr_find(&hfi1_unit_table, unit);
989 }
990
991 struct hfi1_devdata *hfi1_lookup(int unit)
992 {
993         struct hfi1_devdata *dd;
994         unsigned long flags;
995
996         spin_lock_irqsave(&hfi1_devs_lock, flags);
997         dd = __hfi1_lookup(unit);
998         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
999
1000         return dd;
1001 }
1002
1003 /*
1004  * Stop the timers during unit shutdown, or after an error late
1005  * in initialization.
1006  */
1007 static void stop_timers(struct hfi1_devdata *dd)
1008 {
1009         struct hfi1_pportdata *ppd;
1010         int pidx;
1011
1012         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1013                 ppd = dd->pport + pidx;
1014                 if (ppd->led_override_timer.data) {
1015                         del_timer_sync(&ppd->led_override_timer);
1016                         atomic_set(&ppd->led_override_timer_active, 0);
1017                 }
1018         }
1019 }
1020
1021 /**
1022  * shutdown_device - shut down a device
1023  * @dd: the hfi1_ib device
1024  *
1025  * This is called to make the device quiet when we are about to
1026  * unload the driver, and also when the device is administratively
1027  * disabled.   It does not free any data structures.
1028  * Everything it does has to be setup again by hfi1_init(dd, 1)
1029  */
1030 static void shutdown_device(struct hfi1_devdata *dd)
1031 {
1032         struct hfi1_pportdata *ppd;
1033         struct hfi1_ctxtdata *rcd;
1034         unsigned pidx;
1035         int i;
1036
1037         if (dd->flags & HFI1_SHUTDOWN)
1038                 return;
1039         dd->flags |= HFI1_SHUTDOWN;
1040
1041         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1042                 ppd = dd->pport + pidx;
1043
1044                 ppd->linkup = 0;
1045                 if (ppd->statusp)
1046                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1047                                            HFI1_STATUS_IB_READY);
1048         }
1049         dd->flags &= ~HFI1_INITTED;
1050
1051         /* mask and clean up interrupts, but not errors */
1052         set_intr_state(dd, 0);
1053         hfi1_clean_up_interrupts(dd);
1054
1055         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1056                 ppd = dd->pport + pidx;
1057                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1058                         rcd = hfi1_rcd_get_by_index(dd, i);
1059                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1060                                      HFI1_RCVCTRL_CTXT_DIS |
1061                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1062                                      HFI1_RCVCTRL_PKEY_DIS |
1063                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1064                         hfi1_rcd_put(rcd);
1065                 }
1066                 /*
1067                  * Gracefully stop all sends allowing any in progress to
1068                  * trickle out first.
1069                  */
1070                 for (i = 0; i < dd->num_send_contexts; i++)
1071                         sc_flush(dd->send_contexts[i].sc);
1072         }
1073
1074         /*
1075          * Enough for anything that's going to trickle out to have actually
1076          * done so.
1077          */
1078         udelay(20);
1079
1080         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1081                 ppd = dd->pport + pidx;
1082
1083                 /* disable all contexts */
1084                 for (i = 0; i < dd->num_send_contexts; i++)
1085                         sc_disable(dd->send_contexts[i].sc);
1086                 /* disable the send device */
1087                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1088
1089                 shutdown_led_override(ppd);
1090
1091                 /*
1092                  * Clear SerdesEnable.
1093                  * We can't count on interrupts since we are stopping.
1094                  */
1095                 hfi1_quiet_serdes(ppd);
1096
1097                 if (ppd->hfi1_wq) {
1098                         destroy_workqueue(ppd->hfi1_wq);
1099                         ppd->hfi1_wq = NULL;
1100                 }
1101                 if (ppd->link_wq) {
1102                         destroy_workqueue(ppd->link_wq);
1103                         ppd->link_wq = NULL;
1104                 }
1105         }
1106         sdma_exit(dd);
1107 }
1108
1109 /**
1110  * hfi1_free_ctxtdata - free a context's allocated data
1111  * @dd: the hfi1_ib device
1112  * @rcd: the ctxtdata structure
1113  *
1114  * free up any allocated data for a context
1115  * It should never change any chip state, or global driver state.
1116  */
1117 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1118 {
1119         u32 e;
1120
1121         if (!rcd)
1122                 return;
1123
1124         if (rcd->rcvhdrq) {
1125                 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
1126                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1127                 rcd->rcvhdrq = NULL;
1128                 if (rcd->rcvhdrtail_kvaddr) {
1129                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1130                                           (void *)rcd->rcvhdrtail_kvaddr,
1131                                           rcd->rcvhdrqtailaddr_dma);
1132                         rcd->rcvhdrtail_kvaddr = NULL;
1133                 }
1134         }
1135
1136         /* all the RcvArray entries should have been cleared by now */
1137         kfree(rcd->egrbufs.rcvtids);
1138         rcd->egrbufs.rcvtids = NULL;
1139
1140         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1141                 if (rcd->egrbufs.buffers[e].addr)
1142                         dma_free_coherent(&dd->pcidev->dev,
1143                                           rcd->egrbufs.buffers[e].len,
1144                                           rcd->egrbufs.buffers[e].addr,
1145                                           rcd->egrbufs.buffers[e].dma);
1146         }
1147         kfree(rcd->egrbufs.buffers);
1148         rcd->egrbufs.alloced = 0;
1149         rcd->egrbufs.buffers = NULL;
1150
1151         sc_free(rcd->sc);
1152         rcd->sc = NULL;
1153
1154         vfree(rcd->subctxt_uregbase);
1155         vfree(rcd->subctxt_rcvegrbuf);
1156         vfree(rcd->subctxt_rcvhdr_base);
1157         kfree(rcd->opstats);
1158
1159         rcd->subctxt_uregbase = NULL;
1160         rcd->subctxt_rcvegrbuf = NULL;
1161         rcd->subctxt_rcvhdr_base = NULL;
1162         rcd->opstats = NULL;
1163 }
1164
1165 /*
1166  * Release our hold on the shared asic data.  If we are the last one,
1167  * return the structure to be finalized outside the lock.  Must be
1168  * holding hfi1_devs_lock.
1169  */
1170 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1171 {
1172         struct hfi1_asic_data *ad;
1173         int other;
1174
1175         if (!dd->asic_data)
1176                 return NULL;
1177         dd->asic_data->dds[dd->hfi1_id] = NULL;
1178         other = dd->hfi1_id ? 0 : 1;
1179         ad = dd->asic_data;
1180         dd->asic_data = NULL;
1181         /* return NULL if the other dd still has a link */
1182         return ad->dds[other] ? NULL : ad;
1183 }
1184
1185 static void finalize_asic_data(struct hfi1_devdata *dd,
1186                                struct hfi1_asic_data *ad)
1187 {
1188         clean_up_i2c(dd, ad);
1189         kfree(ad);
1190 }
1191
1192 static void __hfi1_free_devdata(struct kobject *kobj)
1193 {
1194         struct hfi1_devdata *dd =
1195                 container_of(kobj, struct hfi1_devdata, kobj);
1196         struct hfi1_asic_data *ad;
1197         unsigned long flags;
1198
1199         spin_lock_irqsave(&hfi1_devs_lock, flags);
1200         idr_remove(&hfi1_unit_table, dd->unit);
1201         list_del(&dd->list);
1202         ad = release_asic_data(dd);
1203         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1204         if (ad)
1205                 finalize_asic_data(dd, ad);
1206         free_platform_config(dd);
1207         rcu_barrier(); /* wait for rcu callbacks to complete */
1208         free_percpu(dd->int_counter);
1209         free_percpu(dd->rcv_limit);
1210         free_percpu(dd->send_schedule);
1211         rvt_dealloc_device(&dd->verbs_dev.rdi);
1212 }
1213
1214 static struct kobj_type hfi1_devdata_type = {
1215         .release = __hfi1_free_devdata,
1216 };
1217
1218 void hfi1_free_devdata(struct hfi1_devdata *dd)
1219 {
1220         kobject_put(&dd->kobj);
1221 }
1222
1223 /*
1224  * Allocate our primary per-unit data structure.  Must be done via verbs
1225  * allocator, because the verbs cleanup process both does cleanup and
1226  * free of the data structure.
1227  * "extra" is for chip-specific data.
1228  *
1229  * Use the idr mechanism to get a unit number for this unit.
1230  */
1231 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1232 {
1233         unsigned long flags;
1234         struct hfi1_devdata *dd;
1235         int ret, nports;
1236
1237         /* extra is * number of ports */
1238         nports = extra / sizeof(struct hfi1_pportdata);
1239
1240         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1241                                                      nports);
1242         if (!dd)
1243                 return ERR_PTR(-ENOMEM);
1244         dd->num_pports = nports;
1245         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1246         dd->pcidev = pdev;
1247         pci_set_drvdata(pdev, dd);
1248
1249         INIT_LIST_HEAD(&dd->list);
1250         idr_preload(GFP_KERNEL);
1251         spin_lock_irqsave(&hfi1_devs_lock, flags);
1252
1253         ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1254         if (ret >= 0) {
1255                 dd->unit = ret;
1256                 list_add(&dd->list, &hfi1_dev_list);
1257         }
1258
1259         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1260         idr_preload_end();
1261
1262         if (ret < 0) {
1263                 hfi1_early_err(&pdev->dev,
1264                                "Could not allocate unit ID: error %d\n", -ret);
1265                 goto bail;
1266         }
1267         /*
1268          * Initialize all locks for the device. This needs to be as early as
1269          * possible so locks are usable.
1270          */
1271         spin_lock_init(&dd->sc_lock);
1272         spin_lock_init(&dd->sendctrl_lock);
1273         spin_lock_init(&dd->rcvctrl_lock);
1274         spin_lock_init(&dd->uctxt_lock);
1275         spin_lock_init(&dd->hfi1_diag_trans_lock);
1276         spin_lock_init(&dd->sc_init_lock);
1277         spin_lock_init(&dd->dc8051_memlock);
1278         seqlock_init(&dd->sc2vl_lock);
1279         spin_lock_init(&dd->sde_map_lock);
1280         spin_lock_init(&dd->pio_map_lock);
1281         mutex_init(&dd->dc8051_lock);
1282         init_waitqueue_head(&dd->event_queue);
1283
1284         dd->int_counter = alloc_percpu(u64);
1285         if (!dd->int_counter) {
1286                 ret = -ENOMEM;
1287                 hfi1_early_err(&pdev->dev,
1288                                "Could not allocate per-cpu int_counter\n");
1289                 goto bail;
1290         }
1291
1292         dd->rcv_limit = alloc_percpu(u64);
1293         if (!dd->rcv_limit) {
1294                 ret = -ENOMEM;
1295                 hfi1_early_err(&pdev->dev,
1296                                "Could not allocate per-cpu rcv_limit\n");
1297                 goto bail;
1298         }
1299
1300         dd->send_schedule = alloc_percpu(u64);
1301         if (!dd->send_schedule) {
1302                 ret = -ENOMEM;
1303                 hfi1_early_err(&pdev->dev,
1304                                "Could not allocate per-cpu int_counter\n");
1305                 goto bail;
1306         }
1307
1308         if (!hfi1_cpulist_count) {
1309                 u32 count = num_online_cpus();
1310
1311                 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1312                                        GFP_KERNEL);
1313                 if (hfi1_cpulist)
1314                         hfi1_cpulist_count = count;
1315                 else
1316                         hfi1_early_err(
1317                         &pdev->dev,
1318                         "Could not alloc cpulist info, cpu affinity might be wrong\n");
1319         }
1320         kobject_init(&dd->kobj, &hfi1_devdata_type);
1321         return dd;
1322
1323 bail:
1324         if (!list_empty(&dd->list))
1325                 list_del_init(&dd->list);
1326         rvt_dealloc_device(&dd->verbs_dev.rdi);
1327         return ERR_PTR(ret);
1328 }
1329
1330 /*
1331  * Called from freeze mode handlers, and from PCI error
1332  * reporting code.  Should be paranoid about state of
1333  * system and data structures.
1334  */
1335 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1336 {
1337         if (dd->flags & HFI1_INITTED) {
1338                 u32 pidx;
1339
1340                 dd->flags &= ~HFI1_INITTED;
1341                 if (dd->pport)
1342                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1343                                 struct hfi1_pportdata *ppd;
1344
1345                                 ppd = dd->pport + pidx;
1346                                 if (dd->flags & HFI1_PRESENT)
1347                                         set_link_state(ppd, HLS_DN_DISABLE);
1348
1349                                 if (ppd->statusp)
1350                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1351                         }
1352         }
1353
1354         /*
1355          * Mark as having had an error for driver, and also
1356          * for /sys and status word mapped to user programs.
1357          * This marks unit as not usable, until reset.
1358          */
1359         if (dd->status)
1360                 dd->status->dev |= HFI1_STATUS_HWERROR;
1361 }
1362
1363 static void remove_one(struct pci_dev *);
1364 static int init_one(struct pci_dev *, const struct pci_device_id *);
1365 static void shutdown_one(struct pci_dev *);
1366
1367 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1368 #define PFX DRIVER_NAME ": "
1369
1370 const struct pci_device_id hfi1_pci_tbl[] = {
1371         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1372         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1373         { 0, }
1374 };
1375
1376 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1377
1378 static struct pci_driver hfi1_pci_driver = {
1379         .name = DRIVER_NAME,
1380         .probe = init_one,
1381         .remove = remove_one,
1382         .shutdown = shutdown_one,
1383         .id_table = hfi1_pci_tbl,
1384         .err_handler = &hfi1_pci_err_handler,
1385 };
1386
1387 static void __init compute_krcvqs(void)
1388 {
1389         int i;
1390
1391         for (i = 0; i < krcvqsset; i++)
1392                 n_krcvqs += krcvqs[i];
1393 }
1394
1395 /*
1396  * Do all the generic driver unit- and chip-independent memory
1397  * allocation and initialization.
1398  */
1399 static int __init hfi1_mod_init(void)
1400 {
1401         int ret;
1402
1403         ret = dev_init();
1404         if (ret)
1405                 goto bail;
1406
1407         ret = node_affinity_init();
1408         if (ret)
1409                 goto bail;
1410
1411         /* validate max MTU before any devices start */
1412         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1413                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1414                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1415                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1416         }
1417         /* valid CUs run from 1-128 in powers of 2 */
1418         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1419                 hfi1_cu = 1;
1420         /* valid credit return threshold is 0-100, variable is unsigned */
1421         if (user_credit_return_threshold > 100)
1422                 user_credit_return_threshold = 100;
1423
1424         compute_krcvqs();
1425         /*
1426          * sanitize receive interrupt count, time must wait until after
1427          * the hardware type is known
1428          */
1429         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1430                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1431         /* reject invalid combinations */
1432         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1433                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1434                 rcv_intr_count = 1;
1435         }
1436         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1437                 /*
1438                  * Avoid indefinite packet delivery by requiring a timeout
1439                  * if count is > 1.
1440                  */
1441                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1442                 rcv_intr_timeout = 1;
1443         }
1444         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1445                 /*
1446                  * The dynamic algorithm expects a non-zero timeout
1447                  * and a count > 1.
1448                  */
1449                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1450                 rcv_intr_dynamic = 0;
1451         }
1452
1453         /* sanitize link CRC options */
1454         link_crc_mask &= SUPPORTED_CRCS;
1455
1456         /*
1457          * These must be called before the driver is registered with
1458          * the PCI subsystem.
1459          */
1460         idr_init(&hfi1_unit_table);
1461
1462         hfi1_dbg_init();
1463         ret = hfi1_wss_init();
1464         if (ret < 0)
1465                 goto bail_wss;
1466         ret = pci_register_driver(&hfi1_pci_driver);
1467         if (ret < 0) {
1468                 pr_err("Unable to register driver: error %d\n", -ret);
1469                 goto bail_dev;
1470         }
1471         goto bail; /* all OK */
1472
1473 bail_dev:
1474         hfi1_wss_exit();
1475 bail_wss:
1476         hfi1_dbg_exit();
1477         idr_destroy(&hfi1_unit_table);
1478         dev_cleanup();
1479 bail:
1480         return ret;
1481 }
1482
1483 module_init(hfi1_mod_init);
1484
1485 /*
1486  * Do the non-unit driver cleanup, memory free, etc. at unload.
1487  */
1488 static void __exit hfi1_mod_cleanup(void)
1489 {
1490         pci_unregister_driver(&hfi1_pci_driver);
1491         node_affinity_destroy();
1492         hfi1_wss_exit();
1493         hfi1_dbg_exit();
1494         hfi1_cpulist_count = 0;
1495         kfree(hfi1_cpulist);
1496
1497         idr_destroy(&hfi1_unit_table);
1498         dispose_firmware();     /* asymmetric with obtain_firmware() */
1499         dev_cleanup();
1500 }
1501
1502 module_exit(hfi1_mod_cleanup);
1503
1504 /* this can only be called after a successful initialization */
1505 static void cleanup_device_data(struct hfi1_devdata *dd)
1506 {
1507         int ctxt;
1508         int pidx;
1509
1510         /* users can't do anything more with chip */
1511         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1512                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1513                 struct cc_state *cc_state;
1514                 int i;
1515
1516                 if (ppd->statusp)
1517                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1518
1519                 for (i = 0; i < OPA_MAX_SLS; i++)
1520                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1521
1522                 spin_lock(&ppd->cc_state_lock);
1523                 cc_state = get_cc_state_protected(ppd);
1524                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1525                 spin_unlock(&ppd->cc_state_lock);
1526
1527                 if (cc_state)
1528                         kfree_rcu(cc_state, rcu);
1529         }
1530
1531         free_credit_return(dd);
1532
1533         if (dd->rcvhdrtail_dummy_kvaddr) {
1534                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1535                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1536                                   dd->rcvhdrtail_dummy_dma);
1537                 dd->rcvhdrtail_dummy_kvaddr = NULL;
1538         }
1539
1540         /*
1541          * Free any resources still in use (usually just kernel contexts)
1542          * at unload; we do for ctxtcnt, because that's what we allocate.
1543          */
1544         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1545                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1546
1547                 if (rcd) {
1548                         hfi1_clear_tids(rcd);
1549                         hfi1_free_ctxt(rcd);
1550                 }
1551         }
1552
1553         kfree(dd->rcd);
1554         dd->rcd = NULL;
1555
1556         free_pio_map(dd);
1557         /* must follow rcv context free - need to remove rcv's hooks */
1558         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1559                 sc_free(dd->send_contexts[ctxt].sc);
1560         dd->num_send_contexts = 0;
1561         kfree(dd->send_contexts);
1562         dd->send_contexts = NULL;
1563         kfree(dd->hw_to_sw);
1564         dd->hw_to_sw = NULL;
1565         kfree(dd->boardname);
1566         vfree(dd->events);
1567         vfree(dd->status);
1568 }
1569
1570 /*
1571  * Clean up on unit shutdown, or error during unit load after
1572  * successful initialization.
1573  */
1574 static void postinit_cleanup(struct hfi1_devdata *dd)
1575 {
1576         hfi1_start_cleanup(dd);
1577
1578         hfi1_pcie_ddcleanup(dd);
1579         hfi1_pcie_cleanup(dd->pcidev);
1580
1581         cleanup_device_data(dd);
1582
1583         hfi1_free_devdata(dd);
1584 }
1585
1586 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1587 {
1588         if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1589                 hfi1_early_err(dev, "Receive header queue count too small\n");
1590                 return -EINVAL;
1591         }
1592
1593         if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1594                 hfi1_early_err(dev,
1595                                "Receive header queue count cannot be greater than %u\n",
1596                                HFI1_MAX_HDRQ_EGRBUF_CNT);
1597                 return -EINVAL;
1598         }
1599
1600         if (thecnt % HDRQ_INCREMENT) {
1601                 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1602                                thecnt, HDRQ_INCREMENT);
1603                 return -EINVAL;
1604         }
1605
1606         return 0;
1607 }
1608
1609 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1610 {
1611         int ret = 0, j, pidx, initfail;
1612         struct hfi1_devdata *dd;
1613         struct hfi1_pportdata *ppd;
1614
1615         /* First, lock the non-writable module parameters */
1616         HFI1_CAP_LOCK();
1617
1618         /* Validate dev ids */
1619         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1620               ent->device == PCI_DEVICE_ID_INTEL1)) {
1621                 hfi1_early_err(&pdev->dev,
1622                                "Failing on unknown Intel deviceid 0x%x\n",
1623                                ent->device);
1624                 ret = -ENODEV;
1625                 goto bail;
1626         }
1627
1628         /* Validate some global module parameters */
1629         ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1630         if (ret)
1631                 goto bail;
1632
1633         /* use the encoding function as a sanitization check */
1634         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1635                 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1636                                hfi1_hdrq_entsize);
1637                 ret = -EINVAL;
1638                 goto bail;
1639         }
1640
1641         /* The receive eager buffer size must be set before the receive
1642          * contexts are created.
1643          *
1644          * Set the eager buffer size.  Validate that it falls in a range
1645          * allowed by the hardware - all powers of 2 between the min and
1646          * max.  The maximum valid MTU is within the eager buffer range
1647          * so we do not need to cap the max_mtu by an eager buffer size
1648          * setting.
1649          */
1650         if (eager_buffer_size) {
1651                 if (!is_power_of_2(eager_buffer_size))
1652                         eager_buffer_size =
1653                                 roundup_pow_of_two(eager_buffer_size);
1654                 eager_buffer_size =
1655                         clamp_val(eager_buffer_size,
1656                                   MIN_EAGER_BUFFER * 8,
1657                                   MAX_EAGER_BUFFER_TOTAL);
1658                 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1659                                 eager_buffer_size);
1660         } else {
1661                 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1662                 ret = -EINVAL;
1663                 goto bail;
1664         }
1665
1666         /* restrict value of hfi1_rcvarr_split */
1667         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1668
1669         ret = hfi1_pcie_init(pdev, ent);
1670         if (ret)
1671                 goto bail;
1672
1673         /*
1674          * Do device-specific initialization, function table setup, dd
1675          * allocation, etc.
1676          */
1677         dd = hfi1_init_dd(pdev, ent);
1678
1679         if (IS_ERR(dd)) {
1680                 ret = PTR_ERR(dd);
1681                 goto clean_bail; /* error already printed */
1682         }
1683
1684         ret = create_workqueues(dd);
1685         if (ret)
1686                 goto clean_bail;
1687
1688         /* do the generic initialization */
1689         initfail = hfi1_init(dd, 0);
1690
1691         /* setup vnic */
1692         hfi1_vnic_setup(dd);
1693
1694         ret = hfi1_register_ib_device(dd);
1695
1696         /*
1697          * Now ready for use.  this should be cleared whenever we
1698          * detect a reset, or initiate one.  If earlier failure,
1699          * we still create devices, so diags, etc. can be used
1700          * to determine cause of problem.
1701          */
1702         if (!initfail && !ret) {
1703                 dd->flags |= HFI1_INITTED;
1704                 /* create debufs files after init and ib register */
1705                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1706         }
1707
1708         j = hfi1_device_create(dd);
1709         if (j)
1710                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1711
1712         if (initfail || ret) {
1713                 hfi1_clean_up_interrupts(dd);
1714                 stop_timers(dd);
1715                 flush_workqueue(ib_wq);
1716                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1717                         hfi1_quiet_serdes(dd->pport + pidx);
1718                         ppd = dd->pport + pidx;
1719                         if (ppd->hfi1_wq) {
1720                                 destroy_workqueue(ppd->hfi1_wq);
1721                                 ppd->hfi1_wq = NULL;
1722                         }
1723                         if (ppd->link_wq) {
1724                                 destroy_workqueue(ppd->link_wq);
1725                                 ppd->link_wq = NULL;
1726                         }
1727                 }
1728                 if (!j)
1729                         hfi1_device_remove(dd);
1730                 if (!ret)
1731                         hfi1_unregister_ib_device(dd);
1732                 hfi1_vnic_cleanup(dd);
1733                 postinit_cleanup(dd);
1734                 if (initfail)
1735                         ret = initfail;
1736                 goto bail;      /* everything already cleaned */
1737         }
1738
1739         sdma_start(dd);
1740
1741         return 0;
1742
1743 clean_bail:
1744         hfi1_pcie_cleanup(pdev);
1745 bail:
1746         return ret;
1747 }
1748
1749 static void wait_for_clients(struct hfi1_devdata *dd)
1750 {
1751         /*
1752          * Remove the device init value and complete the device if there is
1753          * no clients or wait for active clients to finish.
1754          */
1755         if (atomic_dec_and_test(&dd->user_refcount))
1756                 complete(&dd->user_comp);
1757
1758         wait_for_completion(&dd->user_comp);
1759 }
1760
1761 static void remove_one(struct pci_dev *pdev)
1762 {
1763         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1764
1765         /* close debugfs files before ib unregister */
1766         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1767
1768         /* remove the /dev hfi1 interface */
1769         hfi1_device_remove(dd);
1770
1771         /* wait for existing user space clients to finish */
1772         wait_for_clients(dd);
1773
1774         /* unregister from IB core */
1775         hfi1_unregister_ib_device(dd);
1776
1777         /* cleanup vnic */
1778         hfi1_vnic_cleanup(dd);
1779
1780         /*
1781          * Disable the IB link, disable interrupts on the device,
1782          * clear dma engines, etc.
1783          */
1784         shutdown_device(dd);
1785
1786         stop_timers(dd);
1787
1788         /* wait until all of our (qsfp) queue_work() calls complete */
1789         flush_workqueue(ib_wq);
1790
1791         postinit_cleanup(dd);
1792 }
1793
1794 static void shutdown_one(struct pci_dev *pdev)
1795 {
1796         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1797
1798         shutdown_device(dd);
1799 }
1800
1801 /**
1802  * hfi1_create_rcvhdrq - create a receive header queue
1803  * @dd: the hfi1_ib device
1804  * @rcd: the context data
1805  *
1806  * This must be contiguous memory (from an i/o perspective), and must be
1807  * DMA'able (which means for some systems, it will go through an IOMMU,
1808  * or be forced into a low address range).
1809  */
1810 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1811 {
1812         unsigned amt;
1813         u64 reg;
1814
1815         if (!rcd->rcvhdrq) {
1816                 gfp_t gfp_flags;
1817
1818                 /*
1819                  * rcvhdrqentsize is in DWs, so we have to convert to bytes
1820                  * (* sizeof(u32)).
1821                  */
1822                 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1823                                  sizeof(u32));
1824
1825                 if ((rcd->ctxt < dd->first_dyn_alloc_ctxt) ||
1826                     (rcd->sc && (rcd->sc->type == SC_KERNEL)))
1827                         gfp_flags = GFP_KERNEL;
1828                 else
1829                         gfp_flags = GFP_USER;
1830                 rcd->rcvhdrq = dma_zalloc_coherent(
1831                         &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1832                         gfp_flags | __GFP_COMP);
1833
1834                 if (!rcd->rcvhdrq) {
1835                         dd_dev_err(dd,
1836                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1837                                    amt, rcd->ctxt);
1838                         goto bail;
1839                 }
1840
1841                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1842                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1843                         rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1844                                 &dd->pcidev->dev, PAGE_SIZE,
1845                                 &rcd->rcvhdrqtailaddr_dma, gfp_flags);
1846                         if (!rcd->rcvhdrtail_kvaddr)
1847                                 goto bail_free;
1848                 }
1849
1850                 rcd->rcvhdrq_size = amt;
1851         }
1852         /*
1853          * These values are per-context:
1854          *      RcvHdrCnt
1855          *      RcvHdrEntSize
1856          *      RcvHdrSize
1857          */
1858         reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1859                         & RCV_HDR_CNT_CNT_MASK)
1860                 << RCV_HDR_CNT_CNT_SHIFT;
1861         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1862         reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1863                         & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1864                 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1865         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1866         reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1867                 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1868         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1869
1870         /*
1871          * Program dummy tail address for every receive context
1872          * before enabling any receive context
1873          */
1874         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1875                         dd->rcvhdrtail_dummy_dma);
1876
1877         return 0;
1878
1879 bail_free:
1880         dd_dev_err(dd,
1881                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1882                    rcd->ctxt);
1883         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1884                           rcd->rcvhdrq_dma);
1885         rcd->rcvhdrq = NULL;
1886 bail:
1887         return -ENOMEM;
1888 }
1889
1890 /**
1891  * allocate eager buffers, both kernel and user contexts.
1892  * @rcd: the context we are setting up.
1893  *
1894  * Allocate the eager TID buffers and program them into hip.
1895  * They are no longer completely contiguous, we do multiple allocation
1896  * calls.  Otherwise we get the OOM code involved, by asking for too
1897  * much per call, with disastrous results on some kernels.
1898  */
1899 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1900 {
1901         struct hfi1_devdata *dd = rcd->dd;
1902         u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1903         gfp_t gfp_flags;
1904         u16 order;
1905         int ret = 0;
1906         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1907
1908         /*
1909          * GFP_USER, but without GFP_FS, so buffer cache can be
1910          * coalesced (we hope); otherwise, even at order 4,
1911          * heavy filesystem activity makes these fail, and we can
1912          * use compound pages.
1913          */
1914         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1915
1916         /*
1917          * The minimum size of the eager buffers is a groups of MTU-sized
1918          * buffers.
1919          * The global eager_buffer_size parameter is checked against the
1920          * theoretical lower limit of the value. Here, we check against the
1921          * MTU.
1922          */
1923         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1924                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1925         /*
1926          * If using one-pkt-per-egr-buffer, lower the eager buffer
1927          * size to the max MTU (page-aligned).
1928          */
1929         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1930                 rcd->egrbufs.rcvtid_size = round_mtu;
1931
1932         /*
1933          * Eager buffers sizes of 1MB or less require smaller TID sizes
1934          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1935          */
1936         if (rcd->egrbufs.size <= (1 << 20))
1937                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1938                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1939
1940         while (alloced_bytes < rcd->egrbufs.size &&
1941                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1942                 rcd->egrbufs.buffers[idx].addr =
1943                         dma_zalloc_coherent(&dd->pcidev->dev,
1944                                             rcd->egrbufs.rcvtid_size,
1945                                             &rcd->egrbufs.buffers[idx].dma,
1946                                             gfp_flags);
1947                 if (rcd->egrbufs.buffers[idx].addr) {
1948                         rcd->egrbufs.buffers[idx].len =
1949                                 rcd->egrbufs.rcvtid_size;
1950                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1951                                 rcd->egrbufs.buffers[idx].addr;
1952                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1953                                 rcd->egrbufs.buffers[idx].dma;
1954                         rcd->egrbufs.alloced++;
1955                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1956                         idx++;
1957                 } else {
1958                         u32 new_size, i, j;
1959                         u64 offset = 0;
1960
1961                         /*
1962                          * Fail the eager buffer allocation if:
1963                          *   - we are already using the lowest acceptable size
1964                          *   - we are using one-pkt-per-egr-buffer (this implies
1965                          *     that we are accepting only one size)
1966                          */
1967                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1968                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1969                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1970                                            rcd->ctxt);
1971                                 ret = -ENOMEM;
1972                                 goto bail_rcvegrbuf_phys;
1973                         }
1974
1975                         new_size = rcd->egrbufs.rcvtid_size / 2;
1976
1977                         /*
1978                          * If the first attempt to allocate memory failed, don't
1979                          * fail everything but continue with the next lower
1980                          * size.
1981                          */
1982                         if (idx == 0) {
1983                                 rcd->egrbufs.rcvtid_size = new_size;
1984                                 continue;
1985                         }
1986
1987                         /*
1988                          * Re-partition already allocated buffers to a smaller
1989                          * size.
1990                          */
1991                         rcd->egrbufs.alloced = 0;
1992                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1993                                 if (i >= rcd->egrbufs.count)
1994                                         break;
1995                                 rcd->egrbufs.rcvtids[i].dma =
1996                                         rcd->egrbufs.buffers[j].dma + offset;
1997                                 rcd->egrbufs.rcvtids[i].addr =
1998                                         rcd->egrbufs.buffers[j].addr + offset;
1999                                 rcd->egrbufs.alloced++;
2000                                 if ((rcd->egrbufs.buffers[j].dma + offset +
2001                                      new_size) ==
2002                                     (rcd->egrbufs.buffers[j].dma +
2003                                      rcd->egrbufs.buffers[j].len)) {
2004                                         j++;
2005                                         offset = 0;
2006                                 } else {
2007                                         offset += new_size;
2008                                 }
2009                         }
2010                         rcd->egrbufs.rcvtid_size = new_size;
2011                 }
2012         }
2013         rcd->egrbufs.numbufs = idx;
2014         rcd->egrbufs.size = alloced_bytes;
2015
2016         hfi1_cdbg(PROC,
2017                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2018                   rcd->ctxt, rcd->egrbufs.alloced,
2019                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2020
2021         /*
2022          * Set the contexts rcv array head update threshold to the closest
2023          * power of 2 (so we can use a mask instead of modulo) below half
2024          * the allocated entries.
2025          */
2026         rcd->egrbufs.threshold =
2027                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2028         /*
2029          * Compute the expected RcvArray entry base. This is done after
2030          * allocating the eager buffers in order to maximize the
2031          * expected RcvArray entries for the context.
2032          */
2033         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2034         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2035         rcd->expected_count = max_entries - egrtop;
2036         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2037                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2038
2039         rcd->expected_base = rcd->eager_base + egrtop;
2040         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2041                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2042                   rcd->eager_base, rcd->expected_base);
2043
2044         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2045                 hfi1_cdbg(PROC,
2046                           "ctxt%u: current Eager buffer size is invalid %u\n",
2047                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
2048                 ret = -EINVAL;
2049                 goto bail_rcvegrbuf_phys;
2050         }
2051
2052         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2053                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2054                              rcd->egrbufs.rcvtids[idx].dma, order);
2055                 cond_resched();
2056         }
2057
2058         return 0;
2059
2060 bail_rcvegrbuf_phys:
2061         for (idx = 0; idx < rcd->egrbufs.alloced &&
2062              rcd->egrbufs.buffers[idx].addr;
2063              idx++) {
2064                 dma_free_coherent(&dd->pcidev->dev,
2065                                   rcd->egrbufs.buffers[idx].len,
2066                                   rcd->egrbufs.buffers[idx].addr,
2067                                   rcd->egrbufs.buffers[idx].dma);
2068                 rcd->egrbufs.buffers[idx].addr = NULL;
2069                 rcd->egrbufs.buffers[idx].dma = 0;
2070                 rcd->egrbufs.buffers[idx].len = 0;
2071         }
2072
2073         return ret;
2074 }