GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (wait && iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(unsigned long data)
495 {
496         unsigned index;
497         struct sdma_engine *sde = (struct sdma_engine *)data;
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         smp_read_barrier_depends(); /* see sdma_update_tail() */
557         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558 }
559
560 /*
561  * flush ring for recovery
562  */
563 static void sdma_flush_descq(struct sdma_engine *sde)
564 {
565         u16 head, tail;
566         int progress = 0;
567         struct sdma_txreq *txp = get_txhead(sde);
568
569         /* The reason for some of the complexity of this code is that
570          * not all descriptors have corresponding txps.  So, we have to
571          * be able to skip over descs until we wander into the range of
572          * the next txp on the list.
573          */
574         head = sde->descq_head & sde->sdma_mask;
575         tail = sde->descq_tail & sde->sdma_mask;
576         while (head != tail) {
577                 /* advance head, wrap if needed */
578                 head = ++sde->descq_head & sde->sdma_mask;
579                 /* if now past this txp's descs, do the callback */
580                 if (txp && txp->next_descq_idx == head) {
581                         /* remove from list */
582                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
583                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
584                         trace_hfi1_sdma_progress(sde, head, tail, txp);
585                         txp = get_txhead(sde);
586                 }
587                 progress++;
588         }
589         if (progress)
590                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591 }
592
593 static void sdma_sw_clean_up_task(unsigned long opaque)
594 {
595         struct sdma_engine *sde = (struct sdma_engine *)opaque;
596         unsigned long flags;
597
598         spin_lock_irqsave(&sde->tail_lock, flags);
599         write_seqlock(&sde->head_lock);
600
601         /*
602          * At this point, the following should always be true:
603          * - We are halted, so no more descriptors are getting retired.
604          * - We are not running, so no one is submitting new work.
605          * - Only we can send the e40_sw_cleaned, so we can't start
606          *   running again until we say so.  So, the active list and
607          *   descq are ours to play with.
608          */
609
610         /*
611          * In the error clean up sequence, software clean must be called
612          * before the hardware clean so we can use the hardware head in
613          * the progress routine.  A hardware clean or SPC unfreeze will
614          * reset the hardware head.
615          *
616          * Process all retired requests. The progress routine will use the
617          * latest physical hardware head - we are not running so speed does
618          * not matter.
619          */
620         sdma_make_progress(sde, 0);
621
622         sdma_flush(sde);
623
624         /*
625          * Reset our notion of head and tail.
626          * Note that the HW registers have been reset via an earlier
627          * clean up.
628          */
629         sde->descq_tail = 0;
630         sde->descq_head = 0;
631         sde->desc_avail = sdma_descq_freecnt(sde);
632         *sde->head_dma = 0;
633
634         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636         write_sequnlock(&sde->head_lock);
637         spin_unlock_irqrestore(&sde->tail_lock, flags);
638 }
639
640 static void sdma_sw_tear_down(struct sdma_engine *sde)
641 {
642         struct sdma_state *ss = &sde->state;
643
644         /* Releasing this reference means the state machine has stopped. */
645         sdma_put(ss);
646
647         /* stop waiting for all unfreeze events to complete */
648         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650 }
651
652 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653 {
654         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655 }
656
657 static void sdma_set_state(struct sdma_engine *sde,
658                            enum sdma_states next_state)
659 {
660         struct sdma_state *ss = &sde->state;
661         const struct sdma_set_state_action *action = sdma_action_table;
662         unsigned op = 0;
663
664         trace_hfi1_sdma_state(
665                 sde,
666                 sdma_state_names[ss->current_state],
667                 sdma_state_names[next_state]);
668
669         /* debugging bookkeeping */
670         ss->previous_state = ss->current_state;
671         ss->previous_op = ss->current_op;
672         ss->current_state = next_state;
673
674         if (ss->previous_state != sdma_state_s99_running &&
675             next_state == sdma_state_s99_running)
676                 sdma_flush(sde);
677
678         if (action[next_state].op_enable)
679                 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681         if (action[next_state].op_intenable)
682                 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684         if (action[next_state].op_halt)
685                 op |= SDMA_SENDCTRL_OP_HALT;
686
687         if (action[next_state].op_cleanup)
688                 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690         if (action[next_state].go_s99_running_tofalse)
691                 ss->go_s99_running = 0;
692
693         if (action[next_state].go_s99_running_totrue)
694                 ss->go_s99_running = 1;
695
696         ss->current_op = op;
697         sdma_sendctrl(sde, ss->current_op);
698 }
699
700 /**
701  * sdma_get_descq_cnt() - called when device probed
702  *
703  * Return a validated descq count.
704  *
705  * This is currently only used in the verbs initialization to build the tx
706  * list.
707  *
708  * This will probably be deleted in favor of a more scalable approach to
709  * alloc tx's.
710  *
711  */
712 u16 sdma_get_descq_cnt(void)
713 {
714         u16 count = sdma_descq_cnt;
715
716         if (!count)
717                 return SDMA_DESCQ_CNT;
718         /* count must be a power of 2 greater than 64 and less than
719          * 32768.   Otherwise return default.
720          */
721         if (!is_power_of_2(count))
722                 return SDMA_DESCQ_CNT;
723         if (count < 64 || count > 32768)
724                 return SDMA_DESCQ_CNT;
725         return count;
726 }
727
728 /**
729  * sdma_engine_get_vl() - return vl for a given sdma engine
730  * @sde: sdma engine
731  *
732  * This function returns the vl mapped to a given engine, or an error if
733  * the mapping can't be found. The mapping fields are protected by RCU.
734  */
735 int sdma_engine_get_vl(struct sdma_engine *sde)
736 {
737         struct hfi1_devdata *dd = sde->dd;
738         struct sdma_vl_map *m;
739         u8 vl;
740
741         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
742                 return -EINVAL;
743
744         rcu_read_lock();
745         m = rcu_dereference(dd->sdma_map);
746         if (unlikely(!m)) {
747                 rcu_read_unlock();
748                 return -EINVAL;
749         }
750         vl = m->engine_to_vl[sde->this_idx];
751         rcu_read_unlock();
752
753         return vl;
754 }
755
756 /**
757  * sdma_select_engine_vl() - select sdma engine
758  * @dd: devdata
759  * @selector: a spreading factor
760  * @vl: this vl
761  *
762  *
763  * This function returns an engine based on the selector and a vl.  The
764  * mapping fields are protected by RCU.
765  */
766 struct sdma_engine *sdma_select_engine_vl(
767         struct hfi1_devdata *dd,
768         u32 selector,
769         u8 vl)
770 {
771         struct sdma_vl_map *m;
772         struct sdma_map_elem *e;
773         struct sdma_engine *rval;
774
775         /* NOTE This should only happen if SC->VL changed after the initial
776          *      checks on the QP/AH
777          *      Default will return engine 0 below
778          */
779         if (vl >= num_vls) {
780                 rval = NULL;
781                 goto done;
782         }
783
784         rcu_read_lock();
785         m = rcu_dereference(dd->sdma_map);
786         if (unlikely(!m)) {
787                 rcu_read_unlock();
788                 return &dd->per_sdma[0];
789         }
790         e = m->map[vl & m->mask];
791         rval = e->sde[selector & e->mask];
792         rcu_read_unlock();
793
794 done:
795         rval =  !rval ? &dd->per_sdma[0] : rval;
796         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
797         return rval;
798 }
799
800 /**
801  * sdma_select_engine_sc() - select sdma engine
802  * @dd: devdata
803  * @selector: a spreading factor
804  * @sc5: the 5 bit sc
805  *
806  *
807  * This function returns an engine based on the selector and an sc.
808  */
809 struct sdma_engine *sdma_select_engine_sc(
810         struct hfi1_devdata *dd,
811         u32 selector,
812         u8 sc5)
813 {
814         u8 vl = sc_to_vlt(dd, sc5);
815
816         return sdma_select_engine_vl(dd, selector, vl);
817 }
818
819 struct sdma_rht_map_elem {
820         u32 mask;
821         u8 ctr;
822         struct sdma_engine *sde[0];
823 };
824
825 struct sdma_rht_node {
826         unsigned long cpu_id;
827         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
828         struct rhash_head node;
829 };
830
831 #define NR_CPUS_HINT 192
832
833 static const struct rhashtable_params sdma_rht_params = {
834         .nelem_hint = NR_CPUS_HINT,
835         .head_offset = offsetof(struct sdma_rht_node, node),
836         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
837         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
838         .max_size = NR_CPUS,
839         .min_size = 8,
840         .automatic_shrinking = true,
841 };
842
843 /*
844  * sdma_select_user_engine() - select sdma engine based on user setup
845  * @dd: devdata
846  * @selector: a spreading factor
847  * @vl: this vl
848  *
849  * This function returns an sdma engine for a user sdma request.
850  * User defined sdma engine affinity setting is honored when applicable,
851  * otherwise system default sdma engine mapping is used. To ensure correct
852  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
853  */
854 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
855                                             u32 selector, u8 vl)
856 {
857         struct sdma_rht_node *rht_node;
858         struct sdma_engine *sde = NULL;
859         const struct cpumask *current_mask = &current->cpus_allowed;
860         unsigned long cpu_id;
861
862         /*
863          * To ensure that always the same sdma engine(s) will be
864          * selected make sure the process is pinned to this CPU only.
865          */
866         if (cpumask_weight(current_mask) != 1)
867                 goto out;
868
869         cpu_id = smp_processor_id();
870         rcu_read_lock();
871         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
872                                           sdma_rht_params);
873
874         if (rht_node && rht_node->map[vl]) {
875                 struct sdma_rht_map_elem *map = rht_node->map[vl];
876
877                 sde = map->sde[selector & map->mask];
878         }
879         rcu_read_unlock();
880
881         if (sde)
882                 return sde;
883
884 out:
885         return sdma_select_engine_vl(dd, selector, vl);
886 }
887
888 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
889 {
890         int i;
891
892         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
893                 map->sde[map->ctr + i] = map->sde[i];
894 }
895
896 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
897                                  struct sdma_engine *sde)
898 {
899         unsigned int i, pow;
900
901         /* only need to check the first ctr entries for a match */
902         for (i = 0; i < map->ctr; i++) {
903                 if (map->sde[i] == sde) {
904                         memmove(&map->sde[i], &map->sde[i + 1],
905                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
906                         map->ctr--;
907                         pow = roundup_pow_of_two(map->ctr ? : 1);
908                         map->mask = pow - 1;
909                         sdma_populate_sde_map(map);
910                         break;
911                 }
912         }
913 }
914
915 /*
916  * Prevents concurrent reads and writes of the sdma engine cpu_mask
917  */
918 static DEFINE_MUTEX(process_to_sde_mutex);
919
920 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
921                                 size_t count)
922 {
923         struct hfi1_devdata *dd = sde->dd;
924         cpumask_var_t mask, new_mask;
925         unsigned long cpu;
926         int ret, vl, sz;
927
928         vl = sdma_engine_get_vl(sde);
929         if (unlikely(vl < 0))
930                 return -EINVAL;
931
932         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933         if (!ret)
934                 return -ENOMEM;
935
936         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937         if (!ret) {
938                 free_cpumask_var(mask);
939                 return -ENOMEM;
940         }
941         ret = cpulist_parse(buf, mask);
942         if (ret)
943                 goto out_free;
944
945         if (!cpumask_subset(mask, cpu_online_mask)) {
946                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947                 ret = -EINVAL;
948                 goto out_free;
949         }
950
951         sz = sizeof(struct sdma_rht_map_elem) +
952                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954         mutex_lock(&process_to_sde_mutex);
955
956         for_each_cpu(cpu, mask) {
957                 struct sdma_rht_node *rht_node;
958
959                 /* Check if we have this already mapped */
960                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
961                         cpumask_set_cpu(cpu, new_mask);
962                         continue;
963                 }
964
965                 if (vl >= ARRAY_SIZE(rht_node->map)) {
966                         ret = -EINVAL;
967                         goto out;
968                 }
969
970                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
971                                                   sdma_rht_params);
972                 if (!rht_node) {
973                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
974                         if (!rht_node) {
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978
979                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
980                         if (!rht_node->map[vl]) {
981                                 kfree(rht_node);
982                                 ret = -ENOMEM;
983                                 goto out;
984                         }
985                         rht_node->cpu_id = cpu;
986                         rht_node->map[vl]->mask = 0;
987                         rht_node->map[vl]->ctr = 1;
988                         rht_node->map[vl]->sde[0] = sde;
989
990                         ret = rhashtable_insert_fast(dd->sdma_rht,
991                                                      &rht_node->node,
992                                                      sdma_rht_params);
993                         if (ret) {
994                                 kfree(rht_node->map[vl]);
995                                 kfree(rht_node);
996                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
997                                            cpu);
998                                 goto out;
999                         }
1000
1001                 } else {
1002                         int ctr, pow;
1003
1004                         /* Add new user mappings */
1005                         if (!rht_node->map[vl])
1006                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1007
1008                         if (!rht_node->map[vl]) {
1009                                 ret = -ENOMEM;
1010                                 goto out;
1011                         }
1012
1013                         rht_node->map[vl]->ctr++;
1014                         ctr = rht_node->map[vl]->ctr;
1015                         rht_node->map[vl]->sde[ctr - 1] = sde;
1016                         pow = roundup_pow_of_two(ctr);
1017                         rht_node->map[vl]->mask = pow - 1;
1018
1019                         /* Populate the sde map table */
1020                         sdma_populate_sde_map(rht_node->map[vl]);
1021                 }
1022                 cpumask_set_cpu(cpu, new_mask);
1023         }
1024
1025         /* Clean up old mappings */
1026         for_each_cpu(cpu, cpu_online_mask) {
1027                 struct sdma_rht_node *rht_node;
1028
1029                 /* Don't cleanup sdes that are set in the new mask */
1030                 if (cpumask_test_cpu(cpu, mask))
1031                         continue;
1032
1033                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1034                                                   sdma_rht_params);
1035                 if (rht_node) {
1036                         bool empty = true;
1037                         int i;
1038
1039                         /* Remove mappings for old sde */
1040                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1041                                 if (rht_node->map[i])
1042                                         sdma_cleanup_sde_map(rht_node->map[i],
1043                                                              sde);
1044
1045                         /* Free empty hash table entries */
1046                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1047                                 if (!rht_node->map[i])
1048                                         continue;
1049
1050                                 if (rht_node->map[i]->ctr) {
1051                                         empty = false;
1052                                         break;
1053                                 }
1054                         }
1055
1056                         if (empty) {
1057                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1058                                                              &rht_node->node,
1059                                                              sdma_rht_params);
1060                                 WARN_ON(ret);
1061
1062                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1063                                         kfree(rht_node->map[i]);
1064
1065                                 kfree(rht_node);
1066                         }
1067                 }
1068         }
1069
1070         cpumask_copy(&sde->cpu_mask, new_mask);
1071 out:
1072         mutex_unlock(&process_to_sde_mutex);
1073 out_free:
1074         free_cpumask_var(mask);
1075         free_cpumask_var(new_mask);
1076         return ret ? : strnlen(buf, PAGE_SIZE);
1077 }
1078
1079 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1080 {
1081         mutex_lock(&process_to_sde_mutex);
1082         if (cpumask_empty(&sde->cpu_mask))
1083                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1084         else
1085                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1086         mutex_unlock(&process_to_sde_mutex);
1087         return strnlen(buf, PAGE_SIZE);
1088 }
1089
1090 static void sdma_rht_free(void *ptr, void *arg)
1091 {
1092         struct sdma_rht_node *rht_node = ptr;
1093         int i;
1094
1095         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1096                 kfree(rht_node->map[i]);
1097
1098         kfree(rht_node);
1099 }
1100
1101 /**
1102  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1103  * @s: seq file
1104  * @dd: hfi1_devdata
1105  * @cpuid: cpu id
1106  *
1107  * This routine dumps the process to sde mappings per cpu
1108  */
1109 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1110                                 struct hfi1_devdata *dd,
1111                                 unsigned long cpuid)
1112 {
1113         struct sdma_rht_node *rht_node;
1114         int i, j;
1115
1116         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1117                                           sdma_rht_params);
1118         if (!rht_node)
1119                 return;
1120
1121         seq_printf(s, "cpu%3lu: ", cpuid);
1122         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1123                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1124                         continue;
1125
1126                 seq_printf(s, " vl%d: [", i);
1127
1128                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1129                         if (!rht_node->map[i]->sde[j])
1130                                 continue;
1131
1132                         if (j > 0)
1133                                 seq_puts(s, ",");
1134
1135                         seq_printf(s, " sdma%2d",
1136                                    rht_node->map[i]->sde[j]->this_idx);
1137                 }
1138                 seq_puts(s, " ]");
1139         }
1140
1141         seq_puts(s, "\n");
1142 }
1143
1144 /*
1145  * Free the indicated map struct
1146  */
1147 static void sdma_map_free(struct sdma_vl_map *m)
1148 {
1149         int i;
1150
1151         for (i = 0; m && i < m->actual_vls; i++)
1152                 kfree(m->map[i]);
1153         kfree(m);
1154 }
1155
1156 /*
1157  * Handle RCU callback
1158  */
1159 static void sdma_map_rcu_callback(struct rcu_head *list)
1160 {
1161         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1162
1163         sdma_map_free(m);
1164 }
1165
1166 /**
1167  * sdma_map_init - called when # vls change
1168  * @dd: hfi1_devdata
1169  * @port: port number
1170  * @num_vls: number of vls
1171  * @vl_engines: per vl engine mapping (optional)
1172  *
1173  * This routine changes the mapping based on the number of vls.
1174  *
1175  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1176  * implies auto computing the loading and giving each VLs a uniform
1177  * distribution of engines per VL.
1178  *
1179  * The auto algorithm computes the sde_per_vl and the number of extra
1180  * engines.  Any extra engines are added from the last VL on down.
1181  *
1182  * rcu locking is used here to control access to the mapping fields.
1183  *
1184  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1185  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1186  * up to the next highest power of 2 and the first entry is reused
1187  * in a round robin fashion.
1188  *
1189  * If an error occurs the map change is not done and the mapping is
1190  * not changed.
1191  *
1192  */
1193 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1194 {
1195         int i, j;
1196         int extra, sde_per_vl;
1197         int engine = 0;
1198         u8 lvl_engines[OPA_MAX_VLS];
1199         struct sdma_vl_map *oldmap, *newmap;
1200
1201         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1202                 return 0;
1203
1204         if (!vl_engines) {
1205                 /* truncate divide */
1206                 sde_per_vl = dd->num_sdma / num_vls;
1207                 /* extras */
1208                 extra = dd->num_sdma % num_vls;
1209                 vl_engines = lvl_engines;
1210                 /* add extras from last vl down */
1211                 for (i = num_vls - 1; i >= 0; i--, extra--)
1212                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1213         }
1214         /* build new map */
1215         newmap = kzalloc(
1216                 sizeof(struct sdma_vl_map) +
1217                         roundup_pow_of_two(num_vls) *
1218                         sizeof(struct sdma_map_elem *),
1219                 GFP_KERNEL);
1220         if (!newmap)
1221                 goto bail;
1222         newmap->actual_vls = num_vls;
1223         newmap->vls = roundup_pow_of_two(num_vls);
1224         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1225         /* initialize back-map */
1226         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1227                 newmap->engine_to_vl[i] = -1;
1228         for (i = 0; i < newmap->vls; i++) {
1229                 /* save for wrap around */
1230                 int first_engine = engine;
1231
1232                 if (i < newmap->actual_vls) {
1233                         int sz = roundup_pow_of_two(vl_engines[i]);
1234
1235                         /* only allocate once */
1236                         newmap->map[i] = kzalloc(
1237                                 sizeof(struct sdma_map_elem) +
1238                                         sz * sizeof(struct sdma_engine *),
1239                                 GFP_KERNEL);
1240                         if (!newmap->map[i])
1241                                 goto bail;
1242                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1243                         /* assign engines */
1244                         for (j = 0; j < sz; j++) {
1245                                 newmap->map[i]->sde[j] =
1246                                         &dd->per_sdma[engine];
1247                                 if (++engine >= first_engine + vl_engines[i])
1248                                         /* wrap back to first engine */
1249                                         engine = first_engine;
1250                         }
1251                         /* assign back-map */
1252                         for (j = 0; j < vl_engines[i]; j++)
1253                                 newmap->engine_to_vl[first_engine + j] = i;
1254                 } else {
1255                         /* just re-use entry without allocating */
1256                         newmap->map[i] = newmap->map[i % num_vls];
1257                 }
1258                 engine = first_engine + vl_engines[i];
1259         }
1260         /* newmap in hand, save old map */
1261         spin_lock_irq(&dd->sde_map_lock);
1262         oldmap = rcu_dereference_protected(dd->sdma_map,
1263                                            lockdep_is_held(&dd->sde_map_lock));
1264
1265         /* publish newmap */
1266         rcu_assign_pointer(dd->sdma_map, newmap);
1267
1268         spin_unlock_irq(&dd->sde_map_lock);
1269         /* success, free any old map after grace period */
1270         if (oldmap)
1271                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1272         return 0;
1273 bail:
1274         /* free any partial allocation */
1275         sdma_map_free(newmap);
1276         return -ENOMEM;
1277 }
1278
1279 /*
1280  * Clean up allocated memory.
1281  *
1282  * This routine is can be called regardless of the success of sdma_init()
1283  *
1284  */
1285 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1286 {
1287         size_t i;
1288         struct sdma_engine *sde;
1289
1290         if (dd->sdma_pad_dma) {
1291                 dma_free_coherent(&dd->pcidev->dev, 4,
1292                                   (void *)dd->sdma_pad_dma,
1293                                   dd->sdma_pad_phys);
1294                 dd->sdma_pad_dma = NULL;
1295                 dd->sdma_pad_phys = 0;
1296         }
1297         if (dd->sdma_heads_dma) {
1298                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1299                                   (void *)dd->sdma_heads_dma,
1300                                   dd->sdma_heads_phys);
1301                 dd->sdma_heads_dma = NULL;
1302                 dd->sdma_heads_phys = 0;
1303         }
1304         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1305                 sde = &dd->per_sdma[i];
1306
1307                 sde->head_dma = NULL;
1308                 sde->head_phys = 0;
1309
1310                 if (sde->descq) {
1311                         dma_free_coherent(
1312                                 &dd->pcidev->dev,
1313                                 sde->descq_cnt * sizeof(u64[2]),
1314                                 sde->descq,
1315                                 sde->descq_phys
1316                         );
1317                         sde->descq = NULL;
1318                         sde->descq_phys = 0;
1319                 }
1320                 kvfree(sde->tx_ring);
1321                 sde->tx_ring = NULL;
1322         }
1323         spin_lock_irq(&dd->sde_map_lock);
1324         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1325         RCU_INIT_POINTER(dd->sdma_map, NULL);
1326         spin_unlock_irq(&dd->sde_map_lock);
1327         synchronize_rcu();
1328         kfree(dd->per_sdma);
1329         dd->per_sdma = NULL;
1330
1331         if (dd->sdma_rht) {
1332                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1333                 kfree(dd->sdma_rht);
1334                 dd->sdma_rht = NULL;
1335         }
1336 }
1337
1338 /**
1339  * sdma_init() - called when device probed
1340  * @dd: hfi1_devdata
1341  * @port: port number (currently only zero)
1342  *
1343  * Initializes each sde and its csrs.
1344  * Interrupts are not required to be enabled.
1345  *
1346  * Returns:
1347  * 0 - success, -errno on failure
1348  */
1349 int sdma_init(struct hfi1_devdata *dd, u8 port)
1350 {
1351         unsigned this_idx;
1352         struct sdma_engine *sde;
1353         struct rhashtable *tmp_sdma_rht;
1354         u16 descq_cnt;
1355         void *curr_head;
1356         struct hfi1_pportdata *ppd = dd->pport + port;
1357         u32 per_sdma_credits;
1358         uint idle_cnt = sdma_idle_cnt;
1359         size_t num_engines = dd->chip_sdma_engines;
1360         int ret = -ENOMEM;
1361
1362         if (!HFI1_CAP_IS_KSET(SDMA)) {
1363                 HFI1_CAP_CLEAR(SDMA_AHG);
1364                 return 0;
1365         }
1366         if (mod_num_sdma &&
1367             /* can't exceed chip support */
1368             mod_num_sdma <= dd->chip_sdma_engines &&
1369             /* count must be >= vls */
1370             mod_num_sdma >= num_vls)
1371                 num_engines = mod_num_sdma;
1372
1373         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1374         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1375         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1376                     dd->chip_sdma_mem_size);
1377
1378         per_sdma_credits =
1379                 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1380
1381         /* set up freeze waitqueue */
1382         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1383         atomic_set(&dd->sdma_unfreeze_count, 0);
1384
1385         descq_cnt = sdma_get_descq_cnt();
1386         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1387                     num_engines, descq_cnt);
1388
1389         /* alloc memory for array of send engines */
1390         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1391         if (!dd->per_sdma)
1392                 return ret;
1393
1394         idle_cnt = ns_to_cclock(dd, idle_cnt);
1395         if (!sdma_desct_intr)
1396                 sdma_desct_intr = SDMA_DESC_INTR;
1397
1398         /* Allocate memory for SendDMA descriptor FIFOs */
1399         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1400                 sde = &dd->per_sdma[this_idx];
1401                 sde->dd = dd;
1402                 sde->ppd = ppd;
1403                 sde->this_idx = this_idx;
1404                 sde->descq_cnt = descq_cnt;
1405                 sde->desc_avail = sdma_descq_freecnt(sde);
1406                 sde->sdma_shift = ilog2(descq_cnt);
1407                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1408
1409                 /* Create a mask specifically for each interrupt source */
1410                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1411                                            this_idx);
1412                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1413                                                 this_idx);
1414                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1415                                             this_idx);
1416                 /* Create a combined mask to cover all 3 interrupt sources */
1417                 sde->imask = sde->int_mask | sde->progress_mask |
1418                              sde->idle_mask;
1419
1420                 spin_lock_init(&sde->tail_lock);
1421                 seqlock_init(&sde->head_lock);
1422                 spin_lock_init(&sde->senddmactrl_lock);
1423                 spin_lock_init(&sde->flushlist_lock);
1424                 /* insure there is always a zero bit */
1425                 sde->ahg_bits = 0xfffffffe00000000ULL;
1426
1427                 sdma_set_state(sde, sdma_state_s00_hw_down);
1428
1429                 /* set up reference counting */
1430                 kref_init(&sde->state.kref);
1431                 init_completion(&sde->state.comp);
1432
1433                 INIT_LIST_HEAD(&sde->flushlist);
1434                 INIT_LIST_HEAD(&sde->dmawait);
1435
1436                 sde->tail_csr =
1437                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1438
1439                 if (idle_cnt)
1440                         dd->default_desc1 =
1441                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1442                 else
1443                         dd->default_desc1 =
1444                                 SDMA_DESC1_INT_REQ_FLAG;
1445
1446                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1447                              (unsigned long)sde);
1448
1449                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1450                              (unsigned long)sde);
1451                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1452                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1453
1454                 sde->progress_check_head = 0;
1455
1456                 setup_timer(&sde->err_progress_check_timer,
1457                             sdma_err_progress_check, (unsigned long)sde);
1458
1459                 sde->descq = dma_zalloc_coherent(
1460                         &dd->pcidev->dev,
1461                         descq_cnt * sizeof(u64[2]),
1462                         &sde->descq_phys,
1463                         GFP_KERNEL
1464                 );
1465                 if (!sde->descq)
1466                         goto bail;
1467                 sde->tx_ring =
1468                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1469                                 GFP_KERNEL);
1470                 if (!sde->tx_ring)
1471                         sde->tx_ring =
1472                                 vzalloc(
1473                                         sizeof(struct sdma_txreq *) *
1474                                         descq_cnt);
1475                 if (!sde->tx_ring)
1476                         goto bail;
1477         }
1478
1479         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1480         /* Allocate memory for DMA of head registers to memory */
1481         dd->sdma_heads_dma = dma_zalloc_coherent(
1482                 &dd->pcidev->dev,
1483                 dd->sdma_heads_size,
1484                 &dd->sdma_heads_phys,
1485                 GFP_KERNEL
1486         );
1487         if (!dd->sdma_heads_dma) {
1488                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1489                 goto bail;
1490         }
1491
1492         /* Allocate memory for pad */
1493         dd->sdma_pad_dma = dma_zalloc_coherent(
1494                 &dd->pcidev->dev,
1495                 sizeof(u32),
1496                 &dd->sdma_pad_phys,
1497                 GFP_KERNEL
1498         );
1499         if (!dd->sdma_pad_dma) {
1500                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1501                 goto bail;
1502         }
1503
1504         /* assign each engine to different cacheline and init registers */
1505         curr_head = (void *)dd->sdma_heads_dma;
1506         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1507                 unsigned long phys_offset;
1508
1509                 sde = &dd->per_sdma[this_idx];
1510
1511                 sde->head_dma = curr_head;
1512                 curr_head += L1_CACHE_BYTES;
1513                 phys_offset = (unsigned long)sde->head_dma -
1514                               (unsigned long)dd->sdma_heads_dma;
1515                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1516                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1517         }
1518         dd->flags |= HFI1_HAS_SEND_DMA;
1519         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1520         dd->num_sdma = num_engines;
1521         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1522         if (ret < 0)
1523                 goto bail;
1524
1525         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1526         if (!tmp_sdma_rht) {
1527                 ret = -ENOMEM;
1528                 goto bail;
1529         }
1530
1531         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1532         if (ret < 0) {
1533                 kfree(tmp_sdma_rht);
1534                 goto bail;
1535         }
1536
1537         dd->sdma_rht = tmp_sdma_rht;
1538
1539         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1540         return 0;
1541
1542 bail:
1543         sdma_clean(dd, num_engines);
1544         return ret;
1545 }
1546
1547 /**
1548  * sdma_all_running() - called when the link goes up
1549  * @dd: hfi1_devdata
1550  *
1551  * This routine moves all engines to the running state.
1552  */
1553 void sdma_all_running(struct hfi1_devdata *dd)
1554 {
1555         struct sdma_engine *sde;
1556         unsigned int i;
1557
1558         /* move all engines to running */
1559         for (i = 0; i < dd->num_sdma; ++i) {
1560                 sde = &dd->per_sdma[i];
1561                 sdma_process_event(sde, sdma_event_e30_go_running);
1562         }
1563 }
1564
1565 /**
1566  * sdma_all_idle() - called when the link goes down
1567  * @dd: hfi1_devdata
1568  *
1569  * This routine moves all engines to the idle state.
1570  */
1571 void sdma_all_idle(struct hfi1_devdata *dd)
1572 {
1573         struct sdma_engine *sde;
1574         unsigned int i;
1575
1576         /* idle all engines */
1577         for (i = 0; i < dd->num_sdma; ++i) {
1578                 sde = &dd->per_sdma[i];
1579                 sdma_process_event(sde, sdma_event_e70_go_idle);
1580         }
1581 }
1582
1583 /**
1584  * sdma_start() - called to kick off state processing for all engines
1585  * @dd: hfi1_devdata
1586  *
1587  * This routine is for kicking off the state processing for all required
1588  * sdma engines.  Interrupts need to be working at this point.
1589  *
1590  */
1591 void sdma_start(struct hfi1_devdata *dd)
1592 {
1593         unsigned i;
1594         struct sdma_engine *sde;
1595
1596         /* kick off the engines state processing */
1597         for (i = 0; i < dd->num_sdma; ++i) {
1598                 sde = &dd->per_sdma[i];
1599                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1600         }
1601 }
1602
1603 /**
1604  * sdma_exit() - used when module is removed
1605  * @dd: hfi1_devdata
1606  */
1607 void sdma_exit(struct hfi1_devdata *dd)
1608 {
1609         unsigned this_idx;
1610         struct sdma_engine *sde;
1611
1612         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1613                         ++this_idx) {
1614                 sde = &dd->per_sdma[this_idx];
1615                 if (!list_empty(&sde->dmawait))
1616                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1617                                    sde->this_idx);
1618                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1619
1620                 del_timer_sync(&sde->err_progress_check_timer);
1621
1622                 /*
1623                  * This waits for the state machine to exit so it is not
1624                  * necessary to kill the sdma_sw_clean_up_task to make sure
1625                  * it is not running.
1626                  */
1627                 sdma_finalput(&sde->state);
1628         }
1629         sdma_clean(dd, dd->num_sdma);
1630 }
1631
1632 /*
1633  * unmap the indicated descriptor
1634  */
1635 static inline void sdma_unmap_desc(
1636         struct hfi1_devdata *dd,
1637         struct sdma_desc *descp)
1638 {
1639         switch (sdma_mapping_type(descp)) {
1640         case SDMA_MAP_SINGLE:
1641                 dma_unmap_single(
1642                         &dd->pcidev->dev,
1643                         sdma_mapping_addr(descp),
1644                         sdma_mapping_len(descp),
1645                         DMA_TO_DEVICE);
1646                 break;
1647         case SDMA_MAP_PAGE:
1648                 dma_unmap_page(
1649                         &dd->pcidev->dev,
1650                         sdma_mapping_addr(descp),
1651                         sdma_mapping_len(descp),
1652                         DMA_TO_DEVICE);
1653                 break;
1654         }
1655 }
1656
1657 /*
1658  * return the mode as indicated by the first
1659  * descriptor in the tx.
1660  */
1661 static inline u8 ahg_mode(struct sdma_txreq *tx)
1662 {
1663         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1664                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1665 }
1666
1667 /**
1668  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1669  * @dd: hfi1_devdata for unmapping
1670  * @tx: tx request to clean
1671  *
1672  * This is used in the progress routine to clean the tx or
1673  * by the ULP to toss an in-process tx build.
1674  *
1675  * The code can be called multiple times without issue.
1676  *
1677  */
1678 void __sdma_txclean(
1679         struct hfi1_devdata *dd,
1680         struct sdma_txreq *tx)
1681 {
1682         u16 i;
1683
1684         if (tx->num_desc) {
1685                 u8 skip = 0, mode = ahg_mode(tx);
1686
1687                 /* unmap first */
1688                 sdma_unmap_desc(dd, &tx->descp[0]);
1689                 /* determine number of AHG descriptors to skip */
1690                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1691                         skip = mode >> 1;
1692                 for (i = 1 + skip; i < tx->num_desc; i++)
1693                         sdma_unmap_desc(dd, &tx->descp[i]);
1694                 tx->num_desc = 0;
1695         }
1696         kfree(tx->coalesce_buf);
1697         tx->coalesce_buf = NULL;
1698         /* kmalloc'ed descp */
1699         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1700                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1701                 kfree(tx->descp);
1702         }
1703 }
1704
1705 static inline u16 sdma_gethead(struct sdma_engine *sde)
1706 {
1707         struct hfi1_devdata *dd = sde->dd;
1708         int use_dmahead;
1709         u16 hwhead;
1710
1711 #ifdef CONFIG_SDMA_VERBOSITY
1712         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1713                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1714 #endif
1715
1716 retry:
1717         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1718                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1719         hwhead = use_dmahead ?
1720                 (u16)le64_to_cpu(*sde->head_dma) :
1721                 (u16)read_sde_csr(sde, SD(HEAD));
1722
1723         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1724                 u16 cnt;
1725                 u16 swtail;
1726                 u16 swhead;
1727                 int sane;
1728
1729                 swhead = sde->descq_head & sde->sdma_mask;
1730                 /* this code is really bad for cache line trading */
1731                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1732                 cnt = sde->descq_cnt;
1733
1734                 if (swhead < swtail)
1735                         /* not wrapped */
1736                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1737                 else if (swhead > swtail)
1738                         /* wrapped around */
1739                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1740                                 (hwhead <= swtail);
1741                 else
1742                         /* empty */
1743                         sane = (hwhead == swhead);
1744
1745                 if (unlikely(!sane)) {
1746                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1747                                    sde->this_idx,
1748                                    use_dmahead ? "dma" : "kreg",
1749                                    hwhead, swhead, swtail, cnt);
1750                         if (use_dmahead) {
1751                                 /* try one more time, using csr */
1752                                 use_dmahead = 0;
1753                                 goto retry;
1754                         }
1755                         /* proceed as if no progress */
1756                         hwhead = swhead;
1757                 }
1758         }
1759         return hwhead;
1760 }
1761
1762 /*
1763  * This is called when there are send DMA descriptors that might be
1764  * available.
1765  *
1766  * This is called with head_lock held.
1767  */
1768 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1769 {
1770         struct iowait *wait, *nw;
1771         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1772         uint i, n = 0, seq, max_idx = 0;
1773         struct sdma_txreq *stx;
1774         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1775         u8 max_starved_cnt = 0;
1776
1777 #ifdef CONFIG_SDMA_VERBOSITY
1778         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1779                    slashstrip(__FILE__), __LINE__, __func__);
1780         dd_dev_err(sde->dd, "avail: %u\n", avail);
1781 #endif
1782
1783         do {
1784                 seq = read_seqbegin(&dev->iowait_lock);
1785                 if (!list_empty(&sde->dmawait)) {
1786                         /* at least one item */
1787                         write_seqlock(&dev->iowait_lock);
1788                         /* Harvest waiters wanting DMA descriptors */
1789                         list_for_each_entry_safe(
1790                                         wait,
1791                                         nw,
1792                                         &sde->dmawait,
1793                                         list) {
1794                                 u16 num_desc = 0;
1795
1796                                 if (!wait->wakeup)
1797                                         continue;
1798                                 if (n == ARRAY_SIZE(waits))
1799                                         break;
1800                                 if (!list_empty(&wait->tx_head)) {
1801                                         stx = list_first_entry(
1802                                                 &wait->tx_head,
1803                                                 struct sdma_txreq,
1804                                                 list);
1805                                         num_desc = stx->num_desc;
1806                                 }
1807                                 if (num_desc > avail)
1808                                         break;
1809                                 avail -= num_desc;
1810                                 /* Find the most starved wait memeber */
1811                                 iowait_starve_find_max(wait, &max_starved_cnt,
1812                                                        n, &max_idx);
1813                                 list_del_init(&wait->list);
1814                                 waits[n++] = wait;
1815                         }
1816                         write_sequnlock(&dev->iowait_lock);
1817                         break;
1818                 }
1819         } while (read_seqretry(&dev->iowait_lock, seq));
1820
1821         /* Schedule the most starved one first */
1822         if (n)
1823                 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1824
1825         for (i = 0; i < n; i++)
1826                 if (i != max_idx)
1827                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1828 }
1829
1830 /* head_lock must be held */
1831 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1832 {
1833         struct sdma_txreq *txp = NULL;
1834         int progress = 0;
1835         u16 hwhead, swhead;
1836         int idle_check_done = 0;
1837
1838         hwhead = sdma_gethead(sde);
1839
1840         /* The reason for some of the complexity of this code is that
1841          * not all descriptors have corresponding txps.  So, we have to
1842          * be able to skip over descs until we wander into the range of
1843          * the next txp on the list.
1844          */
1845
1846 retry:
1847         txp = get_txhead(sde);
1848         swhead = sde->descq_head & sde->sdma_mask;
1849         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1850         while (swhead != hwhead) {
1851                 /* advance head, wrap if needed */
1852                 swhead = ++sde->descq_head & sde->sdma_mask;
1853
1854                 /* if now past this txp's descs, do the callback */
1855                 if (txp && txp->next_descq_idx == swhead) {
1856                         /* remove from list */
1857                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1858                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1859                         /* see if there is another txp */
1860                         txp = get_txhead(sde);
1861                 }
1862                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1863                 progress++;
1864         }
1865
1866         /*
1867          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1868          * to updates to the the dma_head location in host memory. The head
1869          * value read might not be fully up to date. If there are pending
1870          * descriptors and the SDMA idle interrupt fired then read from the
1871          * CSR SDMA head instead to get the latest value from the hardware.
1872          * The hardware SDMA head should be read at most once in this invocation
1873          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1874          */
1875         if ((status & sde->idle_mask) && !idle_check_done) {
1876                 u16 swtail;
1877
1878                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1879                 if (swtail != hwhead) {
1880                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1881                         idle_check_done = 1;
1882                         goto retry;
1883                 }
1884         }
1885
1886         sde->last_status = status;
1887         if (progress)
1888                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1889 }
1890
1891 /*
1892  * sdma_engine_interrupt() - interrupt handler for engine
1893  * @sde: sdma engine
1894  * @status: sdma interrupt reason
1895  *
1896  * Status is a mask of the 3 possible interrupts for this engine.  It will
1897  * contain bits _only_ for this SDMA engine.  It will contain at least one
1898  * bit, it may contain more.
1899  */
1900 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1901 {
1902         trace_hfi1_sdma_engine_interrupt(sde, status);
1903         write_seqlock(&sde->head_lock);
1904         sdma_set_desc_cnt(sde, sdma_desct_intr);
1905         if (status & sde->idle_mask)
1906                 sde->idle_int_cnt++;
1907         else if (status & sde->progress_mask)
1908                 sde->progress_int_cnt++;
1909         else if (status & sde->int_mask)
1910                 sde->sdma_int_cnt++;
1911         sdma_make_progress(sde, status);
1912         write_sequnlock(&sde->head_lock);
1913 }
1914
1915 /**
1916  * sdma_engine_error() - error handler for engine
1917  * @sde: sdma engine
1918  * @status: sdma interrupt reason
1919  */
1920 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1921 {
1922         unsigned long flags;
1923
1924 #ifdef CONFIG_SDMA_VERBOSITY
1925         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1926                    sde->this_idx,
1927                    (unsigned long long)status,
1928                    sdma_state_names[sde->state.current_state]);
1929 #endif
1930         spin_lock_irqsave(&sde->tail_lock, flags);
1931         write_seqlock(&sde->head_lock);
1932         if (status & ALL_SDMA_ENG_HALT_ERRS)
1933                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1934         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1935                 dd_dev_err(sde->dd,
1936                            "SDMA (%u) engine error: 0x%llx state %s\n",
1937                            sde->this_idx,
1938                            (unsigned long long)status,
1939                            sdma_state_names[sde->state.current_state]);
1940                 dump_sdma_state(sde);
1941         }
1942         write_sequnlock(&sde->head_lock);
1943         spin_unlock_irqrestore(&sde->tail_lock, flags);
1944 }
1945
1946 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1947 {
1948         u64 set_senddmactrl = 0;
1949         u64 clr_senddmactrl = 0;
1950         unsigned long flags;
1951
1952 #ifdef CONFIG_SDMA_VERBOSITY
1953         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1954                    sde->this_idx,
1955                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1956                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1957                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1958                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1959 #endif
1960
1961         if (op & SDMA_SENDCTRL_OP_ENABLE)
1962                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1963         else
1964                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1965
1966         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1967                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1968         else
1969                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1970
1971         if (op & SDMA_SENDCTRL_OP_HALT)
1972                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1973         else
1974                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1975
1976         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1977
1978         sde->p_senddmactrl |= set_senddmactrl;
1979         sde->p_senddmactrl &= ~clr_senddmactrl;
1980
1981         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1982                 write_sde_csr(sde, SD(CTRL),
1983                               sde->p_senddmactrl |
1984                               SD(CTRL_SDMA_CLEANUP_SMASK));
1985         else
1986                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1987
1988         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1989
1990 #ifdef CONFIG_SDMA_VERBOSITY
1991         sdma_dumpstate(sde);
1992 #endif
1993 }
1994
1995 static void sdma_setlengen(struct sdma_engine *sde)
1996 {
1997 #ifdef CONFIG_SDMA_VERBOSITY
1998         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1999                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2000 #endif
2001
2002         /*
2003          * Set SendDmaLenGen and clear-then-set the MSB of the generation
2004          * count to enable generation checking and load the internal
2005          * generation counter.
2006          */
2007         write_sde_csr(sde, SD(LEN_GEN),
2008                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2009         write_sde_csr(sde, SD(LEN_GEN),
2010                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2011                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2012 }
2013
2014 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2015 {
2016         /* Commit writes to memory and advance the tail on the chip */
2017         smp_wmb(); /* see get_txhead() */
2018         writeq(tail, sde->tail_csr);
2019 }
2020
2021 /*
2022  * This is called when changing to state s10_hw_start_up_halt_wait as
2023  * a result of send buffer errors or send DMA descriptor errors.
2024  */
2025 static void sdma_hw_start_up(struct sdma_engine *sde)
2026 {
2027         u64 reg;
2028
2029 #ifdef CONFIG_SDMA_VERBOSITY
2030         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2031                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2032 #endif
2033
2034         sdma_setlengen(sde);
2035         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2036         *sde->head_dma = 0;
2037
2038         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2039               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2040         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2041 }
2042
2043 /*
2044  * set_sdma_integrity
2045  *
2046  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2047  */
2048 static void set_sdma_integrity(struct sdma_engine *sde)
2049 {
2050         struct hfi1_devdata *dd = sde->dd;
2051
2052         write_sde_csr(sde, SD(CHECK_ENABLE),
2053                       hfi1_pkt_base_sdma_integrity(dd));
2054 }
2055
2056 static void init_sdma_regs(
2057         struct sdma_engine *sde,
2058         u32 credits,
2059         uint idle_cnt)
2060 {
2061         u8 opval, opmask;
2062 #ifdef CONFIG_SDMA_VERBOSITY
2063         struct hfi1_devdata *dd = sde->dd;
2064
2065         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2066                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2067 #endif
2068
2069         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2070         sdma_setlengen(sde);
2071         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2072         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2073         write_sde_csr(sde, SD(DESC_CNT), 0);
2074         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2075         write_sde_csr(sde, SD(MEMORY),
2076                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2077                       ((u64)(credits * sde->this_idx) <<
2078                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2079         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2080         set_sdma_integrity(sde);
2081         opmask = OPCODE_CHECK_MASK_DISABLED;
2082         opval = OPCODE_CHECK_VAL_DISABLED;
2083         write_sde_csr(sde, SD(CHECK_OPCODE),
2084                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2085                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2086 }
2087
2088 #ifdef CONFIG_SDMA_VERBOSITY
2089
2090 #define sdma_dumpstate_helper0(reg) do { \
2091                 csr = read_csr(sde->dd, reg); \
2092                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2093         } while (0)
2094
2095 #define sdma_dumpstate_helper(reg) do { \
2096                 csr = read_sde_csr(sde, reg); \
2097                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2098                         #reg, sde->this_idx, csr); \
2099         } while (0)
2100
2101 #define sdma_dumpstate_helper2(reg) do { \
2102                 csr = read_csr(sde->dd, reg + (8 * i)); \
2103                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2104                                 #reg, i, csr); \
2105         } while (0)
2106
2107 void sdma_dumpstate(struct sdma_engine *sde)
2108 {
2109         u64 csr;
2110         unsigned i;
2111
2112         sdma_dumpstate_helper(SD(CTRL));
2113         sdma_dumpstate_helper(SD(STATUS));
2114         sdma_dumpstate_helper0(SD(ERR_STATUS));
2115         sdma_dumpstate_helper0(SD(ERR_MASK));
2116         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2117         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2118
2119         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2120                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2121                 sdma_dumpstate_helper2(CCE_INT_MASK);
2122                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2123         }
2124
2125         sdma_dumpstate_helper(SD(TAIL));
2126         sdma_dumpstate_helper(SD(HEAD));
2127         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2128         sdma_dumpstate_helper(SD(IDLE_CNT));
2129         sdma_dumpstate_helper(SD(RELOAD_CNT));
2130         sdma_dumpstate_helper(SD(DESC_CNT));
2131         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2132         sdma_dumpstate_helper(SD(MEMORY));
2133         sdma_dumpstate_helper0(SD(ENGINES));
2134         sdma_dumpstate_helper0(SD(MEM_SIZE));
2135         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2136         sdma_dumpstate_helper(SD(BASE_ADDR));
2137         sdma_dumpstate_helper(SD(LEN_GEN));
2138         sdma_dumpstate_helper(SD(HEAD_ADDR));
2139         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2140         sdma_dumpstate_helper(SD(CHECK_VL));
2141         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2142         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2143         sdma_dumpstate_helper(SD(CHECK_SLID));
2144         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2145 }
2146 #endif
2147
2148 static void dump_sdma_state(struct sdma_engine *sde)
2149 {
2150         struct hw_sdma_desc *descq;
2151         struct hw_sdma_desc *descqp;
2152         u64 desc[2];
2153         u64 addr;
2154         u8 gen;
2155         u16 len;
2156         u16 head, tail, cnt;
2157
2158         head = sde->descq_head & sde->sdma_mask;
2159         tail = sde->descq_tail & sde->sdma_mask;
2160         cnt = sdma_descq_freecnt(sde);
2161         descq = sde->descq;
2162
2163         dd_dev_err(sde->dd,
2164                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2165                    sde->this_idx, head, tail, cnt,
2166                    !list_empty(&sde->flushlist));
2167
2168         /* print info for each entry in the descriptor queue */
2169         while (head != tail) {
2170                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2171
2172                 descqp = &sde->descq[head];
2173                 desc[0] = le64_to_cpu(descqp->qw[0]);
2174                 desc[1] = le64_to_cpu(descqp->qw[1]);
2175                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2176                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2177                                 'H' : '-';
2178                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2179                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2180                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2181                         & SDMA_DESC0_PHY_ADDR_MASK;
2182                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2183                         & SDMA_DESC1_GENERATION_MASK;
2184                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2185                         & SDMA_DESC0_BYTE_COUNT_MASK;
2186                 dd_dev_err(sde->dd,
2187                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2188                            head, flags, addr, gen, len);
2189                 dd_dev_err(sde->dd,
2190                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2191                            desc[0], desc[1]);
2192                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2193                         dd_dev_err(sde->dd,
2194                                    "\taidx: %u amode: %u alen: %u\n",
2195                                    (u8)((desc[1] &
2196                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2197                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2198                                    (u8)((desc[1] &
2199                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2200                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2201                                    (u8)((desc[1] &
2202                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2203                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2204                 head++;
2205                 head &= sde->sdma_mask;
2206         }
2207 }
2208
2209 #define SDE_FMT \
2210         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2211 /**
2212  * sdma_seqfile_dump_sde() - debugfs dump of sde
2213  * @s: seq file
2214  * @sde: send dma engine to dump
2215  *
2216  * This routine dumps the sde to the indicated seq file.
2217  */
2218 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2219 {
2220         u16 head, tail;
2221         struct hw_sdma_desc *descqp;
2222         u64 desc[2];
2223         u64 addr;
2224         u8 gen;
2225         u16 len;
2226
2227         head = sde->descq_head & sde->sdma_mask;
2228         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
2229         seq_printf(s, SDE_FMT, sde->this_idx,
2230                    sde->cpu,
2231                    sdma_state_name(sde->state.current_state),
2232                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2233                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2234                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2235                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2236                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2237                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2238                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2239                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2240                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2241                    (unsigned long long)sde->last_status,
2242                    (unsigned long long)sde->ahg_bits,
2243                    sde->tx_tail,
2244                    sde->tx_head,
2245                    sde->descq_tail,
2246                    sde->descq_head,
2247                    !list_empty(&sde->flushlist),
2248                    sde->descq_full_count,
2249                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2250
2251         /* print info for each entry in the descriptor queue */
2252         while (head != tail) {
2253                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2254
2255                 descqp = &sde->descq[head];
2256                 desc[0] = le64_to_cpu(descqp->qw[0]);
2257                 desc[1] = le64_to_cpu(descqp->qw[1]);
2258                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2259                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2260                                 'H' : '-';
2261                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2262                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2263                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2264                         & SDMA_DESC0_PHY_ADDR_MASK;
2265                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2266                         & SDMA_DESC1_GENERATION_MASK;
2267                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2268                         & SDMA_DESC0_BYTE_COUNT_MASK;
2269                 seq_printf(s,
2270                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2271                            head, flags, addr, gen, len);
2272                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2273                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2274                                    (u8)((desc[1] &
2275                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2276                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2277                                    (u8)((desc[1] &
2278                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2279                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2280                 head = (head + 1) & sde->sdma_mask;
2281         }
2282 }
2283
2284 /*
2285  * add the generation number into
2286  * the qw1 and return
2287  */
2288 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2289 {
2290         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2291
2292         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2293         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2294                         << SDMA_DESC1_GENERATION_SHIFT;
2295         return qw1;
2296 }
2297
2298 /*
2299  * This routine submits the indicated tx
2300  *
2301  * Space has already been guaranteed and
2302  * tail side of ring is locked.
2303  *
2304  * The hardware tail update is done
2305  * in the caller and that is facilitated
2306  * by returning the new tail.
2307  *
2308  * There is special case logic for ahg
2309  * to not add the generation number for
2310  * up to 2 descriptors that follow the
2311  * first descriptor.
2312  *
2313  */
2314 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2315 {
2316         int i;
2317         u16 tail;
2318         struct sdma_desc *descp = tx->descp;
2319         u8 skip = 0, mode = ahg_mode(tx);
2320
2321         tail = sde->descq_tail & sde->sdma_mask;
2322         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2323         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2324         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2325                                    tail, &sde->descq[tail]);
2326         tail = ++sde->descq_tail & sde->sdma_mask;
2327         descp++;
2328         if (mode > SDMA_AHG_APPLY_UPDATE1)
2329                 skip = mode >> 1;
2330         for (i = 1; i < tx->num_desc; i++, descp++) {
2331                 u64 qw1;
2332
2333                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2334                 if (skip) {
2335                         /* edits don't have generation */
2336                         qw1 = descp->qw[1];
2337                         skip--;
2338                 } else {
2339                         /* replace generation with real one for non-edits */
2340                         qw1 = add_gen(sde, descp->qw[1]);
2341                 }
2342                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2343                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2344                                            tail, &sde->descq[tail]);
2345                 tail = ++sde->descq_tail & sde->sdma_mask;
2346         }
2347         tx->next_descq_idx = tail;
2348 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2349         tx->sn = sde->tail_sn++;
2350         trace_hfi1_sdma_in_sn(sde, tx->sn);
2351         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2352 #endif
2353         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2354         sde->desc_avail -= tx->num_desc;
2355         return tail;
2356 }
2357
2358 /*
2359  * Check for progress
2360  */
2361 static int sdma_check_progress(
2362         struct sdma_engine *sde,
2363         struct iowait *wait,
2364         struct sdma_txreq *tx,
2365         bool pkts_sent)
2366 {
2367         int ret;
2368
2369         sde->desc_avail = sdma_descq_freecnt(sde);
2370         if (tx->num_desc <= sde->desc_avail)
2371                 return -EAGAIN;
2372         /* pulse the head_lock */
2373         if (wait && wait->sleep) {
2374                 unsigned seq;
2375
2376                 seq = raw_seqcount_begin(
2377                         (const seqcount_t *)&sde->head_lock.seqcount);
2378                 ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2379                 if (ret == -EAGAIN)
2380                         sde->desc_avail = sdma_descq_freecnt(sde);
2381         } else {
2382                 ret = -EBUSY;
2383         }
2384         return ret;
2385 }
2386
2387 /**
2388  * sdma_send_txreq() - submit a tx req to ring
2389  * @sde: sdma engine to use
2390  * @wait: wait structure to use when full (may be NULL)
2391  * @tx: sdma_txreq to submit
2392  * @pkts_sent: has any packet been sent yet?
2393  *
2394  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2395  * the packet will be queued to the list in wait.
2396  *
2397  * Return:
2398  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2399  * ring (wait == NULL)
2400  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2401  */
2402 int sdma_send_txreq(struct sdma_engine *sde,
2403                     struct iowait *wait,
2404                     struct sdma_txreq *tx,
2405                     bool pkts_sent)
2406 {
2407         int ret = 0;
2408         u16 tail;
2409         unsigned long flags;
2410
2411         /* user should have supplied entire packet */
2412         if (unlikely(tx->tlen))
2413                 return -EINVAL;
2414         tx->wait = wait;
2415         spin_lock_irqsave(&sde->tail_lock, flags);
2416 retry:
2417         if (unlikely(!__sdma_running(sde)))
2418                 goto unlock_noconn;
2419         if (unlikely(tx->num_desc > sde->desc_avail))
2420                 goto nodesc;
2421         tail = submit_tx(sde, tx);
2422         if (wait)
2423                 iowait_sdma_inc(wait);
2424         sdma_update_tail(sde, tail);
2425 unlock:
2426         spin_unlock_irqrestore(&sde->tail_lock, flags);
2427         return ret;
2428 unlock_noconn:
2429         if (wait)
2430                 iowait_sdma_inc(wait);
2431         tx->next_descq_idx = 0;
2432 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2433         tx->sn = sde->tail_sn++;
2434         trace_hfi1_sdma_in_sn(sde, tx->sn);
2435 #endif
2436         spin_lock(&sde->flushlist_lock);
2437         list_add_tail(&tx->list, &sde->flushlist);
2438         spin_unlock(&sde->flushlist_lock);
2439         if (wait) {
2440                 wait->tx_count++;
2441                 wait->count += tx->num_desc;
2442         }
2443         schedule_work(&sde->flush_worker);
2444         ret = -ECOMM;
2445         goto unlock;
2446 nodesc:
2447         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2448         if (ret == -EAGAIN) {
2449                 ret = 0;
2450                 goto retry;
2451         }
2452         sde->descq_full_count++;
2453         goto unlock;
2454 }
2455
2456 /**
2457  * sdma_send_txlist() - submit a list of tx req to ring
2458  * @sde: sdma engine to use
2459  * @wait: wait structure to use when full (may be NULL)
2460  * @tx_list: list of sdma_txreqs to submit
2461  * @count: pointer to a u32 which, after return will contain the total number of
2462  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2463  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2464  *         which are added to SDMA engine flush list if the SDMA engine state is
2465  *         not running.
2466  *
2467  * The call submits the list into the ring.
2468  *
2469  * If the iowait structure is non-NULL and not equal to the iowait list
2470  * the unprocessed part of the list  will be appended to the list in wait.
2471  *
2472  * In all cases, the tx_list will be updated so the head of the tx_list is
2473  * the list of descriptors that have yet to be transmitted.
2474  *
2475  * The intent of this call is to provide a more efficient
2476  * way of submitting multiple packets to SDMA while holding the tail
2477  * side locking.
2478  *
2479  * Return:
2480  * 0 - Success,
2481  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2482  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2483  */
2484 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2485                      struct list_head *tx_list, u32 *count_out)
2486 {
2487         struct sdma_txreq *tx, *tx_next;
2488         int ret = 0;
2489         unsigned long flags;
2490         u16 tail = INVALID_TAIL;
2491         u32 submit_count = 0, flush_count = 0, total_count;
2492
2493         spin_lock_irqsave(&sde->tail_lock, flags);
2494 retry:
2495         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2496                 tx->wait = wait;
2497                 if (unlikely(!__sdma_running(sde)))
2498                         goto unlock_noconn;
2499                 if (unlikely(tx->num_desc > sde->desc_avail))
2500                         goto nodesc;
2501                 if (unlikely(tx->tlen)) {
2502                         ret = -EINVAL;
2503                         goto update_tail;
2504                 }
2505                 list_del_init(&tx->list);
2506                 tail = submit_tx(sde, tx);
2507                 submit_count++;
2508                 if (tail != INVALID_TAIL &&
2509                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2510                         sdma_update_tail(sde, tail);
2511                         tail = INVALID_TAIL;
2512                 }
2513         }
2514 update_tail:
2515         total_count = submit_count + flush_count;
2516         if (wait) {
2517                 iowait_sdma_add(wait, total_count);
2518                 iowait_starve_clear(submit_count > 0, wait);
2519         }
2520         if (tail != INVALID_TAIL)
2521                 sdma_update_tail(sde, tail);
2522         spin_unlock_irqrestore(&sde->tail_lock, flags);
2523         *count_out = total_count;
2524         return ret;
2525 unlock_noconn:
2526         spin_lock(&sde->flushlist_lock);
2527         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2528                 tx->wait = wait;
2529                 list_del_init(&tx->list);
2530                 tx->next_descq_idx = 0;
2531 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2532                 tx->sn = sde->tail_sn++;
2533                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2534 #endif
2535                 list_add_tail(&tx->list, &sde->flushlist);
2536                 flush_count++;
2537                 if (wait) {
2538                         wait->tx_count++;
2539                         wait->count += tx->num_desc;
2540                 }
2541         }
2542         spin_unlock(&sde->flushlist_lock);
2543         schedule_work(&sde->flush_worker);
2544         ret = -ECOMM;
2545         goto update_tail;
2546 nodesc:
2547         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2548         if (ret == -EAGAIN) {
2549                 ret = 0;
2550                 goto retry;
2551         }
2552         sde->descq_full_count++;
2553         goto update_tail;
2554 }
2555
2556 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2557 {
2558         unsigned long flags;
2559
2560         spin_lock_irqsave(&sde->tail_lock, flags);
2561         write_seqlock(&sde->head_lock);
2562
2563         __sdma_process_event(sde, event);
2564
2565         if (sde->state.current_state == sdma_state_s99_running)
2566                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2567
2568         write_sequnlock(&sde->head_lock);
2569         spin_unlock_irqrestore(&sde->tail_lock, flags);
2570 }
2571
2572 static void __sdma_process_event(struct sdma_engine *sde,
2573                                  enum sdma_events event)
2574 {
2575         struct sdma_state *ss = &sde->state;
2576         int need_progress = 0;
2577
2578         /* CONFIG SDMA temporary */
2579 #ifdef CONFIG_SDMA_VERBOSITY
2580         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2581                    sdma_state_names[ss->current_state],
2582                    sdma_event_names[event]);
2583 #endif
2584
2585         switch (ss->current_state) {
2586         case sdma_state_s00_hw_down:
2587                 switch (event) {
2588                 case sdma_event_e00_go_hw_down:
2589                         break;
2590                 case sdma_event_e30_go_running:
2591                         /*
2592                          * If down, but running requested (usually result
2593                          * of link up, then we need to start up.
2594                          * This can happen when hw down is requested while
2595                          * bringing the link up with traffic active on
2596                          * 7220, e.g.
2597                          */
2598                         ss->go_s99_running = 1;
2599                         /* fall through and start dma engine */
2600                 case sdma_event_e10_go_hw_start:
2601                         /* This reference means the state machine is started */
2602                         sdma_get(&sde->state);
2603                         sdma_set_state(sde,
2604                                        sdma_state_s10_hw_start_up_halt_wait);
2605                         break;
2606                 case sdma_event_e15_hw_halt_done:
2607                         break;
2608                 case sdma_event_e25_hw_clean_up_done:
2609                         break;
2610                 case sdma_event_e40_sw_cleaned:
2611                         sdma_sw_tear_down(sde);
2612                         break;
2613                 case sdma_event_e50_hw_cleaned:
2614                         break;
2615                 case sdma_event_e60_hw_halted:
2616                         break;
2617                 case sdma_event_e70_go_idle:
2618                         break;
2619                 case sdma_event_e80_hw_freeze:
2620                         break;
2621                 case sdma_event_e81_hw_frozen:
2622                         break;
2623                 case sdma_event_e82_hw_unfreeze:
2624                         break;
2625                 case sdma_event_e85_link_down:
2626                         break;
2627                 case sdma_event_e90_sw_halted:
2628                         break;
2629                 }
2630                 break;
2631
2632         case sdma_state_s10_hw_start_up_halt_wait:
2633                 switch (event) {
2634                 case sdma_event_e00_go_hw_down:
2635                         sdma_set_state(sde, sdma_state_s00_hw_down);
2636                         sdma_sw_tear_down(sde);
2637                         break;
2638                 case sdma_event_e10_go_hw_start:
2639                         break;
2640                 case sdma_event_e15_hw_halt_done:
2641                         sdma_set_state(sde,
2642                                        sdma_state_s15_hw_start_up_clean_wait);
2643                         sdma_start_hw_clean_up(sde);
2644                         break;
2645                 case sdma_event_e25_hw_clean_up_done:
2646                         break;
2647                 case sdma_event_e30_go_running:
2648                         ss->go_s99_running = 1;
2649                         break;
2650                 case sdma_event_e40_sw_cleaned:
2651                         break;
2652                 case sdma_event_e50_hw_cleaned:
2653                         break;
2654                 case sdma_event_e60_hw_halted:
2655                         schedule_work(&sde->err_halt_worker);
2656                         break;
2657                 case sdma_event_e70_go_idle:
2658                         ss->go_s99_running = 0;
2659                         break;
2660                 case sdma_event_e80_hw_freeze:
2661                         break;
2662                 case sdma_event_e81_hw_frozen:
2663                         break;
2664                 case sdma_event_e82_hw_unfreeze:
2665                         break;
2666                 case sdma_event_e85_link_down:
2667                         break;
2668                 case sdma_event_e90_sw_halted:
2669                         break;
2670                 }
2671                 break;
2672
2673         case sdma_state_s15_hw_start_up_clean_wait:
2674                 switch (event) {
2675                 case sdma_event_e00_go_hw_down:
2676                         sdma_set_state(sde, sdma_state_s00_hw_down);
2677                         sdma_sw_tear_down(sde);
2678                         break;
2679                 case sdma_event_e10_go_hw_start:
2680                         break;
2681                 case sdma_event_e15_hw_halt_done:
2682                         break;
2683                 case sdma_event_e25_hw_clean_up_done:
2684                         sdma_hw_start_up(sde);
2685                         sdma_set_state(sde, ss->go_s99_running ?
2686                                        sdma_state_s99_running :
2687                                        sdma_state_s20_idle);
2688                         break;
2689                 case sdma_event_e30_go_running:
2690                         ss->go_s99_running = 1;
2691                         break;
2692                 case sdma_event_e40_sw_cleaned:
2693                         break;
2694                 case sdma_event_e50_hw_cleaned:
2695                         break;
2696                 case sdma_event_e60_hw_halted:
2697                         break;
2698                 case sdma_event_e70_go_idle:
2699                         ss->go_s99_running = 0;
2700                         break;
2701                 case sdma_event_e80_hw_freeze:
2702                         break;
2703                 case sdma_event_e81_hw_frozen:
2704                         break;
2705                 case sdma_event_e82_hw_unfreeze:
2706                         break;
2707                 case sdma_event_e85_link_down:
2708                         break;
2709                 case sdma_event_e90_sw_halted:
2710                         break;
2711                 }
2712                 break;
2713
2714         case sdma_state_s20_idle:
2715                 switch (event) {
2716                 case sdma_event_e00_go_hw_down:
2717                         sdma_set_state(sde, sdma_state_s00_hw_down);
2718                         sdma_sw_tear_down(sde);
2719                         break;
2720                 case sdma_event_e10_go_hw_start:
2721                         break;
2722                 case sdma_event_e15_hw_halt_done:
2723                         break;
2724                 case sdma_event_e25_hw_clean_up_done:
2725                         break;
2726                 case sdma_event_e30_go_running:
2727                         sdma_set_state(sde, sdma_state_s99_running);
2728                         ss->go_s99_running = 1;
2729                         break;
2730                 case sdma_event_e40_sw_cleaned:
2731                         break;
2732                 case sdma_event_e50_hw_cleaned:
2733                         break;
2734                 case sdma_event_e60_hw_halted:
2735                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2736                         schedule_work(&sde->err_halt_worker);
2737                         break;
2738                 case sdma_event_e70_go_idle:
2739                         break;
2740                 case sdma_event_e85_link_down:
2741                         /* fall through */
2742                 case sdma_event_e80_hw_freeze:
2743                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2744                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2745                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2746                         break;
2747                 case sdma_event_e81_hw_frozen:
2748                         break;
2749                 case sdma_event_e82_hw_unfreeze:
2750                         break;
2751                 case sdma_event_e90_sw_halted:
2752                         break;
2753                 }
2754                 break;
2755
2756         case sdma_state_s30_sw_clean_up_wait:
2757                 switch (event) {
2758                 case sdma_event_e00_go_hw_down:
2759                         sdma_set_state(sde, sdma_state_s00_hw_down);
2760                         break;
2761                 case sdma_event_e10_go_hw_start:
2762                         break;
2763                 case sdma_event_e15_hw_halt_done:
2764                         break;
2765                 case sdma_event_e25_hw_clean_up_done:
2766                         break;
2767                 case sdma_event_e30_go_running:
2768                         ss->go_s99_running = 1;
2769                         break;
2770                 case sdma_event_e40_sw_cleaned:
2771                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2772                         sdma_start_hw_clean_up(sde);
2773                         break;
2774                 case sdma_event_e50_hw_cleaned:
2775                         break;
2776                 case sdma_event_e60_hw_halted:
2777                         break;
2778                 case sdma_event_e70_go_idle:
2779                         ss->go_s99_running = 0;
2780                         break;
2781                 case sdma_event_e80_hw_freeze:
2782                         break;
2783                 case sdma_event_e81_hw_frozen:
2784                         break;
2785                 case sdma_event_e82_hw_unfreeze:
2786                         break;
2787                 case sdma_event_e85_link_down:
2788                         ss->go_s99_running = 0;
2789                         break;
2790                 case sdma_event_e90_sw_halted:
2791                         break;
2792                 }
2793                 break;
2794
2795         case sdma_state_s40_hw_clean_up_wait:
2796                 switch (event) {
2797                 case sdma_event_e00_go_hw_down:
2798                         sdma_set_state(sde, sdma_state_s00_hw_down);
2799                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2800                         break;
2801                 case sdma_event_e10_go_hw_start:
2802                         break;
2803                 case sdma_event_e15_hw_halt_done:
2804                         break;
2805                 case sdma_event_e25_hw_clean_up_done:
2806                         sdma_hw_start_up(sde);
2807                         sdma_set_state(sde, ss->go_s99_running ?
2808                                        sdma_state_s99_running :
2809                                        sdma_state_s20_idle);
2810                         break;
2811                 case sdma_event_e30_go_running:
2812                         ss->go_s99_running = 1;
2813                         break;
2814                 case sdma_event_e40_sw_cleaned:
2815                         break;
2816                 case sdma_event_e50_hw_cleaned:
2817                         break;
2818                 case sdma_event_e60_hw_halted:
2819                         break;
2820                 case sdma_event_e70_go_idle:
2821                         ss->go_s99_running = 0;
2822                         break;
2823                 case sdma_event_e80_hw_freeze:
2824                         break;
2825                 case sdma_event_e81_hw_frozen:
2826                         break;
2827                 case sdma_event_e82_hw_unfreeze:
2828                         break;
2829                 case sdma_event_e85_link_down:
2830                         ss->go_s99_running = 0;
2831                         break;
2832                 case sdma_event_e90_sw_halted:
2833                         break;
2834                 }
2835                 break;
2836
2837         case sdma_state_s50_hw_halt_wait:
2838                 switch (event) {
2839                 case sdma_event_e00_go_hw_down:
2840                         sdma_set_state(sde, sdma_state_s00_hw_down);
2841                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2842                         break;
2843                 case sdma_event_e10_go_hw_start:
2844                         break;
2845                 case sdma_event_e15_hw_halt_done:
2846                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2847                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2848                         break;
2849                 case sdma_event_e25_hw_clean_up_done:
2850                         break;
2851                 case sdma_event_e30_go_running:
2852                         ss->go_s99_running = 1;
2853                         break;
2854                 case sdma_event_e40_sw_cleaned:
2855                         break;
2856                 case sdma_event_e50_hw_cleaned:
2857                         break;
2858                 case sdma_event_e60_hw_halted:
2859                         schedule_work(&sde->err_halt_worker);
2860                         break;
2861                 case sdma_event_e70_go_idle:
2862                         ss->go_s99_running = 0;
2863                         break;
2864                 case sdma_event_e80_hw_freeze:
2865                         break;
2866                 case sdma_event_e81_hw_frozen:
2867                         break;
2868                 case sdma_event_e82_hw_unfreeze:
2869                         break;
2870                 case sdma_event_e85_link_down:
2871                         ss->go_s99_running = 0;
2872                         break;
2873                 case sdma_event_e90_sw_halted:
2874                         break;
2875                 }
2876                 break;
2877
2878         case sdma_state_s60_idle_halt_wait:
2879                 switch (event) {
2880                 case sdma_event_e00_go_hw_down:
2881                         sdma_set_state(sde, sdma_state_s00_hw_down);
2882                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2883                         break;
2884                 case sdma_event_e10_go_hw_start:
2885                         break;
2886                 case sdma_event_e15_hw_halt_done:
2887                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2888                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2889                         break;
2890                 case sdma_event_e25_hw_clean_up_done:
2891                         break;
2892                 case sdma_event_e30_go_running:
2893                         ss->go_s99_running = 1;
2894                         break;
2895                 case sdma_event_e40_sw_cleaned:
2896                         break;
2897                 case sdma_event_e50_hw_cleaned:
2898                         break;
2899                 case sdma_event_e60_hw_halted:
2900                         schedule_work(&sde->err_halt_worker);
2901                         break;
2902                 case sdma_event_e70_go_idle:
2903                         ss->go_s99_running = 0;
2904                         break;
2905                 case sdma_event_e80_hw_freeze:
2906                         break;
2907                 case sdma_event_e81_hw_frozen:
2908                         break;
2909                 case sdma_event_e82_hw_unfreeze:
2910                         break;
2911                 case sdma_event_e85_link_down:
2912                         break;
2913                 case sdma_event_e90_sw_halted:
2914                         break;
2915                 }
2916                 break;
2917
2918         case sdma_state_s80_hw_freeze:
2919                 switch (event) {
2920                 case sdma_event_e00_go_hw_down:
2921                         sdma_set_state(sde, sdma_state_s00_hw_down);
2922                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2923                         break;
2924                 case sdma_event_e10_go_hw_start:
2925                         break;
2926                 case sdma_event_e15_hw_halt_done:
2927                         break;
2928                 case sdma_event_e25_hw_clean_up_done:
2929                         break;
2930                 case sdma_event_e30_go_running:
2931                         ss->go_s99_running = 1;
2932                         break;
2933                 case sdma_event_e40_sw_cleaned:
2934                         break;
2935                 case sdma_event_e50_hw_cleaned:
2936                         break;
2937                 case sdma_event_e60_hw_halted:
2938                         break;
2939                 case sdma_event_e70_go_idle:
2940                         ss->go_s99_running = 0;
2941                         break;
2942                 case sdma_event_e80_hw_freeze:
2943                         break;
2944                 case sdma_event_e81_hw_frozen:
2945                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2946                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2947                         break;
2948                 case sdma_event_e82_hw_unfreeze:
2949                         break;
2950                 case sdma_event_e85_link_down:
2951                         break;
2952                 case sdma_event_e90_sw_halted:
2953                         break;
2954                 }
2955                 break;
2956
2957         case sdma_state_s82_freeze_sw_clean:
2958                 switch (event) {
2959                 case sdma_event_e00_go_hw_down:
2960                         sdma_set_state(sde, sdma_state_s00_hw_down);
2961                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2962                         break;
2963                 case sdma_event_e10_go_hw_start:
2964                         break;
2965                 case sdma_event_e15_hw_halt_done:
2966                         break;
2967                 case sdma_event_e25_hw_clean_up_done:
2968                         break;
2969                 case sdma_event_e30_go_running:
2970                         ss->go_s99_running = 1;
2971                         break;
2972                 case sdma_event_e40_sw_cleaned:
2973                         /* notify caller this engine is done cleaning */
2974                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2975                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2976                         break;
2977                 case sdma_event_e50_hw_cleaned:
2978                         break;
2979                 case sdma_event_e60_hw_halted:
2980                         break;
2981                 case sdma_event_e70_go_idle:
2982                         ss->go_s99_running = 0;
2983                         break;
2984                 case sdma_event_e80_hw_freeze:
2985                         break;
2986                 case sdma_event_e81_hw_frozen:
2987                         break;
2988                 case sdma_event_e82_hw_unfreeze:
2989                         sdma_hw_start_up(sde);
2990                         sdma_set_state(sde, ss->go_s99_running ?
2991                                        sdma_state_s99_running :
2992                                        sdma_state_s20_idle);
2993                         break;
2994                 case sdma_event_e85_link_down:
2995                         break;
2996                 case sdma_event_e90_sw_halted:
2997                         break;
2998                 }
2999                 break;
3000
3001         case sdma_state_s99_running:
3002                 switch (event) {
3003                 case sdma_event_e00_go_hw_down:
3004                         sdma_set_state(sde, sdma_state_s00_hw_down);
3005                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
3006                         break;
3007                 case sdma_event_e10_go_hw_start:
3008                         break;
3009                 case sdma_event_e15_hw_halt_done:
3010                         break;
3011                 case sdma_event_e25_hw_clean_up_done:
3012                         break;
3013                 case sdma_event_e30_go_running:
3014                         break;
3015                 case sdma_event_e40_sw_cleaned:
3016                         break;
3017                 case sdma_event_e50_hw_cleaned:
3018                         break;
3019                 case sdma_event_e60_hw_halted:
3020                         need_progress = 1;
3021                         sdma_err_progress_check_schedule(sde);
3022                 case sdma_event_e90_sw_halted:
3023                         /*
3024                         * SW initiated halt does not perform engines
3025                         * progress check
3026                         */
3027                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3028                         schedule_work(&sde->err_halt_worker);
3029                         break;
3030                 case sdma_event_e70_go_idle:
3031                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3032                         break;
3033                 case sdma_event_e85_link_down:
3034                         ss->go_s99_running = 0;
3035                         /* fall through */
3036                 case sdma_event_e80_hw_freeze:
3037                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3038                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3039                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3040                         break;
3041                 case sdma_event_e81_hw_frozen:
3042                         break;
3043                 case sdma_event_e82_hw_unfreeze:
3044                         break;
3045                 }
3046                 break;
3047         }
3048
3049         ss->last_event = event;
3050         if (need_progress)
3051                 sdma_make_progress(sde, 0);
3052 }
3053
3054 /*
3055  * _extend_sdma_tx_descs() - helper to extend txreq
3056  *
3057  * This is called once the initial nominal allocation
3058  * of descriptors in the sdma_txreq is exhausted.
3059  *
3060  * The code will bump the allocation up to the max
3061  * of MAX_DESC (64) descriptors. There doesn't seem
3062  * much point in an interim step. The last descriptor
3063  * is reserved for coalesce buffer in order to support
3064  * cases where input packet has >MAX_DESC iovecs.
3065  *
3066  */
3067 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3068 {
3069         int i;
3070         struct sdma_desc *descp;
3071
3072         /* Handle last descriptor */
3073         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3074                 /* if tlen is 0, it is for padding, release last descriptor */
3075                 if (!tx->tlen) {
3076                         tx->desc_limit = MAX_DESC;
3077                 } else if (!tx->coalesce_buf) {
3078                         /* allocate coalesce buffer with space for padding */
3079                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3080                                                    GFP_ATOMIC);
3081                         if (!tx->coalesce_buf)
3082                                 goto enomem;
3083                         tx->coalesce_idx = 0;
3084                 }
3085                 return 0;
3086         }
3087
3088         if (unlikely(tx->num_desc == MAX_DESC))
3089                 goto enomem;
3090
3091         descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3092         if (!descp)
3093                 goto enomem;
3094         tx->descp = descp;
3095
3096         /* reserve last descriptor for coalescing */
3097         tx->desc_limit = MAX_DESC - 1;
3098         /* copy ones already built */
3099         for (i = 0; i < tx->num_desc; i++)
3100                 tx->descp[i] = tx->descs[i];
3101         return 0;
3102 enomem:
3103         __sdma_txclean(dd, tx);
3104         return -ENOMEM;
3105 }
3106
3107 /*
3108  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3109  *
3110  * This is called once the initial nominal allocation of descriptors
3111  * in the sdma_txreq is exhausted.
3112  *
3113  * This function calls _extend_sdma_tx_descs to extend or allocate
3114  * coalesce buffer. If there is a allocated coalesce buffer, it will
3115  * copy the input packet data into the coalesce buffer. It also adds
3116  * coalesce buffer descriptor once when whole packet is received.
3117  *
3118  * Return:
3119  * <0 - error
3120  * 0 - coalescing, don't populate descriptor
3121  * 1 - continue with populating descriptor
3122  */
3123 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3124                            int type, void *kvaddr, struct page *page,
3125                            unsigned long offset, u16 len)
3126 {
3127         int pad_len, rval;
3128         dma_addr_t addr;
3129
3130         rval = _extend_sdma_tx_descs(dd, tx);
3131         if (rval) {
3132                 __sdma_txclean(dd, tx);
3133                 return rval;
3134         }
3135
3136         /* If coalesce buffer is allocated, copy data into it */
3137         if (tx->coalesce_buf) {
3138                 if (type == SDMA_MAP_NONE) {
3139                         __sdma_txclean(dd, tx);
3140                         return -EINVAL;
3141                 }
3142
3143                 if (type == SDMA_MAP_PAGE) {
3144                         kvaddr = kmap(page);
3145                         kvaddr += offset;
3146                 } else if (WARN_ON(!kvaddr)) {
3147                         __sdma_txclean(dd, tx);
3148                         return -EINVAL;
3149                 }
3150
3151                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3152                 tx->coalesce_idx += len;
3153                 if (type == SDMA_MAP_PAGE)
3154                         kunmap(page);
3155
3156                 /* If there is more data, return */
3157                 if (tx->tlen - tx->coalesce_idx)
3158                         return 0;
3159
3160                 /* Whole packet is received; add any padding */
3161                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3162                 if (pad_len) {
3163                         pad_len = sizeof(u32) - pad_len;
3164                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3165                         /* padding is taken care of for coalescing case */
3166                         tx->packet_len += pad_len;
3167                         tx->tlen += pad_len;
3168                 }
3169
3170                 /* dma map the coalesce buffer */
3171                 addr = dma_map_single(&dd->pcidev->dev,
3172                                       tx->coalesce_buf,
3173                                       tx->tlen,
3174                                       DMA_TO_DEVICE);
3175
3176                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3177                         __sdma_txclean(dd, tx);
3178                         return -ENOSPC;
3179                 }
3180
3181                 /* Add descriptor for coalesce buffer */
3182                 tx->desc_limit = MAX_DESC;
3183                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3184                                          addr, tx->tlen);
3185         }
3186
3187         return 1;
3188 }
3189
3190 /* Update sdes when the lmc changes */
3191 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3192 {
3193         struct sdma_engine *sde;
3194         int i;
3195         u64 sreg;
3196
3197         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3198                 SD(CHECK_SLID_MASK_SHIFT)) |
3199                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3200                 SD(CHECK_SLID_VALUE_SHIFT));
3201
3202         for (i = 0; i < dd->num_sdma; i++) {
3203                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3204                           i, (u32)sreg);
3205                 sde = &dd->per_sdma[i];
3206                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3207         }
3208 }
3209
3210 /* tx not dword sized - pad */
3211 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3212 {
3213         int rval = 0;
3214
3215         tx->num_desc++;
3216         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3217                 rval = _extend_sdma_tx_descs(dd, tx);
3218                 if (rval) {
3219                         __sdma_txclean(dd, tx);
3220                         return rval;
3221                 }
3222         }
3223         /* finish the one just added */
3224         make_tx_sdma_desc(
3225                 tx,
3226                 SDMA_MAP_NONE,
3227                 dd->sdma_pad_phys,
3228                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3229         _sdma_close_tx(dd, tx);
3230         return rval;
3231 }
3232
3233 /*
3234  * Add ahg to the sdma_txreq
3235  *
3236  * The logic will consume up to 3
3237  * descriptors at the beginning of
3238  * sdma_txreq.
3239  */
3240 void _sdma_txreq_ahgadd(
3241         struct sdma_txreq *tx,
3242         u8 num_ahg,
3243         u8 ahg_entry,
3244         u32 *ahg,
3245         u8 ahg_hlen)
3246 {
3247         u32 i, shift = 0, desc = 0;
3248         u8 mode;
3249
3250         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3251         /* compute mode */
3252         if (num_ahg == 1)
3253                 mode = SDMA_AHG_APPLY_UPDATE1;
3254         else if (num_ahg <= 5)
3255                 mode = SDMA_AHG_APPLY_UPDATE2;
3256         else
3257                 mode = SDMA_AHG_APPLY_UPDATE3;
3258         tx->num_desc++;
3259         /* initialize to consumed descriptors to zero */
3260         switch (mode) {
3261         case SDMA_AHG_APPLY_UPDATE3:
3262                 tx->num_desc++;
3263                 tx->descs[2].qw[0] = 0;
3264                 tx->descs[2].qw[1] = 0;
3265                 /* FALLTHROUGH */
3266         case SDMA_AHG_APPLY_UPDATE2:
3267                 tx->num_desc++;
3268                 tx->descs[1].qw[0] = 0;
3269                 tx->descs[1].qw[1] = 0;
3270                 break;
3271         }
3272         ahg_hlen >>= 2;
3273         tx->descs[0].qw[1] |=
3274                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3275                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3276                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3277                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3278                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3279                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3280                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3281                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3282         for (i = 0; i < (num_ahg - 1); i++) {
3283                 if (!shift && !(i & 2))
3284                         desc++;
3285                 tx->descs[desc].qw[!!(i & 2)] |=
3286                         (((u64)ahg[i + 1])
3287                                 << shift);
3288                 shift = (shift + 32) & 63;
3289         }
3290 }
3291
3292 /**
3293  * sdma_ahg_alloc - allocate an AHG entry
3294  * @sde: engine to allocate from
3295  *
3296  * Return:
3297  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3298  * -ENOSPC if an entry is not available
3299  */
3300 int sdma_ahg_alloc(struct sdma_engine *sde)
3301 {
3302         int nr;
3303         int oldbit;
3304
3305         if (!sde) {
3306                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3307                 return -EINVAL;
3308         }
3309         while (1) {
3310                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
3311                 if (nr > 31) {
3312                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3313                         return -ENOSPC;
3314                 }
3315                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3316                 if (!oldbit)
3317                         break;
3318                 cpu_relax();
3319         }
3320         trace_hfi1_ahg_allocate(sde, nr);
3321         return nr;
3322 }
3323
3324 /**
3325  * sdma_ahg_free - free an AHG entry
3326  * @sde: engine to return AHG entry
3327  * @ahg_index: index to free
3328  *
3329  * This routine frees the indicate AHG entry.
3330  */
3331 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3332 {
3333         if (!sde)
3334                 return;
3335         trace_hfi1_ahg_deallocate(sde, ahg_index);
3336         if (ahg_index < 0 || ahg_index > 31)
3337                 return;
3338         clear_bit(ahg_index, &sde->ahg_bits);
3339 }
3340
3341 /*
3342  * SPC freeze handling for SDMA engines.  Called when the driver knows
3343  * the SPC is going into a freeze but before the freeze is fully
3344  * settled.  Generally an error interrupt.
3345  *
3346  * This event will pull the engine out of running so no more entries can be
3347  * added to the engine's queue.
3348  */
3349 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3350 {
3351         int i;
3352         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3353                                              sdma_event_e80_hw_freeze;
3354
3355         /* set up the wait but do not wait here */
3356         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3357
3358         /* tell all engines to stop running and wait */
3359         for (i = 0; i < dd->num_sdma; i++)
3360                 sdma_process_event(&dd->per_sdma[i], event);
3361
3362         /* sdma_freeze() will wait for all engines to have stopped */
3363 }
3364
3365 /*
3366  * SPC freeze handling for SDMA engines.  Called when the driver knows
3367  * the SPC is fully frozen.
3368  */
3369 void sdma_freeze(struct hfi1_devdata *dd)
3370 {
3371         int i;
3372         int ret;
3373
3374         /*
3375          * Make sure all engines have moved out of the running state before
3376          * continuing.
3377          */
3378         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3379                                        atomic_read(&dd->sdma_unfreeze_count) <=
3380                                        0);
3381         /* interrupted or count is negative, then unloading - just exit */
3382         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3383                 return;
3384
3385         /* set up the count for the next wait */
3386         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3387
3388         /* tell all engines that the SPC is frozen, they can start cleaning */
3389         for (i = 0; i < dd->num_sdma; i++)
3390                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3391
3392         /*
3393          * Wait for everyone to finish software clean before exiting.  The
3394          * software clean will read engine CSRs, so must be completed before
3395          * the next step, which will clear the engine CSRs.
3396          */
3397         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3398                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3399         /* no need to check results - done no matter what */
3400 }
3401
3402 /*
3403  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3404  *
3405  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3406  * that is left is a software clean.  We could do it after the SPC is fully
3407  * frozen, but then we'd have to add another state to wait for the unfreeze.
3408  * Instead, just defer the software clean until the unfreeze step.
3409  */
3410 void sdma_unfreeze(struct hfi1_devdata *dd)
3411 {
3412         int i;
3413
3414         /* tell all engines start freeze clean up */
3415         for (i = 0; i < dd->num_sdma; i++)
3416                 sdma_process_event(&dd->per_sdma[i],
3417                                    sdma_event_e82_hw_unfreeze);
3418 }
3419
3420 /**
3421  * _sdma_engine_progress_schedule() - schedule progress on engine
3422  * @sde: sdma_engine to schedule progress
3423  *
3424  */
3425 void _sdma_engine_progress_schedule(
3426         struct sdma_engine *sde)
3427 {
3428         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3429         /* assume we have selected a good cpu */
3430         write_csr(sde->dd,
3431                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3432                   sde->progress_mask);
3433 }