GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54         struct list_head list;
55         unsigned base;
56         u8 size;
57         u8 used;
58         u8 map;
59 };
60
61 struct tid_rb_node {
62         struct mmu_rb_node mmu;
63         unsigned long phys;
64         struct tid_group *grp;
65         u32 rcventry;
66         dma_addr_t dma_addr;
67         bool freed;
68         unsigned npages;
69         struct page *pages[0];
70 };
71
72 struct tid_pageset {
73         u16 idx;
74         u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len)                                     \
80         (1 + (((((unsigned long)(vaddr) +                              \
81                  (unsigned long)(len) - 1) & PAGE_MASK) -              \
82                ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85                             struct hfi1_filedata *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88                               struct tid_group *, struct page **, unsigned);
89 static int tid_rb_insert(void *, struct mmu_rb_node *);
90 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
91                                     struct tid_rb_node *tnode);
92 static void tid_rb_remove(void *, struct mmu_rb_node *);
93 static int tid_rb_invalidate(void *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95                             struct tid_pageset *, unsigned, u16, struct page **,
96                             u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
99
100 static struct mmu_rb_ops tid_rb_ops = {
101         .insert = tid_rb_insert,
102         .remove = tid_rb_remove,
103         .invalidate = tid_rb_invalidate
104 };
105
106 static inline u32 rcventry2tidinfo(u32 rcventry)
107 {
108         u32 pair = rcventry & ~0x1;
109
110         return EXP_TID_SET(IDX, pair >> 1) |
111                 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
112 }
113
114 static inline void exp_tid_group_init(struct exp_tid_set *set)
115 {
116         INIT_LIST_HEAD(&set->list);
117         set->count = 0;
118 }
119
120 static inline void tid_group_remove(struct tid_group *grp,
121                                     struct exp_tid_set *set)
122 {
123         list_del_init(&grp->list);
124         set->count--;
125 }
126
127 static inline void tid_group_add_tail(struct tid_group *grp,
128                                       struct exp_tid_set *set)
129 {
130         list_add_tail(&grp->list, &set->list);
131         set->count++;
132 }
133
134 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
135 {
136         struct tid_group *grp =
137                 list_first_entry(&set->list, struct tid_group, list);
138         list_del_init(&grp->list);
139         set->count--;
140         return grp;
141 }
142
143 static inline void tid_group_move(struct tid_group *group,
144                                   struct exp_tid_set *s1,
145                                   struct exp_tid_set *s2)
146 {
147         tid_group_remove(group, s1);
148         tid_group_add_tail(group, s2);
149 }
150
151 /*
152  * Initialize context and file private data needed for Expected
153  * receive caching. This needs to be done after the context has
154  * been configured with the eager/expected RcvEntry counts.
155  */
156 int hfi1_user_exp_rcv_init(struct file *fp)
157 {
158         struct hfi1_filedata *fd = fp->private_data;
159         struct hfi1_ctxtdata *uctxt = fd->uctxt;
160         struct hfi1_devdata *dd = uctxt->dd;
161         unsigned tidbase;
162         int i, ret = 0;
163
164         spin_lock_init(&fd->tid_lock);
165         spin_lock_init(&fd->invalid_lock);
166
167         if (!uctxt->subctxt_cnt || !fd->subctxt) {
168                 exp_tid_group_init(&uctxt->tid_group_list);
169                 exp_tid_group_init(&uctxt->tid_used_list);
170                 exp_tid_group_init(&uctxt->tid_full_list);
171
172                 tidbase = uctxt->expected_base;
173                 for (i = 0; i < uctxt->expected_count /
174                              dd->rcv_entries.group_size; i++) {
175                         struct tid_group *grp;
176
177                         grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178                         if (!grp) {
179                                 /*
180                                  * If we fail here, the groups already
181                                  * allocated will be freed by the close
182                                  * call.
183                                  */
184                                 ret = -ENOMEM;
185                                 goto done;
186                         }
187                         grp->size = dd->rcv_entries.group_size;
188                         grp->base = tidbase;
189                         tid_group_add_tail(grp, &uctxt->tid_group_list);
190                         tidbase += dd->rcv_entries.group_size;
191                 }
192         }
193
194         fd->entry_to_rb = kcalloc(uctxt->expected_count,
195                                      sizeof(struct rb_node *),
196                                      GFP_KERNEL);
197         if (!fd->entry_to_rb)
198                 return -ENOMEM;
199
200         if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
201                 fd->invalid_tid_idx = 0;
202                 fd->invalid_tids = kzalloc(uctxt->expected_count *
203                                            sizeof(u32), GFP_KERNEL);
204                 if (!fd->invalid_tids) {
205                         ret = -ENOMEM;
206                         goto done;
207                 }
208
209                 /*
210                  * Register MMU notifier callbacks. If the registration
211                  * fails, continue without TID caching for this context.
212                  */
213                 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
214                                            dd->pport->hfi1_wq,
215                                            &fd->handler);
216                 if (ret) {
217                         dd_dev_info(dd,
218                                     "Failed MMU notifier registration %d\n",
219                                     ret);
220                         ret = 0;
221                 }
222         }
223
224         /*
225          * PSM does not have a good way to separate, count, and
226          * effectively enforce a limit on RcvArray entries used by
227          * subctxts (when context sharing is used) when TID caching
228          * is enabled. To help with that, we calculate a per-process
229          * RcvArray entry share and enforce that.
230          * If TID caching is not in use, PSM deals with usage on its
231          * own. In that case, we allow any subctxt to take all of the
232          * entries.
233          *
234          * Make sure that we set the tid counts only after successful
235          * init.
236          */
237         spin_lock(&fd->tid_lock);
238         if (uctxt->subctxt_cnt && fd->handler) {
239                 u16 remainder;
240
241                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243                 if (remainder && fd->subctxt < remainder)
244                         fd->tid_limit++;
245         } else {
246                 fd->tid_limit = uctxt->expected_count;
247         }
248         spin_unlock(&fd->tid_lock);
249 done:
250         return ret;
251 }
252
253 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
254 {
255         struct hfi1_ctxtdata *uctxt = fd->uctxt;
256         struct tid_group *grp, *gptr;
257
258         if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
259                 return 0;
260         /*
261          * The notifier would have been removed when the process'es mm
262          * was freed.
263          */
264         if (fd->handler)
265                 hfi1_mmu_rb_unregister(fd->handler);
266
267         kfree(fd->invalid_tids);
268
269         if (!uctxt->cnt) {
270                 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
271                         unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
272                 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
273                         unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
274                 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
275                                          list) {
276                         list_del_init(&grp->list);
277                         kfree(grp);
278                 }
279                 hfi1_clear_tids(uctxt);
280         }
281
282         kfree(fd->entry_to_rb);
283         return 0;
284 }
285
286 /*
287  * Write an "empty" RcvArray entry.
288  * This function exists so the TID registaration code can use it
289  * to write to unused/unneeded entries and still take advantage
290  * of the WC performance improvements. The HFI will ignore this
291  * write to the RcvArray entry.
292  */
293 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
294 {
295         /*
296          * Doing the WC fill writes only makes sense if the device is
297          * present and the RcvArray has been mapped as WC memory.
298          */
299         if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
300                 writeq(0, dd->rcvarray_wc + (index * 8));
301 }
302
303 /*
304  * RcvArray entry allocation for Expected Receives is done by the
305  * following algorithm:
306  *
307  * The context keeps 3 lists of groups of RcvArray entries:
308  *   1. List of empty groups - tid_group_list
309  *      This list is created during user context creation and
310  *      contains elements which describe sets (of 8) of empty
311  *      RcvArray entries.
312  *   2. List of partially used groups - tid_used_list
313  *      This list contains sets of RcvArray entries which are
314  *      not completely used up. Another mapping request could
315  *      use some of all of the remaining entries.
316  *   3. List of full groups - tid_full_list
317  *      This is the list where sets that are completely used
318  *      up go.
319  *
320  * An attempt to optimize the usage of RcvArray entries is
321  * made by finding all sets of physically contiguous pages in a
322  * user's buffer.
323  * These physically contiguous sets are further split into
324  * sizes supported by the receive engine of the HFI. The
325  * resulting sets of pages are stored in struct tid_pageset,
326  * which describes the sets as:
327  *    * .count - number of pages in this set
328  *    * .idx - starting index into struct page ** array
329  *                    of this set
330  *
331  * From this point on, the algorithm deals with the page sets
332  * described above. The number of pagesets is divided by the
333  * RcvArray group size to produce the number of full groups
334  * needed.
335  *
336  * Groups from the 3 lists are manipulated using the following
337  * rules:
338  *   1. For each set of 8 pagesets, a complete group from
339  *      tid_group_list is taken, programmed, and moved to
340  *      the tid_full_list list.
341  *   2. For all remaining pagesets:
342  *      2.1 If the tid_used_list is empty and the tid_group_list
343  *          is empty, stop processing pageset and return only
344  *          what has been programmed up to this point.
345  *      2.2 If the tid_used_list is empty and the tid_group_list
346  *          is not empty, move a group from tid_group_list to
347  *          tid_used_list.
348  *      2.3 For each group is tid_used_group, program as much as
349  *          can fit into the group. If the group becomes fully
350  *          used, move it to tid_full_list.
351  */
352 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
353 {
354         int ret = 0, need_group = 0, pinned;
355         struct hfi1_filedata *fd = fp->private_data;
356         struct hfi1_ctxtdata *uctxt = fd->uctxt;
357         struct hfi1_devdata *dd = uctxt->dd;
358         unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
359                 tididx = 0, mapped, mapped_pages = 0;
360         unsigned long vaddr = tinfo->vaddr;
361         struct page **pages = NULL;
362         u32 *tidlist = NULL;
363         struct tid_pageset *pagesets = NULL;
364
365         /* Get the number of pages the user buffer spans */
366         npages = num_user_pages(vaddr, tinfo->length);
367         if (!npages)
368                 return -EINVAL;
369
370         if (npages > uctxt->expected_count) {
371                 dd_dev_err(dd, "Expected buffer too big\n");
372                 return -EINVAL;
373         }
374
375         /* Verify that access is OK for the user buffer */
376         if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
377                        npages * PAGE_SIZE)) {
378                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
379                            (void *)vaddr, npages);
380                 return -EFAULT;
381         }
382
383         pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
384                            GFP_KERNEL);
385         if (!pagesets)
386                 return -ENOMEM;
387
388         /* Allocate the array of struct page pointers needed for pinning */
389         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
390         if (!pages) {
391                 ret = -ENOMEM;
392                 goto bail;
393         }
394
395         /*
396          * Pin all the pages of the user buffer. If we can't pin all the
397          * pages, accept the amount pinned so far and program only that.
398          * User space knows how to deal with partially programmed buffers.
399          */
400         if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
401                 ret = -ENOMEM;
402                 goto bail;
403         }
404
405         pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
406         if (pinned <= 0) {
407                 ret = pinned;
408                 goto bail;
409         }
410         fd->tid_n_pinned += npages;
411
412         /* Find sets of physically contiguous pages */
413         npagesets = find_phys_blocks(pages, pinned, pagesets);
414
415         /*
416          * We don't need to access this under a lock since tid_used is per
417          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
418          * and hfi1_user_exp_rcv_setup() at the same time.
419          */
420         spin_lock(&fd->tid_lock);
421         if (fd->tid_used + npagesets > fd->tid_limit)
422                 pageset_count = fd->tid_limit - fd->tid_used;
423         else
424                 pageset_count = npagesets;
425         spin_unlock(&fd->tid_lock);
426
427         if (!pageset_count)
428                 goto bail;
429
430         ngroups = pageset_count / dd->rcv_entries.group_size;
431         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
432         if (!tidlist) {
433                 ret = -ENOMEM;
434                 goto nomem;
435         }
436
437         tididx = 0;
438
439         /*
440          * From this point on, we are going to be using shared (between master
441          * and subcontexts) context resources. We need to take the lock.
442          */
443         mutex_lock(&uctxt->exp_lock);
444         /*
445          * The first step is to program the RcvArray entries which are complete
446          * groups.
447          */
448         while (ngroups && uctxt->tid_group_list.count) {
449                 struct tid_group *grp =
450                         tid_group_pop(&uctxt->tid_group_list);
451
452                 ret = program_rcvarray(fp, vaddr, grp, pagesets,
453                                        pageidx, dd->rcv_entries.group_size,
454                                        pages, tidlist, &tididx, &mapped);
455                 /*
456                  * If there was a failure to program the RcvArray
457                  * entries for the entire group, reset the grp fields
458                  * and add the grp back to the free group list.
459                  */
460                 if (ret <= 0) {
461                         tid_group_add_tail(grp, &uctxt->tid_group_list);
462                         hfi1_cdbg(TID,
463                                   "Failed to program RcvArray group %d", ret);
464                         goto unlock;
465                 }
466
467                 tid_group_add_tail(grp, &uctxt->tid_full_list);
468                 ngroups--;
469                 pageidx += ret;
470                 mapped_pages += mapped;
471         }
472
473         while (pageidx < pageset_count) {
474                 struct tid_group *grp, *ptr;
475                 /*
476                  * If we don't have any partially used tid groups, check
477                  * if we have empty groups. If so, take one from there and
478                  * put in the partially used list.
479                  */
480                 if (!uctxt->tid_used_list.count || need_group) {
481                         if (!uctxt->tid_group_list.count)
482                                 goto unlock;
483
484                         grp = tid_group_pop(&uctxt->tid_group_list);
485                         tid_group_add_tail(grp, &uctxt->tid_used_list);
486                         need_group = 0;
487                 }
488                 /*
489                  * There is an optimization opportunity here - instead of
490                  * fitting as many page sets as we can, check for a group
491                  * later on in the list that could fit all of them.
492                  */
493                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
494                                          list) {
495                         unsigned use = min_t(unsigned, pageset_count - pageidx,
496                                              grp->size - grp->used);
497
498                         ret = program_rcvarray(fp, vaddr, grp, pagesets,
499                                                pageidx, use, pages, tidlist,
500                                                &tididx, &mapped);
501                         if (ret < 0) {
502                                 hfi1_cdbg(TID,
503                                           "Failed to program RcvArray entries %d",
504                                           ret);
505                                 ret = -EFAULT;
506                                 goto unlock;
507                         } else if (ret > 0) {
508                                 if (grp->used == grp->size)
509                                         tid_group_move(grp,
510                                                        &uctxt->tid_used_list,
511                                                        &uctxt->tid_full_list);
512                                 pageidx += ret;
513                                 mapped_pages += mapped;
514                                 need_group = 0;
515                                 /* Check if we are done so we break out early */
516                                 if (pageidx >= pageset_count)
517                                         break;
518                         } else if (WARN_ON(ret == 0)) {
519                                 /*
520                                  * If ret is 0, we did not program any entries
521                                  * into this group, which can only happen if
522                                  * we've screwed up the accounting somewhere.
523                                  * Warn and try to continue.
524                                  */
525                                 need_group = 1;
526                         }
527                 }
528         }
529 unlock:
530         mutex_unlock(&uctxt->exp_lock);
531 nomem:
532         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
533                   mapped_pages, ret);
534         if (tididx) {
535                 spin_lock(&fd->tid_lock);
536                 fd->tid_used += tididx;
537                 spin_unlock(&fd->tid_lock);
538                 tinfo->tidcnt = tididx;
539                 tinfo->length = mapped_pages * PAGE_SIZE;
540
541                 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
542                                  tidlist, sizeof(tidlist[0]) * tididx)) {
543                         /*
544                          * On failure to copy to the user level, we need to undo
545                          * everything done so far so we don't leak resources.
546                          */
547                         tinfo->tidlist = (unsigned long)&tidlist;
548                         hfi1_user_exp_rcv_clear(fp, tinfo);
549                         tinfo->tidlist = 0;
550                         ret = -EFAULT;
551                         goto bail;
552                 }
553         }
554
555         /*
556          * If not everything was mapped (due to insufficient RcvArray entries,
557          * for example), unpin all unmapped pages so we can pin them nex time.
558          */
559         if (mapped_pages != pinned) {
560                 hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
561                                         pinned - mapped_pages,
562                                         false);
563                 fd->tid_n_pinned -= pinned - mapped_pages;
564         }
565 bail:
566         kfree(pagesets);
567         kfree(pages);
568         kfree(tidlist);
569         return ret > 0 ? 0 : ret;
570 }
571
572 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
573 {
574         int ret = 0;
575         struct hfi1_filedata *fd = fp->private_data;
576         struct hfi1_ctxtdata *uctxt = fd->uctxt;
577         u32 *tidinfo;
578         unsigned tididx;
579
580         tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
581         if (!tidinfo)
582                 return -ENOMEM;
583
584         if (copy_from_user(tidinfo, (void __user *)(unsigned long)
585                            tinfo->tidlist, sizeof(tidinfo[0]) *
586                            tinfo->tidcnt)) {
587                 ret = -EFAULT;
588                 goto done;
589         }
590
591         mutex_lock(&uctxt->exp_lock);
592         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
593                 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
594                 if (ret) {
595                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
596                                   ret);
597                         break;
598                 }
599         }
600         spin_lock(&fd->tid_lock);
601         fd->tid_used -= tididx;
602         spin_unlock(&fd->tid_lock);
603         tinfo->tidcnt = tididx;
604         mutex_unlock(&uctxt->exp_lock);
605 done:
606         kfree(tidinfo);
607         return ret;
608 }
609
610 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
611 {
612         struct hfi1_filedata *fd = fp->private_data;
613         struct hfi1_ctxtdata *uctxt = fd->uctxt;
614         unsigned long *ev = uctxt->dd->events +
615                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
616                   HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
617         u32 *array;
618         int ret = 0;
619
620         if (!fd->invalid_tids)
621                 return -EINVAL;
622
623         /*
624          * copy_to_user() can sleep, which will leave the invalid_lock
625          * locked and cause the MMU notifier to be blocked on the lock
626          * for a long time.
627          * Copy the data to a local buffer so we can release the lock.
628          */
629         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
630         if (!array)
631                 return -EFAULT;
632
633         spin_lock(&fd->invalid_lock);
634         if (fd->invalid_tid_idx) {
635                 memcpy(array, fd->invalid_tids, sizeof(*array) *
636                        fd->invalid_tid_idx);
637                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
638                        fd->invalid_tid_idx);
639                 tinfo->tidcnt = fd->invalid_tid_idx;
640                 fd->invalid_tid_idx = 0;
641                 /*
642                  * Reset the user flag while still holding the lock.
643                  * Otherwise, PSM can miss events.
644                  */
645                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
646         } else {
647                 tinfo->tidcnt = 0;
648         }
649         spin_unlock(&fd->invalid_lock);
650
651         if (tinfo->tidcnt) {
652                 if (copy_to_user((void __user *)tinfo->tidlist,
653                                  array, sizeof(*array) * tinfo->tidcnt))
654                         ret = -EFAULT;
655         }
656         kfree(array);
657
658         return ret;
659 }
660
661 static u32 find_phys_blocks(struct page **pages, unsigned npages,
662                             struct tid_pageset *list)
663 {
664         unsigned pagecount, pageidx, setcount = 0, i;
665         unsigned long pfn, this_pfn;
666
667         if (!npages)
668                 return 0;
669
670         /*
671          * Look for sets of physically contiguous pages in the user buffer.
672          * This will allow us to optimize Expected RcvArray entry usage by
673          * using the bigger supported sizes.
674          */
675         pfn = page_to_pfn(pages[0]);
676         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
677                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
678
679                 /*
680                  * If the pfn's are not sequential, pages are not physically
681                  * contiguous.
682                  */
683                 if (this_pfn != ++pfn) {
684                         /*
685                          * At this point we have to loop over the set of
686                          * physically contiguous pages and break them down it
687                          * sizes supported by the HW.
688                          * There are two main constraints:
689                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
690                          *        If the total set size is bigger than that
691                          *        program only a MAX_EXPECTED_BUFFER chunk.
692                          *     2. The buffer size has to be a power of two. If
693                          *        it is not, round down to the closes power of
694                          *        2 and program that size.
695                          */
696                         while (pagecount) {
697                                 int maxpages = pagecount;
698                                 u32 bufsize = pagecount * PAGE_SIZE;
699
700                                 if (bufsize > MAX_EXPECTED_BUFFER)
701                                         maxpages =
702                                                 MAX_EXPECTED_BUFFER >>
703                                                 PAGE_SHIFT;
704                                 else if (!is_power_of_2(bufsize))
705                                         maxpages =
706                                                 rounddown_pow_of_two(bufsize) >>
707                                                 PAGE_SHIFT;
708
709                                 list[setcount].idx = pageidx;
710                                 list[setcount].count = maxpages;
711                                 pagecount -= maxpages;
712                                 pageidx += maxpages;
713                                 setcount++;
714                         }
715                         pageidx = i;
716                         pagecount = 1;
717                         pfn = this_pfn;
718                 } else {
719                         pagecount++;
720                 }
721         }
722         return setcount;
723 }
724
725 /**
726  * program_rcvarray() - program an RcvArray group with receive buffers
727  * @fp: file pointer
728  * @vaddr: starting user virtual address
729  * @grp: RcvArray group
730  * @sets: array of struct tid_pageset holding information on physically
731  *        contiguous chunks from the user buffer
732  * @start: starting index into sets array
733  * @count: number of struct tid_pageset's to program
734  * @pages: an array of struct page * for the user buffer
735  * @tidlist: the array of u32 elements when the information about the
736  *           programmed RcvArray entries is to be encoded.
737  * @tididx: starting offset into tidlist
738  * @pmapped: (output parameter) number of pages programmed into the RcvArray
739  *           entries.
740  *
741  * This function will program up to 'count' number of RcvArray entries from the
742  * group 'grp'. To make best use of write-combining writes, the function will
743  * perform writes to the unused RcvArray entries which will be ignored by the
744  * HW. Each RcvArray entry will be programmed with a physically contiguous
745  * buffer chunk from the user's virtual buffer.
746  *
747  * Return:
748  * -EINVAL if the requested count is larger than the size of the group,
749  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
750  * number of RcvArray entries programmed.
751  */
752 static int program_rcvarray(struct file *fp, unsigned long vaddr,
753                             struct tid_group *grp,
754                             struct tid_pageset *sets,
755                             unsigned start, u16 count, struct page **pages,
756                             u32 *tidlist, unsigned *tididx, unsigned *pmapped)
757 {
758         struct hfi1_filedata *fd = fp->private_data;
759         struct hfi1_ctxtdata *uctxt = fd->uctxt;
760         struct hfi1_devdata *dd = uctxt->dd;
761         u16 idx;
762         u32 tidinfo = 0, rcventry, useidx = 0;
763         int mapped = 0;
764
765         /* Count should never be larger than the group size */
766         if (count > grp->size)
767                 return -EINVAL;
768
769         /* Find the first unused entry in the group */
770         for (idx = 0; idx < grp->size; idx++) {
771                 if (!(grp->map & (1 << idx))) {
772                         useidx = idx;
773                         break;
774                 }
775                 rcv_array_wc_fill(dd, grp->base + idx);
776         }
777
778         idx = 0;
779         while (idx < count) {
780                 u16 npages, pageidx, setidx = start + idx;
781                 int ret = 0;
782
783                 /*
784                  * If this entry in the group is used, move to the next one.
785                  * If we go past the end of the group, exit the loop.
786                  */
787                 if (useidx >= grp->size) {
788                         break;
789                 } else if (grp->map & (1 << useidx)) {
790                         rcv_array_wc_fill(dd, grp->base + useidx);
791                         useidx++;
792                         continue;
793                 }
794
795                 rcventry = grp->base + useidx;
796                 npages = sets[setidx].count;
797                 pageidx = sets[setidx].idx;
798
799                 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
800                                          rcventry, grp, pages + pageidx,
801                                          npages);
802                 if (ret)
803                         return ret;
804                 mapped += npages;
805
806                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
807                         EXP_TID_SET(LEN, npages);
808                 tidlist[(*tididx)++] = tidinfo;
809                 grp->used++;
810                 grp->map |= 1 << useidx++;
811                 idx++;
812         }
813
814         /* Fill the rest of the group with "blank" writes */
815         for (; useidx < grp->size; useidx++)
816                 rcv_array_wc_fill(dd, grp->base + useidx);
817         *pmapped = mapped;
818         return idx;
819 }
820
821 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
822                               u32 rcventry, struct tid_group *grp,
823                               struct page **pages, unsigned npages)
824 {
825         int ret;
826         struct hfi1_filedata *fd = fp->private_data;
827         struct hfi1_ctxtdata *uctxt = fd->uctxt;
828         struct tid_rb_node *node;
829         struct hfi1_devdata *dd = uctxt->dd;
830         dma_addr_t phys;
831
832         /*
833          * Allocate the node first so we can handle a potential
834          * failure before we've programmed anything.
835          */
836         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
837                        GFP_KERNEL);
838         if (!node)
839                 return -ENOMEM;
840
841         phys = pci_map_single(dd->pcidev,
842                               __va(page_to_phys(pages[0])),
843                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
844         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
845                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
846                            phys);
847                 kfree(node);
848                 return -EFAULT;
849         }
850
851         node->mmu.addr = vaddr;
852         node->mmu.len = npages * PAGE_SIZE;
853         node->phys = page_to_phys(pages[0]);
854         node->npages = npages;
855         node->rcventry = rcventry;
856         node->dma_addr = phys;
857         node->grp = grp;
858         node->freed = false;
859         memcpy(node->pages, pages, sizeof(struct page *) * npages);
860
861         if (!fd->handler)
862                 ret = tid_rb_insert(fd, &node->mmu);
863         else
864                 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
865
866         if (ret) {
867                 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
868                           node->rcventry, node->mmu.addr, node->phys, ret);
869                 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
870                                  PCI_DMA_FROMDEVICE);
871                 kfree(node);
872                 return -EFAULT;
873         }
874         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
875         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
876                                node->mmu.addr, node->phys, phys);
877         return 0;
878 }
879
880 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
881                               struct tid_group **grp)
882 {
883         struct hfi1_filedata *fd = fp->private_data;
884         struct hfi1_ctxtdata *uctxt = fd->uctxt;
885         struct hfi1_devdata *dd = uctxt->dd;
886         struct tid_rb_node *node;
887         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
888         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
889
890         if (tididx >= uctxt->expected_count) {
891                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
892                            tididx, uctxt->ctxt);
893                 return -EINVAL;
894         }
895
896         if (tidctrl == 0x3)
897                 return -EINVAL;
898
899         rcventry = tididx + (tidctrl - 1);
900
901         node = fd->entry_to_rb[rcventry];
902         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
903                 return -EBADF;
904
905         if (grp)
906                 *grp = node->grp;
907
908         if (!fd->handler)
909                 cacheless_tid_rb_remove(fd, node);
910         else
911                 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
912
913         return 0;
914 }
915
916 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
917 {
918         struct hfi1_ctxtdata *uctxt = fd->uctxt;
919         struct hfi1_devdata *dd = uctxt->dd;
920
921         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
922                                  node->npages, node->mmu.addr, node->phys,
923                                  node->dma_addr);
924
925         hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
926         /*
927          * Make sure device has seen the write before we unpin the
928          * pages.
929          */
930         flush_wc();
931
932         pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
933                          PCI_DMA_FROMDEVICE);
934         hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
935         fd->tid_n_pinned -= node->npages;
936
937         node->grp->used--;
938         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
939
940         if (node->grp->used == node->grp->size - 1)
941                 tid_group_move(node->grp, &uctxt->tid_full_list,
942                                &uctxt->tid_used_list);
943         else if (!node->grp->used)
944                 tid_group_move(node->grp, &uctxt->tid_used_list,
945                                &uctxt->tid_group_list);
946         kfree(node);
947 }
948
949 /*
950  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
951  * clearing nodes in the non-cached case.
952  */
953 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
954                             struct exp_tid_set *set,
955                             struct hfi1_filedata *fd)
956 {
957         struct tid_group *grp, *ptr;
958         int i;
959
960         list_for_each_entry_safe(grp, ptr, &set->list, list) {
961                 list_del_init(&grp->list);
962
963                 for (i = 0; i < grp->size; i++) {
964                         if (grp->map & (1 << i)) {
965                                 u16 rcventry = grp->base + i;
966                                 struct tid_rb_node *node;
967
968                                 node = fd->entry_to_rb[rcventry -
969                                                           uctxt->expected_base];
970                                 if (!node || node->rcventry != rcventry)
971                                         continue;
972
973                                 cacheless_tid_rb_remove(fd, node);
974                         }
975                 }
976         }
977 }
978
979 /*
980  * Always return 0 from this function.  A non-zero return indicates that the
981  * remove operation will be called and that memory should be unpinned.
982  * However, the driver cannot unpin out from under PSM.  Instead, retain the
983  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
984  * will call back later when it has removed the memory from its list.
985  */
986 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
987 {
988         struct hfi1_filedata *fdata = arg;
989         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
990         struct tid_rb_node *node =
991                 container_of(mnode, struct tid_rb_node, mmu);
992
993         if (node->freed)
994                 return 0;
995
996         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
997                                  node->rcventry, node->npages, node->dma_addr);
998         node->freed = true;
999
1000         spin_lock(&fdata->invalid_lock);
1001         if (fdata->invalid_tid_idx < uctxt->expected_count) {
1002                 fdata->invalid_tids[fdata->invalid_tid_idx] =
1003                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1004                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
1005                         EXP_TID_SET(LEN, node->npages);
1006                 if (!fdata->invalid_tid_idx) {
1007                         unsigned long *ev;
1008
1009                         /*
1010                          * hfi1_set_uevent_bits() sets a user event flag
1011                          * for all processes. Because calling into the
1012                          * driver to process TID cache invalidations is
1013                          * expensive and TID cache invalidations are
1014                          * handled on a per-process basis, we can
1015                          * optimize this to set the flag only for the
1016                          * process in question.
1017                          */
1018                         ev = uctxt->dd->events +
1019                                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1020                                   HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1021                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1022                 }
1023                 fdata->invalid_tid_idx++;
1024         }
1025         spin_unlock(&fdata->invalid_lock);
1026         return 0;
1027 }
1028
1029 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
1030 {
1031         struct hfi1_filedata *fdata = arg;
1032         struct tid_rb_node *tnode =
1033                 container_of(node, struct tid_rb_node, mmu);
1034         u32 base = fdata->uctxt->expected_base;
1035
1036         fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1037         return 0;
1038 }
1039
1040 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
1041                                     struct tid_rb_node *tnode)
1042 {
1043         u32 base = fdata->uctxt->expected_base;
1044
1045         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1046         clear_tid_node(fdata, tnode);
1047 }
1048
1049 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
1050 {
1051         struct hfi1_filedata *fdata = arg;
1052         struct tid_rb_node *tnode =
1053                 container_of(node, struct tid_rb_node, mmu);
1054
1055         cacheless_tid_rb_remove(fdata, tnode);
1056 }