GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / infiniband / hw / hns / hns_roce_mr.c
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/platform_device.h>
35 #include <linux/vmalloc.h>
36 #include <rdma/ib_umem.h>
37 #include "hns_roce_device.h"
38 #include "hns_roce_cmd.h"
39 #include "hns_roce_hem.h"
40
41 static u32 hw_index_to_key(unsigned long ind)
42 {
43         return (u32)(ind >> 24) | (ind << 8);
44 }
45
46 unsigned long key_to_hw_index(u32 key)
47 {
48         return (key << 24) | (key >> 8);
49 }
50 EXPORT_SYMBOL_GPL(key_to_hw_index);
51
52 static int hns_roce_sw2hw_mpt(struct hns_roce_dev *hr_dev,
53                               struct hns_roce_cmd_mailbox *mailbox,
54                               unsigned long mpt_index)
55 {
56         return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
57                                  HNS_ROCE_CMD_SW2HW_MPT,
58                                  HNS_ROCE_CMD_TIMEOUT_MSECS);
59 }
60
61 int hns_roce_hw2sw_mpt(struct hns_roce_dev *hr_dev,
62                               struct hns_roce_cmd_mailbox *mailbox,
63                               unsigned long mpt_index)
64 {
65         return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
66                                  mpt_index, !mailbox, HNS_ROCE_CMD_HW2SW_MPT,
67                                  HNS_ROCE_CMD_TIMEOUT_MSECS);
68 }
69 EXPORT_SYMBOL_GPL(hns_roce_hw2sw_mpt);
70
71 static int hns_roce_buddy_alloc(struct hns_roce_buddy *buddy, int order,
72                                 unsigned long *seg)
73 {
74         int o;
75         u32 m;
76
77         spin_lock(&buddy->lock);
78
79         for (o = order; o <= buddy->max_order; ++o) {
80                 if (buddy->num_free[o]) {
81                         m = 1 << (buddy->max_order - o);
82                         *seg = find_first_bit(buddy->bits[o], m);
83                         if (*seg < m)
84                                 goto found;
85                 }
86         }
87         spin_unlock(&buddy->lock);
88         return -1;
89
90  found:
91         clear_bit(*seg, buddy->bits[o]);
92         --buddy->num_free[o];
93
94         while (o > order) {
95                 --o;
96                 *seg <<= 1;
97                 set_bit(*seg ^ 1, buddy->bits[o]);
98                 ++buddy->num_free[o];
99         }
100
101         spin_unlock(&buddy->lock);
102
103         *seg <<= order;
104         return 0;
105 }
106
107 static void hns_roce_buddy_free(struct hns_roce_buddy *buddy, unsigned long seg,
108                                 int order)
109 {
110         seg >>= order;
111
112         spin_lock(&buddy->lock);
113
114         while (test_bit(seg ^ 1, buddy->bits[order])) {
115                 clear_bit(seg ^ 1, buddy->bits[order]);
116                 --buddy->num_free[order];
117                 seg >>= 1;
118                 ++order;
119         }
120
121         set_bit(seg, buddy->bits[order]);
122         ++buddy->num_free[order];
123
124         spin_unlock(&buddy->lock);
125 }
126
127 static int hns_roce_buddy_init(struct hns_roce_buddy *buddy, int max_order)
128 {
129         int i, s;
130
131         buddy->max_order = max_order;
132         spin_lock_init(&buddy->lock);
133         buddy->bits = kcalloc(buddy->max_order + 1,
134                               sizeof(*buddy->bits),
135                               GFP_KERNEL);
136         buddy->num_free = kcalloc(buddy->max_order + 1,
137                                   sizeof(*buddy->num_free),
138                                   GFP_KERNEL);
139         if (!buddy->bits || !buddy->num_free)
140                 goto err_out;
141
142         for (i = 0; i <= buddy->max_order; ++i) {
143                 s = BITS_TO_LONGS(1 << (buddy->max_order - i));
144                 buddy->bits[i] = kcalloc(s, sizeof(long), GFP_KERNEL |
145                                          __GFP_NOWARN);
146                 if (!buddy->bits[i]) {
147                         buddy->bits[i] = vzalloc(array_size(s, sizeof(long)));
148                         if (!buddy->bits[i])
149                                 goto err_out_free;
150                 }
151         }
152
153         set_bit(0, buddy->bits[buddy->max_order]);
154         buddy->num_free[buddy->max_order] = 1;
155
156         return 0;
157
158 err_out_free:
159         for (i = 0; i <= buddy->max_order; ++i)
160                 kvfree(buddy->bits[i]);
161
162 err_out:
163         kfree(buddy->bits);
164         kfree(buddy->num_free);
165         return -ENOMEM;
166 }
167
168 static void hns_roce_buddy_cleanup(struct hns_roce_buddy *buddy)
169 {
170         int i;
171
172         for (i = 0; i <= buddy->max_order; ++i)
173                 kvfree(buddy->bits[i]);
174
175         kfree(buddy->bits);
176         kfree(buddy->num_free);
177 }
178
179 static int hns_roce_alloc_mtt_range(struct hns_roce_dev *hr_dev, int order,
180                                     unsigned long *seg, u32 mtt_type)
181 {
182         struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
183         struct hns_roce_hem_table *table;
184         struct hns_roce_buddy *buddy;
185         int ret;
186
187         if (mtt_type == MTT_TYPE_WQE) {
188                 buddy = &mr_table->mtt_buddy;
189                 table = &mr_table->mtt_table;
190         } else {
191                 buddy = &mr_table->mtt_cqe_buddy;
192                 table = &mr_table->mtt_cqe_table;
193         }
194
195         ret = hns_roce_buddy_alloc(buddy, order, seg);
196         if (ret == -1)
197                 return -1;
198
199         if (hns_roce_table_get_range(hr_dev, table, *seg,
200                                      *seg + (1 << order) - 1)) {
201                 hns_roce_buddy_free(buddy, *seg, order);
202                 return -1;
203         }
204
205         return 0;
206 }
207
208 int hns_roce_mtt_init(struct hns_roce_dev *hr_dev, int npages, int page_shift,
209                       struct hns_roce_mtt *mtt)
210 {
211         int ret;
212         int i;
213
214         /* Page num is zero, correspond to DMA memory register */
215         if (!npages) {
216                 mtt->order = -1;
217                 mtt->page_shift = HNS_ROCE_HEM_PAGE_SHIFT;
218                 return 0;
219         }
220
221         /* Note: if page_shift is zero, FAST memory register */
222         mtt->page_shift = page_shift;
223
224         /* Compute MTT entry necessary */
225         for (mtt->order = 0, i = HNS_ROCE_MTT_ENTRY_PER_SEG; i < npages;
226              i <<= 1)
227                 ++mtt->order;
228
229         /* Allocate MTT entry */
230         ret = hns_roce_alloc_mtt_range(hr_dev, mtt->order, &mtt->first_seg,
231                                        mtt->mtt_type);
232         if (ret == -1)
233                 return -ENOMEM;
234
235         return 0;
236 }
237
238 void hns_roce_mtt_cleanup(struct hns_roce_dev *hr_dev, struct hns_roce_mtt *mtt)
239 {
240         struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
241
242         if (mtt->order < 0)
243                 return;
244
245         if (mtt->mtt_type == MTT_TYPE_WQE) {
246                 hns_roce_buddy_free(&mr_table->mtt_buddy, mtt->first_seg,
247                                     mtt->order);
248                 hns_roce_table_put_range(hr_dev, &mr_table->mtt_table,
249                                         mtt->first_seg,
250                                         mtt->first_seg + (1 << mtt->order) - 1);
251         } else {
252                 hns_roce_buddy_free(&mr_table->mtt_cqe_buddy, mtt->first_seg,
253                                     mtt->order);
254                 hns_roce_table_put_range(hr_dev, &mr_table->mtt_cqe_table,
255                                         mtt->first_seg,
256                                         mtt->first_seg + (1 << mtt->order) - 1);
257         }
258 }
259 EXPORT_SYMBOL_GPL(hns_roce_mtt_cleanup);
260
261 static void hns_roce_loop_free(struct hns_roce_dev *hr_dev,
262                                struct hns_roce_mr *mr, int err_loop_index,
263                                int loop_i, int loop_j)
264 {
265         struct device *dev = hr_dev->dev;
266         u32 mhop_num;
267         u32 pbl_bt_sz;
268         u64 bt_idx;
269         int i, j;
270
271         pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
272         mhop_num = hr_dev->caps.pbl_hop_num;
273
274         i = loop_i;
275         if (mhop_num == 3 && err_loop_index == 2) {
276                 for (; i >= 0; i--) {
277                         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
278                                           mr->pbl_l1_dma_addr[i]);
279
280                         for (j = 0; j < pbl_bt_sz / 8; j++) {
281                                 if (i == loop_i && j >= loop_j)
282                                         break;
283
284                                 bt_idx = i * pbl_bt_sz / 8 + j;
285                                 dma_free_coherent(dev, pbl_bt_sz,
286                                                   mr->pbl_bt_l2[bt_idx],
287                                                   mr->pbl_l2_dma_addr[bt_idx]);
288                         }
289                 }
290         } else if (mhop_num == 3 && err_loop_index == 1) {
291                 for (i -= 1; i >= 0; i--) {
292                         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
293                                           mr->pbl_l1_dma_addr[i]);
294
295                         for (j = 0; j < pbl_bt_sz / 8; j++) {
296                                 bt_idx = i * pbl_bt_sz / 8 + j;
297                                 dma_free_coherent(dev, pbl_bt_sz,
298                                                   mr->pbl_bt_l2[bt_idx],
299                                                   mr->pbl_l2_dma_addr[bt_idx]);
300                         }
301                 }
302         } else if (mhop_num == 2 && err_loop_index == 1) {
303                 for (i -= 1; i >= 0; i--)
304                         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
305                                           mr->pbl_l1_dma_addr[i]);
306         } else {
307                 dev_warn(dev, "not support: mhop_num=%d, err_loop_index=%d.",
308                          mhop_num, err_loop_index);
309                 return;
310         }
311
312         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0, mr->pbl_l0_dma_addr);
313         mr->pbl_bt_l0 = NULL;
314         mr->pbl_l0_dma_addr = 0;
315 }
316
317 /* PBL multi hop addressing */
318 static int hns_roce_mhop_alloc(struct hns_roce_dev *hr_dev, int npages,
319                                struct hns_roce_mr *mr)
320 {
321         struct device *dev = hr_dev->dev;
322         int mr_alloc_done = 0;
323         int npages_allocated;
324         int i = 0, j = 0;
325         u32 pbl_bt_sz;
326         u32 mhop_num;
327         u64 pbl_last_bt_num;
328         u64 pbl_bt_cnt = 0;
329         u64 bt_idx;
330         u64 size;
331
332         mhop_num = hr_dev->caps.pbl_hop_num;
333         pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
334         pbl_last_bt_num = (npages + pbl_bt_sz / 8 - 1) / (pbl_bt_sz / 8);
335
336         if (mhop_num == HNS_ROCE_HOP_NUM_0)
337                 return 0;
338
339         /* hop_num = 1 */
340         if (mhop_num == 1) {
341                 if (npages > pbl_bt_sz / 8) {
342                         dev_err(dev, "npages %d is larger than buf_pg_sz!",
343                                 npages);
344                         return -EINVAL;
345                 }
346                 mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
347                                                  &(mr->pbl_dma_addr),
348                                                  GFP_KERNEL);
349                 if (!mr->pbl_buf)
350                         return -ENOMEM;
351
352                 mr->pbl_size = npages;
353                 mr->pbl_ba = mr->pbl_dma_addr;
354                 mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
355                 mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
356                 mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
357                 return 0;
358         }
359
360         mr->pbl_l1_dma_addr = kcalloc(pbl_bt_sz / 8,
361                                       sizeof(*mr->pbl_l1_dma_addr),
362                                       GFP_KERNEL);
363         if (!mr->pbl_l1_dma_addr)
364                 return -ENOMEM;
365
366         mr->pbl_bt_l1 = kcalloc(pbl_bt_sz / 8, sizeof(*mr->pbl_bt_l1),
367                                 GFP_KERNEL);
368         if (!mr->pbl_bt_l1)
369                 goto err_kcalloc_bt_l1;
370
371         if (mhop_num == 3) {
372                 mr->pbl_l2_dma_addr = kcalloc(pbl_last_bt_num,
373                                               sizeof(*mr->pbl_l2_dma_addr),
374                                               GFP_KERNEL);
375                 if (!mr->pbl_l2_dma_addr)
376                         goto err_kcalloc_l2_dma;
377
378                 mr->pbl_bt_l2 = kcalloc(pbl_last_bt_num,
379                                         sizeof(*mr->pbl_bt_l2),
380                                         GFP_KERNEL);
381                 if (!mr->pbl_bt_l2)
382                         goto err_kcalloc_bt_l2;
383         }
384
385         /* alloc L0 BT */
386         mr->pbl_bt_l0 = dma_alloc_coherent(dev, pbl_bt_sz,
387                                            &(mr->pbl_l0_dma_addr),
388                                            GFP_KERNEL);
389         if (!mr->pbl_bt_l0)
390                 goto err_dma_alloc_l0;
391
392         if (mhop_num == 2) {
393                 /* alloc L1 BT */
394                 for (i = 0; i < pbl_bt_sz / 8; i++) {
395                         if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
396                                 size = pbl_bt_sz;
397                         } else {
398                                 npages_allocated = i * (pbl_bt_sz / 8);
399                                 size = (npages - npages_allocated) * 8;
400                         }
401                         mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, size,
402                                                     &(mr->pbl_l1_dma_addr[i]),
403                                                     GFP_KERNEL);
404                         if (!mr->pbl_bt_l1[i]) {
405                                 hns_roce_loop_free(hr_dev, mr, 1, i, 0);
406                                 goto err_dma_alloc_l0;
407                         }
408
409                         *(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
410
411                         pbl_bt_cnt++;
412                         if (pbl_bt_cnt >= pbl_last_bt_num)
413                                 break;
414                 }
415         } else if (mhop_num == 3) {
416                 /* alloc L1, L2 BT */
417                 for (i = 0; i < pbl_bt_sz / 8; i++) {
418                         mr->pbl_bt_l1[i] = dma_alloc_coherent(dev, pbl_bt_sz,
419                                                     &(mr->pbl_l1_dma_addr[i]),
420                                                     GFP_KERNEL);
421                         if (!mr->pbl_bt_l1[i]) {
422                                 hns_roce_loop_free(hr_dev, mr, 1, i, 0);
423                                 goto err_dma_alloc_l0;
424                         }
425
426                         *(mr->pbl_bt_l0 + i) = mr->pbl_l1_dma_addr[i];
427
428                         for (j = 0; j < pbl_bt_sz / 8; j++) {
429                                 bt_idx = i * pbl_bt_sz / 8 + j;
430
431                                 if (pbl_bt_cnt + 1 < pbl_last_bt_num) {
432                                         size = pbl_bt_sz;
433                                 } else {
434                                         npages_allocated = bt_idx *
435                                                            (pbl_bt_sz / 8);
436                                         size = (npages - npages_allocated) * 8;
437                                 }
438                                 mr->pbl_bt_l2[bt_idx] = dma_alloc_coherent(
439                                               dev, size,
440                                               &(mr->pbl_l2_dma_addr[bt_idx]),
441                                               GFP_KERNEL);
442                                 if (!mr->pbl_bt_l2[bt_idx]) {
443                                         hns_roce_loop_free(hr_dev, mr, 2, i, j);
444                                         goto err_dma_alloc_l0;
445                                 }
446
447                                 *(mr->pbl_bt_l1[i] + j) =
448                                                 mr->pbl_l2_dma_addr[bt_idx];
449
450                                 pbl_bt_cnt++;
451                                 if (pbl_bt_cnt >= pbl_last_bt_num) {
452                                         mr_alloc_done = 1;
453                                         break;
454                                 }
455                         }
456
457                         if (mr_alloc_done)
458                                 break;
459                 }
460         }
461
462         mr->l0_chunk_last_num = i + 1;
463         if (mhop_num == 3)
464                 mr->l1_chunk_last_num = j + 1;
465
466         mr->pbl_size = npages;
467         mr->pbl_ba = mr->pbl_l0_dma_addr;
468         mr->pbl_hop_num = hr_dev->caps.pbl_hop_num;
469         mr->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
470         mr->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
471
472         return 0;
473
474 err_dma_alloc_l0:
475         kfree(mr->pbl_bt_l2);
476         mr->pbl_bt_l2 = NULL;
477
478 err_kcalloc_bt_l2:
479         kfree(mr->pbl_l2_dma_addr);
480         mr->pbl_l2_dma_addr = NULL;
481
482 err_kcalloc_l2_dma:
483         kfree(mr->pbl_bt_l1);
484         mr->pbl_bt_l1 = NULL;
485
486 err_kcalloc_bt_l1:
487         kfree(mr->pbl_l1_dma_addr);
488         mr->pbl_l1_dma_addr = NULL;
489
490         return -ENOMEM;
491 }
492
493 static int hns_roce_mr_alloc(struct hns_roce_dev *hr_dev, u32 pd, u64 iova,
494                              u64 size, u32 access, int npages,
495                              struct hns_roce_mr *mr)
496 {
497         struct device *dev = hr_dev->dev;
498         unsigned long index = 0;
499         int ret = 0;
500
501         /* Allocate a key for mr from mr_table */
502         ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
503         if (ret == -1)
504                 return -ENOMEM;
505
506         mr->iova = iova;                        /* MR va starting addr */
507         mr->size = size;                        /* MR addr range */
508         mr->pd = pd;                            /* MR num */
509         mr->access = access;                    /* MR access permit */
510         mr->enabled = 0;                        /* MR active status */
511         mr->key = hw_index_to_key(index);       /* MR key */
512
513         if (size == ~0ull) {
514                 mr->type = MR_TYPE_DMA;
515                 mr->pbl_buf = NULL;
516                 mr->pbl_dma_addr = 0;
517                 /* PBL multi-hop addressing parameters */
518                 mr->pbl_bt_l2 = NULL;
519                 mr->pbl_bt_l1 = NULL;
520                 mr->pbl_bt_l0 = NULL;
521                 mr->pbl_l2_dma_addr = NULL;
522                 mr->pbl_l1_dma_addr = NULL;
523                 mr->pbl_l0_dma_addr = 0;
524         } else {
525                 mr->type = MR_TYPE_MR;
526                 if (!hr_dev->caps.pbl_hop_num) {
527                         mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
528                                                          &(mr->pbl_dma_addr),
529                                                          GFP_KERNEL);
530                         if (!mr->pbl_buf)
531                                 return -ENOMEM;
532                 } else {
533                         ret = hns_roce_mhop_alloc(hr_dev, npages, mr);
534                 }
535         }
536
537         return ret;
538 }
539
540 static void hns_roce_mhop_free(struct hns_roce_dev *hr_dev,
541                                struct hns_roce_mr *mr)
542 {
543         struct device *dev = hr_dev->dev;
544         int npages_allocated;
545         int npages;
546         int i, j;
547         u32 pbl_bt_sz;
548         u32 mhop_num;
549         u64 bt_idx;
550
551         npages = ib_umem_page_count(mr->umem);
552         pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
553         mhop_num = hr_dev->caps.pbl_hop_num;
554
555         if (mhop_num == HNS_ROCE_HOP_NUM_0)
556                 return;
557
558         /* hop_num = 1 */
559         if (mhop_num == 1) {
560                 dma_free_coherent(dev, (unsigned int)(npages * 8),
561                                   mr->pbl_buf, mr->pbl_dma_addr);
562                 return;
563         }
564
565         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l0,
566                           mr->pbl_l0_dma_addr);
567
568         if (mhop_num == 2) {
569                 for (i = 0; i < mr->l0_chunk_last_num; i++) {
570                         if (i == mr->l0_chunk_last_num - 1) {
571                                 npages_allocated = i * (pbl_bt_sz / 8);
572
573                                 dma_free_coherent(dev,
574                                               (npages - npages_allocated) * 8,
575                                               mr->pbl_bt_l1[i],
576                                               mr->pbl_l1_dma_addr[i]);
577
578                                 break;
579                         }
580
581                         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
582                                           mr->pbl_l1_dma_addr[i]);
583                 }
584         } else if (mhop_num == 3) {
585                 for (i = 0; i < mr->l0_chunk_last_num; i++) {
586                         dma_free_coherent(dev, pbl_bt_sz, mr->pbl_bt_l1[i],
587                                           mr->pbl_l1_dma_addr[i]);
588
589                         for (j = 0; j < pbl_bt_sz / 8; j++) {
590                                 bt_idx = i * (pbl_bt_sz / 8) + j;
591
592                                 if ((i == mr->l0_chunk_last_num - 1)
593                                     && j == mr->l1_chunk_last_num - 1) {
594                                         npages_allocated = bt_idx *
595                                                            (pbl_bt_sz / 8);
596
597                                         dma_free_coherent(dev,
598                                               (npages - npages_allocated) * 8,
599                                               mr->pbl_bt_l2[bt_idx],
600                                               mr->pbl_l2_dma_addr[bt_idx]);
601
602                                         break;
603                                 }
604
605                                 dma_free_coherent(dev, pbl_bt_sz,
606                                                 mr->pbl_bt_l2[bt_idx],
607                                                 mr->pbl_l2_dma_addr[bt_idx]);
608                         }
609                 }
610         }
611
612         kfree(mr->pbl_bt_l1);
613         kfree(mr->pbl_l1_dma_addr);
614         mr->pbl_bt_l1 = NULL;
615         mr->pbl_l1_dma_addr = NULL;
616         if (mhop_num == 3) {
617                 kfree(mr->pbl_bt_l2);
618                 kfree(mr->pbl_l2_dma_addr);
619                 mr->pbl_bt_l2 = NULL;
620                 mr->pbl_l2_dma_addr = NULL;
621         }
622 }
623
624 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
625                              struct hns_roce_mr *mr)
626 {
627         struct device *dev = hr_dev->dev;
628         int npages = 0;
629         int ret;
630
631         if (mr->enabled) {
632                 ret = hns_roce_hw2sw_mpt(hr_dev, NULL, key_to_hw_index(mr->key)
633                                          & (hr_dev->caps.num_mtpts - 1));
634                 if (ret)
635                         dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
636         }
637
638         if (mr->size != ~0ULL) {
639                 npages = ib_umem_page_count(mr->umem);
640
641                 if (!hr_dev->caps.pbl_hop_num)
642                         dma_free_coherent(dev, (unsigned int)(npages * 8),
643                                           mr->pbl_buf, mr->pbl_dma_addr);
644                 else
645                         hns_roce_mhop_free(hr_dev, mr);
646         }
647
648         if (mr->enabled)
649                 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
650                                    key_to_hw_index(mr->key));
651
652         hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
653                              key_to_hw_index(mr->key), BITMAP_NO_RR);
654 }
655
656 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
657                               struct hns_roce_mr *mr)
658 {
659         int ret;
660         unsigned long mtpt_idx = key_to_hw_index(mr->key);
661         struct device *dev = hr_dev->dev;
662         struct hns_roce_cmd_mailbox *mailbox;
663         struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
664
665         /* Prepare HEM entry memory */
666         ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
667         if (ret)
668                 return ret;
669
670         /* Allocate mailbox memory */
671         mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
672         if (IS_ERR(mailbox)) {
673                 ret = PTR_ERR(mailbox);
674                 goto err_table;
675         }
676
677         ret = hr_dev->hw->write_mtpt(mailbox->buf, mr, mtpt_idx);
678         if (ret) {
679                 dev_err(dev, "Write mtpt fail!\n");
680                 goto err_page;
681         }
682
683         ret = hns_roce_sw2hw_mpt(hr_dev, mailbox,
684                                  mtpt_idx & (hr_dev->caps.num_mtpts - 1));
685         if (ret) {
686                 dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
687                 goto err_page;
688         }
689
690         mr->enabled = 1;
691         hns_roce_free_cmd_mailbox(hr_dev, mailbox);
692
693         return 0;
694
695 err_page:
696         hns_roce_free_cmd_mailbox(hr_dev, mailbox);
697
698 err_table:
699         hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
700         return ret;
701 }
702
703 static int hns_roce_write_mtt_chunk(struct hns_roce_dev *hr_dev,
704                                     struct hns_roce_mtt *mtt, u32 start_index,
705                                     u32 npages, u64 *page_list)
706 {
707         struct hns_roce_hem_table *table;
708         dma_addr_t dma_handle;
709         __le64 *mtts;
710         u32 bt_page_size;
711         u32 i;
712
713         if (mtt->mtt_type == MTT_TYPE_WQE)
714                 bt_page_size = 1 << (hr_dev->caps.mtt_ba_pg_sz + PAGE_SHIFT);
715         else
716                 bt_page_size = 1 << (hr_dev->caps.cqe_ba_pg_sz + PAGE_SHIFT);
717
718         /* All MTTs must fit in the same page */
719         if (start_index / (bt_page_size / sizeof(u64)) !=
720                 (start_index + npages - 1) / (bt_page_size / sizeof(u64)))
721                 return -EINVAL;
722
723         if (start_index & (HNS_ROCE_MTT_ENTRY_PER_SEG - 1))
724                 return -EINVAL;
725
726         if (mtt->mtt_type == MTT_TYPE_WQE)
727                 table = &hr_dev->mr_table.mtt_table;
728         else
729                 table = &hr_dev->mr_table.mtt_cqe_table;
730
731         mtts = hns_roce_table_find(hr_dev, table,
732                                 mtt->first_seg +
733                                 start_index / HNS_ROCE_MTT_ENTRY_PER_SEG,
734                                 &dma_handle);
735         if (!mtts)
736                 return -ENOMEM;
737
738         /* Save page addr, low 12 bits : 0 */
739         for (i = 0; i < npages; ++i) {
740                 if (!hr_dev->caps.mtt_hop_num)
741                         mtts[i] = cpu_to_le64(page_list[i] >> PAGE_ADDR_SHIFT);
742                 else
743                         mtts[i] = cpu_to_le64(page_list[i]);
744         }
745
746         return 0;
747 }
748
749 static int hns_roce_write_mtt(struct hns_roce_dev *hr_dev,
750                               struct hns_roce_mtt *mtt, u32 start_index,
751                               u32 npages, u64 *page_list)
752 {
753         int chunk;
754         int ret;
755         u32 bt_page_size;
756
757         if (mtt->order < 0)
758                 return -EINVAL;
759
760         if (mtt->mtt_type == MTT_TYPE_WQE)
761                 bt_page_size = 1 << (hr_dev->caps.mtt_ba_pg_sz + PAGE_SHIFT);
762         else
763                 bt_page_size = 1 << (hr_dev->caps.cqe_ba_pg_sz + PAGE_SHIFT);
764
765         while (npages > 0) {
766                 chunk = min_t(int, bt_page_size / sizeof(u64), npages);
767
768                 ret = hns_roce_write_mtt_chunk(hr_dev, mtt, start_index, chunk,
769                                                page_list);
770                 if (ret)
771                         return ret;
772
773                 npages -= chunk;
774                 start_index += chunk;
775                 page_list += chunk;
776         }
777
778         return 0;
779 }
780
781 int hns_roce_buf_write_mtt(struct hns_roce_dev *hr_dev,
782                            struct hns_roce_mtt *mtt, struct hns_roce_buf *buf)
783 {
784         u64 *page_list;
785         int ret;
786         u32 i;
787
788         page_list = kmalloc_array(buf->npages, sizeof(*page_list), GFP_KERNEL);
789         if (!page_list)
790                 return -ENOMEM;
791
792         for (i = 0; i < buf->npages; ++i) {
793                 if (buf->nbufs == 1)
794                         page_list[i] = buf->direct.map + (i << buf->page_shift);
795                 else
796                         page_list[i] = buf->page_list[i].map;
797
798         }
799         ret = hns_roce_write_mtt(hr_dev, mtt, 0, buf->npages, page_list);
800
801         kfree(page_list);
802
803         return ret;
804 }
805
806 int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
807 {
808         struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
809         int ret;
810
811         ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
812                                    hr_dev->caps.num_mtpts,
813                                    hr_dev->caps.num_mtpts - 1,
814                                    hr_dev->caps.reserved_mrws, 0);
815         if (ret)
816                 return ret;
817
818         ret = hns_roce_buddy_init(&mr_table->mtt_buddy,
819                                   ilog2(hr_dev->caps.num_mtt_segs));
820         if (ret)
821                 goto err_buddy;
822
823         if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE)) {
824                 ret = hns_roce_buddy_init(&mr_table->mtt_cqe_buddy,
825                                           ilog2(hr_dev->caps.num_cqe_segs));
826                 if (ret)
827                         goto err_buddy_cqe;
828         }
829         return 0;
830
831 err_buddy_cqe:
832         hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
833
834 err_buddy:
835         hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
836         return ret;
837 }
838
839 void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
840 {
841         struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
842
843         hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
844         if (hns_roce_check_whether_mhop(hr_dev, HEM_TYPE_CQE))
845                 hns_roce_buddy_cleanup(&mr_table->mtt_cqe_buddy);
846         hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
847 }
848
849 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
850 {
851         struct hns_roce_mr *mr;
852         int ret;
853
854         mr = kmalloc(sizeof(*mr), GFP_KERNEL);
855         if (mr == NULL)
856                 return  ERR_PTR(-ENOMEM);
857
858         /* Allocate memory region key */
859         ret = hns_roce_mr_alloc(to_hr_dev(pd->device), to_hr_pd(pd)->pdn, 0,
860                                 ~0ULL, acc, 0, mr);
861         if (ret)
862                 goto err_free;
863
864         ret = hns_roce_mr_enable(to_hr_dev(pd->device), mr);
865         if (ret)
866                 goto err_mr;
867
868         mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
869         mr->umem = NULL;
870
871         return &mr->ibmr;
872
873 err_mr:
874         hns_roce_mr_free(to_hr_dev(pd->device), mr);
875
876 err_free:
877         kfree(mr);
878         return ERR_PTR(ret);
879 }
880
881 int hns_roce_ib_umem_write_mtt(struct hns_roce_dev *hr_dev,
882                                struct hns_roce_mtt *mtt, struct ib_umem *umem)
883 {
884         struct device *dev = hr_dev->dev;
885         struct scatterlist *sg;
886         unsigned int order;
887         int i, k, entry;
888         int npage = 0;
889         int ret = 0;
890         int len;
891         u64 page_addr;
892         u64 *pages;
893         u32 bt_page_size;
894         u32 n;
895
896         order = mtt->mtt_type == MTT_TYPE_WQE ? hr_dev->caps.mtt_ba_pg_sz :
897                 hr_dev->caps.cqe_ba_pg_sz;
898         bt_page_size = 1 << (order + PAGE_SHIFT);
899
900         pages = (u64 *) __get_free_pages(GFP_KERNEL, order);
901         if (!pages)
902                 return -ENOMEM;
903
904         i = n = 0;
905
906         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
907                 len = sg_dma_len(sg) >> PAGE_SHIFT;
908                 for (k = 0; k < len; ++k) {
909                         page_addr =
910                                 sg_dma_address(sg) + (k << umem->page_shift);
911                         if (!(npage % (1 << (mtt->page_shift - PAGE_SHIFT)))) {
912                                 if (page_addr & ((1 << mtt->page_shift) - 1)) {
913                                         dev_err(dev, "page_addr 0x%llx is not page_shift %d alignment!\n",
914                                                 page_addr, mtt->page_shift);
915                                         ret = -EINVAL;
916                                         goto out;
917                                 }
918                                 pages[i++] = page_addr;
919                         }
920                         npage++;
921                         if (i == bt_page_size / sizeof(u64)) {
922                                 ret = hns_roce_write_mtt(hr_dev, mtt, n, i,
923                                                          pages);
924                                 if (ret)
925                                         goto out;
926                                 n += i;
927                                 i = 0;
928                         }
929                 }
930         }
931
932         if (i)
933                 ret = hns_roce_write_mtt(hr_dev, mtt, n, i, pages);
934
935 out:
936         free_pages((unsigned long) pages, order);
937         return ret;
938 }
939
940 static int hns_roce_ib_umem_write_mr(struct hns_roce_dev *hr_dev,
941                                      struct hns_roce_mr *mr,
942                                      struct ib_umem *umem)
943 {
944         struct scatterlist *sg;
945         int i = 0, j = 0, k;
946         int entry;
947         int len;
948         u64 page_addr;
949         u32 pbl_bt_sz;
950
951         if (hr_dev->caps.pbl_hop_num == HNS_ROCE_HOP_NUM_0)
952                 return 0;
953
954         pbl_bt_sz = 1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT);
955         for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
956                 len = sg_dma_len(sg) >> PAGE_SHIFT;
957                 for (k = 0; k < len; ++k) {
958                         page_addr = sg_dma_address(sg) +
959                                     (k << umem->page_shift);
960
961                         if (!hr_dev->caps.pbl_hop_num) {
962                                 mr->pbl_buf[i++] = page_addr >> 12;
963                         } else if (hr_dev->caps.pbl_hop_num == 1) {
964                                 mr->pbl_buf[i++] = page_addr;
965                         } else {
966                                 if (hr_dev->caps.pbl_hop_num == 2)
967                                         mr->pbl_bt_l1[i][j] = page_addr;
968                                 else if (hr_dev->caps.pbl_hop_num == 3)
969                                         mr->pbl_bt_l2[i][j] = page_addr;
970
971                                 j++;
972                                 if (j >= (pbl_bt_sz / 8)) {
973                                         i++;
974                                         j = 0;
975                                 }
976                         }
977                 }
978         }
979
980         /* Memory barrier */
981         mb();
982
983         return 0;
984 }
985
986 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
987                                    u64 virt_addr, int access_flags,
988                                    struct ib_udata *udata)
989 {
990         struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
991         struct device *dev = hr_dev->dev;
992         struct hns_roce_mr *mr;
993         int bt_size;
994         int ret;
995         int n;
996         int i;
997
998         mr = kmalloc(sizeof(*mr), GFP_KERNEL);
999         if (!mr)
1000                 return ERR_PTR(-ENOMEM);
1001
1002         mr->umem = ib_umem_get(pd->uobject->context, start, length,
1003                                access_flags, 0);
1004         if (IS_ERR(mr->umem)) {
1005                 ret = PTR_ERR(mr->umem);
1006                 goto err_free;
1007         }
1008
1009         n = ib_umem_page_count(mr->umem);
1010
1011         if (!hr_dev->caps.pbl_hop_num) {
1012                 if (n > HNS_ROCE_MAX_MTPT_PBL_NUM) {
1013                         dev_err(dev,
1014                              " MR len %lld err. MR is limited to 4G at most!\n",
1015                              length);
1016                         ret = -EINVAL;
1017                         goto err_umem;
1018                 }
1019         } else {
1020                 u64 pbl_size = 1;
1021
1022                 bt_size = (1 << (hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT)) / 8;
1023                 for (i = 0; i < hr_dev->caps.pbl_hop_num; i++)
1024                         pbl_size *= bt_size;
1025                 if (n > pbl_size) {
1026                         dev_err(dev,
1027                             " MR len %lld err. MR page num is limited to %lld!\n",
1028                             length, pbl_size);
1029                         ret = -EINVAL;
1030                         goto err_umem;
1031                 }
1032         }
1033
1034         ret = hns_roce_mr_alloc(hr_dev, to_hr_pd(pd)->pdn, virt_addr, length,
1035                                 access_flags, n, mr);
1036         if (ret)
1037                 goto err_umem;
1038
1039         ret = hns_roce_ib_umem_write_mr(hr_dev, mr, mr->umem);
1040         if (ret)
1041                 goto err_mr;
1042
1043         ret = hns_roce_mr_enable(hr_dev, mr);
1044         if (ret)
1045                 goto err_mr;
1046
1047         mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
1048
1049         return &mr->ibmr;
1050
1051 err_mr:
1052         hns_roce_mr_free(hr_dev, mr);
1053
1054 err_umem:
1055         ib_umem_release(mr->umem);
1056
1057 err_free:
1058         kfree(mr);
1059         return ERR_PTR(ret);
1060 }
1061
1062 int hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, u64 length,
1063                            u64 virt_addr, int mr_access_flags, struct ib_pd *pd,
1064                            struct ib_udata *udata)
1065 {
1066         struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
1067         struct hns_roce_mr *mr = to_hr_mr(ibmr);
1068         struct hns_roce_cmd_mailbox *mailbox;
1069         struct device *dev = hr_dev->dev;
1070         unsigned long mtpt_idx;
1071         u32 pdn = 0;
1072         int npages;
1073         int ret;
1074
1075         if (!mr->enabled)
1076                 return -EINVAL;
1077
1078         mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
1079         if (IS_ERR(mailbox))
1080                 return PTR_ERR(mailbox);
1081
1082         mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
1083         ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, mtpt_idx, 0,
1084                                 HNS_ROCE_CMD_QUERY_MPT,
1085                                 HNS_ROCE_CMD_TIMEOUT_MSECS);
1086         if (ret)
1087                 goto free_cmd_mbox;
1088
1089         ret = hns_roce_hw2sw_mpt(hr_dev, NULL, mtpt_idx);
1090         if (ret)
1091                 dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
1092
1093         mr->enabled = 0;
1094
1095         if (flags & IB_MR_REREG_PD)
1096                 pdn = to_hr_pd(pd)->pdn;
1097
1098         if (flags & IB_MR_REREG_TRANS) {
1099                 if (mr->size != ~0ULL) {
1100                         npages = ib_umem_page_count(mr->umem);
1101
1102                         if (hr_dev->caps.pbl_hop_num)
1103                                 hns_roce_mhop_free(hr_dev, mr);
1104                         else
1105                                 dma_free_coherent(dev, npages * 8, mr->pbl_buf,
1106                                                   mr->pbl_dma_addr);
1107                 }
1108                 ib_umem_release(mr->umem);
1109
1110                 mr->umem = ib_umem_get(ibmr->uobject->context, start, length,
1111                                        mr_access_flags, 0);
1112                 if (IS_ERR(mr->umem)) {
1113                         ret = PTR_ERR(mr->umem);
1114                         mr->umem = NULL;
1115                         goto free_cmd_mbox;
1116                 }
1117                 npages = ib_umem_page_count(mr->umem);
1118
1119                 if (hr_dev->caps.pbl_hop_num) {
1120                         ret = hns_roce_mhop_alloc(hr_dev, npages, mr);
1121                         if (ret)
1122                                 goto release_umem;
1123                 } else {
1124                         mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
1125                                                          &(mr->pbl_dma_addr),
1126                                                          GFP_KERNEL);
1127                         if (!mr->pbl_buf) {
1128                                 ret = -ENOMEM;
1129                                 goto release_umem;
1130                         }
1131                 }
1132         }
1133
1134         ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, pdn,
1135                                            mr_access_flags, virt_addr,
1136                                            length, mailbox->buf);
1137         if (ret) {
1138                 if (flags & IB_MR_REREG_TRANS)
1139                         goto release_umem;
1140                 else
1141                         goto free_cmd_mbox;
1142         }
1143
1144         if (flags & IB_MR_REREG_TRANS) {
1145                 ret = hns_roce_ib_umem_write_mr(hr_dev, mr, mr->umem);
1146                 if (ret) {
1147                         if (mr->size != ~0ULL) {
1148                                 npages = ib_umem_page_count(mr->umem);
1149
1150                                 if (hr_dev->caps.pbl_hop_num)
1151                                         hns_roce_mhop_free(hr_dev, mr);
1152                                 else
1153                                         dma_free_coherent(dev, npages * 8,
1154                                                           mr->pbl_buf,
1155                                                           mr->pbl_dma_addr);
1156                         }
1157
1158                         goto release_umem;
1159                 }
1160         }
1161
1162         ret = hns_roce_sw2hw_mpt(hr_dev, mailbox, mtpt_idx);
1163         if (ret) {
1164                 dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
1165                 goto release_umem;
1166         }
1167
1168         mr->enabled = 1;
1169         if (flags & IB_MR_REREG_ACCESS)
1170                 mr->access = mr_access_flags;
1171
1172         hns_roce_free_cmd_mailbox(hr_dev, mailbox);
1173
1174         return 0;
1175
1176 release_umem:
1177         ib_umem_release(mr->umem);
1178
1179 free_cmd_mbox:
1180         hns_roce_free_cmd_mailbox(hr_dev, mailbox);
1181
1182         return ret;
1183 }
1184
1185 int hns_roce_dereg_mr(struct ib_mr *ibmr)
1186 {
1187         struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
1188         struct hns_roce_mr *mr = to_hr_mr(ibmr);
1189         int ret = 0;
1190
1191         if (hr_dev->hw->dereg_mr) {
1192                 ret = hr_dev->hw->dereg_mr(hr_dev, mr);
1193         } else {
1194                 hns_roce_mr_free(hr_dev, mr);
1195
1196                 if (mr->umem)
1197                         ib_umem_release(mr->umem);
1198
1199                 kfree(mr);
1200         }
1201
1202         return ret;
1203 }