GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / iommu / ipmmu-vmsa.c
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/sizes.h>
27 #include <linux/slab.h>
28 #include <linux/sys_soc.h>
29
30 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
31 #include <asm/dma-iommu.h>
32 #include <asm/pgalloc.h>
33 #else
34 #define arm_iommu_create_mapping(...)   NULL
35 #define arm_iommu_attach_device(...)    -ENODEV
36 #define arm_iommu_release_mapping(...)  do {} while (0)
37 #define arm_iommu_detach_device(...)    do {} while (0)
38 #endif
39
40 #include "io-pgtable.h"
41
42 #define IPMMU_CTX_MAX 8
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         bool setup_imbuscr;
49         bool twobit_imttbcr_sl0;
50         bool reserved_context;
51 };
52
53 struct ipmmu_vmsa_device {
54         struct device *dev;
55         void __iomem *base;
56         struct iommu_device iommu;
57         struct ipmmu_vmsa_device *root;
58         const struct ipmmu_features *features;
59         unsigned int num_utlbs;
60         unsigned int num_ctx;
61         spinlock_t lock;                        /* Protects ctx and domains[] */
62         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64
65         struct iommu_group *group;
66         struct dma_iommu_mapping *mapping;
67 };
68
69 struct ipmmu_vmsa_domain {
70         struct ipmmu_vmsa_device *mmu;
71         struct iommu_domain io_domain;
72
73         struct io_pgtable_cfg cfg;
74         struct io_pgtable_ops *iop;
75
76         unsigned int context_id;
77         struct mutex mutex;                     /* Protects mappings */
78 };
79
80 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
81 {
82         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
83 }
84
85 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
86 {
87         return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
88 }
89
90 #define TLB_LOOP_TIMEOUT                100     /* 100us */
91
92 /* -----------------------------------------------------------------------------
93  * Registers Definition
94  */
95
96 #define IM_NS_ALIAS_OFFSET              0x800
97
98 #define IM_CTX_SIZE                     0x40
99
100 #define IMCTR                           0x0000
101 #define IMCTR_TRE                       (1 << 17)
102 #define IMCTR_AFE                       (1 << 16)
103 #define IMCTR_RTSEL_MASK                (3 << 4)
104 #define IMCTR_RTSEL_SHIFT               4
105 #define IMCTR_TREN                      (1 << 3)
106 #define IMCTR_INTEN                     (1 << 2)
107 #define IMCTR_FLUSH                     (1 << 1)
108 #define IMCTR_MMUEN                     (1 << 0)
109
110 #define IMCAAR                          0x0004
111
112 #define IMTTBCR                         0x0008
113 #define IMTTBCR_EAE                     (1 << 31)
114 #define IMTTBCR_PMB                     (1 << 30)
115 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
116 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
117 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
118 #define IMTTBCR_SH1_MASK                (3 << 28)
119 #define IMTTBCR_ORGN1_NC                (0 << 26)
120 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
121 #define IMTTBCR_ORGN1_WT                (2 << 26)
122 #define IMTTBCR_ORGN1_WB                (3 << 26)
123 #define IMTTBCR_ORGN1_MASK              (3 << 26)
124 #define IMTTBCR_IRGN1_NC                (0 << 24)
125 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
126 #define IMTTBCR_IRGN1_WT                (2 << 24)
127 #define IMTTBCR_IRGN1_WB                (3 << 24)
128 #define IMTTBCR_IRGN1_MASK              (3 << 24)
129 #define IMTTBCR_TSZ1_MASK               (7 << 16)
130 #define IMTTBCR_TSZ1_SHIFT              16
131 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
132 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
133 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
134 #define IMTTBCR_SH0_MASK                (3 << 12)
135 #define IMTTBCR_ORGN0_NC                (0 << 10)
136 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
137 #define IMTTBCR_ORGN0_WT                (2 << 10)
138 #define IMTTBCR_ORGN0_WB                (3 << 10)
139 #define IMTTBCR_ORGN0_MASK              (3 << 10)
140 #define IMTTBCR_IRGN0_NC                (0 << 8)
141 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
142 #define IMTTBCR_IRGN0_WT                (2 << 8)
143 #define IMTTBCR_IRGN0_WB                (3 << 8)
144 #define IMTTBCR_IRGN0_MASK              (3 << 8)
145 #define IMTTBCR_SL0_LVL_2               (0 << 4)
146 #define IMTTBCR_SL0_LVL_1               (1 << 4)
147 #define IMTTBCR_TSZ0_MASK               (7 << 0)
148 #define IMTTBCR_TSZ0_SHIFT              O
149
150 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
152 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
153
154 #define IMBUSCR                         0x000c
155 #define IMBUSCR_DVM                     (1 << 2)
156 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
157 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
158 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
159 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
160 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
161
162 #define IMTTLBR0                        0x0010
163 #define IMTTUBR0                        0x0014
164 #define IMTTLBR1                        0x0018
165 #define IMTTUBR1                        0x001c
166
167 #define IMSTR                           0x0020
168 #define IMSTR_ERRLVL_MASK               (3 << 12)
169 #define IMSTR_ERRLVL_SHIFT              12
170 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
171 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
172 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
173 #define IMSTR_ERRCODE_MASK              (7 << 8)
174 #define IMSTR_MHIT                      (1 << 4)
175 #define IMSTR_ABORT                     (1 << 2)
176 #define IMSTR_PF                        (1 << 1)
177 #define IMSTR_TF                        (1 << 0)
178
179 #define IMMAIR0                         0x0028
180 #define IMMAIR1                         0x002c
181 #define IMMAIR_ATTR_MASK                0xff
182 #define IMMAIR_ATTR_DEVICE              0x04
183 #define IMMAIR_ATTR_NC                  0x44
184 #define IMMAIR_ATTR_WBRWA               0xff
185 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
186 #define IMMAIR_ATTR_IDX_NC              0
187 #define IMMAIR_ATTR_IDX_WBRWA           1
188 #define IMMAIR_ATTR_IDX_DEV             2
189
190 #define IMEAR                           0x0030
191
192 #define IMPCTR                          0x0200
193 #define IMPSTR                          0x0208
194 #define IMPEAR                          0x020c
195 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
196 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
197
198 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
199 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
200 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
201 #define IMUCTR_FIXADDEN                 (1 << 31)
202 #define IMUCTR_FIXADD_MASK              (0xff << 16)
203 #define IMUCTR_FIXADD_SHIFT             16
204 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
205 #define IMUCTR_TTSEL_PMB                (8 << 4)
206 #define IMUCTR_TTSEL_MASK               (15 << 4)
207 #define IMUCTR_FLUSH                    (1 << 1)
208 #define IMUCTR_MMUEN                    (1 << 0)
209
210 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
211 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
212 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
213 #define IMUASID_ASID8_MASK              (0xff << 8)
214 #define IMUASID_ASID8_SHIFT             8
215 #define IMUASID_ASID0_MASK              (0xff << 0)
216 #define IMUASID_ASID0_SHIFT             0
217
218 /* -----------------------------------------------------------------------------
219  * Root device handling
220  */
221
222 static struct platform_driver ipmmu_driver;
223
224 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
225 {
226         return mmu->root == mmu;
227 }
228
229 static int __ipmmu_check_device(struct device *dev, void *data)
230 {
231         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
232         struct ipmmu_vmsa_device **rootp = data;
233
234         if (ipmmu_is_root(mmu))
235                 *rootp = mmu;
236
237         return 0;
238 }
239
240 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
241 {
242         struct ipmmu_vmsa_device *root = NULL;
243
244         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
245                                       __ipmmu_check_device) == 0 ? root : NULL;
246 }
247
248 /* -----------------------------------------------------------------------------
249  * Read/Write Access
250  */
251
252 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
253 {
254         return ioread32(mmu->base + offset);
255 }
256
257 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
258                         u32 data)
259 {
260         iowrite32(data, mmu->base + offset);
261 }
262
263 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
264                                unsigned int reg)
265 {
266         return ipmmu_read(domain->mmu->root,
267                           domain->context_id * IM_CTX_SIZE + reg);
268 }
269
270 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
271                                  unsigned int reg, u32 data)
272 {
273         ipmmu_write(domain->mmu->root,
274                     domain->context_id * IM_CTX_SIZE + reg, data);
275 }
276
277 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
278                                 unsigned int reg, u32 data)
279 {
280         if (domain->mmu != domain->mmu->root)
281                 ipmmu_write(domain->mmu,
282                             domain->context_id * IM_CTX_SIZE + reg, data);
283
284         ipmmu_write(domain->mmu->root,
285                     domain->context_id * IM_CTX_SIZE + reg, data);
286 }
287
288 /* -----------------------------------------------------------------------------
289  * TLB and microTLB Management
290  */
291
292 /* Wait for any pending TLB invalidations to complete */
293 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
294 {
295         unsigned int count = 0;
296
297         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
298                 cpu_relax();
299                 if (++count == TLB_LOOP_TIMEOUT) {
300                         dev_err_ratelimited(domain->mmu->dev,
301                         "TLB sync timed out -- MMU may be deadlocked\n");
302                         return;
303                 }
304                 udelay(1);
305         }
306 }
307
308 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
309 {
310         u32 reg;
311
312         reg = ipmmu_ctx_read_root(domain, IMCTR);
313         reg |= IMCTR_FLUSH;
314         ipmmu_ctx_write_all(domain, IMCTR, reg);
315
316         ipmmu_tlb_sync(domain);
317 }
318
319 /*
320  * Enable MMU translation for the microTLB.
321  */
322 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
323                               unsigned int utlb)
324 {
325         struct ipmmu_vmsa_device *mmu = domain->mmu;
326
327         /*
328          * TODO: Reference-count the microTLB as several bus masters can be
329          * connected to the same microTLB.
330          */
331
332         /* TODO: What should we set the ASID to ? */
333         ipmmu_write(mmu, IMUASID(utlb), 0);
334         /* TODO: Do we need to flush the microTLB ? */
335         ipmmu_write(mmu, IMUCTR(utlb),
336                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
337                     IMUCTR_MMUEN);
338 }
339
340 /*
341  * Disable MMU translation for the microTLB.
342  */
343 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
344                                unsigned int utlb)
345 {
346         struct ipmmu_vmsa_device *mmu = domain->mmu;
347
348         ipmmu_write(mmu, IMUCTR(utlb), 0);
349 }
350
351 static void ipmmu_tlb_flush_all(void *cookie)
352 {
353         struct ipmmu_vmsa_domain *domain = cookie;
354
355         ipmmu_tlb_invalidate(domain);
356 }
357
358 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
359                                 size_t granule, bool leaf, void *cookie)
360 {
361         /* The hardware doesn't support selective TLB flush. */
362 }
363
364 static const struct iommu_gather_ops ipmmu_gather_ops = {
365         .tlb_flush_all = ipmmu_tlb_flush_all,
366         .tlb_add_flush = ipmmu_tlb_add_flush,
367         .tlb_sync = ipmmu_tlb_flush_all,
368 };
369
370 /* -----------------------------------------------------------------------------
371  * Domain/Context Management
372  */
373
374 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
375                                          struct ipmmu_vmsa_domain *domain)
376 {
377         unsigned long flags;
378         int ret;
379
380         spin_lock_irqsave(&mmu->lock, flags);
381
382         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
383         if (ret != mmu->num_ctx) {
384                 mmu->domains[ret] = domain;
385                 set_bit(ret, mmu->ctx);
386         } else
387                 ret = -EBUSY;
388
389         spin_unlock_irqrestore(&mmu->lock, flags);
390
391         return ret;
392 }
393
394 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
395                                       unsigned int context_id)
396 {
397         unsigned long flags;
398
399         spin_lock_irqsave(&mmu->lock, flags);
400
401         clear_bit(context_id, mmu->ctx);
402         mmu->domains[context_id] = NULL;
403
404         spin_unlock_irqrestore(&mmu->lock, flags);
405 }
406
407 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
408 {
409         u64 ttbr;
410         u32 tmp;
411         int ret;
412
413         /*
414          * Allocate the page table operations.
415          *
416          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
417          * access, Long-descriptor format" that the NStable bit being set in a
418          * table descriptor will result in the NStable and NS bits of all child
419          * entries being ignored and considered as being set. The IPMMU seems
420          * not to comply with this, as it generates a secure access page fault
421          * if any of the NStable and NS bits isn't set when running in
422          * non-secure mode.
423          */
424         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
425         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
426         domain->cfg.ias = 32;
427         domain->cfg.oas = 40;
428         domain->cfg.tlb = &ipmmu_gather_ops;
429         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
430         domain->io_domain.geometry.force_aperture = true;
431         /*
432          * TODO: Add support for coherent walk through CCI with DVM and remove
433          * cache handling. For now, delegate it to the io-pgtable code.
434          */
435         domain->cfg.iommu_dev = domain->mmu->root->dev;
436
437         /*
438          * Find an unused context.
439          */
440         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
441         if (ret < 0)
442                 return ret;
443
444         domain->context_id = ret;
445
446         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
447                                            domain);
448         if (!domain->iop) {
449                 ipmmu_domain_free_context(domain->mmu->root,
450                                           domain->context_id);
451                 return -EINVAL;
452         }
453
454         /* TTBR0 */
455         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
456         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
457         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
458
459         /*
460          * TTBCR
461          * We use long descriptors with inner-shareable WBWA tables and allocate
462          * the whole 32-bit VA space to TTBR0.
463          */
464         if (domain->mmu->features->twobit_imttbcr_sl0)
465                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
466         else
467                 tmp = IMTTBCR_SL0_LVL_1;
468
469         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
470                              IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
471                              IMTTBCR_IRGN0_WB_WA | tmp);
472
473         /* MAIR0 */
474         ipmmu_ctx_write_root(domain, IMMAIR0,
475                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
476
477         /* IMBUSCR */
478         if (domain->mmu->features->setup_imbuscr)
479                 ipmmu_ctx_write_root(domain, IMBUSCR,
480                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
481                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
482
483         /*
484          * IMSTR
485          * Clear all interrupt flags.
486          */
487         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
488
489         /*
490          * IMCTR
491          * Enable the MMU and interrupt generation. The long-descriptor
492          * translation table format doesn't use TEX remapping. Don't enable AF
493          * software management as we have no use for it. Flush the TLB as
494          * required when modifying the context registers.
495          */
496         ipmmu_ctx_write_all(domain, IMCTR,
497                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
498
499         return 0;
500 }
501
502 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
503 {
504         if (!domain->mmu)
505                 return;
506
507         /*
508          * Disable the context. Flush the TLB as required when modifying the
509          * context registers.
510          *
511          * TODO: Is TLB flush really needed ?
512          */
513         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
514         ipmmu_tlb_sync(domain);
515         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
516 }
517
518 /* -----------------------------------------------------------------------------
519  * Fault Handling
520  */
521
522 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
523 {
524         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
525         struct ipmmu_vmsa_device *mmu = domain->mmu;
526         u32 status;
527         u32 iova;
528
529         status = ipmmu_ctx_read_root(domain, IMSTR);
530         if (!(status & err_mask))
531                 return IRQ_NONE;
532
533         iova = ipmmu_ctx_read_root(domain, IMEAR);
534
535         /*
536          * Clear the error status flags. Unlike traditional interrupt flag
537          * registers that must be cleared by writing 1, this status register
538          * seems to require 0. The error address register must be read before,
539          * otherwise its value will be 0.
540          */
541         ipmmu_ctx_write_root(domain, IMSTR, 0);
542
543         /* Log fatal errors. */
544         if (status & IMSTR_MHIT)
545                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
546                                     iova);
547         if (status & IMSTR_ABORT)
548                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
549                                     iova);
550
551         if (!(status & (IMSTR_PF | IMSTR_TF)))
552                 return IRQ_NONE;
553
554         /*
555          * Try to handle page faults and translation faults.
556          *
557          * TODO: We need to look up the faulty device based on the I/O VA. Use
558          * the IOMMU device for now.
559          */
560         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
561                 return IRQ_HANDLED;
562
563         dev_err_ratelimited(mmu->dev,
564                             "Unhandled fault: status 0x%08x iova 0x%08x\n",
565                             status, iova);
566
567         return IRQ_HANDLED;
568 }
569
570 static irqreturn_t ipmmu_irq(int irq, void *dev)
571 {
572         struct ipmmu_vmsa_device *mmu = dev;
573         irqreturn_t status = IRQ_NONE;
574         unsigned int i;
575         unsigned long flags;
576
577         spin_lock_irqsave(&mmu->lock, flags);
578
579         /*
580          * Check interrupts for all active contexts.
581          */
582         for (i = 0; i < mmu->num_ctx; i++) {
583                 if (!mmu->domains[i])
584                         continue;
585                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
586                         status = IRQ_HANDLED;
587         }
588
589         spin_unlock_irqrestore(&mmu->lock, flags);
590
591         return status;
592 }
593
594 /* -----------------------------------------------------------------------------
595  * IOMMU Operations
596  */
597
598 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
599 {
600         struct ipmmu_vmsa_domain *domain;
601
602         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
603         if (!domain)
604                 return NULL;
605
606         mutex_init(&domain->mutex);
607
608         return &domain->io_domain;
609 }
610
611 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
612 {
613         struct iommu_domain *io_domain = NULL;
614
615         switch (type) {
616         case IOMMU_DOMAIN_UNMANAGED:
617                 io_domain = __ipmmu_domain_alloc(type);
618                 break;
619
620         case IOMMU_DOMAIN_DMA:
621                 io_domain = __ipmmu_domain_alloc(type);
622                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
623                         kfree(io_domain);
624                         io_domain = NULL;
625                 }
626                 break;
627         }
628
629         return io_domain;
630 }
631
632 static void ipmmu_domain_free(struct iommu_domain *io_domain)
633 {
634         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
635
636         /*
637          * Free the domain resources. We assume that all devices have already
638          * been detached.
639          */
640         iommu_put_dma_cookie(io_domain);
641         ipmmu_domain_destroy_context(domain);
642         free_io_pgtable_ops(domain->iop);
643         kfree(domain);
644 }
645
646 static int ipmmu_attach_device(struct iommu_domain *io_domain,
647                                struct device *dev)
648 {
649         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
650         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
651         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
652         unsigned int i;
653         int ret = 0;
654
655         if (!mmu) {
656                 dev_err(dev, "Cannot attach to IPMMU\n");
657                 return -ENXIO;
658         }
659
660         mutex_lock(&domain->mutex);
661
662         if (!domain->mmu) {
663                 /* The domain hasn't been used yet, initialize it. */
664                 domain->mmu = mmu;
665                 ret = ipmmu_domain_init_context(domain);
666                 if (ret < 0) {
667                         dev_err(dev, "Unable to initialize IPMMU context\n");
668                         domain->mmu = NULL;
669                 } else {
670                         dev_info(dev, "Using IPMMU context %u\n",
671                                  domain->context_id);
672                 }
673         } else if (domain->mmu != mmu) {
674                 /*
675                  * Something is wrong, we can't attach two devices using
676                  * different IOMMUs to the same domain.
677                  */
678                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
679                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
680                 ret = -EINVAL;
681         } else
682                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
683
684         mutex_unlock(&domain->mutex);
685
686         if (ret < 0)
687                 return ret;
688
689         for (i = 0; i < fwspec->num_ids; ++i)
690                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
691
692         return 0;
693 }
694
695 static void ipmmu_detach_device(struct iommu_domain *io_domain,
696                                 struct device *dev)
697 {
698         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
699         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
700         unsigned int i;
701
702         for (i = 0; i < fwspec->num_ids; ++i)
703                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
704
705         /*
706          * TODO: Optimize by disabling the context when no device is attached.
707          */
708 }
709
710 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
711                      phys_addr_t paddr, size_t size, int prot)
712 {
713         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
714
715         if (!domain)
716                 return -ENODEV;
717
718         return domain->iop->map(domain->iop, iova, paddr, size, prot);
719 }
720
721 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
722                           size_t size)
723 {
724         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
725
726         return domain->iop->unmap(domain->iop, iova, size);
727 }
728
729 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
730 {
731         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
732
733         if (domain->mmu)
734                 ipmmu_tlb_flush_all(domain);
735 }
736
737 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
738                                       dma_addr_t iova)
739 {
740         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
741
742         /* TODO: Is locking needed ? */
743
744         return domain->iop->iova_to_phys(domain->iop, iova);
745 }
746
747 static int ipmmu_init_platform_device(struct device *dev,
748                                       struct of_phandle_args *args)
749 {
750         struct platform_device *ipmmu_pdev;
751
752         ipmmu_pdev = of_find_device_by_node(args->np);
753         if (!ipmmu_pdev)
754                 return -ENODEV;
755
756         dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
757         return 0;
758 }
759
760 static bool ipmmu_slave_whitelist(struct device *dev)
761 {
762         /* By default, do not allow use of IPMMU */
763         return false;
764 }
765
766 static const struct soc_device_attribute soc_rcar_gen3[] = {
767         { .soc_id = "r8a7795", },
768         { .soc_id = "r8a7796", },
769         { .soc_id = "r8a77965", },
770         { .soc_id = "r8a77970", },
771         { .soc_id = "r8a77995", },
772         { /* sentinel */ }
773 };
774
775 static int ipmmu_of_xlate(struct device *dev,
776                           struct of_phandle_args *spec)
777 {
778         /* For R-Car Gen3 use a white list to opt-in slave devices */
779         if (soc_device_match(soc_rcar_gen3) && !ipmmu_slave_whitelist(dev))
780                 return -ENODEV;
781
782         iommu_fwspec_add_ids(dev, spec->args, 1);
783
784         /* Initialize once - xlate() will call multiple times */
785         if (to_ipmmu(dev))
786                 return 0;
787
788         return ipmmu_init_platform_device(dev, spec);
789 }
790
791 static int ipmmu_init_arm_mapping(struct device *dev)
792 {
793         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
794         struct iommu_group *group;
795         int ret;
796
797         /* Create a device group and add the device to it. */
798         group = iommu_group_alloc();
799         if (IS_ERR(group)) {
800                 dev_err(dev, "Failed to allocate IOMMU group\n");
801                 return PTR_ERR(group);
802         }
803
804         ret = iommu_group_add_device(group, dev);
805         iommu_group_put(group);
806
807         if (ret < 0) {
808                 dev_err(dev, "Failed to add device to IPMMU group\n");
809                 return ret;
810         }
811
812         /*
813          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
814          * VAs. This will allocate a corresponding IOMMU domain.
815          *
816          * TODO:
817          * - Create one mapping per context (TLB).
818          * - Make the mapping size configurable ? We currently use a 2GB mapping
819          *   at a 1GB offset to ensure that NULL VAs will fault.
820          */
821         if (!mmu->mapping) {
822                 struct dma_iommu_mapping *mapping;
823
824                 mapping = arm_iommu_create_mapping(&platform_bus_type,
825                                                    SZ_1G, SZ_2G);
826                 if (IS_ERR(mapping)) {
827                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
828                         ret = PTR_ERR(mapping);
829                         goto error;
830                 }
831
832                 mmu->mapping = mapping;
833         }
834
835         /* Attach the ARM VA mapping to the device. */
836         ret = arm_iommu_attach_device(dev, mmu->mapping);
837         if (ret < 0) {
838                 dev_err(dev, "Failed to attach device to VA mapping\n");
839                 goto error;
840         }
841
842         return 0;
843
844 error:
845         iommu_group_remove_device(dev);
846         if (mmu->mapping)
847                 arm_iommu_release_mapping(mmu->mapping);
848
849         return ret;
850 }
851
852 static int ipmmu_add_device(struct device *dev)
853 {
854         struct iommu_group *group;
855
856         /*
857          * Only let through devices that have been verified in xlate()
858          */
859         if (!to_ipmmu(dev))
860                 return -ENODEV;
861
862         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
863                 return ipmmu_init_arm_mapping(dev);
864
865         group = iommu_group_get_for_dev(dev);
866         if (IS_ERR(group))
867                 return PTR_ERR(group);
868
869         iommu_group_put(group);
870         return 0;
871 }
872
873 static void ipmmu_remove_device(struct device *dev)
874 {
875         arm_iommu_detach_device(dev);
876         iommu_group_remove_device(dev);
877 }
878
879 static struct iommu_group *ipmmu_find_group(struct device *dev)
880 {
881         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
882         struct iommu_group *group;
883
884         if (mmu->group)
885                 return iommu_group_ref_get(mmu->group);
886
887         group = iommu_group_alloc();
888         if (!IS_ERR(group))
889                 mmu->group = group;
890
891         return group;
892 }
893
894 static const struct iommu_ops ipmmu_ops = {
895         .domain_alloc = ipmmu_domain_alloc,
896         .domain_free = ipmmu_domain_free,
897         .attach_dev = ipmmu_attach_device,
898         .detach_dev = ipmmu_detach_device,
899         .map = ipmmu_map,
900         .unmap = ipmmu_unmap,
901         .flush_iotlb_all = ipmmu_iotlb_sync,
902         .iotlb_sync = ipmmu_iotlb_sync,
903         .iova_to_phys = ipmmu_iova_to_phys,
904         .add_device = ipmmu_add_device,
905         .remove_device = ipmmu_remove_device,
906         .device_group = ipmmu_find_group,
907         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
908         .of_xlate = ipmmu_of_xlate,
909 };
910
911 /* -----------------------------------------------------------------------------
912  * Probe/remove and init
913  */
914
915 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
916 {
917         unsigned int i;
918
919         /* Disable all contexts. */
920         for (i = 0; i < mmu->num_ctx; ++i)
921                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
922 }
923
924 static const struct ipmmu_features ipmmu_features_default = {
925         .use_ns_alias_offset = true,
926         .has_cache_leaf_nodes = false,
927         .number_of_contexts = 1, /* software only tested with one context */
928         .setup_imbuscr = true,
929         .twobit_imttbcr_sl0 = false,
930         .reserved_context = false,
931 };
932
933 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
934         .use_ns_alias_offset = false,
935         .has_cache_leaf_nodes = true,
936         .number_of_contexts = 8,
937         .setup_imbuscr = false,
938         .twobit_imttbcr_sl0 = true,
939         .reserved_context = true,
940 };
941
942 static const struct of_device_id ipmmu_of_ids[] = {
943         {
944                 .compatible = "renesas,ipmmu-vmsa",
945                 .data = &ipmmu_features_default,
946         }, {
947                 .compatible = "renesas,ipmmu-r8a7795",
948                 .data = &ipmmu_features_rcar_gen3,
949         }, {
950                 .compatible = "renesas,ipmmu-r8a7796",
951                 .data = &ipmmu_features_rcar_gen3,
952         }, {
953                 .compatible = "renesas,ipmmu-r8a77965",
954                 .data = &ipmmu_features_rcar_gen3,
955         }, {
956                 .compatible = "renesas,ipmmu-r8a77970",
957                 .data = &ipmmu_features_rcar_gen3,
958         }, {
959                 .compatible = "renesas,ipmmu-r8a77995",
960                 .data = &ipmmu_features_rcar_gen3,
961         }, {
962                 /* Terminator */
963         },
964 };
965
966 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
967
968 static int ipmmu_probe(struct platform_device *pdev)
969 {
970         struct ipmmu_vmsa_device *mmu;
971         struct resource *res;
972         int irq;
973         int ret;
974
975         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
976         if (!mmu) {
977                 dev_err(&pdev->dev, "cannot allocate device data\n");
978                 return -ENOMEM;
979         }
980
981         mmu->dev = &pdev->dev;
982         mmu->num_utlbs = 48;
983         spin_lock_init(&mmu->lock);
984         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
985         mmu->features = of_device_get_match_data(&pdev->dev);
986         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
987
988         /* Map I/O memory and request IRQ. */
989         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
990         mmu->base = devm_ioremap_resource(&pdev->dev, res);
991         if (IS_ERR(mmu->base))
992                 return PTR_ERR(mmu->base);
993
994         /*
995          * The IPMMU has two register banks, for secure and non-secure modes.
996          * The bank mapped at the beginning of the IPMMU address space
997          * corresponds to the running mode of the CPU. When running in secure
998          * mode the non-secure register bank is also available at an offset.
999          *
1000          * Secure mode operation isn't clearly documented and is thus currently
1001          * not implemented in the driver. Furthermore, preliminary tests of
1002          * non-secure operation with the main register bank were not successful.
1003          * Offset the registers base unconditionally to point to the non-secure
1004          * alias space for now.
1005          */
1006         if (mmu->features->use_ns_alias_offset)
1007                 mmu->base += IM_NS_ALIAS_OFFSET;
1008
1009         mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1010                              mmu->features->number_of_contexts);
1011
1012         irq = platform_get_irq(pdev, 0);
1013
1014         /*
1015          * Determine if this IPMMU instance is a root device by checking for
1016          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1017          */
1018         if (!mmu->features->has_cache_leaf_nodes ||
1019             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1020                 mmu->root = mmu;
1021         else
1022                 mmu->root = ipmmu_find_root();
1023
1024         /*
1025          * Wait until the root device has been registered for sure.
1026          */
1027         if (!mmu->root)
1028                 return -EPROBE_DEFER;
1029
1030         /* Root devices have mandatory IRQs */
1031         if (ipmmu_is_root(mmu)) {
1032                 if (irq < 0) {
1033                         dev_err(&pdev->dev, "no IRQ found\n");
1034                         return irq;
1035                 }
1036
1037                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1038                                        dev_name(&pdev->dev), mmu);
1039                 if (ret < 0) {
1040                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1041                         return ret;
1042                 }
1043
1044                 ipmmu_device_reset(mmu);
1045
1046                 if (mmu->features->reserved_context) {
1047                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1048                         set_bit(0, mmu->ctx);
1049                 }
1050         }
1051
1052         /*
1053          * Register the IPMMU to the IOMMU subsystem in the following cases:
1054          * - R-Car Gen2 IPMMU (all devices registered)
1055          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1056          */
1057         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1058                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1059                                              dev_name(&pdev->dev));
1060                 if (ret)
1061                         return ret;
1062
1063                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1064                 iommu_device_set_fwnode(&mmu->iommu,
1065                                         &pdev->dev.of_node->fwnode);
1066
1067                 ret = iommu_device_register(&mmu->iommu);
1068                 if (ret)
1069                         return ret;
1070
1071 #if defined(CONFIG_IOMMU_DMA)
1072                 if (!iommu_present(&platform_bus_type))
1073                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1074 #endif
1075         }
1076
1077         /*
1078          * We can't create the ARM mapping here as it requires the bus to have
1079          * an IOMMU, which only happens when bus_set_iommu() is called in
1080          * ipmmu_init() after the probe function returns.
1081          */
1082
1083         platform_set_drvdata(pdev, mmu);
1084
1085         return 0;
1086 }
1087
1088 static int ipmmu_remove(struct platform_device *pdev)
1089 {
1090         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1091
1092         iommu_device_sysfs_remove(&mmu->iommu);
1093         iommu_device_unregister(&mmu->iommu);
1094
1095         arm_iommu_release_mapping(mmu->mapping);
1096
1097         ipmmu_device_reset(mmu);
1098
1099         return 0;
1100 }
1101
1102 static struct platform_driver ipmmu_driver = {
1103         .driver = {
1104                 .name = "ipmmu-vmsa",
1105                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1106         },
1107         .probe = ipmmu_probe,
1108         .remove = ipmmu_remove,
1109 };
1110
1111 static int __init ipmmu_init(void)
1112 {
1113         struct device_node *np;
1114         static bool setup_done;
1115         int ret;
1116
1117         if (setup_done)
1118                 return 0;
1119
1120         np = of_find_matching_node(NULL, ipmmu_of_ids);
1121         if (!np)
1122                 return 0;
1123
1124         of_node_put(np);
1125
1126         ret = platform_driver_register(&ipmmu_driver);
1127         if (ret < 0)
1128                 return ret;
1129
1130 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1131         if (!iommu_present(&platform_bus_type))
1132                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1133 #endif
1134
1135         setup_done = true;
1136         return 0;
1137 }
1138
1139 static void __exit ipmmu_exit(void)
1140 {
1141         return platform_driver_unregister(&ipmmu_driver);
1142 }
1143
1144 subsys_initcall(ipmmu_init);
1145 module_exit(ipmmu_exit);
1146
1147 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1148 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1149 MODULE_LICENSE("GPL v2");