GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69         if (debug & DBG_HFC_CALL_TRACE)
70                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72         if (hw->ctrl_cnt) {
73                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75                 hw->ctrl_urb->transfer_buffer = NULL;
76                 hw->ctrl_urb->transfer_buffer_length = 0;
77                 hw->ctrl_write.wIndex =
78                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79                 hw->ctrl_write.wValue =
80                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83         }
84 }
85
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92         struct ctrl_buf *buf;
93
94         if (debug & DBG_HFC_CALL_TRACE)
95                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96                        hw->name, __func__, reg, val);
97
98         spin_lock(&hw->ctrl_lock);
99         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100                 spin_unlock(&hw->ctrl_lock);
101                 return 1;
102         }
103         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104         buf->hfcs_reg = reg;
105         buf->reg_val = val;
106         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107                 hw->ctrl_in_idx = 0;
108         if (++hw->ctrl_cnt == 1)
109                 ctrl_start_transfer(hw);
110         spin_unlock(&hw->ctrl_lock);
111
112         return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121         if (debug & DBG_HFC_CALL_TRACE)
122                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124         urb->dev = hw->dev;
125         if (hw->ctrl_cnt) {
126                 hw->ctrl_cnt--; /* decrement actual count */
127                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128                         hw->ctrl_out_idx = 0;   /* pointer wrap */
129
130                 ctrl_start_transfer(hw); /* start next transfer */
131         }
132 }
133
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138         if (set_on) {
139                 if (led_bits < 0)
140                         hw->led_state &= ~abs(led_bits);
141                 else
142                         hw->led_state |= led_bits;
143         } else {
144                 if (led_bits < 0)
145                         hw->led_state |= abs(led_bits);
146                 else
147                         hw->led_state &= ~led_bits;
148         }
149 }
150
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156                 hfcsusb_idtab[hw->vend_idx].driver_info;
157         __u8 tmpled;
158
159         if (driver_info->led_scheme == LED_OFF)
160                 return;
161         tmpled = hw->led_state;
162
163         switch (event) {
164         case LED_POWER_ON:
165                 set_led_bit(hw, driver_info->led_bits[0], 1);
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 set_led_bit(hw, driver_info->led_bits[2], 0);
168                 set_led_bit(hw, driver_info->led_bits[3], 0);
169                 break;
170         case LED_POWER_OFF:
171                 set_led_bit(hw, driver_info->led_bits[0], 0);
172                 set_led_bit(hw, driver_info->led_bits[1], 0);
173                 set_led_bit(hw, driver_info->led_bits[2], 0);
174                 set_led_bit(hw, driver_info->led_bits[3], 0);
175                 break;
176         case LED_S0_ON:
177                 set_led_bit(hw, driver_info->led_bits[1], 1);
178                 break;
179         case LED_S0_OFF:
180                 set_led_bit(hw, driver_info->led_bits[1], 0);
181                 break;
182         case LED_B1_ON:
183                 set_led_bit(hw, driver_info->led_bits[2], 1);
184                 break;
185         case LED_B1_OFF:
186                 set_led_bit(hw, driver_info->led_bits[2], 0);
187                 break;
188         case LED_B2_ON:
189                 set_led_bit(hw, driver_info->led_bits[3], 1);
190                 break;
191         case LED_B2_OFF:
192                 set_led_bit(hw, driver_info->led_bits[3], 0);
193                 break;
194         }
195
196         if (hw->led_state != tmpled) {
197                 if (debug & DBG_HFC_CALL_TRACE)
198                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199                                hw->name, __func__,
200                                HFCUSB_P_DATA, hw->led_state);
201
202                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203         }
204 }
205
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
213         struct hfcsusb          *hw = bch->hw;
214         int                     ret = -EINVAL;
215         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
216         u_long                  flags;
217
218         if (debug & DBG_HFC_CALL_TRACE)
219                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221         switch (hh->prim) {
222         case PH_DATA_REQ:
223                 spin_lock_irqsave(&hw->lock, flags);
224                 ret = bchannel_senddata(bch, skb);
225                 spin_unlock_irqrestore(&hw->lock, flags);
226                 if (debug & DBG_HFC_CALL_TRACE)
227                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228                                hw->name, __func__, ret);
229                 if (ret > 0)
230                         ret = 0;
231                 return ret;
232         case PH_ACTIVATE_REQ:
233                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234                         hfcsusb_start_endpoint(hw, bch->nr - 1);
235                         ret = hfcsusb_setup_bch(bch, ch->protocol);
236                 } else
237                         ret = 0;
238                 if (!ret)
239                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240                                     0, NULL, GFP_KERNEL);
241                 break;
242         case PH_DEACTIVATE_REQ:
243                 deactivate_bchannel(bch);
244                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245                             0, NULL, GFP_KERNEL);
246                 ret = 0;
247                 break;
248         }
249         if (!ret)
250                 dev_kfree_skb(skb);
251         return ret;
252 }
253
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261         struct ph_info *phi;
262         struct dchannel *dch = &hw->dch;
263         int i;
264
265         phi = kzalloc(sizeof(struct ph_info) +
266                       dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267         phi->dch.ch.protocol = hw->protocol;
268         phi->dch.ch.Flags = dch->Flags;
269         phi->dch.state = dch->state;
270         phi->dch.num_bch = dch->dev.nrbchan;
271         for (i = 0; i < dch->dev.nrbchan; i++) {
272                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273                 phi->bch[i].Flags = hw->bch[i].Flags;
274         }
275         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276                     sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277                     sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278         kfree(phi);
279 }
280
281 /*
282  * Layer2 -> Layer 1 Dchannel data
283  */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
288         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
289         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
290         struct hfcsusb          *hw = dch->hw;
291         int                     ret = -EINVAL;
292         u_long                  flags;
293
294         switch (hh->prim) {
295         case PH_DATA_REQ:
296                 if (debug & DBG_HFC_CALL_TRACE)
297                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298                                hw->name, __func__);
299
300                 spin_lock_irqsave(&hw->lock, flags);
301                 ret = dchannel_senddata(dch, skb);
302                 spin_unlock_irqrestore(&hw->lock, flags);
303                 if (ret > 0) {
304                         ret = 0;
305                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306                 }
307                 break;
308
309         case PH_ACTIVATE_REQ:
310                 if (debug & DBG_HFC_CALL_TRACE)
311                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312                                hw->name, __func__,
313                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315                 if (hw->protocol == ISDN_P_NT_S0) {
316                         ret = 0;
317                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318                                 _queue_data(&dch->dev.D,
319                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320                                             NULL, GFP_ATOMIC);
321                         } else {
322                                 hfcsusb_ph_command(hw,
323                                                    HFC_L1_ACTIVATE_NT);
324                                 test_and_set_bit(FLG_L2_ACTIVATED,
325                                                  &dch->Flags);
326                         }
327                 } else {
328                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329                         ret = l1_event(dch->l1, hh->prim);
330                 }
331                 break;
332
333         case PH_DEACTIVATE_REQ:
334                 if (debug & DBG_HFC_CALL_TRACE)
335                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336                                hw->name, __func__);
337                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339                 if (hw->protocol == ISDN_P_NT_S0) {
340                         struct sk_buff_head free_queue;
341
342                         __skb_queue_head_init(&free_queue);
343                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
344                         spin_lock_irqsave(&hw->lock, flags);
345                         skb_queue_splice_init(&dch->squeue, &free_queue);
346                         if (dch->tx_skb) {
347                                 __skb_queue_tail(&free_queue, dch->tx_skb);
348                                 dch->tx_skb = NULL;
349                         }
350                         dch->tx_idx = 0;
351                         if (dch->rx_skb) {
352                                 __skb_queue_tail(&free_queue, dch->rx_skb);
353                                 dch->rx_skb = NULL;
354                         }
355                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
356                         spin_unlock_irqrestore(&hw->lock, flags);
357                         __skb_queue_purge(&free_queue);
358 #ifdef FIXME
359                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
360                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
361 #endif
362                         ret = 0;
363                 } else
364                         ret = l1_event(dch->l1, hh->prim);
365                 break;
366         case MPH_INFORMATION_REQ:
367                 hfcsusb_ph_info(hw);
368                 ret = 0;
369                 break;
370         }
371
372         return ret;
373 }
374
375 /*
376  * Layer 1 callback function
377  */
378 static int
379 hfc_l1callback(struct dchannel *dch, u_int cmd)
380 {
381         struct hfcsusb *hw = dch->hw;
382
383         if (debug & DBG_HFC_CALL_TRACE)
384                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
385                        hw->name, __func__, cmd);
386
387         switch (cmd) {
388         case INFO3_P8:
389         case INFO3_P10:
390         case HW_RESET_REQ:
391         case HW_POWERUP_REQ:
392                 break;
393
394         case HW_DEACT_REQ:
395                 skb_queue_purge(&dch->squeue);
396                 if (dch->tx_skb) {
397                         dev_kfree_skb(dch->tx_skb);
398                         dch->tx_skb = NULL;
399                 }
400                 dch->tx_idx = 0;
401                 if (dch->rx_skb) {
402                         dev_kfree_skb(dch->rx_skb);
403                         dch->rx_skb = NULL;
404                 }
405                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
406                 break;
407         case PH_ACTIVATE_IND:
408                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
409                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
410                             GFP_ATOMIC);
411                 break;
412         case PH_DEACTIVATE_IND:
413                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
414                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
415                             GFP_ATOMIC);
416                 break;
417         default:
418                 if (dch->debug & DEBUG_HW)
419                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
420                                hw->name, __func__, cmd);
421                 return -1;
422         }
423         hfcsusb_ph_info(hw);
424         return 0;
425 }
426
427 static int
428 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
429               struct channel_req *rq)
430 {
431         int err = 0;
432
433         if (debug & DEBUG_HW_OPEN)
434                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
435                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
436                        __builtin_return_address(0));
437         if (rq->protocol == ISDN_P_NONE)
438                 return -EINVAL;
439
440         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
441         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
442         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
443
444         /* E-Channel logging */
445         if (rq->adr.channel == 1) {
446                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
447                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
448                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
449                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
450                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
451                 } else
452                         return -EINVAL;
453         }
454
455         if (!hw->initdone) {
456                 hw->protocol = rq->protocol;
457                 if (rq->protocol == ISDN_P_TE_S0) {
458                         err = create_l1(&hw->dch, hfc_l1callback);
459                         if (err)
460                                 return err;
461                 }
462                 setPortMode(hw);
463                 ch->protocol = rq->protocol;
464                 hw->initdone = 1;
465         } else {
466                 if (rq->protocol != ch->protocol)
467                         return -EPROTONOSUPPORT;
468         }
469
470         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
471             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
472                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
473                             0, NULL, GFP_KERNEL);
474         rq->ch = ch;
475         if (!try_module_get(THIS_MODULE))
476                 printk(KERN_WARNING "%s: %s: cannot get module\n",
477                        hw->name, __func__);
478         return 0;
479 }
480
481 static int
482 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
483 {
484         struct bchannel         *bch;
485
486         if (rq->adr.channel == 0 || rq->adr.channel > 2)
487                 return -EINVAL;
488         if (rq->protocol == ISDN_P_NONE)
489                 return -EINVAL;
490
491         if (debug & DBG_HFC_CALL_TRACE)
492                 printk(KERN_DEBUG "%s: %s B%i\n",
493                        hw->name, __func__, rq->adr.channel);
494
495         bch = &hw->bch[rq->adr.channel - 1];
496         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
497                 return -EBUSY; /* b-channel can be only open once */
498         bch->ch.protocol = rq->protocol;
499         rq->ch = &bch->ch;
500
501         if (!try_module_get(THIS_MODULE))
502                 printk(KERN_WARNING "%s: %s:cannot get module\n",
503                        hw->name, __func__);
504         return 0;
505 }
506
507 static int
508 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
509 {
510         int ret = 0;
511
512         if (debug & DBG_HFC_CALL_TRACE)
513                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
514                        hw->name, __func__, (cq->op), (cq->channel));
515
516         switch (cq->op) {
517         case MISDN_CTRL_GETOP:
518                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
519                         MISDN_CTRL_DISCONNECT;
520                 break;
521         default:
522                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
523                        hw->name, __func__, cq->op);
524                 ret = -EINVAL;
525                 break;
526         }
527         return ret;
528 }
529
530 /*
531  * device control function
532  */
533 static int
534 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
535 {
536         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
537         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
538         struct hfcsusb          *hw = dch->hw;
539         struct channel_req      *rq;
540         int                     err = 0;
541
542         if (dch->debug & DEBUG_HW)
543                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
544                        hw->name, __func__, cmd, arg);
545         switch (cmd) {
546         case OPEN_CHANNEL:
547                 rq = arg;
548                 if ((rq->protocol == ISDN_P_TE_S0) ||
549                     (rq->protocol == ISDN_P_NT_S0))
550                         err = open_dchannel(hw, ch, rq);
551                 else
552                         err = open_bchannel(hw, rq);
553                 if (!err)
554                         hw->open++;
555                 break;
556         case CLOSE_CHANNEL:
557                 hw->open--;
558                 if (debug & DEBUG_HW_OPEN)
559                         printk(KERN_DEBUG
560                                "%s: %s: dev(%d) close from %p (open %d)\n",
561                                hw->name, __func__, hw->dch.dev.id,
562                                __builtin_return_address(0), hw->open);
563                 if (!hw->open) {
564                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
565                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
566                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
567                         handle_led(hw, LED_POWER_ON);
568                 }
569                 module_put(THIS_MODULE);
570                 break;
571         case CONTROL_CHANNEL:
572                 err = channel_ctrl(hw, arg);
573                 break;
574         default:
575                 if (dch->debug & DEBUG_HW)
576                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
577                                hw->name, __func__, cmd);
578                 return -EINVAL;
579         }
580         return err;
581 }
582
583 /*
584  * S0 TE state change event handler
585  */
586 static void
587 ph_state_te(struct dchannel *dch)
588 {
589         struct hfcsusb *hw = dch->hw;
590
591         if (debug & DEBUG_HW) {
592                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
593                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
594                                HFC_TE_LAYER1_STATES[dch->state]);
595                 else
596                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
597                                hw->name, __func__, dch->state);
598         }
599
600         switch (dch->state) {
601         case 0:
602                 l1_event(dch->l1, HW_RESET_IND);
603                 break;
604         case 3:
605                 l1_event(dch->l1, HW_DEACT_IND);
606                 break;
607         case 5:
608         case 8:
609                 l1_event(dch->l1, ANYSIGNAL);
610                 break;
611         case 6:
612                 l1_event(dch->l1, INFO2);
613                 break;
614         case 7:
615                 l1_event(dch->l1, INFO4_P8);
616                 break;
617         }
618         if (dch->state == 7)
619                 handle_led(hw, LED_S0_ON);
620         else
621                 handle_led(hw, LED_S0_OFF);
622 }
623
624 /*
625  * S0 NT state change event handler
626  */
627 static void
628 ph_state_nt(struct dchannel *dch)
629 {
630         struct hfcsusb *hw = dch->hw;
631
632         if (debug & DEBUG_HW) {
633                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
634                         printk(KERN_DEBUG "%s: %s: %s\n",
635                                hw->name, __func__,
636                                HFC_NT_LAYER1_STATES[dch->state]);
637
638                 else
639                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
640                                hw->name, __func__, dch->state);
641         }
642
643         switch (dch->state) {
644         case (1):
645                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
646                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
647                 hw->nt_timer = 0;
648                 hw->timers &= ~NT_ACTIVATION_TIMER;
649                 handle_led(hw, LED_S0_OFF);
650                 break;
651
652         case (2):
653                 if (hw->nt_timer < 0) {
654                         hw->nt_timer = 0;
655                         hw->timers &= ~NT_ACTIVATION_TIMER;
656                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
657                 } else {
658                         hw->timers |= NT_ACTIVATION_TIMER;
659                         hw->nt_timer = NT_T1_COUNT;
660                         /* allow G2 -> G3 transition */
661                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
662                 }
663                 break;
664         case (3):
665                 hw->nt_timer = 0;
666                 hw->timers &= ~NT_ACTIVATION_TIMER;
667                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
668                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
669                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
670                 handle_led(hw, LED_S0_ON);
671                 break;
672         case (4):
673                 hw->nt_timer = 0;
674                 hw->timers &= ~NT_ACTIVATION_TIMER;
675                 break;
676         default:
677                 break;
678         }
679         hfcsusb_ph_info(hw);
680 }
681
682 static void
683 ph_state(struct dchannel *dch)
684 {
685         struct hfcsusb *hw = dch->hw;
686
687         if (hw->protocol == ISDN_P_NT_S0)
688                 ph_state_nt(dch);
689         else if (hw->protocol == ISDN_P_TE_S0)
690                 ph_state_te(dch);
691 }
692
693 /*
694  * disable/enable BChannel for desired protocoll
695  */
696 static int
697 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
698 {
699         struct hfcsusb *hw = bch->hw;
700         __u8 conhdlc, sctrl, sctrl_r;
701
702         if (debug & DEBUG_HW)
703                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
704                        hw->name, __func__, bch->state, protocol,
705                        bch->nr);
706
707         /* setup val for CON_HDLC */
708         conhdlc = 0;
709         if (protocol > ISDN_P_NONE)
710                 conhdlc = 8;    /* enable FIFO */
711
712         switch (protocol) {
713         case (-1):      /* used for init */
714                 bch->state = -1;
715                 /* fall through */
716         case (ISDN_P_NONE):
717                 if (bch->state == ISDN_P_NONE)
718                         return 0; /* already in idle state */
719                 bch->state = ISDN_P_NONE;
720                 clear_bit(FLG_HDLC, &bch->Flags);
721                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
722                 break;
723         case (ISDN_P_B_RAW):
724                 conhdlc |= 2;
725                 bch->state = protocol;
726                 set_bit(FLG_TRANSPARENT, &bch->Flags);
727                 break;
728         case (ISDN_P_B_HDLC):
729                 bch->state = protocol;
730                 set_bit(FLG_HDLC, &bch->Flags);
731                 break;
732         default:
733                 if (debug & DEBUG_HW)
734                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
735                                hw->name, __func__, protocol);
736                 return -ENOPROTOOPT;
737         }
738
739         if (protocol >= ISDN_P_NONE) {
740                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
741                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
742                 write_reg(hw, HFCUSB_INC_RES_F, 2);
743                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
744                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
745                 write_reg(hw, HFCUSB_INC_RES_F, 2);
746
747                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
748                 sctrl_r = 0x0;
749                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
750                         sctrl |= 1;
751                         sctrl_r |= 1;
752                 }
753                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
754                         sctrl |= 2;
755                         sctrl_r |= 2;
756                 }
757                 write_reg(hw, HFCUSB_SCTRL, sctrl);
758                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
759
760                 if (protocol > ISDN_P_NONE)
761                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
762                 else
763                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
764                                    LED_B2_OFF);
765         }
766         hfcsusb_ph_info(hw);
767         return 0;
768 }
769
770 static void
771 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
772 {
773         if (debug & DEBUG_HW)
774                 printk(KERN_DEBUG "%s: %s: %x\n",
775                        hw->name, __func__, command);
776
777         switch (command) {
778         case HFC_L1_ACTIVATE_TE:
779                 /* force sending sending INFO1 */
780                 write_reg(hw, HFCUSB_STATES, 0x14);
781                 /* start l1 activation */
782                 write_reg(hw, HFCUSB_STATES, 0x04);
783                 break;
784
785         case HFC_L1_FORCE_DEACTIVATE_TE:
786                 write_reg(hw, HFCUSB_STATES, 0x10);
787                 write_reg(hw, HFCUSB_STATES, 0x03);
788                 break;
789
790         case HFC_L1_ACTIVATE_NT:
791                 if (hw->dch.state == 3)
792                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
793                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
794                 else
795                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
796                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
797                 break;
798
799         case HFC_L1_DEACTIVATE_NT:
800                 write_reg(hw, HFCUSB_STATES,
801                           HFCUSB_DO_ACTION);
802                 break;
803         }
804 }
805
806 /*
807  * Layer 1 B-channel hardware access
808  */
809 static int
810 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
811 {
812         return mISDN_ctrl_bchannel(bch, cq);
813 }
814
815 /* collect data from incoming interrupt or isochron USB data */
816 static void
817 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
818                  int finish)
819 {
820         struct hfcsusb  *hw = fifo->hw;
821         struct sk_buff  *rx_skb = NULL;
822         int             maxlen = 0;
823         int             fifon = fifo->fifonum;
824         int             i;
825         int             hdlc = 0;
826
827         if (debug & DBG_HFC_CALL_TRACE)
828                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
829                        "dch(%p) bch(%p) ech(%p)\n",
830                        hw->name, __func__, fifon, len,
831                        fifo->dch, fifo->bch, fifo->ech);
832
833         if (!len)
834                 return;
835
836         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
837                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
838                        hw->name, __func__);
839                 return;
840         }
841
842         spin_lock(&hw->lock);
843         if (fifo->dch) {
844                 rx_skb = fifo->dch->rx_skb;
845                 maxlen = fifo->dch->maxlen;
846                 hdlc = 1;
847         }
848         if (fifo->bch) {
849                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
850                         fifo->bch->dropcnt += len;
851                         spin_unlock(&hw->lock);
852                         return;
853                 }
854                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
855                 rx_skb = fifo->bch->rx_skb;
856                 if (maxlen < 0) {
857                         if (rx_skb)
858                                 skb_trim(rx_skb, 0);
859                         pr_warning("%s.B%d: No bufferspace for %d bytes\n",
860                                    hw->name, fifo->bch->nr, len);
861                         spin_unlock(&hw->lock);
862                         return;
863                 }
864                 maxlen = fifo->bch->maxlen;
865                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
866         }
867         if (fifo->ech) {
868                 rx_skb = fifo->ech->rx_skb;
869                 maxlen = fifo->ech->maxlen;
870                 hdlc = 1;
871         }
872
873         if (fifo->dch || fifo->ech) {
874                 if (!rx_skb) {
875                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
876                         if (rx_skb) {
877                                 if (fifo->dch)
878                                         fifo->dch->rx_skb = rx_skb;
879                                 if (fifo->ech)
880                                         fifo->ech->rx_skb = rx_skb;
881                                 skb_trim(rx_skb, 0);
882                         } else {
883                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
884                                        hw->name, __func__);
885                                 spin_unlock(&hw->lock);
886                                 return;
887                         }
888                 }
889                 /* D/E-Channel SKB range check */
890                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
891                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
892                                "for fifo(%d) HFCUSB_D_RX\n",
893                                hw->name, __func__, fifon);
894                         skb_trim(rx_skb, 0);
895                         spin_unlock(&hw->lock);
896                         return;
897                 }
898         }
899
900         memcpy(skb_put(rx_skb, len), data, len);
901
902         if (hdlc) {
903                 /* we have a complete hdlc packet */
904                 if (finish) {
905                         if ((rx_skb->len > 3) &&
906                             (!(rx_skb->data[rx_skb->len - 1]))) {
907                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
908                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
909                                                " new RX len(%i): ",
910                                                hw->name, __func__, fifon,
911                                                rx_skb->len);
912                                         i = 0;
913                                         while (i < rx_skb->len)
914                                                 printk("%02x ",
915                                                        rx_skb->data[i++]);
916                                         printk("\n");
917                                 }
918
919                                 /* remove CRC & status */
920                                 skb_trim(rx_skb, rx_skb->len - 3);
921
922                                 if (fifo->dch)
923                                         recv_Dchannel(fifo->dch);
924                                 if (fifo->bch)
925                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
926                                                       0);
927                                 if (fifo->ech)
928                                         recv_Echannel(fifo->ech,
929                                                       &hw->dch);
930                         } else {
931                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
932                                         printk(KERN_DEBUG
933                                                "%s: CRC or minlen ERROR fifon(%i) "
934                                                "RX len(%i): ",
935                                                hw->name, fifon, rx_skb->len);
936                                         i = 0;
937                                         while (i < rx_skb->len)
938                                                 printk("%02x ",
939                                                        rx_skb->data[i++]);
940                                         printk("\n");
941                                 }
942                                 skb_trim(rx_skb, 0);
943                         }
944                 }
945         } else {
946                 /* deliver transparent data to layer2 */
947                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
948         }
949         spin_unlock(&hw->lock);
950 }
951
952 static void
953 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
954               void *buf, int num_packets, int packet_size, int interval,
955               usb_complete_t complete, void *context)
956 {
957         int k;
958
959         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
960                           complete, context);
961
962         urb->number_of_packets = num_packets;
963         urb->transfer_flags = URB_ISO_ASAP;
964         urb->actual_length = 0;
965         urb->interval = interval;
966
967         for (k = 0; k < num_packets; k++) {
968                 urb->iso_frame_desc[k].offset = packet_size * k;
969                 urb->iso_frame_desc[k].length = packet_size;
970                 urb->iso_frame_desc[k].actual_length = 0;
971         }
972 }
973
974 /* receive completion routine for all ISO tx fifos   */
975 static void
976 rx_iso_complete(struct urb *urb)
977 {
978         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
979         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
980         struct hfcsusb *hw = fifo->hw;
981         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
982                 status, iso_status, i;
983         __u8 *buf;
984         static __u8 eof[8];
985         __u8 s0_state;
986
987         fifon = fifo->fifonum;
988         status = urb->status;
989
990         spin_lock(&hw->lock);
991         if (fifo->stop_gracefull) {
992                 fifo->stop_gracefull = 0;
993                 fifo->active = 0;
994                 spin_unlock(&hw->lock);
995                 return;
996         }
997         spin_unlock(&hw->lock);
998
999         /*
1000          * ISO transfer only partially completed,
1001          * look at individual frame status for details
1002          */
1003         if (status == -EXDEV) {
1004                 if (debug & DEBUG_HW)
1005                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1006                                "urb->status %d, fifonum %d\n",
1007                                hw->name, __func__,  status, fifon);
1008
1009                 /* clear status, so go on with ISO transfers */
1010                 status = 0;
1011         }
1012
1013         s0_state = 0;
1014         if (fifo->active && !status) {
1015                 num_isoc_packets = iso_packets[fifon];
1016                 maxlen = fifo->usb_packet_maxlen;
1017
1018                 for (k = 0; k < num_isoc_packets; ++k) {
1019                         len = urb->iso_frame_desc[k].actual_length;
1020                         offset = urb->iso_frame_desc[k].offset;
1021                         buf = context_iso_urb->buffer + offset;
1022                         iso_status = urb->iso_frame_desc[k].status;
1023
1024                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1025                                 printk(KERN_DEBUG "%s: %s: "
1026                                        "ISO packet %i, status: %i\n",
1027                                        hw->name, __func__, k, iso_status);
1028                         }
1029
1030                         /* USB data log for every D ISO in */
1031                         if ((fifon == HFCUSB_D_RX) &&
1032                             (debug & DBG_HFC_USB_VERBOSE)) {
1033                                 printk(KERN_DEBUG
1034                                        "%s: %s: %d (%d/%d) len(%d) ",
1035                                        hw->name, __func__, urb->start_frame,
1036                                        k, num_isoc_packets - 1,
1037                                        len);
1038                                 for (i = 0; i < len; i++)
1039                                         printk("%x ", buf[i]);
1040                                 printk("\n");
1041                         }
1042
1043                         if (!iso_status) {
1044                                 if (fifo->last_urblen != maxlen) {
1045                                         /*
1046                                          * save fifo fill-level threshold bits
1047                                          * to use them later in TX ISO URB
1048                                          * completions
1049                                          */
1050                                         hw->threshold_mask = buf[1];
1051
1052                                         if (fifon == HFCUSB_D_RX)
1053                                                 s0_state = (buf[0] >> 4);
1054
1055                                         eof[fifon] = buf[0] & 1;
1056                                         if (len > 2)
1057                                                 hfcsusb_rx_frame(fifo, buf + 2,
1058                                                                  len - 2, (len < maxlen)
1059                                                                  ? eof[fifon] : 0);
1060                                 } else
1061                                         hfcsusb_rx_frame(fifo, buf, len,
1062                                                          (len < maxlen) ?
1063                                                          eof[fifon] : 0);
1064                                 fifo->last_urblen = len;
1065                         }
1066                 }
1067
1068                 /* signal S0 layer1 state change */
1069                 if ((s0_state) && (hw->initdone) &&
1070                     (s0_state != hw->dch.state)) {
1071                         hw->dch.state = s0_state;
1072                         schedule_event(&hw->dch, FLG_PHCHANGE);
1073                 }
1074
1075                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1076                               context_iso_urb->buffer, num_isoc_packets,
1077                               fifo->usb_packet_maxlen, fifo->intervall,
1078                               (usb_complete_t)rx_iso_complete, urb->context);
1079                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1080                 if (errcode < 0) {
1081                         if (debug & DEBUG_HW)
1082                                 printk(KERN_DEBUG "%s: %s: error submitting "
1083                                        "ISO URB: %d\n",
1084                                        hw->name, __func__, errcode);
1085                 }
1086         } else {
1087                 if (status && (debug & DBG_HFC_URB_INFO))
1088                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1089                                "urb->status %d, fifonum %d\n",
1090                                hw->name, __func__, status, fifon);
1091         }
1092 }
1093
1094 /* receive completion routine for all interrupt rx fifos */
1095 static void
1096 rx_int_complete(struct urb *urb)
1097 {
1098         int len, status, i;
1099         __u8 *buf, maxlen, fifon;
1100         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1101         struct hfcsusb *hw = fifo->hw;
1102         static __u8 eof[8];
1103
1104         spin_lock(&hw->lock);
1105         if (fifo->stop_gracefull) {
1106                 fifo->stop_gracefull = 0;
1107                 fifo->active = 0;
1108                 spin_unlock(&hw->lock);
1109                 return;
1110         }
1111         spin_unlock(&hw->lock);
1112
1113         fifon = fifo->fifonum;
1114         if ((!fifo->active) || (urb->status)) {
1115                 if (debug & DBG_HFC_URB_ERROR)
1116                         printk(KERN_DEBUG
1117                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1118                                hw->name, __func__, fifon, urb->status);
1119
1120                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1121                 return;
1122         }
1123         len = urb->actual_length;
1124         buf = fifo->buffer;
1125         maxlen = fifo->usb_packet_maxlen;
1126
1127         /* USB data log for every D INT in */
1128         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1129                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1130                        hw->name, __func__, len);
1131                 for (i = 0; i < len; i++)
1132                         printk("%02x ", buf[i]);
1133                 printk("\n");
1134         }
1135
1136         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1137                 /* the threshold mask is in the 2nd status byte */
1138                 hw->threshold_mask = buf[1];
1139
1140                 /* signal S0 layer1 state change */
1141                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1142                         hw->dch.state = (buf[0] >> 4);
1143                         schedule_event(&hw->dch, FLG_PHCHANGE);
1144                 }
1145
1146                 eof[fifon] = buf[0] & 1;
1147                 /* if we have more than the 2 status bytes -> collect data */
1148                 if (len > 2)
1149                         hfcsusb_rx_frame(fifo, buf + 2,
1150                                          urb->actual_length - 2,
1151                                          (len < maxlen) ? eof[fifon] : 0);
1152         } else {
1153                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1154                                  (len < maxlen) ? eof[fifon] : 0);
1155         }
1156         fifo->last_urblen = urb->actual_length;
1157
1158         status = usb_submit_urb(urb, GFP_ATOMIC);
1159         if (status) {
1160                 if (debug & DEBUG_HW)
1161                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1162                                hw->name, __func__);
1163         }
1164 }
1165
1166 /* transmit completion routine for all ISO tx fifos */
1167 static void
1168 tx_iso_complete(struct urb *urb)
1169 {
1170         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1171         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1172         struct hfcsusb *hw = fifo->hw;
1173         struct sk_buff *tx_skb;
1174         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1175                 errcode, hdlc, i;
1176         int *tx_idx;
1177         int frame_complete, fifon, status, fillempty = 0;
1178         __u8 threshbit, *p;
1179
1180         spin_lock(&hw->lock);
1181         if (fifo->stop_gracefull) {
1182                 fifo->stop_gracefull = 0;
1183                 fifo->active = 0;
1184                 spin_unlock(&hw->lock);
1185                 return;
1186         }
1187
1188         if (fifo->dch) {
1189                 tx_skb = fifo->dch->tx_skb;
1190                 tx_idx = &fifo->dch->tx_idx;
1191                 hdlc = 1;
1192         } else if (fifo->bch) {
1193                 tx_skb = fifo->bch->tx_skb;
1194                 tx_idx = &fifo->bch->tx_idx;
1195                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1196                 if (!tx_skb && !hdlc &&
1197                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1198                         fillempty = 1;
1199         } else {
1200                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1201                        hw->name, __func__);
1202                 spin_unlock(&hw->lock);
1203                 return;
1204         }
1205
1206         fifon = fifo->fifonum;
1207         status = urb->status;
1208
1209         tx_offset = 0;
1210
1211         /*
1212          * ISO transfer only partially completed,
1213          * look at individual frame status for details
1214          */
1215         if (status == -EXDEV) {
1216                 if (debug & DBG_HFC_URB_ERROR)
1217                         printk(KERN_DEBUG "%s: %s: "
1218                                "-EXDEV (%i) fifon (%d)\n",
1219                                hw->name, __func__, status, fifon);
1220
1221                 /* clear status, so go on with ISO transfers */
1222                 status = 0;
1223         }
1224
1225         if (fifo->active && !status) {
1226                 /* is FifoFull-threshold set for our channel? */
1227                 threshbit = (hw->threshold_mask & (1 << fifon));
1228                 num_isoc_packets = iso_packets[fifon];
1229
1230                 /* predict dataflow to avoid fifo overflow */
1231                 if (fifon >= HFCUSB_D_TX)
1232                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1233                 else
1234                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1235                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1236                               context_iso_urb->buffer, num_isoc_packets,
1237                               fifo->usb_packet_maxlen, fifo->intervall,
1238                               (usb_complete_t)tx_iso_complete, urb->context);
1239                 memset(context_iso_urb->buffer, 0,
1240                        sizeof(context_iso_urb->buffer));
1241                 frame_complete = 0;
1242
1243                 for (k = 0; k < num_isoc_packets; ++k) {
1244                         /* analyze tx success of previous ISO packets */
1245                         if (debug & DBG_HFC_URB_ERROR) {
1246                                 errcode = urb->iso_frame_desc[k].status;
1247                                 if (errcode) {
1248                                         printk(KERN_DEBUG "%s: %s: "
1249                                                "ISO packet %i, status: %i\n",
1250                                                hw->name, __func__, k, errcode);
1251                                 }
1252                         }
1253
1254                         /* Generate next ISO Packets */
1255                         if (tx_skb)
1256                                 remain = tx_skb->len - *tx_idx;
1257                         else if (fillempty)
1258                                 remain = 15; /* > not complete */
1259                         else
1260                                 remain = 0;
1261
1262                         if (remain > 0) {
1263                                 fifo->bit_line -= sink;
1264                                 current_len = (0 - fifo->bit_line) / 8;
1265                                 if (current_len > 14)
1266                                         current_len = 14;
1267                                 if (current_len < 0)
1268                                         current_len = 0;
1269                                 if (remain < current_len)
1270                                         current_len = remain;
1271
1272                                 /* how much bit do we put on the line? */
1273                                 fifo->bit_line += current_len * 8;
1274
1275                                 context_iso_urb->buffer[tx_offset] = 0;
1276                                 if (current_len == remain) {
1277                                         if (hdlc) {
1278                                                 /* signal frame completion */
1279                                                 context_iso_urb->
1280                                                         buffer[tx_offset] = 1;
1281                                                 /* add 2 byte flags and 16bit
1282                                                  * CRC at end of ISDN frame */
1283                                                 fifo->bit_line += 32;
1284                                         }
1285                                         frame_complete = 1;
1286                                 }
1287
1288                                 /* copy tx data to iso-urb buffer */
1289                                 p = context_iso_urb->buffer + tx_offset + 1;
1290                                 if (fillempty) {
1291                                         memset(p, fifo->bch->fill[0],
1292                                                current_len);
1293                                 } else {
1294                                         memcpy(p, (tx_skb->data + *tx_idx),
1295                                                current_len);
1296                                         *tx_idx += current_len;
1297                                 }
1298                                 urb->iso_frame_desc[k].offset = tx_offset;
1299                                 urb->iso_frame_desc[k].length = current_len + 1;
1300
1301                                 /* USB data log for every D ISO out */
1302                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1303                                     (debug & DBG_HFC_USB_VERBOSE)) {
1304                                         printk(KERN_DEBUG
1305                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1306                                                hw->name, __func__,
1307                                                k, num_isoc_packets - 1,
1308                                                urb->iso_frame_desc[k].offset,
1309                                                urb->iso_frame_desc[k].length);
1310
1311                                         for (i = urb->iso_frame_desc[k].offset;
1312                                              i < (urb->iso_frame_desc[k].offset
1313                                                   + urb->iso_frame_desc[k].length);
1314                                              i++)
1315                                                 printk("%x ",
1316                                                        context_iso_urb->buffer[i]);
1317
1318                                         printk(" skb->len(%i) tx-idx(%d)\n",
1319                                                tx_skb->len, *tx_idx);
1320                                 }
1321
1322                                 tx_offset += (current_len + 1);
1323                         } else {
1324                                 urb->iso_frame_desc[k].offset = tx_offset++;
1325                                 urb->iso_frame_desc[k].length = 1;
1326                                 /* we lower data margin every msec */
1327                                 fifo->bit_line -= sink;
1328                                 if (fifo->bit_line < BITLINE_INF)
1329                                         fifo->bit_line = BITLINE_INF;
1330                         }
1331
1332                         if (frame_complete) {
1333                                 frame_complete = 0;
1334
1335                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1336                                         printk(KERN_DEBUG  "%s: %s: "
1337                                                "fifon(%i) new TX len(%i): ",
1338                                                hw->name, __func__,
1339                                                fifon, tx_skb->len);
1340                                         i = 0;
1341                                         while (i < tx_skb->len)
1342                                                 printk("%02x ",
1343                                                        tx_skb->data[i++]);
1344                                         printk("\n");
1345                                 }
1346
1347                                 dev_consume_skb_irq(tx_skb);
1348                                 tx_skb = NULL;
1349                                 if (fifo->dch && get_next_dframe(fifo->dch))
1350                                         tx_skb = fifo->dch->tx_skb;
1351                                 else if (fifo->bch &&
1352                                          get_next_bframe(fifo->bch))
1353                                         tx_skb = fifo->bch->tx_skb;
1354                         }
1355                 }
1356                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1357                 if (errcode < 0) {
1358                         if (debug & DEBUG_HW)
1359                                 printk(KERN_DEBUG
1360                                        "%s: %s: error submitting ISO URB: %d \n",
1361                                        hw->name, __func__, errcode);
1362                 }
1363
1364                 /*
1365                  * abuse DChannel tx iso completion to trigger NT mode state
1366                  * changes tx_iso_complete is assumed to be called every
1367                  * fifo->intervall (ms)
1368                  */
1369                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1370                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1371                         if ((--hw->nt_timer) < 0)
1372                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1373                 }
1374
1375         } else {
1376                 if (status && (debug & DBG_HFC_URB_ERROR))
1377                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1378                                "fifonum=%d\n",
1379                                hw->name, __func__,
1380                                symbolic(urb_errlist, status), status, fifon);
1381         }
1382         spin_unlock(&hw->lock);
1383 }
1384
1385 /*
1386  * allocs urbs and start isoc transfer with two pending urbs to avoid
1387  * gaps in the transfer chain
1388  */
1389 static int
1390 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1391                  usb_complete_t complete, int packet_size)
1392 {
1393         struct hfcsusb *hw = fifo->hw;
1394         int i, k, errcode;
1395
1396         if (debug)
1397                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1398                        hw->name, __func__, fifo->fifonum);
1399
1400         /* allocate Memory for Iso out Urbs */
1401         for (i = 0; i < 2; i++) {
1402                 if (!(fifo->iso[i].urb)) {
1403                         fifo->iso[i].urb =
1404                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1405                         if (!(fifo->iso[i].urb)) {
1406                                 printk(KERN_DEBUG
1407                                        "%s: %s: alloc urb for fifo %i failed",
1408                                        hw->name, __func__, fifo->fifonum);
1409                                 continue;
1410                         }
1411                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1412                         fifo->iso[i].indx = i;
1413
1414                         /* Init the first iso */
1415                         if (ISO_BUFFER_SIZE >=
1416                             (fifo->usb_packet_maxlen *
1417                              num_packets_per_urb)) {
1418                                 fill_isoc_urb(fifo->iso[i].urb,
1419                                               fifo->hw->dev, fifo->pipe,
1420                                               fifo->iso[i].buffer,
1421                                               num_packets_per_urb,
1422                                               fifo->usb_packet_maxlen,
1423                                               fifo->intervall, complete,
1424                                               &fifo->iso[i]);
1425                                 memset(fifo->iso[i].buffer, 0,
1426                                        sizeof(fifo->iso[i].buffer));
1427
1428                                 for (k = 0; k < num_packets_per_urb; k++) {
1429                                         fifo->iso[i].urb->
1430                                                 iso_frame_desc[k].offset =
1431                                                 k * packet_size;
1432                                         fifo->iso[i].urb->
1433                                                 iso_frame_desc[k].length =
1434                                                 packet_size;
1435                                 }
1436                         } else {
1437                                 printk(KERN_DEBUG
1438                                        "%s: %s: ISO Buffer size to small!\n",
1439                                        hw->name, __func__);
1440                         }
1441                 }
1442                 fifo->bit_line = BITLINE_INF;
1443
1444                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1445                 fifo->active = (errcode >= 0) ? 1 : 0;
1446                 fifo->stop_gracefull = 0;
1447                 if (errcode < 0) {
1448                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1449                                hw->name, __func__,
1450                                symbolic(urb_errlist, errcode), i);
1451                 }
1452         }
1453         return fifo->active;
1454 }
1455
1456 static void
1457 stop_iso_gracefull(struct usb_fifo *fifo)
1458 {
1459         struct hfcsusb *hw = fifo->hw;
1460         int i, timeout;
1461         u_long flags;
1462
1463         for (i = 0; i < 2; i++) {
1464                 spin_lock_irqsave(&hw->lock, flags);
1465                 if (debug)
1466                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1467                                hw->name, __func__, fifo->fifonum, i);
1468                 fifo->stop_gracefull = 1;
1469                 spin_unlock_irqrestore(&hw->lock, flags);
1470         }
1471
1472         for (i = 0; i < 2; i++) {
1473                 timeout = 3;
1474                 while (fifo->stop_gracefull && timeout--)
1475                         schedule_timeout_interruptible((HZ / 1000) * 16);
1476                 if (debug && fifo->stop_gracefull)
1477                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1478                                hw->name, __func__, fifo->fifonum, i);
1479         }
1480 }
1481
1482 static void
1483 stop_int_gracefull(struct usb_fifo *fifo)
1484 {
1485         struct hfcsusb *hw = fifo->hw;
1486         int timeout;
1487         u_long flags;
1488
1489         spin_lock_irqsave(&hw->lock, flags);
1490         if (debug)
1491                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1492                        hw->name, __func__, fifo->fifonum);
1493         fifo->stop_gracefull = 1;
1494         spin_unlock_irqrestore(&hw->lock, flags);
1495
1496         timeout = 3;
1497         while (fifo->stop_gracefull && timeout--)
1498                 schedule_timeout_interruptible((HZ / 1000) * 3);
1499         if (debug && fifo->stop_gracefull)
1500                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1501                        hw->name, __func__, fifo->fifonum);
1502 }
1503
1504 /* start the interrupt transfer for the given fifo */
1505 static void
1506 start_int_fifo(struct usb_fifo *fifo)
1507 {
1508         struct hfcsusb *hw = fifo->hw;
1509         int errcode;
1510
1511         if (debug)
1512                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1513                        hw->name, __func__, fifo->fifonum);
1514
1515         if (!fifo->urb) {
1516                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1517                 if (!fifo->urb)
1518                         return;
1519         }
1520         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1521                          fifo->buffer, fifo->usb_packet_maxlen,
1522                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1523         fifo->active = 1;
1524         fifo->stop_gracefull = 0;
1525         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1526         if (errcode) {
1527                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1528                        hw->name, __func__, errcode);
1529                 fifo->active = 0;
1530         }
1531 }
1532
1533 static void
1534 setPortMode(struct hfcsusb *hw)
1535 {
1536         if (debug & DEBUG_HW)
1537                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1538                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1539
1540         if (hw->protocol == ISDN_P_TE_S0) {
1541                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1542                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1543                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1544                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1545                 write_reg(hw, HFCUSB_STATES, 3);
1546         } else {
1547                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1548                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1549                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1550                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1551                 write_reg(hw, HFCUSB_STATES, 1);
1552         }
1553 }
1554
1555 static void
1556 reset_hfcsusb(struct hfcsusb *hw)
1557 {
1558         struct usb_fifo *fifo;
1559         int i;
1560
1561         if (debug & DEBUG_HW)
1562                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1563
1564         /* do Chip reset */
1565         write_reg(hw, HFCUSB_CIRM, 8);
1566
1567         /* aux = output, reset off */
1568         write_reg(hw, HFCUSB_CIRM, 0x10);
1569
1570         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1571         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1572                   ((hw->packet_size / 8) << 4));
1573
1574         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1575         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1576
1577         /* enable PCM/GCI master mode */
1578         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1579         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1580
1581         /* init the fifos */
1582         write_reg(hw, HFCUSB_F_THRES,
1583                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1584
1585         fifo = hw->fifos;
1586         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1587                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1588                 fifo[i].max_size =
1589                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1590                 fifo[i].last_urblen = 0;
1591
1592                 /* set 2 bit for D- & E-channel */
1593                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1594
1595                 /* enable all fifos */
1596                 if (i == HFCUSB_D_TX)
1597                         write_reg(hw, HFCUSB_CON_HDLC,
1598                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1599                 else
1600                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1601                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1602         }
1603
1604         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1605         handle_led(hw, LED_POWER_ON);
1606 }
1607
1608 /* start USB data pipes dependand on device's endpoint configuration */
1609 static void
1610 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1611 {
1612         /* quick check if endpoint already running */
1613         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1614                 return;
1615         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1616                 return;
1617         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1618                 return;
1619         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1620                 return;
1621
1622         /* start rx endpoints using USB INT IN method */
1623         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1624                 start_int_fifo(hw->fifos + channel * 2 + 1);
1625
1626         /* start rx endpoints using USB ISO IN method */
1627         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1628                 switch (channel) {
1629                 case HFC_CHAN_D:
1630                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1631                                          ISOC_PACKETS_D,
1632                                          (usb_complete_t)rx_iso_complete,
1633                                          16);
1634                         break;
1635                 case HFC_CHAN_E:
1636                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1637                                          ISOC_PACKETS_D,
1638                                          (usb_complete_t)rx_iso_complete,
1639                                          16);
1640                         break;
1641                 case HFC_CHAN_B1:
1642                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1643                                          ISOC_PACKETS_B,
1644                                          (usb_complete_t)rx_iso_complete,
1645                                          16);
1646                         break;
1647                 case HFC_CHAN_B2:
1648                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1649                                          ISOC_PACKETS_B,
1650                                          (usb_complete_t)rx_iso_complete,
1651                                          16);
1652                         break;
1653                 }
1654         }
1655
1656         /* start tx endpoints using USB ISO OUT method */
1657         switch (channel) {
1658         case HFC_CHAN_D:
1659                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1660                                  ISOC_PACKETS_B,
1661                                  (usb_complete_t)tx_iso_complete, 1);
1662                 break;
1663         case HFC_CHAN_B1:
1664                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1665                                  ISOC_PACKETS_D,
1666                                  (usb_complete_t)tx_iso_complete, 1);
1667                 break;
1668         case HFC_CHAN_B2:
1669                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1670                                  ISOC_PACKETS_B,
1671                                  (usb_complete_t)tx_iso_complete, 1);
1672                 break;
1673         }
1674 }
1675
1676 /* stop USB data pipes dependand on device's endpoint configuration */
1677 static void
1678 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1679 {
1680         /* quick check if endpoint currently running */
1681         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1682                 return;
1683         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1684                 return;
1685         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1686                 return;
1687         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1688                 return;
1689
1690         /* rx endpoints using USB INT IN method */
1691         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1692                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1693
1694         /* rx endpoints using USB ISO IN method */
1695         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1696                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1697
1698         /* tx endpoints using USB ISO OUT method */
1699         if (channel != HFC_CHAN_E)
1700                 stop_iso_gracefull(hw->fifos + channel * 2);
1701 }
1702
1703
1704 /* Hardware Initialization */
1705 static int
1706 setup_hfcsusb(struct hfcsusb *hw)
1707 {
1708         void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1709         u_char b;
1710         int ret;
1711
1712         if (debug & DBG_HFC_CALL_TRACE)
1713                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1714
1715         if (!dmabuf)
1716                 return -ENOMEM;
1717
1718         ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1719
1720         memcpy(&b, dmabuf, sizeof(u_char));
1721         kfree(dmabuf);
1722
1723         /* check the chip id */
1724         if (ret != 1) {
1725                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1726                        hw->name, __func__);
1727                 return 1;
1728         }
1729         if (b != HFCUSB_CHIPID) {
1730                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1731                        hw->name, __func__, b);
1732                 return 1;
1733         }
1734
1735         /* first set the needed config, interface and alternate */
1736         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1737
1738         hw->led_state = 0;
1739
1740         /* init the background machinery for control requests */
1741         hw->ctrl_read.bRequestType = 0xc0;
1742         hw->ctrl_read.bRequest = 1;
1743         hw->ctrl_read.wLength = cpu_to_le16(1);
1744         hw->ctrl_write.bRequestType = 0x40;
1745         hw->ctrl_write.bRequest = 0;
1746         hw->ctrl_write.wLength = 0;
1747         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1748                              (u_char *)&hw->ctrl_write, NULL, 0,
1749                              (usb_complete_t)ctrl_complete, hw);
1750
1751         reset_hfcsusb(hw);
1752         return 0;
1753 }
1754
1755 static void
1756 release_hw(struct hfcsusb *hw)
1757 {
1758         if (debug & DBG_HFC_CALL_TRACE)
1759                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1760
1761         /*
1762          * stop all endpoints gracefully
1763          * TODO: mISDN_core should generate CLOSE_CHANNEL
1764          *       signals after calling mISDN_unregister_device()
1765          */
1766         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1767         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1768         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1769         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1770                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1771         if (hw->protocol == ISDN_P_TE_S0)
1772                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1773
1774         mISDN_unregister_device(&hw->dch.dev);
1775         mISDN_freebchannel(&hw->bch[1]);
1776         mISDN_freebchannel(&hw->bch[0]);
1777         mISDN_freedchannel(&hw->dch);
1778
1779         if (hw->ctrl_urb) {
1780                 usb_kill_urb(hw->ctrl_urb);
1781                 usb_free_urb(hw->ctrl_urb);
1782                 hw->ctrl_urb = NULL;
1783         }
1784
1785         if (hw->intf)
1786                 usb_set_intfdata(hw->intf, NULL);
1787         list_del(&hw->list);
1788         kfree(hw);
1789         hw = NULL;
1790 }
1791
1792 static void
1793 deactivate_bchannel(struct bchannel *bch)
1794 {
1795         struct hfcsusb *hw = bch->hw;
1796         u_long flags;
1797
1798         if (bch->debug & DEBUG_HW)
1799                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1800                        hw->name, __func__, bch->nr);
1801
1802         spin_lock_irqsave(&hw->lock, flags);
1803         mISDN_clear_bchannel(bch);
1804         spin_unlock_irqrestore(&hw->lock, flags);
1805         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1806         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1807 }
1808
1809 /*
1810  * Layer 1 B-channel hardware access
1811  */
1812 static int
1813 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1814 {
1815         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1816         int             ret = -EINVAL;
1817
1818         if (bch->debug & DEBUG_HW)
1819                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1820
1821         switch (cmd) {
1822         case HW_TESTRX_RAW:
1823         case HW_TESTRX_HDLC:
1824         case HW_TESTRX_OFF:
1825                 ret = -EINVAL;
1826                 break;
1827
1828         case CLOSE_CHANNEL:
1829                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1830                 deactivate_bchannel(bch);
1831                 ch->protocol = ISDN_P_NONE;
1832                 ch->peer = NULL;
1833                 module_put(THIS_MODULE);
1834                 ret = 0;
1835                 break;
1836         case CONTROL_CHANNEL:
1837                 ret = channel_bctrl(bch, arg);
1838                 break;
1839         default:
1840                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1841                        __func__, cmd);
1842         }
1843         return ret;
1844 }
1845
1846 static int
1847 setup_instance(struct hfcsusb *hw, struct device *parent)
1848 {
1849         u_long  flags;
1850         int     err, i;
1851
1852         if (debug & DBG_HFC_CALL_TRACE)
1853                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1854
1855         spin_lock_init(&hw->ctrl_lock);
1856         spin_lock_init(&hw->lock);
1857
1858         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1859         hw->dch.debug = debug & 0xFFFF;
1860         hw->dch.hw = hw;
1861         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1862         hw->dch.dev.D.send = hfcusb_l2l1D;
1863         hw->dch.dev.D.ctrl = hfc_dctrl;
1864
1865         /* enable E-Channel logging */
1866         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1867                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1868
1869         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1870                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1871         hw->dch.dev.nrbchan = 2;
1872         for (i = 0; i < 2; i++) {
1873                 hw->bch[i].nr = i + 1;
1874                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1875                 hw->bch[i].debug = debug;
1876                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1877                 hw->bch[i].hw = hw;
1878                 hw->bch[i].ch.send = hfcusb_l2l1B;
1879                 hw->bch[i].ch.ctrl = hfc_bctrl;
1880                 hw->bch[i].ch.nr = i + 1;
1881                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1882         }
1883
1884         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1885         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1886         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1887         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1888         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1889         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1890         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1891         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1892
1893         err = setup_hfcsusb(hw);
1894         if (err)
1895                 goto out;
1896
1897         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1898                  hfcsusb_cnt + 1);
1899         printk(KERN_INFO "%s: registered as '%s'\n",
1900                DRIVER_NAME, hw->name);
1901
1902         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1903         if (err)
1904                 goto out;
1905
1906         hfcsusb_cnt++;
1907         write_lock_irqsave(&HFClock, flags);
1908         list_add_tail(&hw->list, &HFClist);
1909         write_unlock_irqrestore(&HFClock, flags);
1910         return 0;
1911
1912 out:
1913         mISDN_freebchannel(&hw->bch[1]);
1914         mISDN_freebchannel(&hw->bch[0]);
1915         mISDN_freedchannel(&hw->dch);
1916         kfree(hw);
1917         return err;
1918 }
1919
1920 static int
1921 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1922 {
1923         struct hfcsusb                  *hw;
1924         struct usb_device               *dev = interface_to_usbdev(intf);
1925         struct usb_host_interface       *iface = intf->cur_altsetting;
1926         struct usb_host_interface       *iface_used = NULL;
1927         struct usb_host_endpoint        *ep;
1928         struct hfcsusb_vdata            *driver_info;
1929         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1930                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1931                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1932                 alt_used = 0;
1933
1934         vend_idx = 0xffff;
1935         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1936                 if ((le16_to_cpu(dev->descriptor.idVendor)
1937                      == hfcsusb_idtab[i].idVendor) &&
1938                     (le16_to_cpu(dev->descriptor.idProduct)
1939                      == hfcsusb_idtab[i].idProduct)) {
1940                         vend_idx = i;
1941                         continue;
1942                 }
1943         }
1944
1945         printk(KERN_DEBUG
1946                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1947                __func__, ifnum, iface->desc.bAlternateSetting,
1948                intf->minor, vend_idx);
1949
1950         if (vend_idx == 0xffff) {
1951                 printk(KERN_WARNING
1952                        "%s: no valid vendor found in USB descriptor\n",
1953                        __func__);
1954                 return -EIO;
1955         }
1956         /* if vendor and product ID is OK, start probing alternate settings */
1957         alt_idx = 0;
1958         small_match = -1;
1959
1960         /* default settings */
1961         iso_packet_size = 16;
1962         packet_size = 64;
1963
1964         while (alt_idx < intf->num_altsetting) {
1965                 iface = intf->altsetting + alt_idx;
1966                 probe_alt_setting = iface->desc.bAlternateSetting;
1967                 cfg_used = 0;
1968
1969                 while (validconf[cfg_used][0]) {
1970                         cfg_found = 1;
1971                         vcf = validconf[cfg_used];
1972                         ep = iface->endpoint;
1973                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1974
1975                         /* check for all endpoints in this alternate setting */
1976                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1977                                 ep_addr = ep->desc.bEndpointAddress;
1978
1979                                 /* get endpoint base */
1980                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1981                                 if (idx > 15)
1982                                         return -EIO;
1983
1984                                 if (ep_addr & 0x80)
1985                                         idx++;
1986                                 attr = ep->desc.bmAttributes;
1987
1988                                 if (cmptbl[idx] != EP_NOP) {
1989                                         if (cmptbl[idx] == EP_NUL)
1990                                                 cfg_found = 0;
1991                                         if (attr == USB_ENDPOINT_XFER_INT
1992                                             && cmptbl[idx] == EP_INT)
1993                                                 cmptbl[idx] = EP_NUL;
1994                                         if (attr == USB_ENDPOINT_XFER_BULK
1995                                             && cmptbl[idx] == EP_BLK)
1996                                                 cmptbl[idx] = EP_NUL;
1997                                         if (attr == USB_ENDPOINT_XFER_ISOC
1998                                             && cmptbl[idx] == EP_ISO)
1999                                                 cmptbl[idx] = EP_NUL;
2000
2001                                         if (attr == USB_ENDPOINT_XFER_INT &&
2002                                             ep->desc.bInterval < vcf[17]) {
2003                                                 cfg_found = 0;
2004                                         }
2005                                 }
2006                                 ep++;
2007                         }
2008
2009                         for (i = 0; i < 16; i++)
2010                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2011                                         cfg_found = 0;
2012
2013                         if (cfg_found) {
2014                                 if (small_match < cfg_used) {
2015                                         small_match = cfg_used;
2016                                         alt_used = probe_alt_setting;
2017                                         iface_used = iface;
2018                                 }
2019                         }
2020                         cfg_used++;
2021                 }
2022                 alt_idx++;
2023         }       /* (alt_idx < intf->num_altsetting) */
2024
2025         /* not found a valid USB Ta Endpoint config */
2026         if (small_match == -1)
2027                 return -EIO;
2028
2029         iface = iface_used;
2030         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2031         if (!hw)
2032                 return -ENOMEM; /* got no mem */
2033         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2034
2035         ep = iface->endpoint;
2036         vcf = validconf[small_match];
2037
2038         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2039                 struct usb_fifo *f;
2040
2041                 ep_addr = ep->desc.bEndpointAddress;
2042                 /* get endpoint base */
2043                 idx = ((ep_addr & 0x7f) - 1) * 2;
2044                 if (ep_addr & 0x80)
2045                         idx++;
2046                 f = &hw->fifos[idx & 7];
2047
2048                 /* init Endpoints */
2049                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2050                         ep++;
2051                         continue;
2052                 }
2053                 switch (ep->desc.bmAttributes) {
2054                 case USB_ENDPOINT_XFER_INT:
2055                         f->pipe = usb_rcvintpipe(dev,
2056                                                  ep->desc.bEndpointAddress);
2057                         f->usb_transfer_mode = USB_INT;
2058                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059                         break;
2060                 case USB_ENDPOINT_XFER_BULK:
2061                         if (ep_addr & 0x80)
2062                                 f->pipe = usb_rcvbulkpipe(dev,
2063                                                           ep->desc.bEndpointAddress);
2064                         else
2065                                 f->pipe = usb_sndbulkpipe(dev,
2066                                                           ep->desc.bEndpointAddress);
2067                         f->usb_transfer_mode = USB_BULK;
2068                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069                         break;
2070                 case USB_ENDPOINT_XFER_ISOC:
2071                         if (ep_addr & 0x80)
2072                                 f->pipe = usb_rcvisocpipe(dev,
2073                                                           ep->desc.bEndpointAddress);
2074                         else
2075                                 f->pipe = usb_sndisocpipe(dev,
2076                                                           ep->desc.bEndpointAddress);
2077                         f->usb_transfer_mode = USB_ISOC;
2078                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2079                         break;
2080                 default:
2081                         f->pipe = 0;
2082                 }
2083
2084                 if (f->pipe) {
2085                         f->fifonum = idx & 7;
2086                         f->hw = hw;
2087                         f->usb_packet_maxlen =
2088                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2089                         f->intervall = ep->desc.bInterval;
2090                 }
2091                 ep++;
2092         }
2093         hw->dev = dev; /* save device */
2094         hw->if_used = ifnum; /* save used interface */
2095         hw->alt_used = alt_used; /* and alternate config */
2096         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2097         hw->cfg_used = vcf[16]; /* store used config */
2098         hw->vend_idx = vend_idx; /* store found vendor */
2099         hw->packet_size = packet_size;
2100         hw->iso_packet_size = iso_packet_size;
2101
2102         /* create the control pipes needed for register access */
2103         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2104         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2105
2106         driver_info = (struct hfcsusb_vdata *)
2107                       hfcsusb_idtab[vend_idx].driver_info;
2108
2109         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2110         if (!hw->ctrl_urb) {
2111                 pr_warn("%s: No memory for control urb\n",
2112                         driver_info->vend_name);
2113                 kfree(hw);
2114                 return -ENOMEM;
2115         }
2116
2117         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2118                 hw->name, __func__, driver_info->vend_name,
2119                 conf_str[small_match], ifnum, alt_used);
2120
2121         if (setup_instance(hw, dev->dev.parent))
2122                 return -EIO;
2123
2124         hw->intf = intf;
2125         usb_set_intfdata(hw->intf, hw);
2126         return 0;
2127 }
2128
2129 /* function called when an active device is removed */
2130 static void
2131 hfcsusb_disconnect(struct usb_interface *intf)
2132 {
2133         struct hfcsusb *hw = usb_get_intfdata(intf);
2134         struct hfcsusb *next;
2135         int cnt = 0;
2136
2137         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2138
2139         handle_led(hw, LED_POWER_OFF);
2140         release_hw(hw);
2141
2142         list_for_each_entry_safe(hw, next, &HFClist, list)
2143                 cnt++;
2144         if (!cnt)
2145                 hfcsusb_cnt = 0;
2146
2147         usb_set_intfdata(intf, NULL);
2148 }
2149
2150 static struct usb_driver hfcsusb_drv = {
2151         .name = DRIVER_NAME,
2152         .id_table = hfcsusb_idtab,
2153         .probe = hfcsusb_probe,
2154         .disconnect = hfcsusb_disconnect,
2155         .disable_hub_initiated_lpm = 1,
2156 };
2157
2158 module_usb_driver(hfcsusb_drv);