GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69         if (debug & DBG_HFC_CALL_TRACE)
70                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72         if (hw->ctrl_cnt) {
73                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75                 hw->ctrl_urb->transfer_buffer = NULL;
76                 hw->ctrl_urb->transfer_buffer_length = 0;
77                 hw->ctrl_write.wIndex =
78                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79                 hw->ctrl_write.wValue =
80                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83         }
84 }
85
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92         struct ctrl_buf *buf;
93
94         if (debug & DBG_HFC_CALL_TRACE)
95                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96                        hw->name, __func__, reg, val);
97
98         spin_lock(&hw->ctrl_lock);
99         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100                 spin_unlock(&hw->ctrl_lock);
101                 return 1;
102         }
103         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104         buf->hfcs_reg = reg;
105         buf->reg_val = val;
106         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107                 hw->ctrl_in_idx = 0;
108         if (++hw->ctrl_cnt == 1)
109                 ctrl_start_transfer(hw);
110         spin_unlock(&hw->ctrl_lock);
111
112         return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121         if (debug & DBG_HFC_CALL_TRACE)
122                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124         urb->dev = hw->dev;
125         if (hw->ctrl_cnt) {
126                 hw->ctrl_cnt--; /* decrement actual count */
127                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128                         hw->ctrl_out_idx = 0;   /* pointer wrap */
129
130                 ctrl_start_transfer(hw); /* start next transfer */
131         }
132 }
133
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138         if (set_on) {
139                 if (led_bits < 0)
140                         hw->led_state &= ~abs(led_bits);
141                 else
142                         hw->led_state |= led_bits;
143         } else {
144                 if (led_bits < 0)
145                         hw->led_state |= abs(led_bits);
146                 else
147                         hw->led_state &= ~led_bits;
148         }
149 }
150
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156                 hfcsusb_idtab[hw->vend_idx].driver_info;
157         __u8 tmpled;
158
159         if (driver_info->led_scheme == LED_OFF)
160                 return;
161         tmpled = hw->led_state;
162
163         switch (event) {
164         case LED_POWER_ON:
165                 set_led_bit(hw, driver_info->led_bits[0], 1);
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 set_led_bit(hw, driver_info->led_bits[2], 0);
168                 set_led_bit(hw, driver_info->led_bits[3], 0);
169                 break;
170         case LED_POWER_OFF:
171                 set_led_bit(hw, driver_info->led_bits[0], 0);
172                 set_led_bit(hw, driver_info->led_bits[1], 0);
173                 set_led_bit(hw, driver_info->led_bits[2], 0);
174                 set_led_bit(hw, driver_info->led_bits[3], 0);
175                 break;
176         case LED_S0_ON:
177                 set_led_bit(hw, driver_info->led_bits[1], 1);
178                 break;
179         case LED_S0_OFF:
180                 set_led_bit(hw, driver_info->led_bits[1], 0);
181                 break;
182         case LED_B1_ON:
183                 set_led_bit(hw, driver_info->led_bits[2], 1);
184                 break;
185         case LED_B1_OFF:
186                 set_led_bit(hw, driver_info->led_bits[2], 0);
187                 break;
188         case LED_B2_ON:
189                 set_led_bit(hw, driver_info->led_bits[3], 1);
190                 break;
191         case LED_B2_OFF:
192                 set_led_bit(hw, driver_info->led_bits[3], 0);
193                 break;
194         }
195
196         if (hw->led_state != tmpled) {
197                 if (debug & DBG_HFC_CALL_TRACE)
198                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199                                hw->name, __func__,
200                                HFCUSB_P_DATA, hw->led_state);
201
202                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203         }
204 }
205
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
213         struct hfcsusb          *hw = bch->hw;
214         int                     ret = -EINVAL;
215         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
216         u_long                  flags;
217
218         if (debug & DBG_HFC_CALL_TRACE)
219                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221         switch (hh->prim) {
222         case PH_DATA_REQ:
223                 spin_lock_irqsave(&hw->lock, flags);
224                 ret = bchannel_senddata(bch, skb);
225                 spin_unlock_irqrestore(&hw->lock, flags);
226                 if (debug & DBG_HFC_CALL_TRACE)
227                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228                                hw->name, __func__, ret);
229                 if (ret > 0)
230                         ret = 0;
231                 return ret;
232         case PH_ACTIVATE_REQ:
233                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234                         hfcsusb_start_endpoint(hw, bch->nr - 1);
235                         ret = hfcsusb_setup_bch(bch, ch->protocol);
236                 } else
237                         ret = 0;
238                 if (!ret)
239                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240                                     0, NULL, GFP_KERNEL);
241                 break;
242         case PH_DEACTIVATE_REQ:
243                 deactivate_bchannel(bch);
244                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245                             0, NULL, GFP_KERNEL);
246                 ret = 0;
247                 break;
248         }
249         if (!ret)
250                 dev_kfree_skb(skb);
251         return ret;
252 }
253
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261         struct ph_info *phi;
262         struct dchannel *dch = &hw->dch;
263         int i;
264
265         phi = kzalloc(sizeof(struct ph_info) +
266                       dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267         phi->dch.ch.protocol = hw->protocol;
268         phi->dch.ch.Flags = dch->Flags;
269         phi->dch.state = dch->state;
270         phi->dch.num_bch = dch->dev.nrbchan;
271         for (i = 0; i < dch->dev.nrbchan; i++) {
272                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273                 phi->bch[i].Flags = hw->bch[i].Flags;
274         }
275         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276                     sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277                     sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278         kfree(phi);
279 }
280
281 /*
282  * Layer2 -> Layer 1 Dchannel data
283  */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
288         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
289         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
290         struct hfcsusb          *hw = dch->hw;
291         int                     ret = -EINVAL;
292         u_long                  flags;
293
294         switch (hh->prim) {
295         case PH_DATA_REQ:
296                 if (debug & DBG_HFC_CALL_TRACE)
297                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298                                hw->name, __func__);
299
300                 spin_lock_irqsave(&hw->lock, flags);
301                 ret = dchannel_senddata(dch, skb);
302                 spin_unlock_irqrestore(&hw->lock, flags);
303                 if (ret > 0) {
304                         ret = 0;
305                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306                 }
307                 break;
308
309         case PH_ACTIVATE_REQ:
310                 if (debug & DBG_HFC_CALL_TRACE)
311                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312                                hw->name, __func__,
313                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314
315                 if (hw->protocol == ISDN_P_NT_S0) {
316                         ret = 0;
317                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318                                 _queue_data(&dch->dev.D,
319                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320                                             NULL, GFP_ATOMIC);
321                         } else {
322                                 hfcsusb_ph_command(hw,
323                                                    HFC_L1_ACTIVATE_NT);
324                                 test_and_set_bit(FLG_L2_ACTIVATED,
325                                                  &dch->Flags);
326                         }
327                 } else {
328                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329                         ret = l1_event(dch->l1, hh->prim);
330                 }
331                 break;
332
333         case PH_DEACTIVATE_REQ:
334                 if (debug & DBG_HFC_CALL_TRACE)
335                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336                                hw->name, __func__);
337                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338
339                 if (hw->protocol == ISDN_P_NT_S0) {
340                         struct sk_buff_head free_queue;
341
342                         __skb_queue_head_init(&free_queue);
343                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
344                         spin_lock_irqsave(&hw->lock, flags);
345                         skb_queue_splice_init(&dch->squeue, &free_queue);
346                         if (dch->tx_skb) {
347                                 __skb_queue_tail(&free_queue, dch->tx_skb);
348                                 dch->tx_skb = NULL;
349                         }
350                         dch->tx_idx = 0;
351                         if (dch->rx_skb) {
352                                 __skb_queue_tail(&free_queue, dch->rx_skb);
353                                 dch->rx_skb = NULL;
354                         }
355                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
356                         spin_unlock_irqrestore(&hw->lock, flags);
357                         __skb_queue_purge(&free_queue);
358 #ifdef FIXME
359                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
360                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
361 #endif
362                         ret = 0;
363                 } else
364                         ret = l1_event(dch->l1, hh->prim);
365                 break;
366         case MPH_INFORMATION_REQ:
367                 hfcsusb_ph_info(hw);
368                 ret = 0;
369                 break;
370         }
371
372         return ret;
373 }
374
375 /*
376  * Layer 1 callback function
377  */
378 static int
379 hfc_l1callback(struct dchannel *dch, u_int cmd)
380 {
381         struct hfcsusb *hw = dch->hw;
382
383         if (debug & DBG_HFC_CALL_TRACE)
384                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
385                        hw->name, __func__, cmd);
386
387         switch (cmd) {
388         case INFO3_P8:
389         case INFO3_P10:
390         case HW_RESET_REQ:
391         case HW_POWERUP_REQ:
392                 break;
393
394         case HW_DEACT_REQ:
395                 skb_queue_purge(&dch->squeue);
396                 if (dch->tx_skb) {
397                         dev_kfree_skb(dch->tx_skb);
398                         dch->tx_skb = NULL;
399                 }
400                 dch->tx_idx = 0;
401                 if (dch->rx_skb) {
402                         dev_kfree_skb(dch->rx_skb);
403                         dch->rx_skb = NULL;
404                 }
405                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
406                 break;
407         case PH_ACTIVATE_IND:
408                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
409                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
410                             GFP_ATOMIC);
411                 break;
412         case PH_DEACTIVATE_IND:
413                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
414                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
415                             GFP_ATOMIC);
416                 break;
417         default:
418                 if (dch->debug & DEBUG_HW)
419                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
420                                hw->name, __func__, cmd);
421                 return -1;
422         }
423         hfcsusb_ph_info(hw);
424         return 0;
425 }
426
427 static int
428 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
429               struct channel_req *rq)
430 {
431         int err = 0;
432
433         if (debug & DEBUG_HW_OPEN)
434                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
435                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
436                        __builtin_return_address(0));
437         if (rq->protocol == ISDN_P_NONE)
438                 return -EINVAL;
439
440         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
441         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
442         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
443
444         /* E-Channel logging */
445         if (rq->adr.channel == 1) {
446                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
447                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
448                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
449                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
450                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
451                 } else
452                         return -EINVAL;
453         }
454
455         if (!hw->initdone) {
456                 hw->protocol = rq->protocol;
457                 if (rq->protocol == ISDN_P_TE_S0) {
458                         err = create_l1(&hw->dch, hfc_l1callback);
459                         if (err)
460                                 return err;
461                 }
462                 setPortMode(hw);
463                 ch->protocol = rq->protocol;
464                 hw->initdone = 1;
465         } else {
466                 if (rq->protocol != ch->protocol)
467                         return -EPROTONOSUPPORT;
468         }
469
470         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
471             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
472                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
473                             0, NULL, GFP_KERNEL);
474         rq->ch = ch;
475         if (!try_module_get(THIS_MODULE))
476                 printk(KERN_WARNING "%s: %s: cannot get module\n",
477                        hw->name, __func__);
478         return 0;
479 }
480
481 static int
482 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
483 {
484         struct bchannel         *bch;
485
486         if (rq->adr.channel == 0 || rq->adr.channel > 2)
487                 return -EINVAL;
488         if (rq->protocol == ISDN_P_NONE)
489                 return -EINVAL;
490
491         if (debug & DBG_HFC_CALL_TRACE)
492                 printk(KERN_DEBUG "%s: %s B%i\n",
493                        hw->name, __func__, rq->adr.channel);
494
495         bch = &hw->bch[rq->adr.channel - 1];
496         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
497                 return -EBUSY; /* b-channel can be only open once */
498         bch->ch.protocol = rq->protocol;
499         rq->ch = &bch->ch;
500
501         if (!try_module_get(THIS_MODULE))
502                 printk(KERN_WARNING "%s: %s:cannot get module\n",
503                        hw->name, __func__);
504         return 0;
505 }
506
507 static int
508 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
509 {
510         int ret = 0;
511
512         if (debug & DBG_HFC_CALL_TRACE)
513                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
514                        hw->name, __func__, (cq->op), (cq->channel));
515
516         switch (cq->op) {
517         case MISDN_CTRL_GETOP:
518                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
519                         MISDN_CTRL_DISCONNECT;
520                 break;
521         default:
522                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
523                        hw->name, __func__, cq->op);
524                 ret = -EINVAL;
525                 break;
526         }
527         return ret;
528 }
529
530 /*
531  * device control function
532  */
533 static int
534 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
535 {
536         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
537         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
538         struct hfcsusb          *hw = dch->hw;
539         struct channel_req      *rq;
540         int                     err = 0;
541
542         if (dch->debug & DEBUG_HW)
543                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
544                        hw->name, __func__, cmd, arg);
545         switch (cmd) {
546         case OPEN_CHANNEL:
547                 rq = arg;
548                 if ((rq->protocol == ISDN_P_TE_S0) ||
549                     (rq->protocol == ISDN_P_NT_S0))
550                         err = open_dchannel(hw, ch, rq);
551                 else
552                         err = open_bchannel(hw, rq);
553                 if (!err)
554                         hw->open++;
555                 break;
556         case CLOSE_CHANNEL:
557                 hw->open--;
558                 if (debug & DEBUG_HW_OPEN)
559                         printk(KERN_DEBUG
560                                "%s: %s: dev(%d) close from %p (open %d)\n",
561                                hw->name, __func__, hw->dch.dev.id,
562                                __builtin_return_address(0), hw->open);
563                 if (!hw->open) {
564                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
565                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
566                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
567                         handle_led(hw, LED_POWER_ON);
568                 }
569                 module_put(THIS_MODULE);
570                 break;
571         case CONTROL_CHANNEL:
572                 err = channel_ctrl(hw, arg);
573                 break;
574         default:
575                 if (dch->debug & DEBUG_HW)
576                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
577                                hw->name, __func__, cmd);
578                 return -EINVAL;
579         }
580         return err;
581 }
582
583 /*
584  * S0 TE state change event handler
585  */
586 static void
587 ph_state_te(struct dchannel *dch)
588 {
589         struct hfcsusb *hw = dch->hw;
590
591         if (debug & DEBUG_HW) {
592                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
593                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
594                                HFC_TE_LAYER1_STATES[dch->state]);
595                 else
596                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
597                                hw->name, __func__, dch->state);
598         }
599
600         switch (dch->state) {
601         case 0:
602                 l1_event(dch->l1, HW_RESET_IND);
603                 break;
604         case 3:
605                 l1_event(dch->l1, HW_DEACT_IND);
606                 break;
607         case 5:
608         case 8:
609                 l1_event(dch->l1, ANYSIGNAL);
610                 break;
611         case 6:
612                 l1_event(dch->l1, INFO2);
613                 break;
614         case 7:
615                 l1_event(dch->l1, INFO4_P8);
616                 break;
617         }
618         if (dch->state == 7)
619                 handle_led(hw, LED_S0_ON);
620         else
621                 handle_led(hw, LED_S0_OFF);
622 }
623
624 /*
625  * S0 NT state change event handler
626  */
627 static void
628 ph_state_nt(struct dchannel *dch)
629 {
630         struct hfcsusb *hw = dch->hw;
631
632         if (debug & DEBUG_HW) {
633                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
634                         printk(KERN_DEBUG "%s: %s: %s\n",
635                                hw->name, __func__,
636                                HFC_NT_LAYER1_STATES[dch->state]);
637
638                 else
639                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
640                                hw->name, __func__, dch->state);
641         }
642
643         switch (dch->state) {
644         case (1):
645                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
646                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
647                 hw->nt_timer = 0;
648                 hw->timers &= ~NT_ACTIVATION_TIMER;
649                 handle_led(hw, LED_S0_OFF);
650                 break;
651
652         case (2):
653                 if (hw->nt_timer < 0) {
654                         hw->nt_timer = 0;
655                         hw->timers &= ~NT_ACTIVATION_TIMER;
656                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
657                 } else {
658                         hw->timers |= NT_ACTIVATION_TIMER;
659                         hw->nt_timer = NT_T1_COUNT;
660                         /* allow G2 -> G3 transition */
661                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
662                 }
663                 break;
664         case (3):
665                 hw->nt_timer = 0;
666                 hw->timers &= ~NT_ACTIVATION_TIMER;
667                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
668                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
669                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
670                 handle_led(hw, LED_S0_ON);
671                 break;
672         case (4):
673                 hw->nt_timer = 0;
674                 hw->timers &= ~NT_ACTIVATION_TIMER;
675                 break;
676         default:
677                 break;
678         }
679         hfcsusb_ph_info(hw);
680 }
681
682 static void
683 ph_state(struct dchannel *dch)
684 {
685         struct hfcsusb *hw = dch->hw;
686
687         if (hw->protocol == ISDN_P_NT_S0)
688                 ph_state_nt(dch);
689         else if (hw->protocol == ISDN_P_TE_S0)
690                 ph_state_te(dch);
691 }
692
693 /*
694  * disable/enable BChannel for desired protocoll
695  */
696 static int
697 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
698 {
699         struct hfcsusb *hw = bch->hw;
700         __u8 conhdlc, sctrl, sctrl_r;
701
702         if (debug & DEBUG_HW)
703                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
704                        hw->name, __func__, bch->state, protocol,
705                        bch->nr);
706
707         /* setup val for CON_HDLC */
708         conhdlc = 0;
709         if (protocol > ISDN_P_NONE)
710                 conhdlc = 8;    /* enable FIFO */
711
712         switch (protocol) {
713         case (-1):      /* used for init */
714                 bch->state = -1;
715                 /* fall through */
716         case (ISDN_P_NONE):
717                 if (bch->state == ISDN_P_NONE)
718                         return 0; /* already in idle state */
719                 bch->state = ISDN_P_NONE;
720                 clear_bit(FLG_HDLC, &bch->Flags);
721                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
722                 break;
723         case (ISDN_P_B_RAW):
724                 conhdlc |= 2;
725                 bch->state = protocol;
726                 set_bit(FLG_TRANSPARENT, &bch->Flags);
727                 break;
728         case (ISDN_P_B_HDLC):
729                 bch->state = protocol;
730                 set_bit(FLG_HDLC, &bch->Flags);
731                 break;
732         default:
733                 if (debug & DEBUG_HW)
734                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
735                                hw->name, __func__, protocol);
736                 return -ENOPROTOOPT;
737         }
738
739         if (protocol >= ISDN_P_NONE) {
740                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
741                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
742                 write_reg(hw, HFCUSB_INC_RES_F, 2);
743                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
744                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
745                 write_reg(hw, HFCUSB_INC_RES_F, 2);
746
747                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
748                 sctrl_r = 0x0;
749                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
750                         sctrl |= 1;
751                         sctrl_r |= 1;
752                 }
753                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
754                         sctrl |= 2;
755                         sctrl_r |= 2;
756                 }
757                 write_reg(hw, HFCUSB_SCTRL, sctrl);
758                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
759
760                 if (protocol > ISDN_P_NONE)
761                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
762                 else
763                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
764                                    LED_B2_OFF);
765         }
766         hfcsusb_ph_info(hw);
767         return 0;
768 }
769
770 static void
771 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
772 {
773         if (debug & DEBUG_HW)
774                 printk(KERN_DEBUG "%s: %s: %x\n",
775                        hw->name, __func__, command);
776
777         switch (command) {
778         case HFC_L1_ACTIVATE_TE:
779                 /* force sending sending INFO1 */
780                 write_reg(hw, HFCUSB_STATES, 0x14);
781                 /* start l1 activation */
782                 write_reg(hw, HFCUSB_STATES, 0x04);
783                 break;
784
785         case HFC_L1_FORCE_DEACTIVATE_TE:
786                 write_reg(hw, HFCUSB_STATES, 0x10);
787                 write_reg(hw, HFCUSB_STATES, 0x03);
788                 break;
789
790         case HFC_L1_ACTIVATE_NT:
791                 if (hw->dch.state == 3)
792                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
793                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
794                 else
795                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
796                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
797                 break;
798
799         case HFC_L1_DEACTIVATE_NT:
800                 write_reg(hw, HFCUSB_STATES,
801                           HFCUSB_DO_ACTION);
802                 break;
803         }
804 }
805
806 /*
807  * Layer 1 B-channel hardware access
808  */
809 static int
810 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
811 {
812         return mISDN_ctrl_bchannel(bch, cq);
813 }
814
815 /* collect data from incoming interrupt or isochron USB data */
816 static void
817 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
818                  int finish)
819 {
820         struct hfcsusb  *hw = fifo->hw;
821         struct sk_buff  *rx_skb = NULL;
822         int             maxlen = 0;
823         int             fifon = fifo->fifonum;
824         int             i;
825         int             hdlc = 0;
826         unsigned long   flags;
827
828         if (debug & DBG_HFC_CALL_TRACE)
829                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
830                        "dch(%p) bch(%p) ech(%p)\n",
831                        hw->name, __func__, fifon, len,
832                        fifo->dch, fifo->bch, fifo->ech);
833
834         if (!len)
835                 return;
836
837         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
838                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
839                        hw->name, __func__);
840                 return;
841         }
842
843         spin_lock_irqsave(&hw->lock, flags);
844         if (fifo->dch) {
845                 rx_skb = fifo->dch->rx_skb;
846                 maxlen = fifo->dch->maxlen;
847                 hdlc = 1;
848         }
849         if (fifo->bch) {
850                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
851                         fifo->bch->dropcnt += len;
852                         spin_unlock_irqrestore(&hw->lock, flags);
853                         return;
854                 }
855                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
856                 rx_skb = fifo->bch->rx_skb;
857                 if (maxlen < 0) {
858                         if (rx_skb)
859                                 skb_trim(rx_skb, 0);
860                         pr_warning("%s.B%d: No bufferspace for %d bytes\n",
861                                    hw->name, fifo->bch->nr, len);
862                         spin_unlock_irqrestore(&hw->lock, flags);
863                         return;
864                 }
865                 maxlen = fifo->bch->maxlen;
866                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
867         }
868         if (fifo->ech) {
869                 rx_skb = fifo->ech->rx_skb;
870                 maxlen = fifo->ech->maxlen;
871                 hdlc = 1;
872         }
873
874         if (fifo->dch || fifo->ech) {
875                 if (!rx_skb) {
876                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
877                         if (rx_skb) {
878                                 if (fifo->dch)
879                                         fifo->dch->rx_skb = rx_skb;
880                                 if (fifo->ech)
881                                         fifo->ech->rx_skb = rx_skb;
882                                 skb_trim(rx_skb, 0);
883                         } else {
884                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
885                                        hw->name, __func__);
886                                 spin_unlock_irqrestore(&hw->lock, flags);
887                                 return;
888                         }
889                 }
890                 /* D/E-Channel SKB range check */
891                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
892                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
893                                "for fifo(%d) HFCUSB_D_RX\n",
894                                hw->name, __func__, fifon);
895                         skb_trim(rx_skb, 0);
896                         spin_unlock_irqrestore(&hw->lock, flags);
897                         return;
898                 }
899         }
900
901         skb_put_data(rx_skb, data, len);
902
903         if (hdlc) {
904                 /* we have a complete hdlc packet */
905                 if (finish) {
906                         if ((rx_skb->len > 3) &&
907                             (!(rx_skb->data[rx_skb->len - 1]))) {
908                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
909                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
910                                                " new RX len(%i): ",
911                                                hw->name, __func__, fifon,
912                                                rx_skb->len);
913                                         i = 0;
914                                         while (i < rx_skb->len)
915                                                 printk("%02x ",
916                                                        rx_skb->data[i++]);
917                                         printk("\n");
918                                 }
919
920                                 /* remove CRC & status */
921                                 skb_trim(rx_skb, rx_skb->len - 3);
922
923                                 if (fifo->dch)
924                                         recv_Dchannel(fifo->dch);
925                                 if (fifo->bch)
926                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
927                                                       0);
928                                 if (fifo->ech)
929                                         recv_Echannel(fifo->ech,
930                                                       &hw->dch);
931                         } else {
932                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
933                                         printk(KERN_DEBUG
934                                                "%s: CRC or minlen ERROR fifon(%i) "
935                                                "RX len(%i): ",
936                                                hw->name, fifon, rx_skb->len);
937                                         i = 0;
938                                         while (i < rx_skb->len)
939                                                 printk("%02x ",
940                                                        rx_skb->data[i++]);
941                                         printk("\n");
942                                 }
943                                 skb_trim(rx_skb, 0);
944                         }
945                 }
946         } else {
947                 /* deliver transparent data to layer2 */
948                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
949         }
950         spin_unlock_irqrestore(&hw->lock, flags);
951 }
952
953 static void
954 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
955               void *buf, int num_packets, int packet_size, int interval,
956               usb_complete_t complete, void *context)
957 {
958         int k;
959
960         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
961                           complete, context);
962
963         urb->number_of_packets = num_packets;
964         urb->transfer_flags = URB_ISO_ASAP;
965         urb->actual_length = 0;
966         urb->interval = interval;
967
968         for (k = 0; k < num_packets; k++) {
969                 urb->iso_frame_desc[k].offset = packet_size * k;
970                 urb->iso_frame_desc[k].length = packet_size;
971                 urb->iso_frame_desc[k].actual_length = 0;
972         }
973 }
974
975 /* receive completion routine for all ISO tx fifos   */
976 static void
977 rx_iso_complete(struct urb *urb)
978 {
979         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
980         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
981         struct hfcsusb *hw = fifo->hw;
982         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
983                 status, iso_status, i;
984         __u8 *buf;
985         static __u8 eof[8];
986         __u8 s0_state;
987         unsigned long flags;
988
989         fifon = fifo->fifonum;
990         status = urb->status;
991
992         spin_lock_irqsave(&hw->lock, flags);
993         if (fifo->stop_gracefull) {
994                 fifo->stop_gracefull = 0;
995                 fifo->active = 0;
996                 spin_unlock_irqrestore(&hw->lock, flags);
997                 return;
998         }
999         spin_unlock_irqrestore(&hw->lock, flags);
1000
1001         /*
1002          * ISO transfer only partially completed,
1003          * look at individual frame status for details
1004          */
1005         if (status == -EXDEV) {
1006                 if (debug & DEBUG_HW)
1007                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1008                                "urb->status %d, fifonum %d\n",
1009                                hw->name, __func__,  status, fifon);
1010
1011                 /* clear status, so go on with ISO transfers */
1012                 status = 0;
1013         }
1014
1015         s0_state = 0;
1016         if (fifo->active && !status) {
1017                 num_isoc_packets = iso_packets[fifon];
1018                 maxlen = fifo->usb_packet_maxlen;
1019
1020                 for (k = 0; k < num_isoc_packets; ++k) {
1021                         len = urb->iso_frame_desc[k].actual_length;
1022                         offset = urb->iso_frame_desc[k].offset;
1023                         buf = context_iso_urb->buffer + offset;
1024                         iso_status = urb->iso_frame_desc[k].status;
1025
1026                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1027                                 printk(KERN_DEBUG "%s: %s: "
1028                                        "ISO packet %i, status: %i\n",
1029                                        hw->name, __func__, k, iso_status);
1030                         }
1031
1032                         /* USB data log for every D ISO in */
1033                         if ((fifon == HFCUSB_D_RX) &&
1034                             (debug & DBG_HFC_USB_VERBOSE)) {
1035                                 printk(KERN_DEBUG
1036                                        "%s: %s: %d (%d/%d) len(%d) ",
1037                                        hw->name, __func__, urb->start_frame,
1038                                        k, num_isoc_packets - 1,
1039                                        len);
1040                                 for (i = 0; i < len; i++)
1041                                         printk("%x ", buf[i]);
1042                                 printk("\n");
1043                         }
1044
1045                         if (!iso_status) {
1046                                 if (fifo->last_urblen != maxlen) {
1047                                         /*
1048                                          * save fifo fill-level threshold bits
1049                                          * to use them later in TX ISO URB
1050                                          * completions
1051                                          */
1052                                         hw->threshold_mask = buf[1];
1053
1054                                         if (fifon == HFCUSB_D_RX)
1055                                                 s0_state = (buf[0] >> 4);
1056
1057                                         eof[fifon] = buf[0] & 1;
1058                                         if (len > 2)
1059                                                 hfcsusb_rx_frame(fifo, buf + 2,
1060                                                                  len - 2, (len < maxlen)
1061                                                                  ? eof[fifon] : 0);
1062                                 } else
1063                                         hfcsusb_rx_frame(fifo, buf, len,
1064                                                          (len < maxlen) ?
1065                                                          eof[fifon] : 0);
1066                                 fifo->last_urblen = len;
1067                         }
1068                 }
1069
1070                 /* signal S0 layer1 state change */
1071                 if ((s0_state) && (hw->initdone) &&
1072                     (s0_state != hw->dch.state)) {
1073                         hw->dch.state = s0_state;
1074                         schedule_event(&hw->dch, FLG_PHCHANGE);
1075                 }
1076
1077                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1078                               context_iso_urb->buffer, num_isoc_packets,
1079                               fifo->usb_packet_maxlen, fifo->intervall,
1080                               (usb_complete_t)rx_iso_complete, urb->context);
1081                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1082                 if (errcode < 0) {
1083                         if (debug & DEBUG_HW)
1084                                 printk(KERN_DEBUG "%s: %s: error submitting "
1085                                        "ISO URB: %d\n",
1086                                        hw->name, __func__, errcode);
1087                 }
1088         } else {
1089                 if (status && (debug & DBG_HFC_URB_INFO))
1090                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1091                                "urb->status %d, fifonum %d\n",
1092                                hw->name, __func__, status, fifon);
1093         }
1094 }
1095
1096 /* receive completion routine for all interrupt rx fifos */
1097 static void
1098 rx_int_complete(struct urb *urb)
1099 {
1100         int len, status, i;
1101         __u8 *buf, maxlen, fifon;
1102         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1103         struct hfcsusb *hw = fifo->hw;
1104         static __u8 eof[8];
1105         unsigned long flags;
1106
1107         spin_lock_irqsave(&hw->lock, flags);
1108         if (fifo->stop_gracefull) {
1109                 fifo->stop_gracefull = 0;
1110                 fifo->active = 0;
1111                 spin_unlock_irqrestore(&hw->lock, flags);
1112                 return;
1113         }
1114         spin_unlock_irqrestore(&hw->lock, flags);
1115
1116         fifon = fifo->fifonum;
1117         if ((!fifo->active) || (urb->status)) {
1118                 if (debug & DBG_HFC_URB_ERROR)
1119                         printk(KERN_DEBUG
1120                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1121                                hw->name, __func__, fifon, urb->status);
1122
1123                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1124                 return;
1125         }
1126         len = urb->actual_length;
1127         buf = fifo->buffer;
1128         maxlen = fifo->usb_packet_maxlen;
1129
1130         /* USB data log for every D INT in */
1131         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1132                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1133                        hw->name, __func__, len);
1134                 for (i = 0; i < len; i++)
1135                         printk("%02x ", buf[i]);
1136                 printk("\n");
1137         }
1138
1139         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1140                 /* the threshold mask is in the 2nd status byte */
1141                 hw->threshold_mask = buf[1];
1142
1143                 /* signal S0 layer1 state change */
1144                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1145                         hw->dch.state = (buf[0] >> 4);
1146                         schedule_event(&hw->dch, FLG_PHCHANGE);
1147                 }
1148
1149                 eof[fifon] = buf[0] & 1;
1150                 /* if we have more than the 2 status bytes -> collect data */
1151                 if (len > 2)
1152                         hfcsusb_rx_frame(fifo, buf + 2,
1153                                          urb->actual_length - 2,
1154                                          (len < maxlen) ? eof[fifon] : 0);
1155         } else {
1156                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1157                                  (len < maxlen) ? eof[fifon] : 0);
1158         }
1159         fifo->last_urblen = urb->actual_length;
1160
1161         status = usb_submit_urb(urb, GFP_ATOMIC);
1162         if (status) {
1163                 if (debug & DEBUG_HW)
1164                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1165                                hw->name, __func__);
1166         }
1167 }
1168
1169 /* transmit completion routine for all ISO tx fifos */
1170 static void
1171 tx_iso_complete(struct urb *urb)
1172 {
1173         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1174         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1175         struct hfcsusb *hw = fifo->hw;
1176         struct sk_buff *tx_skb;
1177         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1178                 errcode, hdlc, i;
1179         int *tx_idx;
1180         int frame_complete, fifon, status, fillempty = 0;
1181         __u8 threshbit, *p;
1182         unsigned long flags;
1183
1184         spin_lock_irqsave(&hw->lock, flags);
1185         if (fifo->stop_gracefull) {
1186                 fifo->stop_gracefull = 0;
1187                 fifo->active = 0;
1188                 spin_unlock_irqrestore(&hw->lock, flags);
1189                 return;
1190         }
1191
1192         if (fifo->dch) {
1193                 tx_skb = fifo->dch->tx_skb;
1194                 tx_idx = &fifo->dch->tx_idx;
1195                 hdlc = 1;
1196         } else if (fifo->bch) {
1197                 tx_skb = fifo->bch->tx_skb;
1198                 tx_idx = &fifo->bch->tx_idx;
1199                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1200                 if (!tx_skb && !hdlc &&
1201                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1202                         fillempty = 1;
1203         } else {
1204                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1205                        hw->name, __func__);
1206                 spin_unlock_irqrestore(&hw->lock, flags);
1207                 return;
1208         }
1209
1210         fifon = fifo->fifonum;
1211         status = urb->status;
1212
1213         tx_offset = 0;
1214
1215         /*
1216          * ISO transfer only partially completed,
1217          * look at individual frame status for details
1218          */
1219         if (status == -EXDEV) {
1220                 if (debug & DBG_HFC_URB_ERROR)
1221                         printk(KERN_DEBUG "%s: %s: "
1222                                "-EXDEV (%i) fifon (%d)\n",
1223                                hw->name, __func__, status, fifon);
1224
1225                 /* clear status, so go on with ISO transfers */
1226                 status = 0;
1227         }
1228
1229         if (fifo->active && !status) {
1230                 /* is FifoFull-threshold set for our channel? */
1231                 threshbit = (hw->threshold_mask & (1 << fifon));
1232                 num_isoc_packets = iso_packets[fifon];
1233
1234                 /* predict dataflow to avoid fifo overflow */
1235                 if (fifon >= HFCUSB_D_TX)
1236                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1237                 else
1238                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1239                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1240                               context_iso_urb->buffer, num_isoc_packets,
1241                               fifo->usb_packet_maxlen, fifo->intervall,
1242                               (usb_complete_t)tx_iso_complete, urb->context);
1243                 memset(context_iso_urb->buffer, 0,
1244                        sizeof(context_iso_urb->buffer));
1245                 frame_complete = 0;
1246
1247                 for (k = 0; k < num_isoc_packets; ++k) {
1248                         /* analyze tx success of previous ISO packets */
1249                         if (debug & DBG_HFC_URB_ERROR) {
1250                                 errcode = urb->iso_frame_desc[k].status;
1251                                 if (errcode) {
1252                                         printk(KERN_DEBUG "%s: %s: "
1253                                                "ISO packet %i, status: %i\n",
1254                                                hw->name, __func__, k, errcode);
1255                                 }
1256                         }
1257
1258                         /* Generate next ISO Packets */
1259                         if (tx_skb)
1260                                 remain = tx_skb->len - *tx_idx;
1261                         else if (fillempty)
1262                                 remain = 15; /* > not complete */
1263                         else
1264                                 remain = 0;
1265
1266                         if (remain > 0) {
1267                                 fifo->bit_line -= sink;
1268                                 current_len = (0 - fifo->bit_line) / 8;
1269                                 if (current_len > 14)
1270                                         current_len = 14;
1271                                 if (current_len < 0)
1272                                         current_len = 0;
1273                                 if (remain < current_len)
1274                                         current_len = remain;
1275
1276                                 /* how much bit do we put on the line? */
1277                                 fifo->bit_line += current_len * 8;
1278
1279                                 context_iso_urb->buffer[tx_offset] = 0;
1280                                 if (current_len == remain) {
1281                                         if (hdlc) {
1282                                                 /* signal frame completion */
1283                                                 context_iso_urb->
1284                                                         buffer[tx_offset] = 1;
1285                                                 /* add 2 byte flags and 16bit
1286                                                  * CRC at end of ISDN frame */
1287                                                 fifo->bit_line += 32;
1288                                         }
1289                                         frame_complete = 1;
1290                                 }
1291
1292                                 /* copy tx data to iso-urb buffer */
1293                                 p = context_iso_urb->buffer + tx_offset + 1;
1294                                 if (fillempty) {
1295                                         memset(p, fifo->bch->fill[0],
1296                                                current_len);
1297                                 } else {
1298                                         memcpy(p, (tx_skb->data + *tx_idx),
1299                                                current_len);
1300                                         *tx_idx += current_len;
1301                                 }
1302                                 urb->iso_frame_desc[k].offset = tx_offset;
1303                                 urb->iso_frame_desc[k].length = current_len + 1;
1304
1305                                 /* USB data log for every D ISO out */
1306                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1307                                     (debug & DBG_HFC_USB_VERBOSE)) {
1308                                         printk(KERN_DEBUG
1309                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1310                                                hw->name, __func__,
1311                                                k, num_isoc_packets - 1,
1312                                                urb->iso_frame_desc[k].offset,
1313                                                urb->iso_frame_desc[k].length);
1314
1315                                         for (i = urb->iso_frame_desc[k].offset;
1316                                              i < (urb->iso_frame_desc[k].offset
1317                                                   + urb->iso_frame_desc[k].length);
1318                                              i++)
1319                                                 printk("%x ",
1320                                                        context_iso_urb->buffer[i]);
1321
1322                                         printk(" skb->len(%i) tx-idx(%d)\n",
1323                                                tx_skb->len, *tx_idx);
1324                                 }
1325
1326                                 tx_offset += (current_len + 1);
1327                         } else {
1328                                 urb->iso_frame_desc[k].offset = tx_offset++;
1329                                 urb->iso_frame_desc[k].length = 1;
1330                                 /* we lower data margin every msec */
1331                                 fifo->bit_line -= sink;
1332                                 if (fifo->bit_line < BITLINE_INF)
1333                                         fifo->bit_line = BITLINE_INF;
1334                         }
1335
1336                         if (frame_complete) {
1337                                 frame_complete = 0;
1338
1339                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1340                                         printk(KERN_DEBUG  "%s: %s: "
1341                                                "fifon(%i) new TX len(%i): ",
1342                                                hw->name, __func__,
1343                                                fifon, tx_skb->len);
1344                                         i = 0;
1345                                         while (i < tx_skb->len)
1346                                                 printk("%02x ",
1347                                                        tx_skb->data[i++]);
1348                                         printk("\n");
1349                                 }
1350
1351                                 dev_consume_skb_irq(tx_skb);
1352                                 tx_skb = NULL;
1353                                 if (fifo->dch && get_next_dframe(fifo->dch))
1354                                         tx_skb = fifo->dch->tx_skb;
1355                                 else if (fifo->bch &&
1356                                          get_next_bframe(fifo->bch))
1357                                         tx_skb = fifo->bch->tx_skb;
1358                         }
1359                 }
1360                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1361                 if (errcode < 0) {
1362                         if (debug & DEBUG_HW)
1363                                 printk(KERN_DEBUG
1364                                        "%s: %s: error submitting ISO URB: %d \n",
1365                                        hw->name, __func__, errcode);
1366                 }
1367
1368                 /*
1369                  * abuse DChannel tx iso completion to trigger NT mode state
1370                  * changes tx_iso_complete is assumed to be called every
1371                  * fifo->intervall (ms)
1372                  */
1373                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1374                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1375                         if ((--hw->nt_timer) < 0)
1376                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1377                 }
1378
1379         } else {
1380                 if (status && (debug & DBG_HFC_URB_ERROR))
1381                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1382                                "fifonum=%d\n",
1383                                hw->name, __func__,
1384                                symbolic(urb_errlist, status), status, fifon);
1385         }
1386         spin_unlock_irqrestore(&hw->lock, flags);
1387 }
1388
1389 /*
1390  * allocs urbs and start isoc transfer with two pending urbs to avoid
1391  * gaps in the transfer chain
1392  */
1393 static int
1394 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1395                  usb_complete_t complete, int packet_size)
1396 {
1397         struct hfcsusb *hw = fifo->hw;
1398         int i, k, errcode;
1399
1400         if (debug)
1401                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1402                        hw->name, __func__, fifo->fifonum);
1403
1404         /* allocate Memory for Iso out Urbs */
1405         for (i = 0; i < 2; i++) {
1406                 if (!(fifo->iso[i].urb)) {
1407                         fifo->iso[i].urb =
1408                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1409                         if (!(fifo->iso[i].urb)) {
1410                                 printk(KERN_DEBUG
1411                                        "%s: %s: alloc urb for fifo %i failed",
1412                                        hw->name, __func__, fifo->fifonum);
1413                                 continue;
1414                         }
1415                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1416                         fifo->iso[i].indx = i;
1417
1418                         /* Init the first iso */
1419                         if (ISO_BUFFER_SIZE >=
1420                             (fifo->usb_packet_maxlen *
1421                              num_packets_per_urb)) {
1422                                 fill_isoc_urb(fifo->iso[i].urb,
1423                                               fifo->hw->dev, fifo->pipe,
1424                                               fifo->iso[i].buffer,
1425                                               num_packets_per_urb,
1426                                               fifo->usb_packet_maxlen,
1427                                               fifo->intervall, complete,
1428                                               &fifo->iso[i]);
1429                                 memset(fifo->iso[i].buffer, 0,
1430                                        sizeof(fifo->iso[i].buffer));
1431
1432                                 for (k = 0; k < num_packets_per_urb; k++) {
1433                                         fifo->iso[i].urb->
1434                                                 iso_frame_desc[k].offset =
1435                                                 k * packet_size;
1436                                         fifo->iso[i].urb->
1437                                                 iso_frame_desc[k].length =
1438                                                 packet_size;
1439                                 }
1440                         } else {
1441                                 printk(KERN_DEBUG
1442                                        "%s: %s: ISO Buffer size to small!\n",
1443                                        hw->name, __func__);
1444                         }
1445                 }
1446                 fifo->bit_line = BITLINE_INF;
1447
1448                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1449                 fifo->active = (errcode >= 0) ? 1 : 0;
1450                 fifo->stop_gracefull = 0;
1451                 if (errcode < 0) {
1452                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1453                                hw->name, __func__,
1454                                symbolic(urb_errlist, errcode), i);
1455                 }
1456         }
1457         return fifo->active;
1458 }
1459
1460 static void
1461 stop_iso_gracefull(struct usb_fifo *fifo)
1462 {
1463         struct hfcsusb *hw = fifo->hw;
1464         int i, timeout;
1465         u_long flags;
1466
1467         for (i = 0; i < 2; i++) {
1468                 spin_lock_irqsave(&hw->lock, flags);
1469                 if (debug)
1470                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1471                                hw->name, __func__, fifo->fifonum, i);
1472                 fifo->stop_gracefull = 1;
1473                 spin_unlock_irqrestore(&hw->lock, flags);
1474         }
1475
1476         for (i = 0; i < 2; i++) {
1477                 timeout = 3;
1478                 while (fifo->stop_gracefull && timeout--)
1479                         schedule_timeout_interruptible((HZ / 1000) * 16);
1480                 if (debug && fifo->stop_gracefull)
1481                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1482                                hw->name, __func__, fifo->fifonum, i);
1483         }
1484 }
1485
1486 static void
1487 stop_int_gracefull(struct usb_fifo *fifo)
1488 {
1489         struct hfcsusb *hw = fifo->hw;
1490         int timeout;
1491         u_long flags;
1492
1493         spin_lock_irqsave(&hw->lock, flags);
1494         if (debug)
1495                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1496                        hw->name, __func__, fifo->fifonum);
1497         fifo->stop_gracefull = 1;
1498         spin_unlock_irqrestore(&hw->lock, flags);
1499
1500         timeout = 3;
1501         while (fifo->stop_gracefull && timeout--)
1502                 schedule_timeout_interruptible((HZ / 1000) * 3);
1503         if (debug && fifo->stop_gracefull)
1504                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1505                        hw->name, __func__, fifo->fifonum);
1506 }
1507
1508 /* start the interrupt transfer for the given fifo */
1509 static void
1510 start_int_fifo(struct usb_fifo *fifo)
1511 {
1512         struct hfcsusb *hw = fifo->hw;
1513         int errcode;
1514
1515         if (debug)
1516                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1517                        hw->name, __func__, fifo->fifonum);
1518
1519         if (!fifo->urb) {
1520                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1521                 if (!fifo->urb)
1522                         return;
1523         }
1524         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1525                          fifo->buffer, fifo->usb_packet_maxlen,
1526                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1527         fifo->active = 1;
1528         fifo->stop_gracefull = 0;
1529         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1530         if (errcode) {
1531                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1532                        hw->name, __func__, errcode);
1533                 fifo->active = 0;
1534         }
1535 }
1536
1537 static void
1538 setPortMode(struct hfcsusb *hw)
1539 {
1540         if (debug & DEBUG_HW)
1541                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1542                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1543
1544         if (hw->protocol == ISDN_P_TE_S0) {
1545                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1546                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1547                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1548                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1549                 write_reg(hw, HFCUSB_STATES, 3);
1550         } else {
1551                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1552                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1553                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1554                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1555                 write_reg(hw, HFCUSB_STATES, 1);
1556         }
1557 }
1558
1559 static void
1560 reset_hfcsusb(struct hfcsusb *hw)
1561 {
1562         struct usb_fifo *fifo;
1563         int i;
1564
1565         if (debug & DEBUG_HW)
1566                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1567
1568         /* do Chip reset */
1569         write_reg(hw, HFCUSB_CIRM, 8);
1570
1571         /* aux = output, reset off */
1572         write_reg(hw, HFCUSB_CIRM, 0x10);
1573
1574         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1575         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1576                   ((hw->packet_size / 8) << 4));
1577
1578         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1579         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1580
1581         /* enable PCM/GCI master mode */
1582         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1583         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1584
1585         /* init the fifos */
1586         write_reg(hw, HFCUSB_F_THRES,
1587                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1588
1589         fifo = hw->fifos;
1590         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1591                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1592                 fifo[i].max_size =
1593                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1594                 fifo[i].last_urblen = 0;
1595
1596                 /* set 2 bit for D- & E-channel */
1597                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1598
1599                 /* enable all fifos */
1600                 if (i == HFCUSB_D_TX)
1601                         write_reg(hw, HFCUSB_CON_HDLC,
1602                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1603                 else
1604                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1605                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1606         }
1607
1608         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1609         handle_led(hw, LED_POWER_ON);
1610 }
1611
1612 /* start USB data pipes dependand on device's endpoint configuration */
1613 static void
1614 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1615 {
1616         /* quick check if endpoint already running */
1617         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1618                 return;
1619         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1620                 return;
1621         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1622                 return;
1623         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1624                 return;
1625
1626         /* start rx endpoints using USB INT IN method */
1627         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1628                 start_int_fifo(hw->fifos + channel * 2 + 1);
1629
1630         /* start rx endpoints using USB ISO IN method */
1631         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1632                 switch (channel) {
1633                 case HFC_CHAN_D:
1634                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1635                                          ISOC_PACKETS_D,
1636                                          (usb_complete_t)rx_iso_complete,
1637                                          16);
1638                         break;
1639                 case HFC_CHAN_E:
1640                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1641                                          ISOC_PACKETS_D,
1642                                          (usb_complete_t)rx_iso_complete,
1643                                          16);
1644                         break;
1645                 case HFC_CHAN_B1:
1646                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1647                                          ISOC_PACKETS_B,
1648                                          (usb_complete_t)rx_iso_complete,
1649                                          16);
1650                         break;
1651                 case HFC_CHAN_B2:
1652                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1653                                          ISOC_PACKETS_B,
1654                                          (usb_complete_t)rx_iso_complete,
1655                                          16);
1656                         break;
1657                 }
1658         }
1659
1660         /* start tx endpoints using USB ISO OUT method */
1661         switch (channel) {
1662         case HFC_CHAN_D:
1663                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1664                                  ISOC_PACKETS_B,
1665                                  (usb_complete_t)tx_iso_complete, 1);
1666                 break;
1667         case HFC_CHAN_B1:
1668                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1669                                  ISOC_PACKETS_D,
1670                                  (usb_complete_t)tx_iso_complete, 1);
1671                 break;
1672         case HFC_CHAN_B2:
1673                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1674                                  ISOC_PACKETS_B,
1675                                  (usb_complete_t)tx_iso_complete, 1);
1676                 break;
1677         }
1678 }
1679
1680 /* stop USB data pipes dependand on device's endpoint configuration */
1681 static void
1682 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1683 {
1684         /* quick check if endpoint currently running */
1685         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1686                 return;
1687         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1688                 return;
1689         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1690                 return;
1691         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1692                 return;
1693
1694         /* rx endpoints using USB INT IN method */
1695         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1696                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1697
1698         /* rx endpoints using USB ISO IN method */
1699         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1700                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1701
1702         /* tx endpoints using USB ISO OUT method */
1703         if (channel != HFC_CHAN_E)
1704                 stop_iso_gracefull(hw->fifos + channel * 2);
1705 }
1706
1707
1708 /* Hardware Initialization */
1709 static int
1710 setup_hfcsusb(struct hfcsusb *hw)
1711 {
1712         void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1713         u_char b;
1714         int ret;
1715
1716         if (debug & DBG_HFC_CALL_TRACE)
1717                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1718
1719         if (!dmabuf)
1720                 return -ENOMEM;
1721
1722         ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1723
1724         memcpy(&b, dmabuf, sizeof(u_char));
1725         kfree(dmabuf);
1726
1727         /* check the chip id */
1728         if (ret != 1) {
1729                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1730                        hw->name, __func__);
1731                 return 1;
1732         }
1733         if (b != HFCUSB_CHIPID) {
1734                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1735                        hw->name, __func__, b);
1736                 return 1;
1737         }
1738
1739         /* first set the needed config, interface and alternate */
1740         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1741
1742         hw->led_state = 0;
1743
1744         /* init the background machinery for control requests */
1745         hw->ctrl_read.bRequestType = 0xc0;
1746         hw->ctrl_read.bRequest = 1;
1747         hw->ctrl_read.wLength = cpu_to_le16(1);
1748         hw->ctrl_write.bRequestType = 0x40;
1749         hw->ctrl_write.bRequest = 0;
1750         hw->ctrl_write.wLength = 0;
1751         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1752                              (u_char *)&hw->ctrl_write, NULL, 0,
1753                              (usb_complete_t)ctrl_complete, hw);
1754
1755         reset_hfcsusb(hw);
1756         return 0;
1757 }
1758
1759 static void
1760 release_hw(struct hfcsusb *hw)
1761 {
1762         if (debug & DBG_HFC_CALL_TRACE)
1763                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1764
1765         /*
1766          * stop all endpoints gracefully
1767          * TODO: mISDN_core should generate CLOSE_CHANNEL
1768          *       signals after calling mISDN_unregister_device()
1769          */
1770         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1771         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1772         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1773         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1774                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1775         if (hw->protocol == ISDN_P_TE_S0)
1776                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1777
1778         mISDN_unregister_device(&hw->dch.dev);
1779         mISDN_freebchannel(&hw->bch[1]);
1780         mISDN_freebchannel(&hw->bch[0]);
1781         mISDN_freedchannel(&hw->dch);
1782
1783         if (hw->ctrl_urb) {
1784                 usb_kill_urb(hw->ctrl_urb);
1785                 usb_free_urb(hw->ctrl_urb);
1786                 hw->ctrl_urb = NULL;
1787         }
1788
1789         if (hw->intf)
1790                 usb_set_intfdata(hw->intf, NULL);
1791         list_del(&hw->list);
1792         kfree(hw);
1793         hw = NULL;
1794 }
1795
1796 static void
1797 deactivate_bchannel(struct bchannel *bch)
1798 {
1799         struct hfcsusb *hw = bch->hw;
1800         u_long flags;
1801
1802         if (bch->debug & DEBUG_HW)
1803                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1804                        hw->name, __func__, bch->nr);
1805
1806         spin_lock_irqsave(&hw->lock, flags);
1807         mISDN_clear_bchannel(bch);
1808         spin_unlock_irqrestore(&hw->lock, flags);
1809         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1810         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1811 }
1812
1813 /*
1814  * Layer 1 B-channel hardware access
1815  */
1816 static int
1817 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1818 {
1819         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1820         int             ret = -EINVAL;
1821
1822         if (bch->debug & DEBUG_HW)
1823                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1824
1825         switch (cmd) {
1826         case HW_TESTRX_RAW:
1827         case HW_TESTRX_HDLC:
1828         case HW_TESTRX_OFF:
1829                 ret = -EINVAL;
1830                 break;
1831
1832         case CLOSE_CHANNEL:
1833                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1834                 deactivate_bchannel(bch);
1835                 ch->protocol = ISDN_P_NONE;
1836                 ch->peer = NULL;
1837                 module_put(THIS_MODULE);
1838                 ret = 0;
1839                 break;
1840         case CONTROL_CHANNEL:
1841                 ret = channel_bctrl(bch, arg);
1842                 break;
1843         default:
1844                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1845                        __func__, cmd);
1846         }
1847         return ret;
1848 }
1849
1850 static int
1851 setup_instance(struct hfcsusb *hw, struct device *parent)
1852 {
1853         u_long  flags;
1854         int     err, i;
1855
1856         if (debug & DBG_HFC_CALL_TRACE)
1857                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1858
1859         spin_lock_init(&hw->ctrl_lock);
1860         spin_lock_init(&hw->lock);
1861
1862         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1863         hw->dch.debug = debug & 0xFFFF;
1864         hw->dch.hw = hw;
1865         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1866         hw->dch.dev.D.send = hfcusb_l2l1D;
1867         hw->dch.dev.D.ctrl = hfc_dctrl;
1868
1869         /* enable E-Channel logging */
1870         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1871                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1872
1873         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1874                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1875         hw->dch.dev.nrbchan = 2;
1876         for (i = 0; i < 2; i++) {
1877                 hw->bch[i].nr = i + 1;
1878                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1879                 hw->bch[i].debug = debug;
1880                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1881                 hw->bch[i].hw = hw;
1882                 hw->bch[i].ch.send = hfcusb_l2l1B;
1883                 hw->bch[i].ch.ctrl = hfc_bctrl;
1884                 hw->bch[i].ch.nr = i + 1;
1885                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1886         }
1887
1888         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1889         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1890         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1891         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1892         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1893         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1894         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1895         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1896
1897         err = setup_hfcsusb(hw);
1898         if (err)
1899                 goto out;
1900
1901         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1902                  hfcsusb_cnt + 1);
1903         printk(KERN_INFO "%s: registered as '%s'\n",
1904                DRIVER_NAME, hw->name);
1905
1906         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1907         if (err)
1908                 goto out;
1909
1910         hfcsusb_cnt++;
1911         write_lock_irqsave(&HFClock, flags);
1912         list_add_tail(&hw->list, &HFClist);
1913         write_unlock_irqrestore(&HFClock, flags);
1914         return 0;
1915
1916 out:
1917         mISDN_freebchannel(&hw->bch[1]);
1918         mISDN_freebchannel(&hw->bch[0]);
1919         mISDN_freedchannel(&hw->dch);
1920         kfree(hw);
1921         return err;
1922 }
1923
1924 static int
1925 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1926 {
1927         struct hfcsusb                  *hw;
1928         struct usb_device               *dev = interface_to_usbdev(intf);
1929         struct usb_host_interface       *iface = intf->cur_altsetting;
1930         struct usb_host_interface       *iface_used = NULL;
1931         struct usb_host_endpoint        *ep;
1932         struct hfcsusb_vdata            *driver_info;
1933         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1934                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1935                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1936                 alt_used = 0;
1937
1938         vend_idx = 0xffff;
1939         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1940                 if ((le16_to_cpu(dev->descriptor.idVendor)
1941                      == hfcsusb_idtab[i].idVendor) &&
1942                     (le16_to_cpu(dev->descriptor.idProduct)
1943                      == hfcsusb_idtab[i].idProduct)) {
1944                         vend_idx = i;
1945                         continue;
1946                 }
1947         }
1948
1949         printk(KERN_DEBUG
1950                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1951                __func__, ifnum, iface->desc.bAlternateSetting,
1952                intf->minor, vend_idx);
1953
1954         if (vend_idx == 0xffff) {
1955                 printk(KERN_WARNING
1956                        "%s: no valid vendor found in USB descriptor\n",
1957                        __func__);
1958                 return -EIO;
1959         }
1960         /* if vendor and product ID is OK, start probing alternate settings */
1961         alt_idx = 0;
1962         small_match = -1;
1963
1964         /* default settings */
1965         iso_packet_size = 16;
1966         packet_size = 64;
1967
1968         while (alt_idx < intf->num_altsetting) {
1969                 iface = intf->altsetting + alt_idx;
1970                 probe_alt_setting = iface->desc.bAlternateSetting;
1971                 cfg_used = 0;
1972
1973                 while (validconf[cfg_used][0]) {
1974                         cfg_found = 1;
1975                         vcf = validconf[cfg_used];
1976                         ep = iface->endpoint;
1977                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1978
1979                         /* check for all endpoints in this alternate setting */
1980                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1981                                 ep_addr = ep->desc.bEndpointAddress;
1982
1983                                 /* get endpoint base */
1984                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1985                                 if (idx > 15)
1986                                         return -EIO;
1987
1988                                 if (ep_addr & 0x80)
1989                                         idx++;
1990                                 attr = ep->desc.bmAttributes;
1991
1992                                 if (cmptbl[idx] != EP_NOP) {
1993                                         if (cmptbl[idx] == EP_NUL)
1994                                                 cfg_found = 0;
1995                                         if (attr == USB_ENDPOINT_XFER_INT
1996                                             && cmptbl[idx] == EP_INT)
1997                                                 cmptbl[idx] = EP_NUL;
1998                                         if (attr == USB_ENDPOINT_XFER_BULK
1999                                             && cmptbl[idx] == EP_BLK)
2000                                                 cmptbl[idx] = EP_NUL;
2001                                         if (attr == USB_ENDPOINT_XFER_ISOC
2002                                             && cmptbl[idx] == EP_ISO)
2003                                                 cmptbl[idx] = EP_NUL;
2004
2005                                         if (attr == USB_ENDPOINT_XFER_INT &&
2006                                             ep->desc.bInterval < vcf[17]) {
2007                                                 cfg_found = 0;
2008                                         }
2009                                 }
2010                                 ep++;
2011                         }
2012
2013                         for (i = 0; i < 16; i++)
2014                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2015                                         cfg_found = 0;
2016
2017                         if (cfg_found) {
2018                                 if (small_match < cfg_used) {
2019                                         small_match = cfg_used;
2020                                         alt_used = probe_alt_setting;
2021                                         iface_used = iface;
2022                                 }
2023                         }
2024                         cfg_used++;
2025                 }
2026                 alt_idx++;
2027         }       /* (alt_idx < intf->num_altsetting) */
2028
2029         /* not found a valid USB Ta Endpoint config */
2030         if (small_match == -1)
2031                 return -EIO;
2032
2033         iface = iface_used;
2034         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2035         if (!hw)
2036                 return -ENOMEM; /* got no mem */
2037         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2038
2039         ep = iface->endpoint;
2040         vcf = validconf[small_match];
2041
2042         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2043                 struct usb_fifo *f;
2044
2045                 ep_addr = ep->desc.bEndpointAddress;
2046                 /* get endpoint base */
2047                 idx = ((ep_addr & 0x7f) - 1) * 2;
2048                 if (ep_addr & 0x80)
2049                         idx++;
2050                 f = &hw->fifos[idx & 7];
2051
2052                 /* init Endpoints */
2053                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2054                         ep++;
2055                         continue;
2056                 }
2057                 switch (ep->desc.bmAttributes) {
2058                 case USB_ENDPOINT_XFER_INT:
2059                         f->pipe = usb_rcvintpipe(dev,
2060                                                  ep->desc.bEndpointAddress);
2061                         f->usb_transfer_mode = USB_INT;
2062                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2063                         break;
2064                 case USB_ENDPOINT_XFER_BULK:
2065                         if (ep_addr & 0x80)
2066                                 f->pipe = usb_rcvbulkpipe(dev,
2067                                                           ep->desc.bEndpointAddress);
2068                         else
2069                                 f->pipe = usb_sndbulkpipe(dev,
2070                                                           ep->desc.bEndpointAddress);
2071                         f->usb_transfer_mode = USB_BULK;
2072                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2073                         break;
2074                 case USB_ENDPOINT_XFER_ISOC:
2075                         if (ep_addr & 0x80)
2076                                 f->pipe = usb_rcvisocpipe(dev,
2077                                                           ep->desc.bEndpointAddress);
2078                         else
2079                                 f->pipe = usb_sndisocpipe(dev,
2080                                                           ep->desc.bEndpointAddress);
2081                         f->usb_transfer_mode = USB_ISOC;
2082                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2083                         break;
2084                 default:
2085                         f->pipe = 0;
2086                 }
2087
2088                 if (f->pipe) {
2089                         f->fifonum = idx & 7;
2090                         f->hw = hw;
2091                         f->usb_packet_maxlen =
2092                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2093                         f->intervall = ep->desc.bInterval;
2094                 }
2095                 ep++;
2096         }
2097         hw->dev = dev; /* save device */
2098         hw->if_used = ifnum; /* save used interface */
2099         hw->alt_used = alt_used; /* and alternate config */
2100         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2101         hw->cfg_used = vcf[16]; /* store used config */
2102         hw->vend_idx = vend_idx; /* store found vendor */
2103         hw->packet_size = packet_size;
2104         hw->iso_packet_size = iso_packet_size;
2105
2106         /* create the control pipes needed for register access */
2107         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2108         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2109
2110         driver_info = (struct hfcsusb_vdata *)
2111                       hfcsusb_idtab[vend_idx].driver_info;
2112
2113         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2114         if (!hw->ctrl_urb) {
2115                 pr_warn("%s: No memory for control urb\n",
2116                         driver_info->vend_name);
2117                 kfree(hw);
2118                 return -ENOMEM;
2119         }
2120
2121         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2122                 hw->name, __func__, driver_info->vend_name,
2123                 conf_str[small_match], ifnum, alt_used);
2124
2125         if (setup_instance(hw, dev->dev.parent))
2126                 return -EIO;
2127
2128         hw->intf = intf;
2129         usb_set_intfdata(hw->intf, hw);
2130         return 0;
2131 }
2132
2133 /* function called when an active device is removed */
2134 static void
2135 hfcsusb_disconnect(struct usb_interface *intf)
2136 {
2137         struct hfcsusb *hw = usb_get_intfdata(intf);
2138         struct hfcsusb *next;
2139         int cnt = 0;
2140
2141         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2142
2143         handle_led(hw, LED_POWER_OFF);
2144         release_hw(hw);
2145
2146         list_for_each_entry_safe(hw, next, &HFClist, list)
2147                 cnt++;
2148         if (!cnt)
2149                 hfcsusb_cnt = 0;
2150
2151         usb_set_intfdata(intf, NULL);
2152 }
2153
2154 static struct usb_driver hfcsusb_drv = {
2155         .name = DRIVER_NAME,
2156         .id_table = hfcsusb_idtab,
2157         .probe = hfcsusb_probe,
2158         .disconnect = hfcsusb_disconnect,
2159         .disable_hub_initiated_lpm = 1,
2160 };
2161
2162 module_usb_driver(hfcsusb_drv);