GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD        95
23 #define CUTOFF_CACHE_READA      90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31         return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36         return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41         struct bio_vec bv;
42         struct bvec_iter iter;
43         uint64_t csum = 0;
44
45         bio_for_each_segment(bv, bio, iter) {
46                 void *d = kmap(bv.bv_page) + bv.bv_offset;
47                 csum = bch_crc64_update(csum, d, bv.bv_len);
48                 kunmap(bv.bv_page);
49         }
50
51         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59         atomic_t *journal_ref = NULL;
60         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61         int ret;
62
63         /*
64          * If we're looping, might already be waiting on
65          * another journal write - can't wait on more than one journal write at
66          * a time
67          *
68          * XXX: this looks wrong
69          */
70 #if 0
71         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72                 closure_sync(&s->cl);
73 #endif
74
75         if (!op->replace)
76                 journal_ref = bch_journal(op->c, &op->insert_keys,
77                                           op->flush_journal ? cl : NULL);
78
79         ret = bch_btree_insert(op->c, &op->insert_keys,
80                                journal_ref, replace_key);
81         if (ret == -ESRCH) {
82                 op->replace_collision = true;
83         } else if (ret) {
84                 op->error               = -ENOMEM;
85                 op->insert_data_done    = true;
86         }
87
88         if (journal_ref)
89                 atomic_dec_bug(journal_ref);
90
91         if (!op->insert_data_done) {
92                 continue_at(cl, bch_data_insert_start, op->wq);
93                 return;
94         }
95
96         bch_keylist_free(&op->insert_keys);
97         closure_return(cl);
98 }
99
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101                                struct cache_set *c)
102 {
103         size_t oldsize = bch_keylist_nkeys(l);
104         size_t newsize = oldsize + u64s;
105
106         /*
107          * The journalling code doesn't handle the case where the keys to insert
108          * is bigger than an empty write: If we just return -ENOMEM here,
109          * bio_insert() and bio_invalidate() will insert the keys created so far
110          * and finish the rest when the keylist is empty.
111          */
112         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113                 return -ENOMEM;
114
115         return __bch_keylist_realloc(l, u64s);
116 }
117
118 static void bch_data_invalidate(struct closure *cl)
119 {
120         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121         struct bio *bio = op->bio;
122
123         pr_debug("invalidating %i sectors from %llu",
124                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126         while (bio_sectors(bio)) {
127                 unsigned sectors = min(bio_sectors(bio),
128                                        1U << (KEY_SIZE_BITS - 1));
129
130                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131                         goto out;
132
133                 bio->bi_iter.bi_sector  += sectors;
134                 bio->bi_iter.bi_size    -= sectors << 9;
135
136                 bch_keylist_add(&op->insert_keys,
137                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138         }
139
140         op->insert_data_done = true;
141         bio_put(bio);
142 out:
143         continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
146 static void bch_data_insert_error(struct closure *cl)
147 {
148         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150         /*
151          * Our data write just errored, which means we've got a bunch of keys to
152          * insert that point to data that wasn't succesfully written.
153          *
154          * We don't have to insert those keys but we still have to invalidate
155          * that region of the cache - so, if we just strip off all the pointers
156          * from the keys we'll accomplish just that.
157          */
158
159         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161         while (src != op->insert_keys.top) {
162                 struct bkey *n = bkey_next(src);
163
164                 SET_KEY_PTRS(src, 0);
165                 memmove(dst, src, bkey_bytes(src));
166
167                 dst = bkey_next(dst);
168                 src = n;
169         }
170
171         op->insert_keys.top = dst;
172
173         bch_data_insert_keys(cl);
174 }
175
176 static void bch_data_insert_endio(struct bio *bio)
177 {
178         struct closure *cl = bio->bi_private;
179         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181         if (bio->bi_error) {
182                 /* TODO: We could try to recover from this. */
183                 if (op->writeback)
184                         op->error = bio->bi_error;
185                 else if (!op->replace)
186                         set_closure_fn(cl, bch_data_insert_error, op->wq);
187                 else
188                         set_closure_fn(cl, NULL, NULL);
189         }
190
191         bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
192 }
193
194 static void bch_data_insert_start(struct closure *cl)
195 {
196         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197         struct bio *bio = op->bio, *n;
198
199         if (op->bypass)
200                 return bch_data_invalidate(cl);
201
202         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
203                 wake_up_gc(op->c);
204
205         /*
206          * Journal writes are marked REQ_PREFLUSH; if the original write was a
207          * flush, it'll wait on the journal write.
208          */
209         bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
210
211         do {
212                 unsigned i;
213                 struct bkey *k;
214                 struct bio_set *split = op->c->bio_split;
215
216                 /* 1 for the device pointer and 1 for the chksum */
217                 if (bch_keylist_realloc(&op->insert_keys,
218                                         3 + (op->csum ? 1 : 0),
219                                         op->c)) {
220                         continue_at(cl, bch_data_insert_keys, op->wq);
221                         return;
222                 }
223
224                 k = op->insert_keys.top;
225                 bkey_init(k);
226                 SET_KEY_INODE(k, op->inode);
227                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
228
229                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230                                        op->write_point, op->write_prio,
231                                        op->writeback))
232                         goto err;
233
234                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
235
236                 n->bi_end_io    = bch_data_insert_endio;
237                 n->bi_private   = cl;
238
239                 if (op->writeback) {
240                         SET_KEY_DIRTY(k, true);
241
242                         for (i = 0; i < KEY_PTRS(k); i++)
243                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
244                                             GC_MARK_DIRTY);
245                 }
246
247                 SET_KEY_CSUM(k, op->csum);
248                 if (KEY_CSUM(k))
249                         bio_csum(n, k);
250
251                 trace_bcache_cache_insert(k);
252                 bch_keylist_push(&op->insert_keys);
253
254                 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
255                 bch_submit_bbio(n, op->c, k, 0);
256         } while (n != bio);
257
258         op->insert_data_done = true;
259         continue_at(cl, bch_data_insert_keys, op->wq);
260         return;
261 err:
262         /* bch_alloc_sectors() blocks if s->writeback = true */
263         BUG_ON(op->writeback);
264
265         /*
266          * But if it's not a writeback write we'd rather just bail out if
267          * there aren't any buckets ready to write to - it might take awhile and
268          * we might be starving btree writes for gc or something.
269          */
270
271         if (!op->replace) {
272                 /*
273                  * Writethrough write: We can't complete the write until we've
274                  * updated the index. But we don't want to delay the write while
275                  * we wait for buckets to be freed up, so just invalidate the
276                  * rest of the write.
277                  */
278                 op->bypass = true;
279                 return bch_data_invalidate(cl);
280         } else {
281                 /*
282                  * From a cache miss, we can just insert the keys for the data
283                  * we have written or bail out if we didn't do anything.
284                  */
285                 op->insert_data_done = true;
286                 bio_put(bio);
287
288                 if (!bch_keylist_empty(&op->insert_keys))
289                         continue_at(cl, bch_data_insert_keys, op->wq);
290                 else
291                         closure_return(cl);
292         }
293 }
294
295 /**
296  * bch_data_insert - stick some data in the cache
297  *
298  * This is the starting point for any data to end up in a cache device; it could
299  * be from a normal write, or a writeback write, or a write to a flash only
300  * volume - it's also used by the moving garbage collector to compact data in
301  * mostly empty buckets.
302  *
303  * It first writes the data to the cache, creating a list of keys to be inserted
304  * (if the data had to be fragmented there will be multiple keys); after the
305  * data is written it calls bch_journal, and after the keys have been added to
306  * the next journal write they're inserted into the btree.
307  *
308  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
309  * and op->inode is used for the key inode.
310  *
311  * If s->bypass is true, instead of inserting the data it invalidates the
312  * region of the cache represented by s->cache_bio and op->inode.
313  */
314 void bch_data_insert(struct closure *cl)
315 {
316         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
317
318         trace_bcache_write(op->c, op->inode, op->bio,
319                            op->writeback, op->bypass);
320
321         bch_keylist_init(&op->insert_keys);
322         bio_get(op->bio);
323         bch_data_insert_start(cl);
324 }
325
326 /* Congested? */
327
328 unsigned bch_get_congested(struct cache_set *c)
329 {
330         int i;
331         long rand;
332
333         if (!c->congested_read_threshold_us &&
334             !c->congested_write_threshold_us)
335                 return 0;
336
337         i = (local_clock_us() - c->congested_last_us) / 1024;
338         if (i < 0)
339                 return 0;
340
341         i += atomic_read(&c->congested);
342         if (i >= 0)
343                 return 0;
344
345         i += CONGESTED_MAX;
346
347         if (i > 0)
348                 i = fract_exp_two(i, 6);
349
350         rand = get_random_int();
351         i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353         return i > 0 ? i : 1;
354 }
355
356 static void add_sequential(struct task_struct *t)
357 {
358         ewma_add(t->sequential_io_avg,
359                  t->sequential_io, 8, 0);
360
361         t->sequential_io = 0;
362 }
363
364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365 {
366         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367 }
368
369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370 {
371         struct cache_set *c = dc->disk.c;
372         unsigned mode = cache_mode(dc, bio);
373         unsigned sectors, congested = bch_get_congested(c);
374         struct task_struct *task = current;
375         struct io *i;
376
377         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
378             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
379             (bio_op(bio) == REQ_OP_DISCARD))
380                 goto skip;
381
382         if (mode == CACHE_MODE_NONE ||
383             (mode == CACHE_MODE_WRITEAROUND &&
384              op_is_write(bio_op(bio))))
385                 goto skip;
386
387         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
388             bio_sectors(bio) & (c->sb.block_size - 1)) {
389                 pr_debug("skipping unaligned io");
390                 goto skip;
391         }
392
393         if (bypass_torture_test(dc)) {
394                 if ((get_random_int() & 3) == 3)
395                         goto skip;
396                 else
397                         goto rescale;
398         }
399
400         if (!congested && !dc->sequential_cutoff)
401                 goto rescale;
402
403         if (!congested &&
404             mode == CACHE_MODE_WRITEBACK &&
405             op_is_write(bio_op(bio)) &&
406             (bio->bi_opf & REQ_SYNC))
407                 goto rescale;
408
409         spin_lock(&dc->io_lock);
410
411         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
412                 if (i->last == bio->bi_iter.bi_sector &&
413                     time_before(jiffies, i->jiffies))
414                         goto found;
415
416         i = list_first_entry(&dc->io_lru, struct io, lru);
417
418         add_sequential(task);
419         i->sequential = 0;
420 found:
421         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
422                 i->sequential   += bio->bi_iter.bi_size;
423
424         i->last                  = bio_end_sector(bio);
425         i->jiffies               = jiffies + msecs_to_jiffies(5000);
426         task->sequential_io      = i->sequential;
427
428         hlist_del(&i->hash);
429         hlist_add_head(&i->hash, iohash(dc, i->last));
430         list_move_tail(&i->lru, &dc->io_lru);
431
432         spin_unlock(&dc->io_lock);
433
434         sectors = max(task->sequential_io,
435                       task->sequential_io_avg) >> 9;
436
437         if (dc->sequential_cutoff &&
438             sectors >= dc->sequential_cutoff >> 9) {
439                 trace_bcache_bypass_sequential(bio);
440                 goto skip;
441         }
442
443         if (congested && sectors >= congested) {
444                 trace_bcache_bypass_congested(bio);
445                 goto skip;
446         }
447
448 rescale:
449         bch_rescale_priorities(c, bio_sectors(bio));
450         return false;
451 skip:
452         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
453         return true;
454 }
455
456 /* Cache lookup */
457
458 struct search {
459         /* Stack frame for bio_complete */
460         struct closure          cl;
461
462         struct bbio             bio;
463         struct bio              *orig_bio;
464         struct bio              *cache_miss;
465         struct bcache_device    *d;
466
467         unsigned                insert_bio_sectors;
468         unsigned                recoverable:1;
469         unsigned                write:1;
470         unsigned                read_dirty_data:1;
471         unsigned                cache_missed:1;
472
473         unsigned long           start_time;
474
475         struct btree_op         op;
476         struct data_insert_op   iop;
477 };
478
479 static void bch_cache_read_endio(struct bio *bio)
480 {
481         struct bbio *b = container_of(bio, struct bbio, bio);
482         struct closure *cl = bio->bi_private;
483         struct search *s = container_of(cl, struct search, cl);
484
485         /*
486          * If the bucket was reused while our bio was in flight, we might have
487          * read the wrong data. Set s->error but not error so it doesn't get
488          * counted against the cache device, but we'll still reread the data
489          * from the backing device.
490          */
491
492         if (bio->bi_error)
493                 s->iop.error = bio->bi_error;
494         else if (!KEY_DIRTY(&b->key) &&
495                  ptr_stale(s->iop.c, &b->key, 0)) {
496                 atomic_long_inc(&s->iop.c->cache_read_races);
497                 s->iop.error = -EINTR;
498         }
499
500         bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
501 }
502
503 /*
504  * Read from a single key, handling the initial cache miss if the key starts in
505  * the middle of the bio
506  */
507 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
508 {
509         struct search *s = container_of(op, struct search, op);
510         struct bio *n, *bio = &s->bio.bio;
511         struct bkey *bio_key;
512         unsigned ptr;
513
514         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
515                 return MAP_CONTINUE;
516
517         if (KEY_INODE(k) != s->iop.inode ||
518             KEY_START(k) > bio->bi_iter.bi_sector) {
519                 unsigned bio_sectors = bio_sectors(bio);
520                 unsigned sectors = KEY_INODE(k) == s->iop.inode
521                         ? min_t(uint64_t, INT_MAX,
522                                 KEY_START(k) - bio->bi_iter.bi_sector)
523                         : INT_MAX;
524
525                 int ret = s->d->cache_miss(b, s, bio, sectors);
526                 if (ret != MAP_CONTINUE)
527                         return ret;
528
529                 /* if this was a complete miss we shouldn't get here */
530                 BUG_ON(bio_sectors <= sectors);
531         }
532
533         if (!KEY_SIZE(k))
534                 return MAP_CONTINUE;
535
536         /* XXX: figure out best pointer - for multiple cache devices */
537         ptr = 0;
538
539         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
540
541         if (KEY_DIRTY(k))
542                 s->read_dirty_data = true;
543
544         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
545                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
546                            GFP_NOIO, s->d->bio_split);
547
548         bio_key = &container_of(n, struct bbio, bio)->key;
549         bch_bkey_copy_single_ptr(bio_key, k, ptr);
550
551         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
552         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
553
554         n->bi_end_io    = bch_cache_read_endio;
555         n->bi_private   = &s->cl;
556
557         /*
558          * The bucket we're reading from might be reused while our bio
559          * is in flight, and we could then end up reading the wrong
560          * data.
561          *
562          * We guard against this by checking (in cache_read_endio()) if
563          * the pointer is stale again; if so, we treat it as an error
564          * and reread from the backing device (but we don't pass that
565          * error up anywhere).
566          */
567
568         __bch_submit_bbio(n, b->c);
569         return n == bio ? MAP_DONE : MAP_CONTINUE;
570 }
571
572 static void cache_lookup(struct closure *cl)
573 {
574         struct search *s = container_of(cl, struct search, iop.cl);
575         struct bio *bio = &s->bio.bio;
576         int ret;
577
578         bch_btree_op_init(&s->op, -1);
579
580         ret = bch_btree_map_keys(&s->op, s->iop.c,
581                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
582                                  cache_lookup_fn, MAP_END_KEY);
583         if (ret == -EAGAIN) {
584                 continue_at(cl, cache_lookup, bcache_wq);
585                 return;
586         }
587
588         closure_return(cl);
589 }
590
591 /* Common code for the make_request functions */
592
593 static void request_endio(struct bio *bio)
594 {
595         struct closure *cl = bio->bi_private;
596
597         if (bio->bi_error) {
598                 struct search *s = container_of(cl, struct search, cl);
599                 s->iop.error = bio->bi_error;
600                 /* Only cache read errors are recoverable */
601                 s->recoverable = false;
602         }
603
604         bio_put(bio);
605         closure_put(cl);
606 }
607
608 static void bio_complete(struct search *s)
609 {
610         if (s->orig_bio) {
611                 generic_end_io_acct(bio_data_dir(s->orig_bio),
612                                     &s->d->disk->part0, s->start_time);
613
614                 trace_bcache_request_end(s->d, s->orig_bio);
615                 s->orig_bio->bi_error = s->iop.error;
616                 bio_endio(s->orig_bio);
617                 s->orig_bio = NULL;
618         }
619 }
620
621 static void do_bio_hook(struct search *s, struct bio *orig_bio)
622 {
623         struct bio *bio = &s->bio.bio;
624
625         bio_init(bio);
626         __bio_clone_fast(bio, orig_bio);
627         bio->bi_end_io          = request_endio;
628         bio->bi_private         = &s->cl;
629
630         bio_cnt_set(bio, 3);
631 }
632
633 static void search_free(struct closure *cl)
634 {
635         struct search *s = container_of(cl, struct search, cl);
636
637         if (s->iop.bio)
638                 bio_put(s->iop.bio);
639
640         bio_complete(s);
641         closure_debug_destroy(cl);
642         mempool_free(s, s->d->c->search);
643 }
644
645 static inline struct search *search_alloc(struct bio *bio,
646                                           struct bcache_device *d)
647 {
648         struct search *s;
649
650         s = mempool_alloc(d->c->search, GFP_NOIO);
651
652         closure_init(&s->cl, NULL);
653         do_bio_hook(s, bio);
654
655         s->orig_bio             = bio;
656         s->cache_miss           = NULL;
657         s->cache_missed         = 0;
658         s->d                    = d;
659         s->recoverable          = 1;
660         s->write                = op_is_write(bio_op(bio));
661         s->read_dirty_data      = 0;
662         s->start_time           = jiffies;
663
664         s->iop.c                = d->c;
665         s->iop.bio              = NULL;
666         s->iop.inode            = d->id;
667         s->iop.write_point      = hash_long((unsigned long) current, 16);
668         s->iop.write_prio       = 0;
669         s->iop.error            = 0;
670         s->iop.flags            = 0;
671         s->iop.flush_journal    = (bio->bi_opf & (REQ_PREFLUSH|REQ_FUA)) != 0;
672         s->iop.wq               = bcache_wq;
673
674         return s;
675 }
676
677 /* Cached devices */
678
679 static void cached_dev_bio_complete(struct closure *cl)
680 {
681         struct search *s = container_of(cl, struct search, cl);
682         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
683
684         search_free(cl);
685         cached_dev_put(dc);
686 }
687
688 /* Process reads */
689
690 static void cached_dev_cache_miss_done(struct closure *cl)
691 {
692         struct search *s = container_of(cl, struct search, cl);
693
694         if (s->iop.replace_collision)
695                 bch_mark_cache_miss_collision(s->iop.c, s->d);
696
697         if (s->iop.bio)
698                 bio_free_pages(s->iop.bio);
699
700         cached_dev_bio_complete(cl);
701 }
702
703 static void cached_dev_read_error(struct closure *cl)
704 {
705         struct search *s = container_of(cl, struct search, cl);
706         struct bio *bio = &s->bio.bio;
707
708         /*
709          * If read request hit dirty data (s->read_dirty_data is true),
710          * then recovery a failed read request from cached device may
711          * get a stale data back. So read failure recovery is only
712          * permitted when read request hit clean data in cache device,
713          * or when cache read race happened.
714          */
715         if (s->recoverable && !s->read_dirty_data) {
716                 /* Retry from the backing device: */
717                 trace_bcache_read_retry(s->orig_bio);
718
719                 s->iop.error = 0;
720                 do_bio_hook(s, s->orig_bio);
721
722                 /* XXX: invalidate cache */
723
724                 closure_bio_submit(bio, cl);
725         }
726
727         continue_at(cl, cached_dev_cache_miss_done, NULL);
728 }
729
730 static void cached_dev_read_done(struct closure *cl)
731 {
732         struct search *s = container_of(cl, struct search, cl);
733         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
734
735         /*
736          * We had a cache miss; cache_bio now contains data ready to be inserted
737          * into the cache.
738          *
739          * First, we copy the data we just read from cache_bio's bounce buffers
740          * to the buffers the original bio pointed to:
741          */
742
743         if (s->iop.bio) {
744                 bio_reset(s->iop.bio);
745                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
746                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
747                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
748                 bch_bio_map(s->iop.bio, NULL);
749
750                 bio_copy_data(s->cache_miss, s->iop.bio);
751
752                 bio_put(s->cache_miss);
753                 s->cache_miss = NULL;
754         }
755
756         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
757                 bch_data_verify(dc, s->orig_bio);
758
759         bio_complete(s);
760
761         if (s->iop.bio &&
762             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
763                 BUG_ON(!s->iop.replace);
764                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
765         }
766
767         continue_at(cl, cached_dev_cache_miss_done, NULL);
768 }
769
770 static void cached_dev_read_done_bh(struct closure *cl)
771 {
772         struct search *s = container_of(cl, struct search, cl);
773         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
774
775         bch_mark_cache_accounting(s->iop.c, s->d,
776                                   !s->cache_missed, s->iop.bypass);
777         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
778
779         if (s->iop.error)
780                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
781         else if (s->iop.bio || verify(dc, &s->bio.bio))
782                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
783         else
784                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
785 }
786
787 static int cached_dev_cache_miss(struct btree *b, struct search *s,
788                                  struct bio *bio, unsigned sectors)
789 {
790         int ret = MAP_CONTINUE;
791         unsigned reada = 0;
792         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
793         struct bio *miss, *cache_bio;
794
795         s->cache_missed = 1;
796
797         if (s->cache_miss || s->iop.bypass) {
798                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
799                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
800                 goto out_submit;
801         }
802
803         if (!(bio->bi_opf & REQ_RAHEAD) &&
804             !(bio->bi_opf & REQ_META) &&
805             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
806                 reada = min_t(sector_t, dc->readahead >> 9,
807                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
808
809         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
810
811         s->iop.replace_key = KEY(s->iop.inode,
812                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
813                                  s->insert_bio_sectors);
814
815         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
816         if (ret)
817                 return ret;
818
819         s->iop.replace = true;
820
821         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
822
823         /* btree_search_recurse()'s btree iterator is no good anymore */
824         ret = miss == bio ? MAP_DONE : -EINTR;
825
826         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
827                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
828                         dc->disk.bio_split);
829         if (!cache_bio)
830                 goto out_submit;
831
832         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
833         cache_bio->bi_bdev              = miss->bi_bdev;
834         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
835
836         cache_bio->bi_end_io    = request_endio;
837         cache_bio->bi_private   = &s->cl;
838
839         bch_bio_map(cache_bio, NULL);
840         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
841                 goto out_put;
842
843         if (reada)
844                 bch_mark_cache_readahead(s->iop.c, s->d);
845
846         s->cache_miss   = miss;
847         s->iop.bio      = cache_bio;
848         bio_get(cache_bio);
849         closure_bio_submit(cache_bio, &s->cl);
850
851         return ret;
852 out_put:
853         bio_put(cache_bio);
854 out_submit:
855         miss->bi_end_io         = request_endio;
856         miss->bi_private        = &s->cl;
857         closure_bio_submit(miss, &s->cl);
858         return ret;
859 }
860
861 static void cached_dev_read(struct cached_dev *dc, struct search *s)
862 {
863         struct closure *cl = &s->cl;
864
865         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
866         continue_at(cl, cached_dev_read_done_bh, NULL);
867 }
868
869 /* Process writes */
870
871 static void cached_dev_write_complete(struct closure *cl)
872 {
873         struct search *s = container_of(cl, struct search, cl);
874         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
875
876         up_read_non_owner(&dc->writeback_lock);
877         cached_dev_bio_complete(cl);
878 }
879
880 static void cached_dev_write(struct cached_dev *dc, struct search *s)
881 {
882         struct closure *cl = &s->cl;
883         struct bio *bio = &s->bio.bio;
884         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
885         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
886
887         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
888
889         down_read_non_owner(&dc->writeback_lock);
890         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
891                 /*
892                  * We overlap with some dirty data undergoing background
893                  * writeback, force this write to writeback
894                  */
895                 s->iop.bypass = false;
896                 s->iop.writeback = true;
897         }
898
899         /*
900          * Discards aren't _required_ to do anything, so skipping if
901          * check_overlapping returned true is ok
902          *
903          * But check_overlapping drops dirty keys for which io hasn't started,
904          * so we still want to call it.
905          */
906         if (bio_op(bio) == REQ_OP_DISCARD)
907                 s->iop.bypass = true;
908
909         if (should_writeback(dc, s->orig_bio,
910                              cache_mode(dc, bio),
911                              s->iop.bypass)) {
912                 s->iop.bypass = false;
913                 s->iop.writeback = true;
914         }
915
916         if (s->iop.bypass) {
917                 s->iop.bio = s->orig_bio;
918                 bio_get(s->iop.bio);
919
920                 if ((bio_op(bio) != REQ_OP_DISCARD) ||
921                     blk_queue_discard(bdev_get_queue(dc->bdev)))
922                         closure_bio_submit(bio, cl);
923         } else if (s->iop.writeback) {
924                 bch_writeback_add(dc);
925                 s->iop.bio = bio;
926
927                 if (bio->bi_opf & REQ_PREFLUSH) {
928                         /* Also need to send a flush to the backing device */
929                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
930                                                              dc->disk.bio_split);
931
932                         flush->bi_bdev  = bio->bi_bdev;
933                         flush->bi_end_io = request_endio;
934                         flush->bi_private = cl;
935                         bio_set_op_attrs(flush, REQ_OP_WRITE, WRITE_FLUSH);
936
937                         closure_bio_submit(flush, cl);
938                 }
939         } else {
940                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
941
942                 closure_bio_submit(bio, cl);
943         }
944
945         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
946         continue_at(cl, cached_dev_write_complete, NULL);
947 }
948
949 static void cached_dev_nodata(struct closure *cl)
950 {
951         struct search *s = container_of(cl, struct search, cl);
952         struct bio *bio = &s->bio.bio;
953
954         if (s->iop.flush_journal)
955                 bch_journal_meta(s->iop.c, cl);
956
957         /* If it's a flush, we send the flush to the backing device too */
958         closure_bio_submit(bio, cl);
959
960         continue_at(cl, cached_dev_bio_complete, NULL);
961 }
962
963 /* Cached devices - read & write stuff */
964
965 static blk_qc_t cached_dev_make_request(struct request_queue *q,
966                                         struct bio *bio)
967 {
968         struct search *s;
969         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
970         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
971         int rw = bio_data_dir(bio);
972
973         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
974
975         bio->bi_bdev = dc->bdev;
976         bio->bi_iter.bi_sector += dc->sb.data_offset;
977
978         if (cached_dev_get(dc)) {
979                 s = search_alloc(bio, d);
980                 trace_bcache_request_start(s->d, bio);
981
982                 if (!bio->bi_iter.bi_size) {
983                         /*
984                          * can't call bch_journal_meta from under
985                          * generic_make_request
986                          */
987                         continue_at_nobarrier(&s->cl,
988                                               cached_dev_nodata,
989                                               bcache_wq);
990                 } else {
991                         s->iop.bypass = check_should_bypass(dc, bio);
992
993                         if (rw)
994                                 cached_dev_write(dc, s);
995                         else
996                                 cached_dev_read(dc, s);
997                 }
998         } else {
999                 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1000                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1001                         bio_endio(bio);
1002                 else
1003                         generic_make_request(bio);
1004         }
1005
1006         return BLK_QC_T_NONE;
1007 }
1008
1009 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1010                             unsigned int cmd, unsigned long arg)
1011 {
1012         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1013         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1014 }
1015
1016 static int cached_dev_congested(void *data, int bits)
1017 {
1018         struct bcache_device *d = data;
1019         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1020         struct request_queue *q = bdev_get_queue(dc->bdev);
1021         int ret = 0;
1022
1023         if (bdi_congested(&q->backing_dev_info, bits))
1024                 return 1;
1025
1026         if (cached_dev_get(dc)) {
1027                 unsigned i;
1028                 struct cache *ca;
1029
1030                 for_each_cache(ca, d->c, i) {
1031                         q = bdev_get_queue(ca->bdev);
1032                         ret |= bdi_congested(&q->backing_dev_info, bits);
1033                 }
1034
1035                 cached_dev_put(dc);
1036         }
1037
1038         return ret;
1039 }
1040
1041 void bch_cached_dev_request_init(struct cached_dev *dc)
1042 {
1043         struct gendisk *g = dc->disk.disk;
1044
1045         g->queue->make_request_fn               = cached_dev_make_request;
1046         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1047         dc->disk.cache_miss                     = cached_dev_cache_miss;
1048         dc->disk.ioctl                          = cached_dev_ioctl;
1049 }
1050
1051 /* Flash backed devices */
1052
1053 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1054                                 struct bio *bio, unsigned sectors)
1055 {
1056         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1057
1058         swap(bio->bi_iter.bi_size, bytes);
1059         zero_fill_bio(bio);
1060         swap(bio->bi_iter.bi_size, bytes);
1061
1062         bio_advance(bio, bytes);
1063
1064         if (!bio->bi_iter.bi_size)
1065                 return MAP_DONE;
1066
1067         return MAP_CONTINUE;
1068 }
1069
1070 static void flash_dev_nodata(struct closure *cl)
1071 {
1072         struct search *s = container_of(cl, struct search, cl);
1073
1074         if (s->iop.flush_journal)
1075                 bch_journal_meta(s->iop.c, cl);
1076
1077         continue_at(cl, search_free, NULL);
1078 }
1079
1080 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1081                                              struct bio *bio)
1082 {
1083         struct search *s;
1084         struct closure *cl;
1085         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1086         int rw = bio_data_dir(bio);
1087
1088         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1089
1090         s = search_alloc(bio, d);
1091         cl = &s->cl;
1092         bio = &s->bio.bio;
1093
1094         trace_bcache_request_start(s->d, bio);
1095
1096         if (!bio->bi_iter.bi_size) {
1097                 /*
1098                  * can't call bch_journal_meta from under
1099                  * generic_make_request
1100                  */
1101                 continue_at_nobarrier(&s->cl,
1102                                       flash_dev_nodata,
1103                                       bcache_wq);
1104                 return BLK_QC_T_NONE;
1105         } else if (rw) {
1106                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1107                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1108                                         &KEY(d->id, bio_end_sector(bio), 0));
1109
1110                 s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1111                 s->iop.writeback        = true;
1112                 s->iop.bio              = bio;
1113
1114                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1115         } else {
1116                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1117         }
1118
1119         continue_at(cl, search_free, NULL);
1120         return BLK_QC_T_NONE;
1121 }
1122
1123 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1124                            unsigned int cmd, unsigned long arg)
1125 {
1126         return -ENOTTY;
1127 }
1128
1129 static int flash_dev_congested(void *data, int bits)
1130 {
1131         struct bcache_device *d = data;
1132         struct request_queue *q;
1133         struct cache *ca;
1134         unsigned i;
1135         int ret = 0;
1136
1137         for_each_cache(ca, d->c, i) {
1138                 q = bdev_get_queue(ca->bdev);
1139                 ret |= bdi_congested(&q->backing_dev_info, bits);
1140         }
1141
1142         return ret;
1143 }
1144
1145 void bch_flash_dev_request_init(struct bcache_device *d)
1146 {
1147         struct gendisk *g = d->disk;
1148
1149         g->queue->make_request_fn               = flash_dev_make_request;
1150         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1151         d->cache_miss                           = flash_dev_cache_miss;
1152         d->ioctl                                = flash_dev_ioctl;
1153 }
1154
1155 void bch_request_exit(void)
1156 {
1157         if (bch_search_cache)
1158                 kmem_cache_destroy(bch_search_cache);
1159 }
1160
1161 int __init bch_request_init(void)
1162 {
1163         bch_search_cache = KMEM_CACHE(search, 0);
1164         if (!bch_search_cache)
1165                 return -ENOMEM;
1166
1167         return 0;
1168 }