GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65                               struct page **res)
66 {
67         const char *err;
68         struct cache_sb *s;
69         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70         unsigned i;
71
72         if (!bh)
73                 return "IO error";
74
75         s = (struct cache_sb *) bh->b_data;
76
77         sb->offset              = le64_to_cpu(s->offset);
78         sb->version             = le64_to_cpu(s->version);
79
80         memcpy(sb->magic,       s->magic, 16);
81         memcpy(sb->uuid,        s->uuid, 16);
82         memcpy(sb->set_uuid,    s->set_uuid, 16);
83         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
84
85         sb->flags               = le64_to_cpu(s->flags);
86         sb->seq                 = le64_to_cpu(s->seq);
87         sb->last_mount          = le32_to_cpu(s->last_mount);
88         sb->first_bucket        = le16_to_cpu(s->first_bucket);
89         sb->keys                = le16_to_cpu(s->keys);
90
91         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92                 sb->d[i] = le64_to_cpu(s->d[i]);
93
94         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95                  sb->version, sb->flags, sb->seq, sb->keys);
96
97         err = "Not a bcache superblock";
98         if (sb->offset != SB_SECTOR)
99                 goto err;
100
101         if (memcmp(sb->magic, bcache_magic, 16))
102                 goto err;
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Bad checksum";
109         if (s->csum != csum_set(s))
110                 goto err;
111
112         err = "Bad UUID";
113         if (bch_is_zero(sb->uuid, 16))
114                 goto err;
115
116         sb->block_size  = le16_to_cpu(s->block_size);
117
118         err = "Superblock block size smaller than device block size";
119         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120                 goto err;
121
122         switch (sb->version) {
123         case BCACHE_SB_VERSION_BDEV:
124                 sb->data_offset = BDEV_DATA_START_DEFAULT;
125                 break;
126         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127                 sb->data_offset = le64_to_cpu(s->data_offset);
128
129                 err = "Bad data offset";
130                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131                         goto err;
132
133                 break;
134         case BCACHE_SB_VERSION_CDEV:
135         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
137                 sb->bucket_size = le16_to_cpu(s->bucket_size);
138
139                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
140                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
141
142                 err = "Too many buckets";
143                 if (sb->nbuckets > LONG_MAX)
144                         goto err;
145
146                 err = "Not enough buckets";
147                 if (sb->nbuckets < 1 << 7)
148                         goto err;
149
150                 err = "Bad block/bucket size";
151                 if (!is_power_of_2(sb->block_size) ||
152                     sb->block_size > PAGE_SECTORS ||
153                     !is_power_of_2(sb->bucket_size) ||
154                     sb->bucket_size < PAGE_SECTORS)
155                         goto err;
156
157                 err = "Invalid superblock: device too small";
158                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
159                         goto err;
160
161                 err = "Bad UUID";
162                 if (bch_is_zero(sb->set_uuid, 16))
163                         goto err;
164
165                 err = "Bad cache device number in set";
166                 if (!sb->nr_in_set ||
167                     sb->nr_in_set <= sb->nr_this_dev ||
168                     sb->nr_in_set > MAX_CACHES_PER_SET)
169                         goto err;
170
171                 err = "Journal buckets not sequential";
172                 for (i = 0; i < sb->keys; i++)
173                         if (sb->d[i] != sb->first_bucket + i)
174                                 goto err;
175
176                 err = "Too many journal buckets";
177                 if (sb->first_bucket + sb->keys > sb->nbuckets)
178                         goto err;
179
180                 err = "Invalid superblock: first bucket comes before end of super";
181                 if (sb->first_bucket * sb->bucket_size < 16)
182                         goto err;
183
184                 break;
185         default:
186                 err = "Unsupported superblock version";
187                 goto err;
188         }
189
190         sb->last_mount = get_seconds();
191         err = NULL;
192
193         get_page(bh->b_page);
194         *res = bh->b_page;
195 err:
196         put_bh(bh);
197         return err;
198 }
199
200 static void write_bdev_super_endio(struct bio *bio)
201 {
202         struct cached_dev *dc = bio->bi_private;
203         /* XXX: error checking */
204
205         closure_put(&dc->sb_write);
206 }
207
208 static void __write_super(struct cache_sb *sb, struct bio *bio)
209 {
210         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
211         unsigned i;
212
213         bio->bi_iter.bi_sector  = SB_SECTOR;
214         bio->bi_iter.bi_size    = SB_SIZE;
215         bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
216         bch_bio_map(bio, NULL);
217
218         out->offset             = cpu_to_le64(sb->offset);
219         out->version            = cpu_to_le64(sb->version);
220
221         memcpy(out->uuid,       sb->uuid, 16);
222         memcpy(out->set_uuid,   sb->set_uuid, 16);
223         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
224
225         out->flags              = cpu_to_le64(sb->flags);
226         out->seq                = cpu_to_le64(sb->seq);
227
228         out->last_mount         = cpu_to_le32(sb->last_mount);
229         out->first_bucket       = cpu_to_le16(sb->first_bucket);
230         out->keys               = cpu_to_le16(sb->keys);
231
232         for (i = 0; i < sb->keys; i++)
233                 out->d[i] = cpu_to_le64(sb->d[i]);
234
235         out->csum = csum_set(out);
236
237         pr_debug("ver %llu, flags %llu, seq %llu",
238                  sb->version, sb->flags, sb->seq);
239
240         submit_bio(bio);
241 }
242
243 static void bch_write_bdev_super_unlock(struct closure *cl)
244 {
245         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
246
247         up(&dc->sb_write_mutex);
248 }
249
250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
251 {
252         struct closure *cl = &dc->sb_write;
253         struct bio *bio = &dc->sb_bio;
254
255         down(&dc->sb_write_mutex);
256         closure_init(cl, parent);
257
258         bio_reset(bio);
259         bio->bi_bdev    = dc->bdev;
260         bio->bi_end_io  = write_bdev_super_endio;
261         bio->bi_private = dc;
262
263         closure_get(cl);
264         __write_super(&dc->sb, bio);
265
266         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
267 }
268
269 static void write_super_endio(struct bio *bio)
270 {
271         struct cache *ca = bio->bi_private;
272
273         bch_count_io_errors(ca, bio->bi_error, "writing superblock");
274         closure_put(&ca->set->sb_write);
275 }
276
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280
281         up(&c->sb_write_mutex);
282 }
283
284 void bcache_write_super(struct cache_set *c)
285 {
286         struct closure *cl = &c->sb_write;
287         struct cache *ca;
288         unsigned i;
289
290         down(&c->sb_write_mutex);
291         closure_init(cl, &c->cl);
292
293         c->sb.seq++;
294
295         for_each_cache(ca, c, i) {
296                 struct bio *bio = &ca->sb_bio;
297
298                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
299                 ca->sb.seq              = c->sb.seq;
300                 ca->sb.last_mount       = c->sb.last_mount;
301
302                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303
304                 bio_reset(bio);
305                 bio->bi_bdev    = ca->bdev;
306                 bio->bi_end_io  = write_super_endio;
307                 bio->bi_private = ca;
308
309                 closure_get(cl);
310                 __write_super(&ca->sb, bio);
311         }
312
313         closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315
316 /* UUID io */
317
318 static void uuid_endio(struct bio *bio)
319 {
320         struct closure *cl = bio->bi_private;
321         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322
323         cache_set_err_on(bio->bi_error, c, "accessing uuids");
324         bch_bbio_free(bio, c);
325         closure_put(cl);
326 }
327
328 static void uuid_io_unlock(struct closure *cl)
329 {
330         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331
332         up(&c->uuid_write_mutex);
333 }
334
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336                     struct bkey *k, struct closure *parent)
337 {
338         struct closure *cl = &c->uuid_write;
339         struct uuid_entry *u;
340         unsigned i;
341         char buf[80];
342
343         BUG_ON(!parent);
344         down(&c->uuid_write_mutex);
345         closure_init(cl, parent);
346
347         for (i = 0; i < KEY_PTRS(k); i++) {
348                 struct bio *bio = bch_bbio_alloc(c);
349
350                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352
353                 bio->bi_end_io  = uuid_endio;
354                 bio->bi_private = cl;
355                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356                 bch_bio_map(bio, c->uuids);
357
358                 bch_submit_bbio(bio, c, k, i);
359
360                 if (op != REQ_OP_WRITE)
361                         break;
362         }
363
364         bch_extent_to_text(buf, sizeof(buf), k);
365         pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366
367         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368                 if (!bch_is_zero(u->uuid, 16))
369                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370                                  u - c->uuids, u->uuid, u->label,
371                                  u->first_reg, u->last_reg, u->invalidated);
372
373         closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378         struct bkey *k = &j->uuid_bucket;
379
380         if (__bch_btree_ptr_invalid(c, k))
381                 return "bad uuid pointer";
382
383         bkey_copy(&c->uuid_bucket, k);
384         uuid_io(c, REQ_OP_READ, READ_SYNC, k, cl);
385
386         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
388                 struct uuid_entry       *u1 = (void *) c->uuids;
389                 int i;
390
391                 closure_sync(cl);
392
393                 /*
394                  * Since the new uuid entry is bigger than the old, we have to
395                  * convert starting at the highest memory address and work down
396                  * in order to do it in place
397                  */
398
399                 for (i = c->nr_uuids - 1;
400                      i >= 0;
401                      --i) {
402                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
403                         memcpy(u1[i].label,     u0[i].label, 32);
404
405                         u1[i].first_reg         = u0[i].first_reg;
406                         u1[i].last_reg          = u0[i].last_reg;
407                         u1[i].invalidated       = u0[i].invalidated;
408
409                         u1[i].flags     = 0;
410                         u1[i].sectors   = 0;
411                 }
412         }
413
414         return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419         BKEY_PADDED(key) k;
420         struct closure cl;
421         closure_init_stack(&cl);
422
423         lockdep_assert_held(&bch_register_lock);
424
425         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426                 return 1;
427
428         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
430         closure_sync(&cl);
431
432         bkey_copy(&c->uuid_bucket, &k.key);
433         bkey_put(c, &k.key);
434         return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439         int ret = __uuid_write(c);
440
441         if (!ret)
442                 bch_journal_meta(c, NULL);
443
444         return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449         struct uuid_entry *u;
450
451         for (u = c->uuids;
452              u < c->uuids + c->nr_uuids; u++)
453                 if (!memcmp(u->uuid, uuid, 16))
454                         return u;
455
456         return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462         return uuid_find(c, zero_uuid);
463 }
464
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491
492 static void prio_endio(struct bio *bio)
493 {
494         struct cache *ca = bio->bi_private;
495
496         cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497         bch_bbio_free(bio, ca->set);
498         closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, int op,
502                     unsigned long op_flags)
503 {
504         struct closure *cl = &ca->prio;
505         struct bio *bio = bch_bbio_alloc(ca->set);
506
507         closure_init_stack(cl);
508
509         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
510         bio->bi_bdev            = ca->bdev;
511         bio->bi_iter.bi_size    = bucket_bytes(ca);
512
513         bio->bi_end_io  = prio_endio;
514         bio->bi_private = ca;
515         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
516         bch_bio_map(bio, ca->disk_buckets);
517
518         closure_bio_submit(bio, &ca->prio);
519         closure_sync(cl);
520 }
521
522 void bch_prio_write(struct cache *ca)
523 {
524         int i;
525         struct bucket *b;
526         struct closure cl;
527
528         closure_init_stack(&cl);
529
530         lockdep_assert_held(&ca->set->bucket_lock);
531
532         ca->disk_buckets->seq++;
533
534         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
535                         &ca->meta_sectors_written);
536
537         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
538         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
539
540         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
541                 long bucket;
542                 struct prio_set *p = ca->disk_buckets;
543                 struct bucket_disk *d = p->data;
544                 struct bucket_disk *end = d + prios_per_bucket(ca);
545
546                 for (b = ca->buckets + i * prios_per_bucket(ca);
547                      b < ca->buckets + ca->sb.nbuckets && d < end;
548                      b++, d++) {
549                         d->prio = cpu_to_le16(b->prio);
550                         d->gen = b->gen;
551                 }
552
553                 p->next_bucket  = ca->prio_buckets[i + 1];
554                 p->magic        = pset_magic(&ca->sb);
555                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
556
557                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
558                 BUG_ON(bucket == -1);
559
560                 mutex_unlock(&ca->set->bucket_lock);
561                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
562                 mutex_lock(&ca->set->bucket_lock);
563
564                 ca->prio_buckets[i] = bucket;
565                 atomic_dec_bug(&ca->buckets[bucket].pin);
566         }
567
568         mutex_unlock(&ca->set->bucket_lock);
569
570         bch_journal_meta(ca->set, &cl);
571         closure_sync(&cl);
572
573         mutex_lock(&ca->set->bucket_lock);
574
575         /*
576          * Don't want the old priorities to get garbage collected until after we
577          * finish writing the new ones, and they're journalled
578          */
579         for (i = 0; i < prio_buckets(ca); i++) {
580                 if (ca->prio_last_buckets[i])
581                         __bch_bucket_free(ca,
582                                 &ca->buckets[ca->prio_last_buckets[i]]);
583
584                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
585         }
586 }
587
588 static void prio_read(struct cache *ca, uint64_t bucket)
589 {
590         struct prio_set *p = ca->disk_buckets;
591         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
592         struct bucket *b;
593         unsigned bucket_nr = 0;
594
595         for (b = ca->buckets;
596              b < ca->buckets + ca->sb.nbuckets;
597              b++, d++) {
598                 if (d == end) {
599                         ca->prio_buckets[bucket_nr] = bucket;
600                         ca->prio_last_buckets[bucket_nr] = bucket;
601                         bucket_nr++;
602
603                         prio_io(ca, bucket, REQ_OP_READ, READ_SYNC);
604
605                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
606                                 pr_warn("bad csum reading priorities");
607
608                         if (p->magic != pset_magic(&ca->sb))
609                                 pr_warn("bad magic reading priorities");
610
611                         bucket = p->next_bucket;
612                         d = p->data;
613                 }
614
615                 b->prio = le16_to_cpu(d->prio);
616                 b->gen = b->last_gc = d->gen;
617         }
618 }
619
620 /* Bcache device */
621
622 static int open_dev(struct block_device *b, fmode_t mode)
623 {
624         struct bcache_device *d = b->bd_disk->private_data;
625         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
626                 return -ENXIO;
627
628         closure_get(&d->cl);
629         return 0;
630 }
631
632 static void release_dev(struct gendisk *b, fmode_t mode)
633 {
634         struct bcache_device *d = b->private_data;
635         closure_put(&d->cl);
636 }
637
638 static int ioctl_dev(struct block_device *b, fmode_t mode,
639                      unsigned int cmd, unsigned long arg)
640 {
641         struct bcache_device *d = b->bd_disk->private_data;
642         return d->ioctl(d, mode, cmd, arg);
643 }
644
645 static const struct block_device_operations bcache_ops = {
646         .open           = open_dev,
647         .release        = release_dev,
648         .ioctl          = ioctl_dev,
649         .owner          = THIS_MODULE,
650 };
651
652 void bcache_device_stop(struct bcache_device *d)
653 {
654         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
655                 closure_queue(&d->cl);
656 }
657
658 static void bcache_device_unlink(struct bcache_device *d)
659 {
660         lockdep_assert_held(&bch_register_lock);
661
662         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
663                 unsigned i;
664                 struct cache *ca;
665
666                 sysfs_remove_link(&d->c->kobj, d->name);
667                 sysfs_remove_link(&d->kobj, "cache");
668
669                 for_each_cache(ca, d->c, i)
670                         bd_unlink_disk_holder(ca->bdev, d->disk);
671         }
672 }
673
674 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
675                                const char *name)
676 {
677         unsigned i;
678         struct cache *ca;
679
680         for_each_cache(ca, d->c, i)
681                 bd_link_disk_holder(ca->bdev, d->disk);
682
683         snprintf(d->name, BCACHEDEVNAME_SIZE,
684                  "%s%u", name, d->id);
685
686         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
687              sysfs_create_link(&c->kobj, &d->kobj, d->name),
688              "Couldn't create device <-> cache set symlinks");
689
690         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
691 }
692
693 static void bcache_device_detach(struct bcache_device *d)
694 {
695         lockdep_assert_held(&bch_register_lock);
696
697         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
698                 struct uuid_entry *u = d->c->uuids + d->id;
699
700                 SET_UUID_FLASH_ONLY(u, 0);
701                 memcpy(u->uuid, invalid_uuid, 16);
702                 u->invalidated = cpu_to_le32(get_seconds());
703                 bch_uuid_write(d->c);
704         }
705
706         bcache_device_unlink(d);
707
708         d->c->devices[d->id] = NULL;
709         closure_put(&d->c->caching);
710         d->c = NULL;
711 }
712
713 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
714                                  unsigned id)
715 {
716         d->id = id;
717         d->c = c;
718         c->devices[id] = d;
719
720         closure_get(&c->caching);
721 }
722
723 static void bcache_device_free(struct bcache_device *d)
724 {
725         lockdep_assert_held(&bch_register_lock);
726
727         pr_info("%s stopped", d->disk->disk_name);
728
729         if (d->c)
730                 bcache_device_detach(d);
731         if (d->disk && d->disk->flags & GENHD_FL_UP)
732                 del_gendisk(d->disk);
733         if (d->disk && d->disk->queue)
734                 blk_cleanup_queue(d->disk->queue);
735         if (d->disk) {
736                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
737                 put_disk(d->disk);
738         }
739
740         if (d->bio_split)
741                 bioset_free(d->bio_split);
742         kvfree(d->full_dirty_stripes);
743         kvfree(d->stripe_sectors_dirty);
744
745         closure_debug_destroy(&d->cl);
746 }
747
748 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
749                               sector_t sectors)
750 {
751         struct request_queue *q;
752         size_t n;
753         int minor;
754
755         if (!d->stripe_size)
756                 d->stripe_size = 1 << 31;
757
758         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
759
760         if (!d->nr_stripes ||
761             d->nr_stripes > INT_MAX ||
762             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
763                 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
764                         (unsigned)d->nr_stripes);
765                 return -ENOMEM;
766         }
767
768         n = d->nr_stripes * sizeof(atomic_t);
769         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
770                 ? kzalloc(n, GFP_KERNEL)
771                 : vzalloc(n);
772         if (!d->stripe_sectors_dirty)
773                 return -ENOMEM;
774
775         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
776         d->full_dirty_stripes = n < PAGE_SIZE << 6
777                 ? kzalloc(n, GFP_KERNEL)
778                 : vzalloc(n);
779         if (!d->full_dirty_stripes)
780                 return -ENOMEM;
781
782         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
783         if (minor < 0)
784                 return minor;
785
786         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
787             !(d->disk = alloc_disk(1))) {
788                 ida_simple_remove(&bcache_minor, minor);
789                 return -ENOMEM;
790         }
791
792         set_capacity(d->disk, sectors);
793         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
794
795         d->disk->major          = bcache_major;
796         d->disk->first_minor    = minor;
797         d->disk->fops           = &bcache_ops;
798         d->disk->private_data   = d;
799
800         q = blk_alloc_queue(GFP_KERNEL);
801         if (!q)
802                 return -ENOMEM;
803
804         blk_queue_make_request(q, NULL);
805         d->disk->queue                  = q;
806         q->queuedata                    = d;
807         q->backing_dev_info.congested_data = d;
808         q->limits.max_hw_sectors        = UINT_MAX;
809         q->limits.max_sectors           = UINT_MAX;
810         q->limits.max_segment_size      = UINT_MAX;
811         q->limits.max_segments          = BIO_MAX_PAGES;
812         blk_queue_max_discard_sectors(q, UINT_MAX);
813         q->limits.discard_granularity   = 512;
814         q->limits.io_min                = block_size;
815         q->limits.logical_block_size    = block_size;
816         q->limits.physical_block_size   = block_size;
817         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
818         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
819         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
820
821         blk_queue_write_cache(q, true, true);
822
823         return 0;
824 }
825
826 /* Cached device */
827
828 static void calc_cached_dev_sectors(struct cache_set *c)
829 {
830         uint64_t sectors = 0;
831         struct cached_dev *dc;
832
833         list_for_each_entry(dc, &c->cached_devs, list)
834                 sectors += bdev_sectors(dc->bdev);
835
836         c->cached_dev_sectors = sectors;
837 }
838
839 void bch_cached_dev_run(struct cached_dev *dc)
840 {
841         struct bcache_device *d = &dc->disk;
842         char buf[SB_LABEL_SIZE + 1];
843         char *env[] = {
844                 "DRIVER=bcache",
845                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
846                 NULL,
847                 NULL,
848         };
849
850         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
851         buf[SB_LABEL_SIZE] = '\0';
852         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
853
854         if (atomic_xchg(&dc->running, 1)) {
855                 kfree(env[1]);
856                 kfree(env[2]);
857                 return;
858         }
859
860         if (!d->c &&
861             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
862                 struct closure cl;
863                 closure_init_stack(&cl);
864
865                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
866                 bch_write_bdev_super(dc, &cl);
867                 closure_sync(&cl);
868         }
869
870         add_disk(d->disk);
871         bd_link_disk_holder(dc->bdev, dc->disk.disk);
872         /* won't show up in the uevent file, use udevadm monitor -e instead
873          * only class / kset properties are persistent */
874         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
875         kfree(env[1]);
876         kfree(env[2]);
877
878         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
879             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
880                 pr_debug("error creating sysfs link");
881 }
882
883 static void cached_dev_detach_finish(struct work_struct *w)
884 {
885         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
886         char buf[BDEVNAME_SIZE];
887         struct closure cl;
888         closure_init_stack(&cl);
889
890         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
891         BUG_ON(atomic_read(&dc->count));
892
893         mutex_lock(&bch_register_lock);
894
895         cancel_delayed_work_sync(&dc->writeback_rate_update);
896         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
897                 kthread_stop(dc->writeback_thread);
898                 dc->writeback_thread = NULL;
899         }
900
901         memset(&dc->sb.set_uuid, 0, 16);
902         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
903
904         bch_write_bdev_super(dc, &cl);
905         closure_sync(&cl);
906
907         calc_cached_dev_sectors(dc->disk.c);
908         bcache_device_detach(&dc->disk);
909         list_move(&dc->list, &uncached_devices);
910
911         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
912         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
913
914         mutex_unlock(&bch_register_lock);
915
916         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
917
918         /* Drop ref we took in cached_dev_detach() */
919         closure_put(&dc->disk.cl);
920 }
921
922 void bch_cached_dev_detach(struct cached_dev *dc)
923 {
924         lockdep_assert_held(&bch_register_lock);
925
926         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
927                 return;
928
929         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
930                 return;
931
932         /*
933          * Block the device from being closed and freed until we're finished
934          * detaching
935          */
936         closure_get(&dc->disk.cl);
937
938         bch_writeback_queue(dc);
939         cached_dev_put(dc);
940 }
941
942 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
943                           uint8_t *set_uuid)
944 {
945         uint32_t rtime = cpu_to_le32(get_seconds());
946         struct uuid_entry *u;
947         char buf[BDEVNAME_SIZE];
948         struct cached_dev *exist_dc, *t;
949
950         bdevname(dc->bdev, buf);
951
952         if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
953             (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
954                 return -ENOENT;
955
956         if (dc->disk.c) {
957                 pr_err("Can't attach %s: already attached", buf);
958                 return -EINVAL;
959         }
960
961         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
962                 pr_err("Can't attach %s: shutting down", buf);
963                 return -EINVAL;
964         }
965
966         if (dc->sb.block_size < c->sb.block_size) {
967                 /* Will die */
968                 pr_err("Couldn't attach %s: block size less than set's block size",
969                        buf);
970                 return -EINVAL;
971         }
972
973         /* Check whether already attached */
974         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
975                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
976                         pr_err("Tried to attach %s but duplicate UUID already attached",
977                                 buf);
978
979                         return -EINVAL;
980                 }
981         }
982
983         u = uuid_find(c, dc->sb.uuid);
984
985         if (u &&
986             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
987              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
988                 memcpy(u->uuid, invalid_uuid, 16);
989                 u->invalidated = cpu_to_le32(get_seconds());
990                 u = NULL;
991         }
992
993         if (!u) {
994                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
995                         pr_err("Couldn't find uuid for %s in set", buf);
996                         return -ENOENT;
997                 }
998
999                 u = uuid_find_empty(c);
1000                 if (!u) {
1001                         pr_err("Not caching %s, no room for UUID", buf);
1002                         return -EINVAL;
1003                 }
1004         }
1005
1006         /* Deadlocks since we're called via sysfs...
1007         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1008          */
1009
1010         if (bch_is_zero(u->uuid, 16)) {
1011                 struct closure cl;
1012                 closure_init_stack(&cl);
1013
1014                 memcpy(u->uuid, dc->sb.uuid, 16);
1015                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1016                 u->first_reg = u->last_reg = rtime;
1017                 bch_uuid_write(c);
1018
1019                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1020                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1021
1022                 bch_write_bdev_super(dc, &cl);
1023                 closure_sync(&cl);
1024         } else {
1025                 u->last_reg = rtime;
1026                 bch_uuid_write(c);
1027         }
1028
1029         bcache_device_attach(&dc->disk, c, u - c->uuids);
1030         list_move(&dc->list, &c->cached_devs);
1031         calc_cached_dev_sectors(c);
1032
1033         smp_wmb();
1034         /*
1035          * dc->c must be set before dc->count != 0 - paired with the mb in
1036          * cached_dev_get()
1037          */
1038         atomic_set(&dc->count, 1);
1039
1040         /* Block writeback thread, but spawn it */
1041         down_write(&dc->writeback_lock);
1042         if (bch_cached_dev_writeback_start(dc)) {
1043                 up_write(&dc->writeback_lock);
1044                 return -ENOMEM;
1045         }
1046
1047         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1048                 bch_sectors_dirty_init(&dc->disk);
1049                 atomic_set(&dc->has_dirty, 1);
1050                 atomic_inc(&dc->count);
1051                 bch_writeback_queue(dc);
1052         }
1053
1054         bch_cached_dev_run(dc);
1055         bcache_device_link(&dc->disk, c, "bdev");
1056
1057         /* Allow the writeback thread to proceed */
1058         up_write(&dc->writeback_lock);
1059
1060         pr_info("Caching %s as %s on set %pU",
1061                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1062                 dc->disk.c->sb.set_uuid);
1063         return 0;
1064 }
1065
1066 void bch_cached_dev_release(struct kobject *kobj)
1067 {
1068         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1069                                              disk.kobj);
1070         kfree(dc);
1071         module_put(THIS_MODULE);
1072 }
1073
1074 static void cached_dev_free(struct closure *cl)
1075 {
1076         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1077
1078         cancel_delayed_work_sync(&dc->writeback_rate_update);
1079         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1080                 kthread_stop(dc->writeback_thread);
1081         if (dc->writeback_write_wq)
1082                 destroy_workqueue(dc->writeback_write_wq);
1083
1084         mutex_lock(&bch_register_lock);
1085
1086         if (atomic_read(&dc->running))
1087                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1088         bcache_device_free(&dc->disk);
1089         list_del(&dc->list);
1090
1091         mutex_unlock(&bch_register_lock);
1092
1093         if (!IS_ERR_OR_NULL(dc->bdev))
1094                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1095
1096         wake_up(&unregister_wait);
1097
1098         kobject_put(&dc->disk.kobj);
1099 }
1100
1101 static void cached_dev_flush(struct closure *cl)
1102 {
1103         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1104         struct bcache_device *d = &dc->disk;
1105
1106         mutex_lock(&bch_register_lock);
1107         bcache_device_unlink(d);
1108         mutex_unlock(&bch_register_lock);
1109
1110         bch_cache_accounting_destroy(&dc->accounting);
1111         kobject_del(&d->kobj);
1112
1113         continue_at(cl, cached_dev_free, system_wq);
1114 }
1115
1116 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1117 {
1118         int ret;
1119         struct io *io;
1120         struct request_queue *q = bdev_get_queue(dc->bdev);
1121
1122         __module_get(THIS_MODULE);
1123         INIT_LIST_HEAD(&dc->list);
1124         closure_init(&dc->disk.cl, NULL);
1125         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1126         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1127         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1128         sema_init(&dc->sb_write_mutex, 1);
1129         INIT_LIST_HEAD(&dc->io_lru);
1130         spin_lock_init(&dc->io_lock);
1131         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1132
1133         dc->sequential_cutoff           = 4 << 20;
1134
1135         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1136                 list_add(&io->lru, &dc->io_lru);
1137                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1138         }
1139
1140         dc->disk.stripe_size = q->limits.io_opt >> 9;
1141
1142         if (dc->disk.stripe_size)
1143                 dc->partial_stripes_expensive =
1144                         q->limits.raid_partial_stripes_expensive;
1145
1146         ret = bcache_device_init(&dc->disk, block_size,
1147                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1148         if (ret)
1149                 return ret;
1150
1151         set_capacity(dc->disk.disk,
1152                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1153
1154         dc->disk.disk->queue->backing_dev_info.ra_pages =
1155                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1156                     q->backing_dev_info.ra_pages);
1157
1158         bch_cached_dev_request_init(dc);
1159         bch_cached_dev_writeback_init(dc);
1160         return 0;
1161 }
1162
1163 /* Cached device - bcache superblock */
1164
1165 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1166                                  struct block_device *bdev,
1167                                  struct cached_dev *dc)
1168 {
1169         char name[BDEVNAME_SIZE];
1170         const char *err = "cannot allocate memory";
1171         struct cache_set *c;
1172
1173         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1174         dc->bdev = bdev;
1175         dc->bdev->bd_holder = dc;
1176
1177         bio_init(&dc->sb_bio);
1178         dc->sb_bio.bi_max_vecs  = 1;
1179         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1180         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1181         get_page(sb_page);
1182
1183         if (cached_dev_init(dc, sb->block_size << 9))
1184                 goto err;
1185
1186         err = "error creating kobject";
1187         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1188                         "bcache"))
1189                 goto err;
1190         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1191                 goto err;
1192
1193         pr_info("registered backing device %s", bdevname(bdev, name));
1194
1195         list_add(&dc->list, &uncached_devices);
1196         list_for_each_entry(c, &bch_cache_sets, list)
1197                 bch_cached_dev_attach(dc, c, NULL);
1198
1199         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1200             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1201                 bch_cached_dev_run(dc);
1202
1203         return;
1204 err:
1205         pr_notice("error %s: %s", bdevname(bdev, name), err);
1206         bcache_device_stop(&dc->disk);
1207 }
1208
1209 /* Flash only volumes */
1210
1211 void bch_flash_dev_release(struct kobject *kobj)
1212 {
1213         struct bcache_device *d = container_of(kobj, struct bcache_device,
1214                                                kobj);
1215         kfree(d);
1216 }
1217
1218 static void flash_dev_free(struct closure *cl)
1219 {
1220         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1221         mutex_lock(&bch_register_lock);
1222         bcache_device_free(d);
1223         mutex_unlock(&bch_register_lock);
1224         kobject_put(&d->kobj);
1225 }
1226
1227 static void flash_dev_flush(struct closure *cl)
1228 {
1229         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1230
1231         mutex_lock(&bch_register_lock);
1232         bcache_device_unlink(d);
1233         mutex_unlock(&bch_register_lock);
1234         kobject_del(&d->kobj);
1235         continue_at(cl, flash_dev_free, system_wq);
1236 }
1237
1238 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1239 {
1240         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1241                                           GFP_KERNEL);
1242         if (!d)
1243                 return -ENOMEM;
1244
1245         closure_init(&d->cl, NULL);
1246         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1247
1248         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1249
1250         if (bcache_device_init(d, block_bytes(c), u->sectors))
1251                 goto err;
1252
1253         bcache_device_attach(d, c, u - c->uuids);
1254         bch_sectors_dirty_init(d);
1255         bch_flash_dev_request_init(d);
1256         add_disk(d->disk);
1257
1258         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1259                 goto err;
1260
1261         bcache_device_link(d, c, "volume");
1262
1263         return 0;
1264 err:
1265         kobject_put(&d->kobj);
1266         return -ENOMEM;
1267 }
1268
1269 static int flash_devs_run(struct cache_set *c)
1270 {
1271         int ret = 0;
1272         struct uuid_entry *u;
1273
1274         for (u = c->uuids;
1275              u < c->uuids + c->nr_uuids && !ret;
1276              u++)
1277                 if (UUID_FLASH_ONLY(u))
1278                         ret = flash_dev_run(c, u);
1279
1280         return ret;
1281 }
1282
1283 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1284 {
1285         struct uuid_entry *u;
1286
1287         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1288                 return -EINTR;
1289
1290         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1291                 return -EPERM;
1292
1293         u = uuid_find_empty(c);
1294         if (!u) {
1295                 pr_err("Can't create volume, no room for UUID");
1296                 return -EINVAL;
1297         }
1298
1299         get_random_bytes(u->uuid, 16);
1300         memset(u->label, 0, 32);
1301         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1302
1303         SET_UUID_FLASH_ONLY(u, 1);
1304         u->sectors = size >> 9;
1305
1306         bch_uuid_write(c);
1307
1308         return flash_dev_run(c, u);
1309 }
1310
1311 /* Cache set */
1312
1313 __printf(2, 3)
1314 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1315 {
1316         va_list args;
1317
1318         if (c->on_error != ON_ERROR_PANIC &&
1319             test_bit(CACHE_SET_STOPPING, &c->flags))
1320                 return false;
1321
1322         /* XXX: we can be called from atomic context
1323         acquire_console_sem();
1324         */
1325
1326         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1327
1328         va_start(args, fmt);
1329         vprintk(fmt, args);
1330         va_end(args);
1331
1332         printk(", disabling caching\n");
1333
1334         if (c->on_error == ON_ERROR_PANIC)
1335                 panic("panic forced after error\n");
1336
1337         bch_cache_set_unregister(c);
1338         return true;
1339 }
1340
1341 void bch_cache_set_release(struct kobject *kobj)
1342 {
1343         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1344         kfree(c);
1345         module_put(THIS_MODULE);
1346 }
1347
1348 static void cache_set_free(struct closure *cl)
1349 {
1350         struct cache_set *c = container_of(cl, struct cache_set, cl);
1351         struct cache *ca;
1352         unsigned i;
1353
1354         if (!IS_ERR_OR_NULL(c->debug))
1355                 debugfs_remove(c->debug);
1356
1357         bch_open_buckets_free(c);
1358         bch_btree_cache_free(c);
1359         bch_journal_free(c);
1360
1361         mutex_lock(&bch_register_lock);
1362         for_each_cache(ca, c, i)
1363                 if (ca) {
1364                         ca->set = NULL;
1365                         c->cache[ca->sb.nr_this_dev] = NULL;
1366                         kobject_put(&ca->kobj);
1367                 }
1368
1369         bch_bset_sort_state_free(&c->sort);
1370         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1371
1372         if (c->moving_gc_wq)
1373                 destroy_workqueue(c->moving_gc_wq);
1374         if (c->bio_split)
1375                 bioset_free(c->bio_split);
1376         if (c->fill_iter)
1377                 mempool_destroy(c->fill_iter);
1378         if (c->bio_meta)
1379                 mempool_destroy(c->bio_meta);
1380         if (c->search)
1381                 mempool_destroy(c->search);
1382         kfree(c->devices);
1383
1384         list_del(&c->list);
1385         mutex_unlock(&bch_register_lock);
1386
1387         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1388         wake_up(&unregister_wait);
1389
1390         closure_debug_destroy(&c->cl);
1391         kobject_put(&c->kobj);
1392 }
1393
1394 static void cache_set_flush(struct closure *cl)
1395 {
1396         struct cache_set *c = container_of(cl, struct cache_set, caching);
1397         struct cache *ca;
1398         struct btree *b;
1399         unsigned i;
1400
1401         bch_cache_accounting_destroy(&c->accounting);
1402
1403         kobject_put(&c->internal);
1404         kobject_del(&c->kobj);
1405
1406         if (!IS_ERR_OR_NULL(c->gc_thread))
1407                 kthread_stop(c->gc_thread);
1408
1409         if (!IS_ERR_OR_NULL(c->root))
1410                 list_add(&c->root->list, &c->btree_cache);
1411
1412         /* Should skip this if we're unregistering because of an error */
1413         list_for_each_entry(b, &c->btree_cache, list) {
1414                 mutex_lock(&b->write_lock);
1415                 if (btree_node_dirty(b))
1416                         __bch_btree_node_write(b, NULL);
1417                 mutex_unlock(&b->write_lock);
1418         }
1419
1420         for_each_cache(ca, c, i)
1421                 if (ca->alloc_thread)
1422                         kthread_stop(ca->alloc_thread);
1423
1424         if (c->journal.cur) {
1425                 cancel_delayed_work_sync(&c->journal.work);
1426                 /* flush last journal entry if needed */
1427                 c->journal.work.work.func(&c->journal.work.work);
1428         }
1429
1430         closure_return(cl);
1431 }
1432
1433 static void __cache_set_unregister(struct closure *cl)
1434 {
1435         struct cache_set *c = container_of(cl, struct cache_set, caching);
1436         struct cached_dev *dc;
1437         size_t i;
1438
1439         mutex_lock(&bch_register_lock);
1440
1441         for (i = 0; i < c->nr_uuids; i++)
1442                 if (c->devices[i]) {
1443                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1444                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1445                                 dc = container_of(c->devices[i],
1446                                                   struct cached_dev, disk);
1447                                 bch_cached_dev_detach(dc);
1448                         } else {
1449                                 bcache_device_stop(c->devices[i]);
1450                         }
1451                 }
1452
1453         mutex_unlock(&bch_register_lock);
1454
1455         continue_at(cl, cache_set_flush, system_wq);
1456 }
1457
1458 void bch_cache_set_stop(struct cache_set *c)
1459 {
1460         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1461                 closure_queue(&c->caching);
1462 }
1463
1464 void bch_cache_set_unregister(struct cache_set *c)
1465 {
1466         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1467         bch_cache_set_stop(c);
1468 }
1469
1470 #define alloc_bucket_pages(gfp, c)                      \
1471         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c))))
1472
1473 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1474 {
1475         int iter_size;
1476         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1477         if (!c)
1478                 return NULL;
1479
1480         __module_get(THIS_MODULE);
1481         closure_init(&c->cl, NULL);
1482         set_closure_fn(&c->cl, cache_set_free, system_wq);
1483
1484         closure_init(&c->caching, &c->cl);
1485         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1486
1487         /* Maybe create continue_at_noreturn() and use it here? */
1488         closure_set_stopped(&c->cl);
1489         closure_put(&c->cl);
1490
1491         kobject_init(&c->kobj, &bch_cache_set_ktype);
1492         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1493
1494         bch_cache_accounting_init(&c->accounting, &c->cl);
1495
1496         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1497         c->sb.block_size        = sb->block_size;
1498         c->sb.bucket_size       = sb->bucket_size;
1499         c->sb.nr_in_set         = sb->nr_in_set;
1500         c->sb.last_mount        = sb->last_mount;
1501         c->bucket_bits          = ilog2(sb->bucket_size);
1502         c->block_bits           = ilog2(sb->block_size);
1503         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1504
1505         c->btree_pages          = bucket_pages(c);
1506         if (c->btree_pages > BTREE_MAX_PAGES)
1507                 c->btree_pages = max_t(int, c->btree_pages / 4,
1508                                        BTREE_MAX_PAGES);
1509
1510         sema_init(&c->sb_write_mutex, 1);
1511         mutex_init(&c->bucket_lock);
1512         init_waitqueue_head(&c->btree_cache_wait);
1513         spin_lock_init(&c->btree_cannibalize_lock);
1514         init_waitqueue_head(&c->bucket_wait);
1515         init_waitqueue_head(&c->gc_wait);
1516         sema_init(&c->uuid_write_mutex, 1);
1517
1518         spin_lock_init(&c->btree_gc_time.lock);
1519         spin_lock_init(&c->btree_split_time.lock);
1520         spin_lock_init(&c->btree_read_time.lock);
1521
1522         bch_moving_init_cache_set(c);
1523
1524         INIT_LIST_HEAD(&c->list);
1525         INIT_LIST_HEAD(&c->cached_devs);
1526         INIT_LIST_HEAD(&c->btree_cache);
1527         INIT_LIST_HEAD(&c->btree_cache_freeable);
1528         INIT_LIST_HEAD(&c->btree_cache_freed);
1529         INIT_LIST_HEAD(&c->data_buckets);
1530
1531         c->search = mempool_create_slab_pool(32, bch_search_cache);
1532         if (!c->search)
1533                 goto err;
1534
1535         iter_size = (sb->bucket_size / sb->block_size + 1) *
1536                 sizeof(struct btree_iter_set);
1537
1538         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1539             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1540                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1541                                 bucket_pages(c))) ||
1542             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1543             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1544             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1545             !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1546                                                 WQ_MEM_RECLAIM, 0)) ||
1547             bch_journal_alloc(c) ||
1548             bch_btree_cache_alloc(c) ||
1549             bch_open_buckets_alloc(c) ||
1550             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1551                 goto err;
1552
1553         c->congested_read_threshold_us  = 2000;
1554         c->congested_write_threshold_us = 20000;
1555         c->error_limit  = 8 << IO_ERROR_SHIFT;
1556
1557         return c;
1558 err:
1559         bch_cache_set_unregister(c);
1560         return NULL;
1561 }
1562
1563 static int run_cache_set(struct cache_set *c)
1564 {
1565         const char *err = "cannot allocate memory";
1566         struct cached_dev *dc, *t;
1567         struct cache *ca;
1568         struct closure cl;
1569         unsigned i;
1570
1571         closure_init_stack(&cl);
1572
1573         for_each_cache(ca, c, i)
1574                 c->nbuckets += ca->sb.nbuckets;
1575         set_gc_sectors(c);
1576
1577         if (CACHE_SYNC(&c->sb)) {
1578                 LIST_HEAD(journal);
1579                 struct bkey *k;
1580                 struct jset *j;
1581
1582                 err = "cannot allocate memory for journal";
1583                 if (bch_journal_read(c, &journal))
1584                         goto err;
1585
1586                 pr_debug("btree_journal_read() done");
1587
1588                 err = "no journal entries found";
1589                 if (list_empty(&journal))
1590                         goto err;
1591
1592                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1593
1594                 err = "IO error reading priorities";
1595                 for_each_cache(ca, c, i)
1596                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1597
1598                 /*
1599                  * If prio_read() fails it'll call cache_set_error and we'll
1600                  * tear everything down right away, but if we perhaps checked
1601                  * sooner we could avoid journal replay.
1602                  */
1603
1604                 k = &j->btree_root;
1605
1606                 err = "bad btree root";
1607                 if (__bch_btree_ptr_invalid(c, k))
1608                         goto err;
1609
1610                 err = "error reading btree root";
1611                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1612                 if (IS_ERR_OR_NULL(c->root))
1613                         goto err;
1614
1615                 list_del_init(&c->root->list);
1616                 rw_unlock(true, c->root);
1617
1618                 err = uuid_read(c, j, &cl);
1619                 if (err)
1620                         goto err;
1621
1622                 err = "error in recovery";
1623                 if (bch_btree_check(c))
1624                         goto err;
1625
1626                 bch_journal_mark(c, &journal);
1627                 bch_initial_gc_finish(c);
1628                 pr_debug("btree_check() done");
1629
1630                 /*
1631                  * bcache_journal_next() can't happen sooner, or
1632                  * btree_gc_finish() will give spurious errors about last_gc >
1633                  * gc_gen - this is a hack but oh well.
1634                  */
1635                 bch_journal_next(&c->journal);
1636
1637                 err = "error starting allocator thread";
1638                 for_each_cache(ca, c, i)
1639                         if (bch_cache_allocator_start(ca))
1640                                 goto err;
1641
1642                 /*
1643                  * First place it's safe to allocate: btree_check() and
1644                  * btree_gc_finish() have to run before we have buckets to
1645                  * allocate, and bch_bucket_alloc_set() might cause a journal
1646                  * entry to be written so bcache_journal_next() has to be called
1647                  * first.
1648                  *
1649                  * If the uuids were in the old format we have to rewrite them
1650                  * before the next journal entry is written:
1651                  */
1652                 if (j->version < BCACHE_JSET_VERSION_UUID)
1653                         __uuid_write(c);
1654
1655                 err = "bcache: replay journal failed";
1656                 if (bch_journal_replay(c, &journal))
1657                         goto err;
1658         } else {
1659                 pr_notice("invalidating existing data");
1660
1661                 for_each_cache(ca, c, i) {
1662                         unsigned j;
1663
1664                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1665                                               2, SB_JOURNAL_BUCKETS);
1666
1667                         for (j = 0; j < ca->sb.keys; j++)
1668                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1669                 }
1670
1671                 bch_initial_gc_finish(c);
1672
1673                 err = "error starting allocator thread";
1674                 for_each_cache(ca, c, i)
1675                         if (bch_cache_allocator_start(ca))
1676                                 goto err;
1677
1678                 mutex_lock(&c->bucket_lock);
1679                 for_each_cache(ca, c, i)
1680                         bch_prio_write(ca);
1681                 mutex_unlock(&c->bucket_lock);
1682
1683                 err = "cannot allocate new UUID bucket";
1684                 if (__uuid_write(c))
1685                         goto err;
1686
1687                 err = "cannot allocate new btree root";
1688                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1689                 if (IS_ERR_OR_NULL(c->root))
1690                         goto err;
1691
1692                 mutex_lock(&c->root->write_lock);
1693                 bkey_copy_key(&c->root->key, &MAX_KEY);
1694                 bch_btree_node_write(c->root, &cl);
1695                 mutex_unlock(&c->root->write_lock);
1696
1697                 bch_btree_set_root(c->root);
1698                 rw_unlock(true, c->root);
1699
1700                 /*
1701                  * We don't want to write the first journal entry until
1702                  * everything is set up - fortunately journal entries won't be
1703                  * written until the SET_CACHE_SYNC() here:
1704                  */
1705                 SET_CACHE_SYNC(&c->sb, true);
1706
1707                 bch_journal_next(&c->journal);
1708                 bch_journal_meta(c, &cl);
1709         }
1710
1711         err = "error starting gc thread";
1712         if (bch_gc_thread_start(c))
1713                 goto err;
1714
1715         closure_sync(&cl);
1716         c->sb.last_mount = get_seconds();
1717         bcache_write_super(c);
1718
1719         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1720                 bch_cached_dev_attach(dc, c, NULL);
1721
1722         flash_devs_run(c);
1723
1724         set_bit(CACHE_SET_RUNNING, &c->flags);
1725         return 0;
1726 err:
1727         closure_sync(&cl);
1728         /* XXX: test this, it's broken */
1729         bch_cache_set_error(c, "%s", err);
1730
1731         return -EIO;
1732 }
1733
1734 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1735 {
1736         return ca->sb.block_size        == c->sb.block_size &&
1737                 ca->sb.bucket_size      == c->sb.bucket_size &&
1738                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1739 }
1740
1741 static const char *register_cache_set(struct cache *ca)
1742 {
1743         char buf[12];
1744         const char *err = "cannot allocate memory";
1745         struct cache_set *c;
1746
1747         list_for_each_entry(c, &bch_cache_sets, list)
1748                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1749                         if (c->cache[ca->sb.nr_this_dev])
1750                                 return "duplicate cache set member";
1751
1752                         if (!can_attach_cache(ca, c))
1753                                 return "cache sb does not match set";
1754
1755                         if (!CACHE_SYNC(&ca->sb))
1756                                 SET_CACHE_SYNC(&c->sb, false);
1757
1758                         goto found;
1759                 }
1760
1761         c = bch_cache_set_alloc(&ca->sb);
1762         if (!c)
1763                 return err;
1764
1765         err = "error creating kobject";
1766         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1767             kobject_add(&c->internal, &c->kobj, "internal"))
1768                 goto err;
1769
1770         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1771                 goto err;
1772
1773         bch_debug_init_cache_set(c);
1774
1775         list_add(&c->list, &bch_cache_sets);
1776 found:
1777         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1778         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1779             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1780                 goto err;
1781
1782         /*
1783          * A special case is both ca->sb.seq and c->sb.seq are 0,
1784          * such condition happens on a new created cache device whose
1785          * super block is never flushed yet. In this case c->sb.version
1786          * and other members should be updated too, otherwise we will
1787          * have a mistaken super block version in cache set.
1788          */
1789         if (ca->sb.seq > c->sb.seq || c->sb.seq == 0) {
1790                 c->sb.version           = ca->sb.version;
1791                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1792                 c->sb.flags             = ca->sb.flags;
1793                 c->sb.seq               = ca->sb.seq;
1794                 pr_debug("set version = %llu", c->sb.version);
1795         }
1796
1797         kobject_get(&ca->kobj);
1798         ca->set = c;
1799         ca->set->cache[ca->sb.nr_this_dev] = ca;
1800         c->cache_by_alloc[c->caches_loaded++] = ca;
1801
1802         if (c->caches_loaded == c->sb.nr_in_set) {
1803                 err = "failed to run cache set";
1804                 if (run_cache_set(c) < 0)
1805                         goto err;
1806         }
1807
1808         return NULL;
1809 err:
1810         bch_cache_set_unregister(c);
1811         return err;
1812 }
1813
1814 /* Cache device */
1815
1816 void bch_cache_release(struct kobject *kobj)
1817 {
1818         struct cache *ca = container_of(kobj, struct cache, kobj);
1819         unsigned i;
1820
1821         if (ca->set) {
1822                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1823                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1824         }
1825
1826         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1827         kfree(ca->prio_buckets);
1828         vfree(ca->buckets);
1829
1830         free_heap(&ca->heap);
1831         free_fifo(&ca->free_inc);
1832
1833         for (i = 0; i < RESERVE_NR; i++)
1834                 free_fifo(&ca->free[i]);
1835
1836         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1837                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1838
1839         if (!IS_ERR_OR_NULL(ca->bdev))
1840                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1841
1842         kfree(ca);
1843         module_put(THIS_MODULE);
1844 }
1845
1846 static int cache_alloc(struct cache *ca)
1847 {
1848         size_t free;
1849         size_t btree_buckets;
1850         struct bucket *b;
1851
1852         __module_get(THIS_MODULE);
1853         kobject_init(&ca->kobj, &bch_cache_ktype);
1854
1855         bio_init(&ca->journal.bio);
1856         ca->journal.bio.bi_max_vecs = 8;
1857         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1858
1859         /*
1860          * when ca->sb.njournal_buckets is not zero, journal exists,
1861          * and in bch_journal_replay(), tree node may split,
1862          * so bucket of RESERVE_BTREE type is needed,
1863          * the worst situation is all journal buckets are valid journal,
1864          * and all the keys need to replay,
1865          * so the number of  RESERVE_BTREE type buckets should be as much
1866          * as journal buckets
1867          */
1868         btree_buckets = ca->sb.njournal_buckets ?: 8;
1869         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1870
1871         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1872             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1873             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1874             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1875             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1876             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1877             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1878                                           ca->sb.nbuckets)) ||
1879             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1880                                           2, GFP_KERNEL)) ||
1881             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1882                 return -ENOMEM;
1883
1884         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1885
1886         for_each_bucket(b, ca)
1887                 atomic_set(&b->pin, 0);
1888
1889         return 0;
1890 }
1891
1892 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1893                                 struct block_device *bdev, struct cache *ca)
1894 {
1895         char name[BDEVNAME_SIZE];
1896         const char *err = NULL; /* must be set for any error case */
1897         int ret = 0;
1898
1899         bdevname(bdev, name);
1900
1901         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1902         ca->bdev = bdev;
1903         ca->bdev->bd_holder = ca;
1904
1905         bio_init(&ca->sb_bio);
1906         ca->sb_bio.bi_max_vecs  = 1;
1907         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1908         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1909         get_page(sb_page);
1910
1911         if (blk_queue_discard(bdev_get_queue(bdev)))
1912                 ca->discard = CACHE_DISCARD(&ca->sb);
1913
1914         ret = cache_alloc(ca);
1915         if (ret != 0) {
1916                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1917                 if (ret == -ENOMEM)
1918                         err = "cache_alloc(): -ENOMEM";
1919                 else
1920                         err = "cache_alloc(): unknown error";
1921                 goto err;
1922         }
1923
1924         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1925                 err = "error calling kobject_add";
1926                 ret = -ENOMEM;
1927                 goto out;
1928         }
1929
1930         mutex_lock(&bch_register_lock);
1931         err = register_cache_set(ca);
1932         mutex_unlock(&bch_register_lock);
1933
1934         if (err) {
1935                 ret = -ENODEV;
1936                 goto out;
1937         }
1938
1939         pr_info("registered cache device %s", name);
1940
1941 out:
1942         kobject_put(&ca->kobj);
1943
1944 err:
1945         if (err)
1946                 pr_notice("error %s: %s", name, err);
1947
1948         return ret;
1949 }
1950
1951 /* Global interfaces/init */
1952
1953 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1954                                const char *, size_t);
1955
1956 kobj_attribute_write(register,          register_bcache);
1957 kobj_attribute_write(register_quiet,    register_bcache);
1958
1959 static bool bch_is_open_backing(struct block_device *bdev) {
1960         struct cache_set *c, *tc;
1961         struct cached_dev *dc, *t;
1962
1963         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1964                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1965                         if (dc->bdev == bdev)
1966                                 return true;
1967         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1968                 if (dc->bdev == bdev)
1969                         return true;
1970         return false;
1971 }
1972
1973 static bool bch_is_open_cache(struct block_device *bdev) {
1974         struct cache_set *c, *tc;
1975         struct cache *ca;
1976         unsigned i;
1977
1978         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1979                 for_each_cache(ca, c, i)
1980                         if (ca->bdev == bdev)
1981                                 return true;
1982         return false;
1983 }
1984
1985 static bool bch_is_open(struct block_device *bdev) {
1986         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1987 }
1988
1989 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1990                                const char *buffer, size_t size)
1991 {
1992         ssize_t ret = size;
1993         const char *err = "cannot allocate memory";
1994         char *path = NULL;
1995         struct cache_sb *sb = NULL;
1996         struct block_device *bdev = NULL;
1997         struct page *sb_page = NULL;
1998
1999         if (!try_module_get(THIS_MODULE))
2000                 return -EBUSY;
2001
2002         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2003             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2004                 goto err;
2005
2006         err = "failed to open device";
2007         bdev = blkdev_get_by_path(strim(path),
2008                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2009                                   sb);
2010         if (IS_ERR(bdev)) {
2011                 if (bdev == ERR_PTR(-EBUSY)) {
2012                         bdev = lookup_bdev(strim(path));
2013                         mutex_lock(&bch_register_lock);
2014                         if (!IS_ERR(bdev) && bch_is_open(bdev))
2015                                 err = "device already registered";
2016                         else
2017                                 err = "device busy";
2018                         mutex_unlock(&bch_register_lock);
2019                         if (!IS_ERR(bdev))
2020                                 bdput(bdev);
2021                         if (attr == &ksysfs_register_quiet)
2022                                 goto out;
2023                 }
2024                 goto err;
2025         }
2026
2027         err = "failed to set blocksize";
2028         if (set_blocksize(bdev, 4096))
2029                 goto err_close;
2030
2031         err = read_super(sb, bdev, &sb_page);
2032         if (err)
2033                 goto err_close;
2034
2035         err = "failed to register device";
2036         if (SB_IS_BDEV(sb)) {
2037                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2038                 if (!dc)
2039                         goto err_close;
2040
2041                 mutex_lock(&bch_register_lock);
2042                 register_bdev(sb, sb_page, bdev, dc);
2043                 mutex_unlock(&bch_register_lock);
2044         } else {
2045                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2046                 if (!ca)
2047                         goto err_close;
2048
2049                 if (register_cache(sb, sb_page, bdev, ca) != 0)
2050                         goto err;
2051         }
2052 out:
2053         if (sb_page)
2054                 put_page(sb_page);
2055         kfree(sb);
2056         kfree(path);
2057         module_put(THIS_MODULE);
2058         return ret;
2059
2060 err_close:
2061         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2062 err:
2063         pr_info("error %s: %s", path, err);
2064         ret = -EINVAL;
2065         goto out;
2066 }
2067
2068 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2069 {
2070         if (code == SYS_DOWN ||
2071             code == SYS_HALT ||
2072             code == SYS_POWER_OFF) {
2073                 DEFINE_WAIT(wait);
2074                 unsigned long start = jiffies;
2075                 bool stopped = false;
2076
2077                 struct cache_set *c, *tc;
2078                 struct cached_dev *dc, *tdc;
2079
2080                 mutex_lock(&bch_register_lock);
2081
2082                 if (list_empty(&bch_cache_sets) &&
2083                     list_empty(&uncached_devices))
2084                         goto out;
2085
2086                 pr_info("Stopping all devices:");
2087
2088                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2089                         bch_cache_set_stop(c);
2090
2091                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2092                         bcache_device_stop(&dc->disk);
2093
2094                 /* What's a condition variable? */
2095                 while (1) {
2096                         long timeout = start + 2 * HZ - jiffies;
2097
2098                         stopped = list_empty(&bch_cache_sets) &&
2099                                 list_empty(&uncached_devices);
2100
2101                         if (timeout < 0 || stopped)
2102                                 break;
2103
2104                         prepare_to_wait(&unregister_wait, &wait,
2105                                         TASK_UNINTERRUPTIBLE);
2106
2107                         mutex_unlock(&bch_register_lock);
2108                         schedule_timeout(timeout);
2109                         mutex_lock(&bch_register_lock);
2110                 }
2111
2112                 finish_wait(&unregister_wait, &wait);
2113
2114                 if (stopped)
2115                         pr_info("All devices stopped");
2116                 else
2117                         pr_notice("Timeout waiting for devices to be closed");
2118 out:
2119                 mutex_unlock(&bch_register_lock);
2120         }
2121
2122         return NOTIFY_DONE;
2123 }
2124
2125 static struct notifier_block reboot = {
2126         .notifier_call  = bcache_reboot,
2127         .priority       = INT_MAX, /* before any real devices */
2128 };
2129
2130 static void bcache_exit(void)
2131 {
2132         bch_debug_exit();
2133         bch_request_exit();
2134         if (bcache_kobj)
2135                 kobject_put(bcache_kobj);
2136         if (bcache_wq)
2137                 destroy_workqueue(bcache_wq);
2138         if (bcache_major)
2139                 unregister_blkdev(bcache_major, "bcache");
2140         unregister_reboot_notifier(&reboot);
2141         mutex_destroy(&bch_register_lock);
2142 }
2143
2144 static int __init bcache_init(void)
2145 {
2146         static const struct attribute *files[] = {
2147                 &ksysfs_register.attr,
2148                 &ksysfs_register_quiet.attr,
2149                 NULL
2150         };
2151
2152         mutex_init(&bch_register_lock);
2153         init_waitqueue_head(&unregister_wait);
2154         register_reboot_notifier(&reboot);
2155         closure_debug_init();
2156
2157         bcache_major = register_blkdev(0, "bcache");
2158         if (bcache_major < 0) {
2159                 unregister_reboot_notifier(&reboot);
2160                 mutex_destroy(&bch_register_lock);
2161                 return bcache_major;
2162         }
2163
2164         if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2165             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2166             bch_request_init() ||
2167             bch_debug_init(bcache_kobj) ||
2168             sysfs_create_files(bcache_kobj, files))
2169                 goto err;
2170
2171         return 0;
2172 err:
2173         bcache_exit();
2174         return -ENOMEM;
2175 }
2176
2177 module_exit(bcache_exit);
2178 module_init(bcache_init);