GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <trace/events/bcache.h>
17
18 /* Rate limiting */
19
20 static void __update_writeback_rate(struct cached_dev *dc)
21 {
22         struct cache_set *c = dc->disk.c;
23         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
24                                 bcache_flash_devs_sectors_dirty(c);
25         uint64_t cache_dirty_target =
26                 div_u64(cache_sectors * dc->writeback_percent, 100);
27
28         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29                                    c->cached_dev_sectors);
30
31         /* PD controller */
32
33         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
34         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
35         int64_t proportional = dirty - target;
36         int64_t change;
37
38         dc->disk.sectors_dirty_last = dirty;
39
40         /* Scale to sectors per second */
41
42         proportional *= dc->writeback_rate_update_seconds;
43         proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
44
45         derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
46
47         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48                               (dc->writeback_rate_d_term /
49                                dc->writeback_rate_update_seconds) ?: 1, 0);
50
51         derivative *= dc->writeback_rate_d_term;
52         derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
53
54         change = proportional + derivative;
55
56         /* Don't increase writeback rate if the device isn't keeping up */
57         if (change > 0 &&
58             time_after64(local_clock(),
59                          dc->writeback_rate.next + NSEC_PER_MSEC))
60                 change = 0;
61
62         dc->writeback_rate.rate =
63                 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
64                         1, NSEC_PER_MSEC);
65
66         dc->writeback_rate_proportional = proportional;
67         dc->writeback_rate_derivative = derivative;
68         dc->writeback_rate_change = change;
69         dc->writeback_rate_target = target;
70 }
71
72 static void update_writeback_rate(struct work_struct *work)
73 {
74         struct cached_dev *dc = container_of(to_delayed_work(work),
75                                              struct cached_dev,
76                                              writeback_rate_update);
77
78         down_read(&dc->writeback_lock);
79
80         if (atomic_read(&dc->has_dirty) &&
81             dc->writeback_percent)
82                 __update_writeback_rate(dc);
83
84         up_read(&dc->writeback_lock);
85
86         schedule_delayed_work(&dc->writeback_rate_update,
87                               dc->writeback_rate_update_seconds * HZ);
88 }
89
90 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
91 {
92         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
93             !dc->writeback_percent)
94                 return 0;
95
96         return bch_next_delay(&dc->writeback_rate, sectors);
97 }
98
99 struct dirty_io {
100         struct closure          cl;
101         struct cached_dev       *dc;
102         struct bio              bio;
103 };
104
105 static void dirty_init(struct keybuf_key *w)
106 {
107         struct dirty_io *io = w->private;
108         struct bio *bio = &io->bio;
109
110         bio_init(bio);
111         if (!io->dc->writeback_percent)
112                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
113
114         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
115         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
116         bio->bi_private         = w;
117         bio->bi_io_vec          = bio->bi_inline_vecs;
118         bch_bio_map(bio, NULL);
119 }
120
121 static void dirty_io_destructor(struct closure *cl)
122 {
123         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
124         kfree(io);
125 }
126
127 static void write_dirty_finish(struct closure *cl)
128 {
129         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
130         struct keybuf_key *w = io->bio.bi_private;
131         struct cached_dev *dc = io->dc;
132
133         bio_free_pages(&io->bio);
134
135         /* This is kind of a dumb way of signalling errors. */
136         if (KEY_DIRTY(&w->key)) {
137                 int ret;
138                 unsigned i;
139                 struct keylist keys;
140
141                 bch_keylist_init(&keys);
142
143                 bkey_copy(keys.top, &w->key);
144                 SET_KEY_DIRTY(keys.top, false);
145                 bch_keylist_push(&keys);
146
147                 for (i = 0; i < KEY_PTRS(&w->key); i++)
148                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
149
150                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
151
152                 if (ret)
153                         trace_bcache_writeback_collision(&w->key);
154
155                 atomic_long_inc(ret
156                                 ? &dc->disk.c->writeback_keys_failed
157                                 : &dc->disk.c->writeback_keys_done);
158         }
159
160         bch_keybuf_del(&dc->writeback_keys, w);
161         up(&dc->in_flight);
162
163         closure_return_with_destructor(cl, dirty_io_destructor);
164 }
165
166 static void dirty_endio(struct bio *bio)
167 {
168         struct keybuf_key *w = bio->bi_private;
169         struct dirty_io *io = w->private;
170
171         if (bio->bi_error)
172                 SET_KEY_DIRTY(&w->key, false);
173
174         closure_put(&io->cl);
175 }
176
177 static void write_dirty(struct closure *cl)
178 {
179         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
180         struct keybuf_key *w = io->bio.bi_private;
181
182         dirty_init(w);
183         bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
184         io->bio.bi_iter.bi_sector = KEY_START(&w->key);
185         io->bio.bi_bdev         = io->dc->bdev;
186         io->bio.bi_end_io       = dirty_endio;
187
188         closure_bio_submit(&io->bio, cl);
189
190         continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
191 }
192
193 static void read_dirty_endio(struct bio *bio)
194 {
195         struct keybuf_key *w = bio->bi_private;
196         struct dirty_io *io = w->private;
197
198         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
199                             bio->bi_error, "reading dirty data from cache");
200
201         dirty_endio(bio);
202 }
203
204 static void read_dirty_submit(struct closure *cl)
205 {
206         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
207
208         closure_bio_submit(&io->bio, cl);
209
210         continue_at(cl, write_dirty, io->dc->writeback_write_wq);
211 }
212
213 static void read_dirty(struct cached_dev *dc)
214 {
215         unsigned delay = 0;
216         struct keybuf_key *w;
217         struct dirty_io *io;
218         struct closure cl;
219
220         closure_init_stack(&cl);
221
222         /*
223          * XXX: if we error, background writeback just spins. Should use some
224          * mempools.
225          */
226
227         while (!kthread_should_stop()) {
228
229                 w = bch_keybuf_next(&dc->writeback_keys);
230                 if (!w)
231                         break;
232
233                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
234
235                 if (KEY_START(&w->key) != dc->last_read ||
236                     jiffies_to_msecs(delay) > 50)
237                         while (!kthread_should_stop() && delay)
238                                 delay = schedule_timeout_interruptible(delay);
239
240                 dc->last_read   = KEY_OFFSET(&w->key);
241
242                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
243                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
244                              GFP_KERNEL);
245                 if (!io)
246                         goto err;
247
248                 w->private      = io;
249                 io->dc          = dc;
250
251                 dirty_init(w);
252                 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
253                 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
254                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
255                                                     &w->key, 0)->bdev;
256                 io->bio.bi_end_io       = read_dirty_endio;
257
258                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
259                         goto err_free;
260
261                 trace_bcache_writeback(&w->key);
262
263                 down(&dc->in_flight);
264                 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
265
266                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
267         }
268
269         if (0) {
270 err_free:
271                 kfree(w->private);
272 err:
273                 bch_keybuf_del(&dc->writeback_keys, w);
274         }
275
276         /*
277          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
278          * freed) before refilling again
279          */
280         closure_sync(&cl);
281 }
282
283 /* Scan for dirty data */
284
285 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
286                                   uint64_t offset, int nr_sectors)
287 {
288         struct bcache_device *d = c->devices[inode];
289         unsigned stripe_offset, stripe, sectors_dirty;
290
291         if (!d)
292                 return;
293
294         stripe = offset_to_stripe(d, offset);
295         stripe_offset = offset & (d->stripe_size - 1);
296
297         while (nr_sectors) {
298                 int s = min_t(unsigned, abs(nr_sectors),
299                               d->stripe_size - stripe_offset);
300
301                 if (nr_sectors < 0)
302                         s = -s;
303
304                 if (stripe >= d->nr_stripes)
305                         return;
306
307                 sectors_dirty = atomic_add_return(s,
308                                         d->stripe_sectors_dirty + stripe);
309                 if (sectors_dirty == d->stripe_size)
310                         set_bit(stripe, d->full_dirty_stripes);
311                 else
312                         clear_bit(stripe, d->full_dirty_stripes);
313
314                 nr_sectors -= s;
315                 stripe_offset = 0;
316                 stripe++;
317         }
318 }
319
320 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
321 {
322         struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
323
324         BUG_ON(KEY_INODE(k) != dc->disk.id);
325
326         return KEY_DIRTY(k);
327 }
328
329 static void refill_full_stripes(struct cached_dev *dc)
330 {
331         struct keybuf *buf = &dc->writeback_keys;
332         unsigned start_stripe, stripe, next_stripe;
333         bool wrapped = false;
334
335         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
336
337         if (stripe >= dc->disk.nr_stripes)
338                 stripe = 0;
339
340         start_stripe = stripe;
341
342         while (1) {
343                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
344                                        dc->disk.nr_stripes, stripe);
345
346                 if (stripe == dc->disk.nr_stripes)
347                         goto next;
348
349                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
350                                                  dc->disk.nr_stripes, stripe);
351
352                 buf->last_scanned = KEY(dc->disk.id,
353                                         stripe * dc->disk.stripe_size, 0);
354
355                 bch_refill_keybuf(dc->disk.c, buf,
356                                   &KEY(dc->disk.id,
357                                        next_stripe * dc->disk.stripe_size, 0),
358                                   dirty_pred);
359
360                 if (array_freelist_empty(&buf->freelist))
361                         return;
362
363                 stripe = next_stripe;
364 next:
365                 if (wrapped && stripe > start_stripe)
366                         return;
367
368                 if (stripe == dc->disk.nr_stripes) {
369                         stripe = 0;
370                         wrapped = true;
371                 }
372         }
373 }
374
375 /*
376  * Returns true if we scanned the entire disk
377  */
378 static bool refill_dirty(struct cached_dev *dc)
379 {
380         struct keybuf *buf = &dc->writeback_keys;
381         struct bkey start = KEY(dc->disk.id, 0, 0);
382         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
383         struct bkey start_pos;
384
385         /*
386          * make sure keybuf pos is inside the range for this disk - at bringup
387          * we might not be attached yet so this disk's inode nr isn't
388          * initialized then
389          */
390         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
391             bkey_cmp(&buf->last_scanned, &end) > 0)
392                 buf->last_scanned = start;
393
394         if (dc->partial_stripes_expensive) {
395                 refill_full_stripes(dc);
396                 if (array_freelist_empty(&buf->freelist))
397                         return false;
398         }
399
400         start_pos = buf->last_scanned;
401         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
402
403         if (bkey_cmp(&buf->last_scanned, &end) < 0)
404                 return false;
405
406         /*
407          * If we get to the end start scanning again from the beginning, and
408          * only scan up to where we initially started scanning from:
409          */
410         buf->last_scanned = start;
411         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
412
413         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
414 }
415
416 static int bch_writeback_thread(void *arg)
417 {
418         struct cached_dev *dc = arg;
419         bool searched_full_index;
420
421         while (!kthread_should_stop()) {
422                 down_write(&dc->writeback_lock);
423                 set_current_state(TASK_INTERRUPTIBLE);
424                 /*
425                  * If the bache device is detaching, skip here and continue
426                  * to perform writeback. Otherwise, if no dirty data on cache,
427                  * or there is dirty data on cache but writeback is disabled,
428                  * the writeback thread should sleep here and wait for others
429                  * to wake up it.
430                  */
431                 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
432                     (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
433                         up_write(&dc->writeback_lock);
434
435                         if (kthread_should_stop()) {
436                                 set_current_state(TASK_RUNNING);
437                                 return 0;
438                         }
439
440                         schedule();
441                         continue;
442                 }
443                 set_current_state(TASK_RUNNING);
444
445                 searched_full_index = refill_dirty(dc);
446
447                 if (searched_full_index &&
448                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
449                         atomic_set(&dc->has_dirty, 0);
450                         cached_dev_put(dc);
451                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
452                         bch_write_bdev_super(dc, NULL);
453                         /*
454                          * If bcache device is detaching via sysfs interface,
455                          * writeback thread should stop after there is no dirty
456                          * data on cache. BCACHE_DEV_DETACHING flag is set in
457                          * bch_cached_dev_detach().
458                          */
459                         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
460                                 up_write(&dc->writeback_lock);
461                                 break;
462                         }
463                 }
464
465                 up_write(&dc->writeback_lock);
466
467                 bch_ratelimit_reset(&dc->writeback_rate);
468                 read_dirty(dc);
469
470                 if (searched_full_index) {
471                         unsigned delay = dc->writeback_delay * HZ;
472
473                         while (delay &&
474                                !kthread_should_stop() &&
475                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
476                                 delay = schedule_timeout_interruptible(delay);
477                 }
478         }
479
480         return 0;
481 }
482
483 /* Init */
484
485 struct sectors_dirty_init {
486         struct btree_op op;
487         unsigned        inode;
488 };
489
490 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
491                                  struct bkey *k)
492 {
493         struct sectors_dirty_init *op = container_of(_op,
494                                                 struct sectors_dirty_init, op);
495         if (KEY_INODE(k) > op->inode)
496                 return MAP_DONE;
497
498         if (KEY_DIRTY(k))
499                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
500                                              KEY_START(k), KEY_SIZE(k));
501
502         return MAP_CONTINUE;
503 }
504
505 void bch_sectors_dirty_init(struct bcache_device *d)
506 {
507         struct sectors_dirty_init op;
508
509         bch_btree_op_init(&op.op, -1);
510         op.inode = d->id;
511
512         bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
513                            sectors_dirty_init_fn, 0);
514
515         d->sectors_dirty_last = bcache_dev_sectors_dirty(d);
516 }
517
518 void bch_cached_dev_writeback_init(struct cached_dev *dc)
519 {
520         sema_init(&dc->in_flight, 64);
521         init_rwsem(&dc->writeback_lock);
522         bch_keybuf_init(&dc->writeback_keys);
523
524         dc->writeback_metadata          = true;
525         dc->writeback_running           = true;
526         dc->writeback_percent           = 10;
527         dc->writeback_delay             = 30;
528         dc->writeback_rate.rate         = 1024;
529
530         dc->writeback_rate_update_seconds = 5;
531         dc->writeback_rate_d_term       = 30;
532         dc->writeback_rate_p_term_inverse = 6000;
533
534         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
535 }
536
537 int bch_cached_dev_writeback_start(struct cached_dev *dc)
538 {
539         dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
540                                                 WQ_MEM_RECLAIM, 0);
541         if (!dc->writeback_write_wq)
542                 return -ENOMEM;
543
544         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
545                                               "bcache_writeback");
546         if (IS_ERR(dc->writeback_thread))
547                 return PTR_ERR(dc->writeback_thread);
548
549         schedule_delayed_work(&dc->writeback_rate_update,
550                               dc->writeback_rate_update_seconds * HZ);
551
552         bch_writeback_queue(dc);
553
554         return 0;
555 }