GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <trace/events/bcache.h>
17
18 /* Rate limiting */
19
20 static void __update_writeback_rate(struct cached_dev *dc)
21 {
22         struct cache_set *c = dc->disk.c;
23         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
24         uint64_t cache_dirty_target =
25                 div_u64(cache_sectors * dc->writeback_percent, 100);
26
27         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
28                                    c->cached_dev_sectors);
29
30         /* PD controller */
31
32         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
33         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
34         int64_t proportional = dirty - target;
35         int64_t change;
36
37         dc->disk.sectors_dirty_last = dirty;
38
39         /* Scale to sectors per second */
40
41         proportional *= dc->writeback_rate_update_seconds;
42         proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
43
44         derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
45
46         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
47                               (dc->writeback_rate_d_term /
48                                dc->writeback_rate_update_seconds) ?: 1, 0);
49
50         derivative *= dc->writeback_rate_d_term;
51         derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
52
53         change = proportional + derivative;
54
55         /* Don't increase writeback rate if the device isn't keeping up */
56         if (change > 0 &&
57             time_after64(local_clock(),
58                          dc->writeback_rate.next + NSEC_PER_MSEC))
59                 change = 0;
60
61         dc->writeback_rate.rate =
62                 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
63                         1, NSEC_PER_MSEC);
64
65         dc->writeback_rate_proportional = proportional;
66         dc->writeback_rate_derivative = derivative;
67         dc->writeback_rate_change = change;
68         dc->writeback_rate_target = target;
69 }
70
71 static void update_writeback_rate(struct work_struct *work)
72 {
73         struct cached_dev *dc = container_of(to_delayed_work(work),
74                                              struct cached_dev,
75                                              writeback_rate_update);
76
77         down_read(&dc->writeback_lock);
78
79         if (atomic_read(&dc->has_dirty) &&
80             dc->writeback_percent)
81                 __update_writeback_rate(dc);
82
83         up_read(&dc->writeback_lock);
84
85         schedule_delayed_work(&dc->writeback_rate_update,
86                               dc->writeback_rate_update_seconds * HZ);
87 }
88
89 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
90 {
91         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
92             !dc->writeback_percent)
93                 return 0;
94
95         return bch_next_delay(&dc->writeback_rate, sectors);
96 }
97
98 struct dirty_io {
99         struct closure          cl;
100         struct cached_dev       *dc;
101         struct bio              bio;
102 };
103
104 static void dirty_init(struct keybuf_key *w)
105 {
106         struct dirty_io *io = w->private;
107         struct bio *bio = &io->bio;
108
109         bio_init(bio);
110         if (!io->dc->writeback_percent)
111                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
112
113         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
114         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
115         bio->bi_private         = w;
116         bio->bi_io_vec          = bio->bi_inline_vecs;
117         bch_bio_map(bio, NULL);
118 }
119
120 static void dirty_io_destructor(struct closure *cl)
121 {
122         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
123         kfree(io);
124 }
125
126 static void write_dirty_finish(struct closure *cl)
127 {
128         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
129         struct keybuf_key *w = io->bio.bi_private;
130         struct cached_dev *dc = io->dc;
131
132         bio_free_pages(&io->bio);
133
134         /* This is kind of a dumb way of signalling errors. */
135         if (KEY_DIRTY(&w->key)) {
136                 int ret;
137                 unsigned i;
138                 struct keylist keys;
139
140                 bch_keylist_init(&keys);
141
142                 bkey_copy(keys.top, &w->key);
143                 SET_KEY_DIRTY(keys.top, false);
144                 bch_keylist_push(&keys);
145
146                 for (i = 0; i < KEY_PTRS(&w->key); i++)
147                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
148
149                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
150
151                 if (ret)
152                         trace_bcache_writeback_collision(&w->key);
153
154                 atomic_long_inc(ret
155                                 ? &dc->disk.c->writeback_keys_failed
156                                 : &dc->disk.c->writeback_keys_done);
157         }
158
159         bch_keybuf_del(&dc->writeback_keys, w);
160         up(&dc->in_flight);
161
162         closure_return_with_destructor(cl, dirty_io_destructor);
163 }
164
165 static void dirty_endio(struct bio *bio)
166 {
167         struct keybuf_key *w = bio->bi_private;
168         struct dirty_io *io = w->private;
169
170         if (bio->bi_error)
171                 SET_KEY_DIRTY(&w->key, false);
172
173         closure_put(&io->cl);
174 }
175
176 static void write_dirty(struct closure *cl)
177 {
178         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
179         struct keybuf_key *w = io->bio.bi_private;
180
181         dirty_init(w);
182         bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
183         io->bio.bi_iter.bi_sector = KEY_START(&w->key);
184         io->bio.bi_bdev         = io->dc->bdev;
185         io->bio.bi_end_io       = dirty_endio;
186
187         closure_bio_submit(&io->bio, cl);
188
189         continue_at(cl, write_dirty_finish, system_wq);
190 }
191
192 static void read_dirty_endio(struct bio *bio)
193 {
194         struct keybuf_key *w = bio->bi_private;
195         struct dirty_io *io = w->private;
196
197         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
198                             bio->bi_error, "reading dirty data from cache");
199
200         dirty_endio(bio);
201 }
202
203 static void read_dirty_submit(struct closure *cl)
204 {
205         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
206
207         closure_bio_submit(&io->bio, cl);
208
209         continue_at(cl, write_dirty, system_wq);
210 }
211
212 static void read_dirty(struct cached_dev *dc)
213 {
214         unsigned delay = 0;
215         struct keybuf_key *w;
216         struct dirty_io *io;
217         struct closure cl;
218
219         closure_init_stack(&cl);
220
221         /*
222          * XXX: if we error, background writeback just spins. Should use some
223          * mempools.
224          */
225
226         while (!kthread_should_stop()) {
227
228                 w = bch_keybuf_next(&dc->writeback_keys);
229                 if (!w)
230                         break;
231
232                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
233
234                 if (KEY_START(&w->key) != dc->last_read ||
235                     jiffies_to_msecs(delay) > 50)
236                         while (!kthread_should_stop() && delay)
237                                 delay = schedule_timeout_interruptible(delay);
238
239                 dc->last_read   = KEY_OFFSET(&w->key);
240
241                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
242                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
243                              GFP_KERNEL);
244                 if (!io)
245                         goto err;
246
247                 w->private      = io;
248                 io->dc          = dc;
249
250                 dirty_init(w);
251                 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
252                 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
253                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
254                                                     &w->key, 0)->bdev;
255                 io->bio.bi_end_io       = read_dirty_endio;
256
257                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
258                         goto err_free;
259
260                 trace_bcache_writeback(&w->key);
261
262                 down(&dc->in_flight);
263                 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
264
265                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
266         }
267
268         if (0) {
269 err_free:
270                 kfree(w->private);
271 err:
272                 bch_keybuf_del(&dc->writeback_keys, w);
273         }
274
275         /*
276          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
277          * freed) before refilling again
278          */
279         closure_sync(&cl);
280 }
281
282 /* Scan for dirty data */
283
284 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
285                                   uint64_t offset, int nr_sectors)
286 {
287         struct bcache_device *d = c->devices[inode];
288         unsigned stripe_offset, stripe, sectors_dirty;
289
290         if (!d)
291                 return;
292
293         stripe = offset_to_stripe(d, offset);
294         stripe_offset = offset & (d->stripe_size - 1);
295
296         while (nr_sectors) {
297                 int s = min_t(unsigned, abs(nr_sectors),
298                               d->stripe_size - stripe_offset);
299
300                 if (nr_sectors < 0)
301                         s = -s;
302
303                 if (stripe >= d->nr_stripes)
304                         return;
305
306                 sectors_dirty = atomic_add_return(s,
307                                         d->stripe_sectors_dirty + stripe);
308                 if (sectors_dirty == d->stripe_size)
309                         set_bit(stripe, d->full_dirty_stripes);
310                 else
311                         clear_bit(stripe, d->full_dirty_stripes);
312
313                 nr_sectors -= s;
314                 stripe_offset = 0;
315                 stripe++;
316         }
317 }
318
319 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
320 {
321         struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
322
323         BUG_ON(KEY_INODE(k) != dc->disk.id);
324
325         return KEY_DIRTY(k);
326 }
327
328 static void refill_full_stripes(struct cached_dev *dc)
329 {
330         struct keybuf *buf = &dc->writeback_keys;
331         unsigned start_stripe, stripe, next_stripe;
332         bool wrapped = false;
333
334         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
335
336         if (stripe >= dc->disk.nr_stripes)
337                 stripe = 0;
338
339         start_stripe = stripe;
340
341         while (1) {
342                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
343                                        dc->disk.nr_stripes, stripe);
344
345                 if (stripe == dc->disk.nr_stripes)
346                         goto next;
347
348                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
349                                                  dc->disk.nr_stripes, stripe);
350
351                 buf->last_scanned = KEY(dc->disk.id,
352                                         stripe * dc->disk.stripe_size, 0);
353
354                 bch_refill_keybuf(dc->disk.c, buf,
355                                   &KEY(dc->disk.id,
356                                        next_stripe * dc->disk.stripe_size, 0),
357                                   dirty_pred);
358
359                 if (array_freelist_empty(&buf->freelist))
360                         return;
361
362                 stripe = next_stripe;
363 next:
364                 if (wrapped && stripe > start_stripe)
365                         return;
366
367                 if (stripe == dc->disk.nr_stripes) {
368                         stripe = 0;
369                         wrapped = true;
370                 }
371         }
372 }
373
374 /*
375  * Returns true if we scanned the entire disk
376  */
377 static bool refill_dirty(struct cached_dev *dc)
378 {
379         struct keybuf *buf = &dc->writeback_keys;
380         struct bkey start = KEY(dc->disk.id, 0, 0);
381         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
382         struct bkey start_pos;
383
384         /*
385          * make sure keybuf pos is inside the range for this disk - at bringup
386          * we might not be attached yet so this disk's inode nr isn't
387          * initialized then
388          */
389         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
390             bkey_cmp(&buf->last_scanned, &end) > 0)
391                 buf->last_scanned = start;
392
393         if (dc->partial_stripes_expensive) {
394                 refill_full_stripes(dc);
395                 if (array_freelist_empty(&buf->freelist))
396                         return false;
397         }
398
399         start_pos = buf->last_scanned;
400         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
401
402         if (bkey_cmp(&buf->last_scanned, &end) < 0)
403                 return false;
404
405         /*
406          * If we get to the end start scanning again from the beginning, and
407          * only scan up to where we initially started scanning from:
408          */
409         buf->last_scanned = start;
410         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
411
412         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
413 }
414
415 static int bch_writeback_thread(void *arg)
416 {
417         struct cached_dev *dc = arg;
418         bool searched_full_index;
419
420         while (!kthread_should_stop()) {
421                 down_write(&dc->writeback_lock);
422                 if (!atomic_read(&dc->has_dirty) ||
423                     (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
424                      !dc->writeback_running)) {
425                         up_write(&dc->writeback_lock);
426                         set_current_state(TASK_INTERRUPTIBLE);
427
428                         if (kthread_should_stop())
429                                 return 0;
430
431                         schedule();
432                         continue;
433                 }
434
435                 searched_full_index = refill_dirty(dc);
436
437                 if (searched_full_index &&
438                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
439                         atomic_set(&dc->has_dirty, 0);
440                         cached_dev_put(dc);
441                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
442                         bch_write_bdev_super(dc, NULL);
443                 }
444
445                 up_write(&dc->writeback_lock);
446
447                 bch_ratelimit_reset(&dc->writeback_rate);
448                 read_dirty(dc);
449
450                 if (searched_full_index) {
451                         unsigned delay = dc->writeback_delay * HZ;
452
453                         while (delay &&
454                                !kthread_should_stop() &&
455                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
456                                 delay = schedule_timeout_interruptible(delay);
457                 }
458         }
459
460         return 0;
461 }
462
463 /* Init */
464
465 struct sectors_dirty_init {
466         struct btree_op op;
467         unsigned        inode;
468 };
469
470 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
471                                  struct bkey *k)
472 {
473         struct sectors_dirty_init *op = container_of(_op,
474                                                 struct sectors_dirty_init, op);
475         if (KEY_INODE(k) > op->inode)
476                 return MAP_DONE;
477
478         if (KEY_DIRTY(k))
479                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
480                                              KEY_START(k), KEY_SIZE(k));
481
482         return MAP_CONTINUE;
483 }
484
485 void bch_sectors_dirty_init(struct cached_dev *dc)
486 {
487         struct sectors_dirty_init op;
488
489         bch_btree_op_init(&op.op, -1);
490         op.inode = dc->disk.id;
491
492         bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
493                            sectors_dirty_init_fn, 0);
494
495         dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
496 }
497
498 void bch_cached_dev_writeback_init(struct cached_dev *dc)
499 {
500         sema_init(&dc->in_flight, 64);
501         init_rwsem(&dc->writeback_lock);
502         bch_keybuf_init(&dc->writeback_keys);
503
504         dc->writeback_metadata          = true;
505         dc->writeback_running           = true;
506         dc->writeback_percent           = 10;
507         dc->writeback_delay             = 30;
508         dc->writeback_rate.rate         = 1024;
509
510         dc->writeback_rate_update_seconds = 5;
511         dc->writeback_rate_d_term       = 30;
512         dc->writeback_rate_p_term_inverse = 6000;
513
514         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
515 }
516
517 int bch_cached_dev_writeback_start(struct cached_dev *dc)
518 {
519         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
520                                               "bcache_writeback");
521         if (IS_ERR(dc->writeback_thread))
522                 return PTR_ERR(dc->writeback_thread);
523
524         schedule_delayed_work(&dc->writeback_rate_update,
525                               dc->writeback_rate_update_seconds * HZ);
526
527         bch_writeback_queue(dc);
528
529         return 0;
530 }