GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         unsigned i;
75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78                 for (i = 0; i < nr_entries; i++)
79                         dm_tm_inc(tm, value64(n, i));
80         else if (vt->inc)
81                 for (i = 0; i < nr_entries; i++)
82                         vt->inc(vt->context, value_ptr(n, i));
83 }
84
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86                      uint64_t key, void *value)
87         __dm_written_to_disk(value)
88 {
89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90         uint32_t max_entries = le32_to_cpu(node->header.max_entries);
91         __le64 key_le = cpu_to_le64(key);
92
93         if (index > nr_entries ||
94             index >= max_entries ||
95             nr_entries >= max_entries) {
96                 DMERR("too many entries in btree node for insert");
97                 __dm_unbless_for_disk(value);
98                 return -ENOMEM;
99         }
100
101         __dm_bless_for_disk(&key_le);
102
103         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
104         array_insert(value_base(node), value_size, nr_entries, index, value);
105         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
106
107         return 0;
108 }
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * We want 3n entries (for some n).  This works more nicely for repeated
114  * insert remove loops than (2n + 1).
115  */
116 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
117 {
118         uint32_t total, n;
119         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
120
121         block_size -= sizeof(struct node_header);
122         total = block_size / elt_size;
123         n = total / 3;          /* rounds down */
124
125         return 3 * n;
126 }
127
128 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
129 {
130         int r;
131         struct dm_block *b;
132         struct btree_node *n;
133         size_t block_size;
134         uint32_t max_entries;
135
136         r = new_block(info, &b);
137         if (r < 0)
138                 return r;
139
140         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
141         max_entries = calc_max_entries(info->value_type.size, block_size);
142
143         n = dm_block_data(b);
144         memset(n, 0, block_size);
145         n->header.flags = cpu_to_le32(LEAF_NODE);
146         n->header.nr_entries = cpu_to_le32(0);
147         n->header.max_entries = cpu_to_le32(max_entries);
148         n->header.value_size = cpu_to_le32(info->value_type.size);
149
150         *root = dm_block_location(b);
151         unlock_block(info, b);
152
153         return 0;
154 }
155 EXPORT_SYMBOL_GPL(dm_btree_empty);
156
157 /*----------------------------------------------------------------*/
158
159 /*
160  * Deletion uses a recursive algorithm, since we have limited stack space
161  * we explicitly manage our own stack on the heap.
162  */
163 #define MAX_SPINE_DEPTH 64
164 struct frame {
165         struct dm_block *b;
166         struct btree_node *n;
167         unsigned level;
168         unsigned nr_children;
169         unsigned current_child;
170 };
171
172 struct del_stack {
173         struct dm_btree_info *info;
174         struct dm_transaction_manager *tm;
175         int top;
176         struct frame spine[MAX_SPINE_DEPTH];
177 };
178
179 static int top_frame(struct del_stack *s, struct frame **f)
180 {
181         if (s->top < 0) {
182                 DMERR("btree deletion stack empty");
183                 return -EINVAL;
184         }
185
186         *f = s->spine + s->top;
187
188         return 0;
189 }
190
191 static int unprocessed_frames(struct del_stack *s)
192 {
193         return s->top >= 0;
194 }
195
196 static void prefetch_children(struct del_stack *s, struct frame *f)
197 {
198         unsigned i;
199         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
200
201         for (i = 0; i < f->nr_children; i++)
202                 dm_bm_prefetch(bm, value64(f->n, i));
203 }
204
205 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
206 {
207         return f->level < (info->levels - 1);
208 }
209
210 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
211 {
212         int r;
213         uint32_t ref_count;
214
215         if (s->top >= MAX_SPINE_DEPTH - 1) {
216                 DMERR("btree deletion stack out of memory");
217                 return -ENOMEM;
218         }
219
220         r = dm_tm_ref(s->tm, b, &ref_count);
221         if (r)
222                 return r;
223
224         if (ref_count > 1)
225                 /*
226                  * This is a shared node, so we can just decrement it's
227                  * reference counter and leave the children.
228                  */
229                 dm_tm_dec(s->tm, b);
230
231         else {
232                 uint32_t flags;
233                 struct frame *f = s->spine + ++s->top;
234
235                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
236                 if (r) {
237                         s->top--;
238                         return r;
239                 }
240
241                 f->n = dm_block_data(f->b);
242                 f->level = level;
243                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
244                 f->current_child = 0;
245
246                 flags = le32_to_cpu(f->n->header.flags);
247                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
248                         prefetch_children(s, f);
249         }
250
251         return 0;
252 }
253
254 static void pop_frame(struct del_stack *s)
255 {
256         struct frame *f = s->spine + s->top--;
257
258         dm_tm_dec(s->tm, dm_block_location(f->b));
259         dm_tm_unlock(s->tm, f->b);
260 }
261
262 static void unlock_all_frames(struct del_stack *s)
263 {
264         struct frame *f;
265
266         while (unprocessed_frames(s)) {
267                 f = s->spine + s->top--;
268                 dm_tm_unlock(s->tm, f->b);
269         }
270 }
271
272 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
273 {
274         int r;
275         struct del_stack *s;
276
277         s = kmalloc(sizeof(*s), GFP_NOIO);
278         if (!s)
279                 return -ENOMEM;
280         s->info = info;
281         s->tm = info->tm;
282         s->top = -1;
283
284         r = push_frame(s, root, 0);
285         if (r)
286                 goto out;
287
288         while (unprocessed_frames(s)) {
289                 uint32_t flags;
290                 struct frame *f;
291                 dm_block_t b;
292
293                 r = top_frame(s, &f);
294                 if (r)
295                         goto out;
296
297                 if (f->current_child >= f->nr_children) {
298                         pop_frame(s);
299                         continue;
300                 }
301
302                 flags = le32_to_cpu(f->n->header.flags);
303                 if (flags & INTERNAL_NODE) {
304                         b = value64(f->n, f->current_child);
305                         f->current_child++;
306                         r = push_frame(s, b, f->level);
307                         if (r)
308                                 goto out;
309
310                 } else if (is_internal_level(info, f)) {
311                         b = value64(f->n, f->current_child);
312                         f->current_child++;
313                         r = push_frame(s, b, f->level + 1);
314                         if (r)
315                                 goto out;
316
317                 } else {
318                         if (info->value_type.dec) {
319                                 unsigned i;
320
321                                 for (i = 0; i < f->nr_children; i++)
322                                         info->value_type.dec(info->value_type.context,
323                                                              value_ptr(f->n, i));
324                         }
325                         pop_frame(s);
326                 }
327         }
328 out:
329         if (r) {
330                 /* cleanup all frames of del_stack */
331                 unlock_all_frames(s);
332         }
333         kfree(s);
334
335         return r;
336 }
337 EXPORT_SYMBOL_GPL(dm_btree_del);
338
339 /*----------------------------------------------------------------*/
340
341 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
342                             int (*search_fn)(struct btree_node *, uint64_t),
343                             uint64_t *result_key, void *v, size_t value_size)
344 {
345         int i, r;
346         uint32_t flags, nr_entries;
347
348         do {
349                 r = ro_step(s, block);
350                 if (r < 0)
351                         return r;
352
353                 i = search_fn(ro_node(s), key);
354
355                 flags = le32_to_cpu(ro_node(s)->header.flags);
356                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
357                 if (i < 0 || i >= nr_entries)
358                         return -ENODATA;
359
360                 if (flags & INTERNAL_NODE)
361                         block = value64(ro_node(s), i);
362
363         } while (!(flags & LEAF_NODE));
364
365         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
366         memcpy(v, value_ptr(ro_node(s), i), value_size);
367
368         return 0;
369 }
370
371 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
372                     uint64_t *keys, void *value_le)
373 {
374         unsigned level, last_level = info->levels - 1;
375         int r = -ENODATA;
376         uint64_t rkey;
377         __le64 internal_value_le;
378         struct ro_spine spine;
379
380         init_ro_spine(&spine, info);
381         for (level = 0; level < info->levels; level++) {
382                 size_t size;
383                 void *value_p;
384
385                 if (level == last_level) {
386                         value_p = value_le;
387                         size = info->value_type.size;
388
389                 } else {
390                         value_p = &internal_value_le;
391                         size = sizeof(uint64_t);
392                 }
393
394                 r = btree_lookup_raw(&spine, root, keys[level],
395                                      lower_bound, &rkey,
396                                      value_p, size);
397
398                 if (!r) {
399                         if (rkey != keys[level]) {
400                                 exit_ro_spine(&spine);
401                                 return -ENODATA;
402                         }
403                 } else {
404                         exit_ro_spine(&spine);
405                         return r;
406                 }
407
408                 root = le64_to_cpu(internal_value_le);
409         }
410         exit_ro_spine(&spine);
411
412         return r;
413 }
414 EXPORT_SYMBOL_GPL(dm_btree_lookup);
415
416 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
417                                        uint64_t key, uint64_t *rkey, void *value_le)
418 {
419         int r, i;
420         uint32_t flags, nr_entries;
421         struct dm_block *node;
422         struct btree_node *n;
423
424         r = bn_read_lock(info, root, &node);
425         if (r)
426                 return r;
427
428         n = dm_block_data(node);
429         flags = le32_to_cpu(n->header.flags);
430         nr_entries = le32_to_cpu(n->header.nr_entries);
431
432         if (flags & INTERNAL_NODE) {
433                 i = lower_bound(n, key);
434                 if (i < 0) {
435                         /*
436                          * avoid early -ENODATA return when all entries are
437                          * higher than the search @key.
438                          */
439                         i = 0;
440                 }
441                 if (i >= nr_entries) {
442                         r = -ENODATA;
443                         goto out;
444                 }
445
446                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
447                 if (r == -ENODATA && i < (nr_entries - 1)) {
448                         i++;
449                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450                 }
451
452         } else {
453                 i = upper_bound(n, key);
454                 if (i < 0 || i >= nr_entries) {
455                         r = -ENODATA;
456                         goto out;
457                 }
458
459                 *rkey = le64_to_cpu(n->keys[i]);
460                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
461         }
462 out:
463         dm_tm_unlock(info->tm, node);
464         return r;
465 }
466
467 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
468                          uint64_t *keys, uint64_t *rkey, void *value_le)
469 {
470         unsigned level;
471         int r = -ENODATA;
472         __le64 internal_value_le;
473         struct ro_spine spine;
474
475         init_ro_spine(&spine, info);
476         for (level = 0; level < info->levels - 1u; level++) {
477                 r = btree_lookup_raw(&spine, root, keys[level],
478                                      lower_bound, rkey,
479                                      &internal_value_le, sizeof(uint64_t));
480                 if (r)
481                         goto out;
482
483                 if (*rkey != keys[level]) {
484                         r = -ENODATA;
485                         goto out;
486                 }
487
488                 root = le64_to_cpu(internal_value_le);
489         }
490
491         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
492 out:
493         exit_ro_spine(&spine);
494         return r;
495 }
496
497 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
498
499 /*
500  * Splits a node by creating a sibling node and shifting half the nodes
501  * contents across.  Assumes there is a parent node, and it has room for
502  * another child.
503  *
504  * Before:
505  *        +--------+
506  *        | Parent |
507  *        +--------+
508  *           |
509  *           v
510  *      +----------+
511  *      | A ++++++ |
512  *      +----------+
513  *
514  *
515  * After:
516  *              +--------+
517  *              | Parent |
518  *              +--------+
519  *                |     |
520  *                v     +------+
521  *          +---------+        |
522  *          | A* +++  |        v
523  *          +---------+   +-------+
524  *                        | B +++ |
525  *                        +-------+
526  *
527  * Where A* is a shadow of A.
528  */
529 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
530                                uint64_t key)
531 {
532         int r;
533         size_t size;
534         unsigned nr_left, nr_right;
535         struct dm_block *left, *right, *parent;
536         struct btree_node *ln, *rn, *pn;
537         __le64 location;
538
539         left = shadow_current(s);
540
541         r = new_block(s->info, &right);
542         if (r < 0)
543                 return r;
544
545         ln = dm_block_data(left);
546         rn = dm_block_data(right);
547
548         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
549         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
550
551         ln->header.nr_entries = cpu_to_le32(nr_left);
552
553         rn->header.flags = ln->header.flags;
554         rn->header.nr_entries = cpu_to_le32(nr_right);
555         rn->header.max_entries = ln->header.max_entries;
556         rn->header.value_size = ln->header.value_size;
557         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
558
559         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
560                 sizeof(uint64_t) : s->info->value_type.size;
561         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
562                size * nr_right);
563
564         /*
565          * Patch up the parent
566          */
567         parent = shadow_parent(s);
568
569         pn = dm_block_data(parent);
570         location = cpu_to_le64(dm_block_location(left));
571         __dm_bless_for_disk(&location);
572         memcpy_disk(value_ptr(pn, parent_index),
573                     &location, sizeof(__le64));
574
575         location = cpu_to_le64(dm_block_location(right));
576         __dm_bless_for_disk(&location);
577
578         r = insert_at(sizeof(__le64), pn, parent_index + 1,
579                       le64_to_cpu(rn->keys[0]), &location);
580         if (r) {
581                 unlock_block(s->info, right);
582                 return r;
583         }
584
585         if (key < le64_to_cpu(rn->keys[0])) {
586                 unlock_block(s->info, right);
587                 s->nodes[1] = left;
588         } else {
589                 unlock_block(s->info, left);
590                 s->nodes[1] = right;
591         }
592
593         return 0;
594 }
595
596 /*
597  * Splits a node by creating two new children beneath the given node.
598  *
599  * Before:
600  *        +----------+
601  *        | A ++++++ |
602  *        +----------+
603  *
604  *
605  * After:
606  *      +------------+
607  *      | A (shadow) |
608  *      +------------+
609  *          |   |
610  *   +------+   +----+
611  *   |               |
612  *   v               v
613  * +-------+     +-------+
614  * | B +++ |     | C +++ |
615  * +-------+     +-------+
616  */
617 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
618 {
619         int r;
620         size_t size;
621         unsigned nr_left, nr_right;
622         struct dm_block *left, *right, *new_parent;
623         struct btree_node *pn, *ln, *rn;
624         __le64 val;
625
626         new_parent = shadow_current(s);
627
628         pn = dm_block_data(new_parent);
629         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
630                 sizeof(__le64) : s->info->value_type.size;
631
632         /* create & init the left block */
633         r = new_block(s->info, &left);
634         if (r < 0)
635                 return r;
636
637         ln = dm_block_data(left);
638         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
639
640         ln->header.flags = pn->header.flags;
641         ln->header.nr_entries = cpu_to_le32(nr_left);
642         ln->header.max_entries = pn->header.max_entries;
643         ln->header.value_size = pn->header.value_size;
644         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
645         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
646
647         /* create & init the right block */
648         r = new_block(s->info, &right);
649         if (r < 0) {
650                 unlock_block(s->info, left);
651                 return r;
652         }
653
654         rn = dm_block_data(right);
655         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
656
657         rn->header.flags = pn->header.flags;
658         rn->header.nr_entries = cpu_to_le32(nr_right);
659         rn->header.max_entries = pn->header.max_entries;
660         rn->header.value_size = pn->header.value_size;
661         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
662         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
663                nr_right * size);
664
665         /* new_parent should just point to l and r now */
666         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
667         pn->header.nr_entries = cpu_to_le32(2);
668         pn->header.max_entries = cpu_to_le32(
669                 calc_max_entries(sizeof(__le64),
670                                  dm_bm_block_size(
671                                          dm_tm_get_bm(s->info->tm))));
672         pn->header.value_size = cpu_to_le32(sizeof(__le64));
673
674         val = cpu_to_le64(dm_block_location(left));
675         __dm_bless_for_disk(&val);
676         pn->keys[0] = ln->keys[0];
677         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
678
679         val = cpu_to_le64(dm_block_location(right));
680         __dm_bless_for_disk(&val);
681         pn->keys[1] = rn->keys[0];
682         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
683
684         unlock_block(s->info, left);
685         unlock_block(s->info, right);
686         return 0;
687 }
688
689 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
690                             struct dm_btree_value_type *vt,
691                             uint64_t key, unsigned *index)
692 {
693         int r, i = *index, top = 1;
694         struct btree_node *node;
695
696         for (;;) {
697                 r = shadow_step(s, root, vt);
698                 if (r < 0)
699                         return r;
700
701                 node = dm_block_data(shadow_current(s));
702
703                 /*
704                  * We have to patch up the parent node, ugly, but I don't
705                  * see a way to do this automatically as part of the spine
706                  * op.
707                  */
708                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
709                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
710
711                         __dm_bless_for_disk(&location);
712                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
713                                     &location, sizeof(__le64));
714                 }
715
716                 node = dm_block_data(shadow_current(s));
717
718                 if (node->header.nr_entries == node->header.max_entries) {
719                         if (top)
720                                 r = btree_split_beneath(s, key);
721                         else
722                                 r = btree_split_sibling(s, i, key);
723
724                         if (r < 0)
725                                 return r;
726                 }
727
728                 node = dm_block_data(shadow_current(s));
729
730                 i = lower_bound(node, key);
731
732                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
733                         break;
734
735                 if (i < 0) {
736                         /* change the bounds on the lowest key */
737                         node->keys[0] = cpu_to_le64(key);
738                         i = 0;
739                 }
740
741                 root = value64(node, i);
742                 top = 0;
743         }
744
745         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
746                 i++;
747
748         *index = i;
749         return 0;
750 }
751
752 static bool need_insert(struct btree_node *node, uint64_t *keys,
753                         unsigned level, unsigned index)
754 {
755         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
756                 (le64_to_cpu(node->keys[index]) != keys[level]));
757 }
758
759 static int insert(struct dm_btree_info *info, dm_block_t root,
760                   uint64_t *keys, void *value, dm_block_t *new_root,
761                   int *inserted)
762                   __dm_written_to_disk(value)
763 {
764         int r;
765         unsigned level, index = -1, last_level = info->levels - 1;
766         dm_block_t block = root;
767         struct shadow_spine spine;
768         struct btree_node *n;
769         struct dm_btree_value_type le64_type;
770
771         init_le64_type(info->tm, &le64_type);
772         init_shadow_spine(&spine, info);
773
774         for (level = 0; level < (info->levels - 1); level++) {
775                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
776                 if (r < 0)
777                         goto bad;
778
779                 n = dm_block_data(shadow_current(&spine));
780
781                 if (need_insert(n, keys, level, index)) {
782                         dm_block_t new_tree;
783                         __le64 new_le;
784
785                         r = dm_btree_empty(info, &new_tree);
786                         if (r < 0)
787                                 goto bad;
788
789                         new_le = cpu_to_le64(new_tree);
790                         __dm_bless_for_disk(&new_le);
791
792                         r = insert_at(sizeof(uint64_t), n, index,
793                                       keys[level], &new_le);
794                         if (r)
795                                 goto bad;
796                 }
797
798                 if (level < last_level)
799                         block = value64(n, index);
800         }
801
802         r = btree_insert_raw(&spine, block, &info->value_type,
803                              keys[level], &index);
804         if (r < 0)
805                 goto bad;
806
807         n = dm_block_data(shadow_current(&spine));
808
809         if (need_insert(n, keys, level, index)) {
810                 if (inserted)
811                         *inserted = 1;
812
813                 r = insert_at(info->value_type.size, n, index,
814                               keys[level], value);
815                 if (r)
816                         goto bad_unblessed;
817         } else {
818                 if (inserted)
819                         *inserted = 0;
820
821                 if (info->value_type.dec &&
822                     (!info->value_type.equal ||
823                      !info->value_type.equal(
824                              info->value_type.context,
825                              value_ptr(n, index),
826                              value))) {
827                         info->value_type.dec(info->value_type.context,
828                                              value_ptr(n, index));
829                 }
830                 memcpy_disk(value_ptr(n, index),
831                             value, info->value_type.size);
832         }
833
834         *new_root = shadow_root(&spine);
835         exit_shadow_spine(&spine);
836
837         return 0;
838
839 bad:
840         __dm_unbless_for_disk(value);
841 bad_unblessed:
842         exit_shadow_spine(&spine);
843         return r;
844 }
845
846 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
847                     uint64_t *keys, void *value, dm_block_t *new_root)
848                     __dm_written_to_disk(value)
849 {
850         return insert(info, root, keys, value, new_root, NULL);
851 }
852 EXPORT_SYMBOL_GPL(dm_btree_insert);
853
854 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
855                            uint64_t *keys, void *value, dm_block_t *new_root,
856                            int *inserted)
857                            __dm_written_to_disk(value)
858 {
859         return insert(info, root, keys, value, new_root, inserted);
860 }
861 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
862
863 /*----------------------------------------------------------------*/
864
865 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
866                     uint64_t *result_key, dm_block_t *next_block)
867 {
868         int i, r;
869         uint32_t flags;
870
871         do {
872                 r = ro_step(s, block);
873                 if (r < 0)
874                         return r;
875
876                 flags = le32_to_cpu(ro_node(s)->header.flags);
877                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
878                 if (!i)
879                         return -ENODATA;
880                 else
881                         i--;
882
883                 if (find_highest)
884                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
885                 else
886                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
887
888                 if (next_block || flags & INTERNAL_NODE) {
889                         if (find_highest)
890                                 block = value64(ro_node(s), i);
891                         else
892                                 block = value64(ro_node(s), 0);
893                 }
894
895         } while (flags & INTERNAL_NODE);
896
897         if (next_block)
898                 *next_block = block;
899         return 0;
900 }
901
902 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
903                              bool find_highest, uint64_t *result_keys)
904 {
905         int r = 0, count = 0, level;
906         struct ro_spine spine;
907
908         init_ro_spine(&spine, info);
909         for (level = 0; level < info->levels; level++) {
910                 r = find_key(&spine, root, find_highest, result_keys + level,
911                              level == info->levels - 1 ? NULL : &root);
912                 if (r == -ENODATA) {
913                         r = 0;
914                         break;
915
916                 } else if (r)
917                         break;
918
919                 count++;
920         }
921         exit_ro_spine(&spine);
922
923         return r ? r : count;
924 }
925
926 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
927                               uint64_t *result_keys)
928 {
929         return dm_btree_find_key(info, root, true, result_keys);
930 }
931 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
932
933 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
934                              uint64_t *result_keys)
935 {
936         return dm_btree_find_key(info, root, false, result_keys);
937 }
938 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
939
940 /*----------------------------------------------------------------*/
941
942 /*
943  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
944  * space.  Also this only works for single level trees.
945  */
946 static int walk_node(struct dm_btree_info *info, dm_block_t block,
947                      int (*fn)(void *context, uint64_t *keys, void *leaf),
948                      void *context)
949 {
950         int r;
951         unsigned i, nr;
952         struct dm_block *node;
953         struct btree_node *n;
954         uint64_t keys;
955
956         r = bn_read_lock(info, block, &node);
957         if (r)
958                 return r;
959
960         n = dm_block_data(node);
961
962         nr = le32_to_cpu(n->header.nr_entries);
963         for (i = 0; i < nr; i++) {
964                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
965                         r = walk_node(info, value64(n, i), fn, context);
966                         if (r)
967                                 goto out;
968                 } else {
969                         keys = le64_to_cpu(*key_ptr(n, i));
970                         r = fn(context, &keys, value_ptr(n, i));
971                         if (r)
972                                 goto out;
973                 }
974         }
975
976 out:
977         dm_tm_unlock(info->tm, node);
978         return r;
979 }
980
981 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
982                   int (*fn)(void *context, uint64_t *keys, void *leaf),
983                   void *context)
984 {
985         BUG_ON(info->levels > 1);
986         return walk_node(info, root, fn, context);
987 }
988 EXPORT_SYMBOL_GPL(dm_btree_walk);
989
990 /*----------------------------------------------------------------*/
991
992 static void prefetch_values(struct dm_btree_cursor *c)
993 {
994         unsigned i, nr;
995         __le64 value_le;
996         struct cursor_node *n = c->nodes + c->depth - 1;
997         struct btree_node *bn = dm_block_data(n->b);
998         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
999
1000         BUG_ON(c->info->value_type.size != sizeof(value_le));
1001
1002         nr = le32_to_cpu(bn->header.nr_entries);
1003         for (i = 0; i < nr; i++) {
1004                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1005                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1006         }
1007 }
1008
1009 static bool leaf_node(struct dm_btree_cursor *c)
1010 {
1011         struct cursor_node *n = c->nodes + c->depth - 1;
1012         struct btree_node *bn = dm_block_data(n->b);
1013
1014         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1015 }
1016
1017 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1018 {
1019         int r;
1020         struct cursor_node *n = c->nodes + c->depth;
1021
1022         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1023                 DMERR("couldn't push cursor node, stack depth too high");
1024                 return -EINVAL;
1025         }
1026
1027         r = bn_read_lock(c->info, b, &n->b);
1028         if (r)
1029                 return r;
1030
1031         n->index = 0;
1032         c->depth++;
1033
1034         if (c->prefetch_leaves || !leaf_node(c))
1035                 prefetch_values(c);
1036
1037         return 0;
1038 }
1039
1040 static void pop_node(struct dm_btree_cursor *c)
1041 {
1042         c->depth--;
1043         unlock_block(c->info, c->nodes[c->depth].b);
1044 }
1045
1046 static int inc_or_backtrack(struct dm_btree_cursor *c)
1047 {
1048         struct cursor_node *n;
1049         struct btree_node *bn;
1050
1051         for (;;) {
1052                 if (!c->depth)
1053                         return -ENODATA;
1054
1055                 n = c->nodes + c->depth - 1;
1056                 bn = dm_block_data(n->b);
1057
1058                 n->index++;
1059                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1060                         break;
1061
1062                 pop_node(c);
1063         }
1064
1065         return 0;
1066 }
1067
1068 static int find_leaf(struct dm_btree_cursor *c)
1069 {
1070         int r = 0;
1071         struct cursor_node *n;
1072         struct btree_node *bn;
1073         __le64 value_le;
1074
1075         for (;;) {
1076                 n = c->nodes + c->depth - 1;
1077                 bn = dm_block_data(n->b);
1078
1079                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1080                         break;
1081
1082                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1083                 r = push_node(c, le64_to_cpu(value_le));
1084                 if (r) {
1085                         DMERR("push_node failed");
1086                         break;
1087                 }
1088         }
1089
1090         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1091                 return -ENODATA;
1092
1093         return r;
1094 }
1095
1096 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1097                           bool prefetch_leaves, struct dm_btree_cursor *c)
1098 {
1099         int r;
1100
1101         c->info = info;
1102         c->root = root;
1103         c->depth = 0;
1104         c->prefetch_leaves = prefetch_leaves;
1105
1106         r = push_node(c, root);
1107         if (r)
1108                 return r;
1109
1110         return find_leaf(c);
1111 }
1112 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1113
1114 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1115 {
1116         while (c->depth)
1117                 pop_node(c);
1118 }
1119 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1120
1121 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1122 {
1123         int r = inc_or_backtrack(c);
1124         if (!r) {
1125                 r = find_leaf(c);
1126                 if (r)
1127                         DMERR("find_leaf failed");
1128         }
1129
1130         return r;
1131 }
1132 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1133
1134 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1135 {
1136         if (c->depth) {
1137                 struct cursor_node *n = c->nodes + c->depth - 1;
1138                 struct btree_node *bn = dm_block_data(n->b);
1139
1140                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1141                         return -EINVAL;
1142
1143                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1144                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1145                 return 0;
1146
1147         } else
1148                 return -ENODATA;
1149 }
1150 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);