GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         unsigned i;
75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78                 for (i = 0; i < nr_entries; i++)
79                         dm_tm_inc(tm, value64(n, i));
80         else if (vt->inc)
81                 for (i = 0; i < nr_entries; i++)
82                         vt->inc(vt->context, value_ptr(n, i));
83 }
84
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86                       uint64_t key, void *value)
87                       __dm_written_to_disk(value)
88 {
89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90         __le64 key_le = cpu_to_le64(key);
91
92         if (index > nr_entries ||
93             index >= le32_to_cpu(node->header.max_entries)) {
94                 DMERR("too many entries in btree node for insert");
95                 __dm_unbless_for_disk(value);
96                 return -ENOMEM;
97         }
98
99         __dm_bless_for_disk(&key_le);
100
101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102         array_insert(value_base(node), value_size, nr_entries, index, value);
103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105         return 0;
106 }
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116         uint32_t total, n;
117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119         block_size -= sizeof(struct node_header);
120         total = block_size / elt_size;
121         n = total / 3;          /* rounds down */
122
123         return 3 * n;
124 }
125
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128         int r;
129         struct dm_block *b;
130         struct btree_node *n;
131         size_t block_size;
132         uint32_t max_entries;
133
134         r = new_block(info, &b);
135         if (r < 0)
136                 return r;
137
138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139         max_entries = calc_max_entries(info->value_type.size, block_size);
140
141         n = dm_block_data(b);
142         memset(n, 0, block_size);
143         n->header.flags = cpu_to_le32(LEAF_NODE);
144         n->header.nr_entries = cpu_to_le32(0);
145         n->header.max_entries = cpu_to_le32(max_entries);
146         n->header.value_size = cpu_to_le32(info->value_type.size);
147
148         *root = dm_block_location(b);
149         unlock_block(info, b);
150
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155 /*----------------------------------------------------------------*/
156
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163         struct dm_block *b;
164         struct btree_node *n;
165         unsigned level;
166         unsigned nr_children;
167         unsigned current_child;
168 };
169
170 struct del_stack {
171         struct dm_btree_info *info;
172         struct dm_transaction_manager *tm;
173         int top;
174         struct frame spine[MAX_SPINE_DEPTH];
175 };
176
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179         if (s->top < 0) {
180                 DMERR("btree deletion stack empty");
181                 return -EINVAL;
182         }
183
184         *f = s->spine + s->top;
185
186         return 0;
187 }
188
189 static int unprocessed_frames(struct del_stack *s)
190 {
191         return s->top >= 0;
192 }
193
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196         unsigned i;
197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199         for (i = 0; i < f->nr_children; i++)
200                 dm_bm_prefetch(bm, value64(f->n, i));
201 }
202
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205         return f->level < (info->levels - 1);
206 }
207
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210         int r;
211         uint32_t ref_count;
212
213         if (s->top >= MAX_SPINE_DEPTH - 1) {
214                 DMERR("btree deletion stack out of memory");
215                 return -ENOMEM;
216         }
217
218         r = dm_tm_ref(s->tm, b, &ref_count);
219         if (r)
220                 return r;
221
222         if (ref_count > 1)
223                 /*
224                  * This is a shared node, so we can just decrement it's
225                  * reference counter and leave the children.
226                  */
227                 dm_tm_dec(s->tm, b);
228
229         else {
230                 uint32_t flags;
231                 struct frame *f = s->spine + ++s->top;
232
233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234                 if (r) {
235                         s->top--;
236                         return r;
237                 }
238
239                 f->n = dm_block_data(f->b);
240                 f->level = level;
241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242                 f->current_child = 0;
243
244                 flags = le32_to_cpu(f->n->header.flags);
245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246                         prefetch_children(s, f);
247         }
248
249         return 0;
250 }
251
252 static void pop_frame(struct del_stack *s)
253 {
254         struct frame *f = s->spine + s->top--;
255
256         dm_tm_dec(s->tm, dm_block_location(f->b));
257         dm_tm_unlock(s->tm, f->b);
258 }
259
260 static void unlock_all_frames(struct del_stack *s)
261 {
262         struct frame *f;
263
264         while (unprocessed_frames(s)) {
265                 f = s->spine + s->top--;
266                 dm_tm_unlock(s->tm, f->b);
267         }
268 }
269
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272         int r;
273         struct del_stack *s;
274
275         s = kmalloc(sizeof(*s), GFP_NOIO);
276         if (!s)
277                 return -ENOMEM;
278         s->info = info;
279         s->tm = info->tm;
280         s->top = -1;
281
282         r = push_frame(s, root, 0);
283         if (r)
284                 goto out;
285
286         while (unprocessed_frames(s)) {
287                 uint32_t flags;
288                 struct frame *f;
289                 dm_block_t b;
290
291                 r = top_frame(s, &f);
292                 if (r)
293                         goto out;
294
295                 if (f->current_child >= f->nr_children) {
296                         pop_frame(s);
297                         continue;
298                 }
299
300                 flags = le32_to_cpu(f->n->header.flags);
301                 if (flags & INTERNAL_NODE) {
302                         b = value64(f->n, f->current_child);
303                         f->current_child++;
304                         r = push_frame(s, b, f->level);
305                         if (r)
306                                 goto out;
307
308                 } else if (is_internal_level(info, f)) {
309                         b = value64(f->n, f->current_child);
310                         f->current_child++;
311                         r = push_frame(s, b, f->level + 1);
312                         if (r)
313                                 goto out;
314
315                 } else {
316                         if (info->value_type.dec) {
317                                 unsigned i;
318
319                                 for (i = 0; i < f->nr_children; i++)
320                                         info->value_type.dec(info->value_type.context,
321                                                              value_ptr(f->n, i));
322                         }
323                         pop_frame(s);
324                 }
325         }
326 out:
327         if (r) {
328                 /* cleanup all frames of del_stack */
329                 unlock_all_frames(s);
330         }
331         kfree(s);
332
333         return r;
334 }
335 EXPORT_SYMBOL_GPL(dm_btree_del);
336
337 /*----------------------------------------------------------------*/
338
339 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
340                             int (*search_fn)(struct btree_node *, uint64_t),
341                             uint64_t *result_key, void *v, size_t value_size)
342 {
343         int i, r;
344         uint32_t flags, nr_entries;
345
346         do {
347                 r = ro_step(s, block);
348                 if (r < 0)
349                         return r;
350
351                 i = search_fn(ro_node(s), key);
352
353                 flags = le32_to_cpu(ro_node(s)->header.flags);
354                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
355                 if (i < 0 || i >= nr_entries)
356                         return -ENODATA;
357
358                 if (flags & INTERNAL_NODE)
359                         block = value64(ro_node(s), i);
360
361         } while (!(flags & LEAF_NODE));
362
363         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
364         memcpy(v, value_ptr(ro_node(s), i), value_size);
365
366         return 0;
367 }
368
369 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
370                     uint64_t *keys, void *value_le)
371 {
372         unsigned level, last_level = info->levels - 1;
373         int r = -ENODATA;
374         uint64_t rkey;
375         __le64 internal_value_le;
376         struct ro_spine spine;
377
378         init_ro_spine(&spine, info);
379         for (level = 0; level < info->levels; level++) {
380                 size_t size;
381                 void *value_p;
382
383                 if (level == last_level) {
384                         value_p = value_le;
385                         size = info->value_type.size;
386
387                 } else {
388                         value_p = &internal_value_le;
389                         size = sizeof(uint64_t);
390                 }
391
392                 r = btree_lookup_raw(&spine, root, keys[level],
393                                      lower_bound, &rkey,
394                                      value_p, size);
395
396                 if (!r) {
397                         if (rkey != keys[level]) {
398                                 exit_ro_spine(&spine);
399                                 return -ENODATA;
400                         }
401                 } else {
402                         exit_ro_spine(&spine);
403                         return r;
404                 }
405
406                 root = le64_to_cpu(internal_value_le);
407         }
408         exit_ro_spine(&spine);
409
410         return r;
411 }
412 EXPORT_SYMBOL_GPL(dm_btree_lookup);
413
414 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
415                                        uint64_t key, uint64_t *rkey, void *value_le)
416 {
417         int r, i;
418         uint32_t flags, nr_entries;
419         struct dm_block *node;
420         struct btree_node *n;
421
422         r = bn_read_lock(info, root, &node);
423         if (r)
424                 return r;
425
426         n = dm_block_data(node);
427         flags = le32_to_cpu(n->header.flags);
428         nr_entries = le32_to_cpu(n->header.nr_entries);
429
430         if (flags & INTERNAL_NODE) {
431                 i = lower_bound(n, key);
432                 if (i < 0 || i >= nr_entries) {
433                         r = -ENODATA;
434                         goto out;
435                 }
436
437                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
438                 if (r == -ENODATA && i < (nr_entries - 1)) {
439                         i++;
440                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
441                 }
442
443         } else {
444                 i = upper_bound(n, key);
445                 if (i < 0 || i >= nr_entries) {
446                         r = -ENODATA;
447                         goto out;
448                 }
449
450                 *rkey = le64_to_cpu(n->keys[i]);
451                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
452         }
453 out:
454         dm_tm_unlock(info->tm, node);
455         return r;
456 }
457
458 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
459                          uint64_t *keys, uint64_t *rkey, void *value_le)
460 {
461         unsigned level;
462         int r = -ENODATA;
463         __le64 internal_value_le;
464         struct ro_spine spine;
465
466         init_ro_spine(&spine, info);
467         for (level = 0; level < info->levels - 1u; level++) {
468                 r = btree_lookup_raw(&spine, root, keys[level],
469                                      lower_bound, rkey,
470                                      &internal_value_le, sizeof(uint64_t));
471                 if (r)
472                         goto out;
473
474                 if (*rkey != keys[level]) {
475                         r = -ENODATA;
476                         goto out;
477                 }
478
479                 root = le64_to_cpu(internal_value_le);
480         }
481
482         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
483 out:
484         exit_ro_spine(&spine);
485         return r;
486 }
487
488 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
489
490 /*
491  * Splits a node by creating a sibling node and shifting half the nodes
492  * contents across.  Assumes there is a parent node, and it has room for
493  * another child.
494  *
495  * Before:
496  *        +--------+
497  *        | Parent |
498  *        +--------+
499  *           |
500  *           v
501  *      +----------+
502  *      | A ++++++ |
503  *      +----------+
504  *
505  *
506  * After:
507  *              +--------+
508  *              | Parent |
509  *              +--------+
510  *                |     |
511  *                v     +------+
512  *          +---------+        |
513  *          | A* +++  |        v
514  *          +---------+   +-------+
515  *                        | B +++ |
516  *                        +-------+
517  *
518  * Where A* is a shadow of A.
519  */
520 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
521                                uint64_t key)
522 {
523         int r;
524         size_t size;
525         unsigned nr_left, nr_right;
526         struct dm_block *left, *right, *parent;
527         struct btree_node *ln, *rn, *pn;
528         __le64 location;
529
530         left = shadow_current(s);
531
532         r = new_block(s->info, &right);
533         if (r < 0)
534                 return r;
535
536         ln = dm_block_data(left);
537         rn = dm_block_data(right);
538
539         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
540         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
541
542         ln->header.nr_entries = cpu_to_le32(nr_left);
543
544         rn->header.flags = ln->header.flags;
545         rn->header.nr_entries = cpu_to_le32(nr_right);
546         rn->header.max_entries = ln->header.max_entries;
547         rn->header.value_size = ln->header.value_size;
548         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
549
550         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
551                 sizeof(uint64_t) : s->info->value_type.size;
552         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
553                size * nr_right);
554
555         /*
556          * Patch up the parent
557          */
558         parent = shadow_parent(s);
559
560         pn = dm_block_data(parent);
561         location = cpu_to_le64(dm_block_location(left));
562         __dm_bless_for_disk(&location);
563         memcpy_disk(value_ptr(pn, parent_index),
564                     &location, sizeof(__le64));
565
566         location = cpu_to_le64(dm_block_location(right));
567         __dm_bless_for_disk(&location);
568
569         r = insert_at(sizeof(__le64), pn, parent_index + 1,
570                       le64_to_cpu(rn->keys[0]), &location);
571         if (r) {
572                 unlock_block(s->info, right);
573                 return r;
574         }
575
576         if (key < le64_to_cpu(rn->keys[0])) {
577                 unlock_block(s->info, right);
578                 s->nodes[1] = left;
579         } else {
580                 unlock_block(s->info, left);
581                 s->nodes[1] = right;
582         }
583
584         return 0;
585 }
586
587 /*
588  * Splits a node by creating two new children beneath the given node.
589  *
590  * Before:
591  *        +----------+
592  *        | A ++++++ |
593  *        +----------+
594  *
595  *
596  * After:
597  *      +------------+
598  *      | A (shadow) |
599  *      +------------+
600  *          |   |
601  *   +------+   +----+
602  *   |               |
603  *   v               v
604  * +-------+     +-------+
605  * | B +++ |     | C +++ |
606  * +-------+     +-------+
607  */
608 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
609 {
610         int r;
611         size_t size;
612         unsigned nr_left, nr_right;
613         struct dm_block *left, *right, *new_parent;
614         struct btree_node *pn, *ln, *rn;
615         __le64 val;
616
617         new_parent = shadow_current(s);
618
619         pn = dm_block_data(new_parent);
620         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
621                 sizeof(__le64) : s->info->value_type.size;
622
623         /* create & init the left block */
624         r = new_block(s->info, &left);
625         if (r < 0)
626                 return r;
627
628         ln = dm_block_data(left);
629         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
630
631         ln->header.flags = pn->header.flags;
632         ln->header.nr_entries = cpu_to_le32(nr_left);
633         ln->header.max_entries = pn->header.max_entries;
634         ln->header.value_size = pn->header.value_size;
635         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
636         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
637
638         /* create & init the right block */
639         r = new_block(s->info, &right);
640         if (r < 0) {
641                 unlock_block(s->info, left);
642                 return r;
643         }
644
645         rn = dm_block_data(right);
646         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
647
648         rn->header.flags = pn->header.flags;
649         rn->header.nr_entries = cpu_to_le32(nr_right);
650         rn->header.max_entries = pn->header.max_entries;
651         rn->header.value_size = pn->header.value_size;
652         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
653         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
654                nr_right * size);
655
656         /* new_parent should just point to l and r now */
657         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
658         pn->header.nr_entries = cpu_to_le32(2);
659         pn->header.max_entries = cpu_to_le32(
660                 calc_max_entries(sizeof(__le64),
661                                  dm_bm_block_size(
662                                          dm_tm_get_bm(s->info->tm))));
663         pn->header.value_size = cpu_to_le32(sizeof(__le64));
664
665         val = cpu_to_le64(dm_block_location(left));
666         __dm_bless_for_disk(&val);
667         pn->keys[0] = ln->keys[0];
668         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
669
670         val = cpu_to_le64(dm_block_location(right));
671         __dm_bless_for_disk(&val);
672         pn->keys[1] = rn->keys[0];
673         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
674
675         unlock_block(s->info, left);
676         unlock_block(s->info, right);
677         return 0;
678 }
679
680 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
681                             struct dm_btree_value_type *vt,
682                             uint64_t key, unsigned *index)
683 {
684         int r, i = *index, top = 1;
685         struct btree_node *node;
686
687         for (;;) {
688                 r = shadow_step(s, root, vt);
689                 if (r < 0)
690                         return r;
691
692                 node = dm_block_data(shadow_current(s));
693
694                 /*
695                  * We have to patch up the parent node, ugly, but I don't
696                  * see a way to do this automatically as part of the spine
697                  * op.
698                  */
699                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
700                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
701
702                         __dm_bless_for_disk(&location);
703                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
704                                     &location, sizeof(__le64));
705                 }
706
707                 node = dm_block_data(shadow_current(s));
708
709                 if (node->header.nr_entries == node->header.max_entries) {
710                         if (top)
711                                 r = btree_split_beneath(s, key);
712                         else
713                                 r = btree_split_sibling(s, i, key);
714
715                         if (r < 0)
716                                 return r;
717                 }
718
719                 node = dm_block_data(shadow_current(s));
720
721                 i = lower_bound(node, key);
722
723                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
724                         break;
725
726                 if (i < 0) {
727                         /* change the bounds on the lowest key */
728                         node->keys[0] = cpu_to_le64(key);
729                         i = 0;
730                 }
731
732                 root = value64(node, i);
733                 top = 0;
734         }
735
736         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
737                 i++;
738
739         *index = i;
740         return 0;
741 }
742
743 static int insert(struct dm_btree_info *info, dm_block_t root,
744                   uint64_t *keys, void *value, dm_block_t *new_root,
745                   int *inserted)
746                   __dm_written_to_disk(value)
747 {
748         int r, need_insert;
749         unsigned level, index = -1, last_level = info->levels - 1;
750         dm_block_t block = root;
751         struct shadow_spine spine;
752         struct btree_node *n;
753         struct dm_btree_value_type le64_type;
754
755         init_le64_type(info->tm, &le64_type);
756         init_shadow_spine(&spine, info);
757
758         for (level = 0; level < (info->levels - 1); level++) {
759                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
760                 if (r < 0)
761                         goto bad;
762
763                 n = dm_block_data(shadow_current(&spine));
764                 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
765                                (le64_to_cpu(n->keys[index]) != keys[level]));
766
767                 if (need_insert) {
768                         dm_block_t new_tree;
769                         __le64 new_le;
770
771                         r = dm_btree_empty(info, &new_tree);
772                         if (r < 0)
773                                 goto bad;
774
775                         new_le = cpu_to_le64(new_tree);
776                         __dm_bless_for_disk(&new_le);
777
778                         r = insert_at(sizeof(uint64_t), n, index,
779                                       keys[level], &new_le);
780                         if (r)
781                                 goto bad;
782                 }
783
784                 if (level < last_level)
785                         block = value64(n, index);
786         }
787
788         r = btree_insert_raw(&spine, block, &info->value_type,
789                              keys[level], &index);
790         if (r < 0)
791                 goto bad;
792
793         n = dm_block_data(shadow_current(&spine));
794         need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
795                        (le64_to_cpu(n->keys[index]) != keys[level]));
796
797         if (need_insert) {
798                 if (inserted)
799                         *inserted = 1;
800
801                 r = insert_at(info->value_type.size, n, index,
802                               keys[level], value);
803                 if (r)
804                         goto bad_unblessed;
805         } else {
806                 if (inserted)
807                         *inserted = 0;
808
809                 if (info->value_type.dec &&
810                     (!info->value_type.equal ||
811                      !info->value_type.equal(
812                              info->value_type.context,
813                              value_ptr(n, index),
814                              value))) {
815                         info->value_type.dec(info->value_type.context,
816                                              value_ptr(n, index));
817                 }
818                 memcpy_disk(value_ptr(n, index),
819                             value, info->value_type.size);
820         }
821
822         *new_root = shadow_root(&spine);
823         exit_shadow_spine(&spine);
824
825         return 0;
826
827 bad:
828         __dm_unbless_for_disk(value);
829 bad_unblessed:
830         exit_shadow_spine(&spine);
831         return r;
832 }
833
834 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
835                     uint64_t *keys, void *value, dm_block_t *new_root)
836                     __dm_written_to_disk(value)
837 {
838         return insert(info, root, keys, value, new_root, NULL);
839 }
840 EXPORT_SYMBOL_GPL(dm_btree_insert);
841
842 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
843                            uint64_t *keys, void *value, dm_block_t *new_root,
844                            int *inserted)
845                            __dm_written_to_disk(value)
846 {
847         return insert(info, root, keys, value, new_root, inserted);
848 }
849 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
850
851 /*----------------------------------------------------------------*/
852
853 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
854                     uint64_t *result_key, dm_block_t *next_block)
855 {
856         int i, r;
857         uint32_t flags;
858
859         do {
860                 r = ro_step(s, block);
861                 if (r < 0)
862                         return r;
863
864                 flags = le32_to_cpu(ro_node(s)->header.flags);
865                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
866                 if (!i)
867                         return -ENODATA;
868                 else
869                         i--;
870
871                 if (find_highest)
872                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
873                 else
874                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
875
876                 if (next_block || flags & INTERNAL_NODE) {
877                         if (find_highest)
878                                 block = value64(ro_node(s), i);
879                         else
880                                 block = value64(ro_node(s), 0);
881                 }
882
883         } while (flags & INTERNAL_NODE);
884
885         if (next_block)
886                 *next_block = block;
887         return 0;
888 }
889
890 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
891                              bool find_highest, uint64_t *result_keys)
892 {
893         int r = 0, count = 0, level;
894         struct ro_spine spine;
895
896         init_ro_spine(&spine, info);
897         for (level = 0; level < info->levels; level++) {
898                 r = find_key(&spine, root, find_highest, result_keys + level,
899                              level == info->levels - 1 ? NULL : &root);
900                 if (r == -ENODATA) {
901                         r = 0;
902                         break;
903
904                 } else if (r)
905                         break;
906
907                 count++;
908         }
909         exit_ro_spine(&spine);
910
911         return r ? r : count;
912 }
913
914 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
915                               uint64_t *result_keys)
916 {
917         return dm_btree_find_key(info, root, true, result_keys);
918 }
919 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
920
921 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
922                              uint64_t *result_keys)
923 {
924         return dm_btree_find_key(info, root, false, result_keys);
925 }
926 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
927
928 /*----------------------------------------------------------------*/
929
930 /*
931  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
932  * space.  Also this only works for single level trees.
933  */
934 static int walk_node(struct dm_btree_info *info, dm_block_t block,
935                      int (*fn)(void *context, uint64_t *keys, void *leaf),
936                      void *context)
937 {
938         int r;
939         unsigned i, nr;
940         struct dm_block *node;
941         struct btree_node *n;
942         uint64_t keys;
943
944         r = bn_read_lock(info, block, &node);
945         if (r)
946                 return r;
947
948         n = dm_block_data(node);
949
950         nr = le32_to_cpu(n->header.nr_entries);
951         for (i = 0; i < nr; i++) {
952                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
953                         r = walk_node(info, value64(n, i), fn, context);
954                         if (r)
955                                 goto out;
956                 } else {
957                         keys = le64_to_cpu(*key_ptr(n, i));
958                         r = fn(context, &keys, value_ptr(n, i));
959                         if (r)
960                                 goto out;
961                 }
962         }
963
964 out:
965         dm_tm_unlock(info->tm, node);
966         return r;
967 }
968
969 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
970                   int (*fn)(void *context, uint64_t *keys, void *leaf),
971                   void *context)
972 {
973         BUG_ON(info->levels > 1);
974         return walk_node(info, root, fn, context);
975 }
976 EXPORT_SYMBOL_GPL(dm_btree_walk);