GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99         struct pool_info *pi = data;
100         struct r1bio *r1_bio;
101         struct bio *bio;
102         int need_pages;
103         int i, j;
104
105         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106         if (!r1_bio)
107                 return NULL;
108
109         /*
110          * Allocate bios : 1 for reading, n-1 for writing
111          */
112         for (j = pi->raid_disks ; j-- ; ) {
113                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114                 if (!bio)
115                         goto out_free_bio;
116                 r1_bio->bios[j] = bio;
117         }
118         /*
119          * Allocate RESYNC_PAGES data pages and attach them to
120          * the first bio.
121          * If this is a user-requested check/repair, allocate
122          * RESYNC_PAGES for each bio.
123          */
124         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125                 need_pages = pi->raid_disks;
126         else
127                 need_pages = 1;
128         for (j = 0; j < need_pages; j++) {
129                 bio = r1_bio->bios[j];
130                 bio->bi_vcnt = RESYNC_PAGES;
131
132                 if (bio_alloc_pages(bio, gfp_flags))
133                         goto out_free_pages;
134         }
135         /* If not user-requests, copy the page pointers to all bios */
136         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137                 for (i=0; i<RESYNC_PAGES ; i++)
138                         for (j=1; j<pi->raid_disks; j++)
139                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
141         }
142
143         r1_bio->master_bio = NULL;
144
145         return r1_bio;
146
147 out_free_pages:
148         while (--j >= 0) {
149                 struct bio_vec *bv;
150
151                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152                         __free_page(bv->bv_page);
153         }
154
155 out_free_bio:
156         while (++j < pi->raid_disks)
157                 bio_put(r1_bio->bios[j]);
158         r1bio_pool_free(r1_bio, data);
159         return NULL;
160 }
161
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164         struct pool_info *pi = data;
165         int i,j;
166         struct r1bio *r1bio = __r1_bio;
167
168         for (i = 0; i < RESYNC_PAGES; i++)
169                 for (j = pi->raid_disks; j-- ;) {
170                         if (j == 0 ||
171                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
172                             r1bio->bios[0]->bi_io_vec[i].bv_page)
173                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174                 }
175         for (i=0 ; i < pi->raid_disks; i++)
176                 bio_put(r1bio->bios[i]);
177
178         r1bio_pool_free(r1bio, data);
179 }
180
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183         int i;
184
185         for (i = 0; i < conf->raid_disks * 2; i++) {
186                 struct bio **bio = r1_bio->bios + i;
187                 if (!BIO_SPECIAL(*bio))
188                         bio_put(*bio);
189                 *bio = NULL;
190         }
191 }
192
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195         struct r1conf *conf = r1_bio->mddev->private;
196
197         put_all_bios(conf, r1_bio);
198         mempool_free(r1_bio, conf->r1bio_pool);
199 }
200
201 static void put_buf(struct r1bio *r1_bio)
202 {
203         struct r1conf *conf = r1_bio->mddev->private;
204         int i;
205
206         for (i = 0; i < conf->raid_disks * 2; i++) {
207                 struct bio *bio = r1_bio->bios[i];
208                 if (bio->bi_end_io)
209                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210         }
211
212         mempool_free(r1_bio, conf->r1buf_pool);
213
214         lower_barrier(conf);
215 }
216
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219         unsigned long flags;
220         struct mddev *mddev = r1_bio->mddev;
221         struct r1conf *conf = mddev->private;
222
223         spin_lock_irqsave(&conf->device_lock, flags);
224         list_add(&r1_bio->retry_list, &conf->retry_list);
225         conf->nr_queued ++;
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         wake_up(&conf->wait_barrier);
229         md_wakeup_thread(mddev->thread);
230 }
231
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239         struct bio *bio = r1_bio->master_bio;
240         int done;
241         struct r1conf *conf = r1_bio->mddev->private;
242         sector_t start_next_window = r1_bio->start_next_window;
243         sector_t bi_sector = bio->bi_iter.bi_sector;
244
245         if (bio->bi_phys_segments) {
246                 unsigned long flags;
247                 spin_lock_irqsave(&conf->device_lock, flags);
248                 bio->bi_phys_segments--;
249                 done = (bio->bi_phys_segments == 0);
250                 spin_unlock_irqrestore(&conf->device_lock, flags);
251                 /*
252                  * make_request() might be waiting for
253                  * bi_phys_segments to decrease
254                  */
255                 wake_up(&conf->wait_barrier);
256         } else
257                 done = 1;
258
259         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260                 bio->bi_error = -EIO;
261
262         if (done) {
263                 bio_endio(bio);
264                 /*
265                  * Wake up any possible resync thread that waits for the device
266                  * to go idle.
267                  */
268                 allow_barrier(conf, start_next_window, bi_sector);
269         }
270 }
271
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274         struct bio *bio = r1_bio->master_bio;
275
276         /* if nobody has done the final endio yet, do it now */
277         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
280                          (unsigned long long) bio->bi_iter.bi_sector,
281                          (unsigned long long) bio_end_sector(bio) - 1);
282
283                 call_bio_endio(r1_bio);
284         }
285         free_r1bio(r1_bio);
286 }
287
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293         struct r1conf *conf = r1_bio->mddev->private;
294
295         conf->mirrors[disk].head_position =
296                 r1_bio->sector + (r1_bio->sectors);
297 }
298
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304         int mirror;
305         struct r1conf *conf = r1_bio->mddev->private;
306         int raid_disks = conf->raid_disks;
307
308         for (mirror = 0; mirror < raid_disks * 2; mirror++)
309                 if (r1_bio->bios[mirror] == bio)
310                         break;
311
312         BUG_ON(mirror == raid_disks * 2);
313         update_head_pos(mirror, r1_bio);
314
315         return mirror;
316 }
317
318 static void raid1_end_read_request(struct bio *bio)
319 {
320         int uptodate = !bio->bi_error;
321         struct r1bio *r1_bio = bio->bi_private;
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324
325         mirror = r1_bio->read_disk;
326         /*
327          * this branch is our 'one mirror IO has finished' event handler:
328          */
329         update_head_pos(mirror, r1_bio);
330
331         if (uptodate)
332                 set_bit(R1BIO_Uptodate, &r1_bio->state);
333         else {
334                 /* If all other devices have failed, we want to return
335                  * the error upwards rather than fail the last device.
336                  * Here we redefine "uptodate" to mean "Don't want to retry"
337                  */
338                 unsigned long flags;
339                 spin_lock_irqsave(&conf->device_lock, flags);
340                 if (r1_bio->mddev->degraded == conf->raid_disks ||
341                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343                         uptodate = 1;
344                 spin_unlock_irqrestore(&conf->device_lock, flags);
345         }
346
347         if (uptodate) {
348                 raid_end_bio_io(r1_bio);
349                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350         } else {
351                 /*
352                  * oops, read error:
353                  */
354                 char b[BDEVNAME_SIZE];
355                 printk_ratelimited(
356                         KERN_ERR "md/raid1:%s: %s: "
357                         "rescheduling sector %llu\n",
358                         mdname(conf->mddev),
359                         bdevname(conf->mirrors[mirror].rdev->bdev,
360                                  b),
361                         (unsigned long long)r1_bio->sector);
362                 set_bit(R1BIO_ReadError, &r1_bio->state);
363                 reschedule_retry(r1_bio);
364                 /* don't drop the reference on read_disk yet */
365         }
366 }
367
368 static void close_write(struct r1bio *r1_bio)
369 {
370         /* it really is the end of this request */
371         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372                 /* free extra copy of the data pages */
373                 int i = r1_bio->behind_page_count;
374                 while (i--)
375                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376                 kfree(r1_bio->behind_bvecs);
377                 r1_bio->behind_bvecs = NULL;
378         }
379         /* clear the bitmap if all writes complete successfully */
380         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381                         r1_bio->sectors,
382                         !test_bit(R1BIO_Degraded, &r1_bio->state),
383                         test_bit(R1BIO_BehindIO, &r1_bio->state));
384         md_write_end(r1_bio->mddev);
385 }
386
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389         if (!atomic_dec_and_test(&r1_bio->remaining))
390                 return;
391
392         if (test_bit(R1BIO_WriteError, &r1_bio->state))
393                 reschedule_retry(r1_bio);
394         else {
395                 close_write(r1_bio);
396                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397                         reschedule_retry(r1_bio);
398                 else
399                         raid_end_bio_io(r1_bio);
400         }
401 }
402
403 static void raid1_end_write_request(struct bio *bio)
404 {
405         struct r1bio *r1_bio = bio->bi_private;
406         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407         struct r1conf *conf = r1_bio->mddev->private;
408         struct bio *to_put = NULL;
409
410         mirror = find_bio_disk(r1_bio, bio);
411
412         /*
413          * 'one mirror IO has finished' event handler:
414          */
415         if (bio->bi_error) {
416                 set_bit(WriteErrorSeen,
417                         &conf->mirrors[mirror].rdev->flags);
418                 if (!test_and_set_bit(WantReplacement,
419                                       &conf->mirrors[mirror].rdev->flags))
420                         set_bit(MD_RECOVERY_NEEDED, &
421                                 conf->mddev->recovery);
422
423                 set_bit(R1BIO_WriteError, &r1_bio->state);
424         } else {
425                 /*
426                  * Set R1BIO_Uptodate in our master bio, so that we
427                  * will return a good error code for to the higher
428                  * levels even if IO on some other mirrored buffer
429                  * fails.
430                  *
431                  * The 'master' represents the composite IO operation
432                  * to user-side. So if something waits for IO, then it
433                  * will wait for the 'master' bio.
434                  */
435                 sector_t first_bad;
436                 int bad_sectors;
437
438                 r1_bio->bios[mirror] = NULL;
439                 to_put = bio;
440                 /*
441                  * Do not set R1BIO_Uptodate if the current device is
442                  * rebuilding or Faulty. This is because we cannot use
443                  * such device for properly reading the data back (we could
444                  * potentially use it, if the current write would have felt
445                  * before rdev->recovery_offset, but for simplicity we don't
446                  * check this here.
447                  */
448                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450                         set_bit(R1BIO_Uptodate, &r1_bio->state);
451
452                 /* Maybe we can clear some bad blocks. */
453                 if (is_badblock(conf->mirrors[mirror].rdev,
454                                 r1_bio->sector, r1_bio->sectors,
455                                 &first_bad, &bad_sectors)) {
456                         r1_bio->bios[mirror] = IO_MADE_GOOD;
457                         set_bit(R1BIO_MadeGood, &r1_bio->state);
458                 }
459         }
460
461         if (behind) {
462                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463                         atomic_dec(&r1_bio->behind_remaining);
464
465                 /*
466                  * In behind mode, we ACK the master bio once the I/O
467                  * has safely reached all non-writemostly
468                  * disks. Setting the Returned bit ensures that this
469                  * gets done only once -- we don't ever want to return
470                  * -EIO here, instead we'll wait
471                  */
472                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474                         /* Maybe we can return now */
475                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476                                 struct bio *mbio = r1_bio->master_bio;
477                                 pr_debug("raid1: behind end write sectors"
478                                          " %llu-%llu\n",
479                                          (unsigned long long) mbio->bi_iter.bi_sector,
480                                          (unsigned long long) bio_end_sector(mbio) - 1);
481                                 call_bio_endio(r1_bio);
482                         }
483                 }
484         }
485         if (r1_bio->bios[mirror] == NULL)
486                 rdev_dec_pending(conf->mirrors[mirror].rdev,
487                                  conf->mddev);
488
489         /*
490          * Let's see if all mirrored write operations have finished
491          * already.
492          */
493         r1_bio_write_done(r1_bio);
494
495         if (to_put)
496                 bio_put(to_put);
497 }
498
499 /*
500  * This routine returns the disk from which the requested read should
501  * be done. There is a per-array 'next expected sequential IO' sector
502  * number - if this matches on the next IO then we use the last disk.
503  * There is also a per-disk 'last know head position' sector that is
504  * maintained from IRQ contexts, both the normal and the resync IO
505  * completion handlers update this position correctly. If there is no
506  * perfect sequential match then we pick the disk whose head is closest.
507  *
508  * If there are 2 mirrors in the same 2 devices, performance degrades
509  * because position is mirror, not device based.
510  *
511  * The rdev for the device selected will have nr_pending incremented.
512  */
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515         const sector_t this_sector = r1_bio->sector;
516         int sectors;
517         int best_good_sectors;
518         int best_disk, best_dist_disk, best_pending_disk;
519         int has_nonrot_disk;
520         int disk;
521         sector_t best_dist;
522         unsigned int min_pending;
523         struct md_rdev *rdev;
524         int choose_first;
525         int choose_next_idle;
526
527         rcu_read_lock();
528         /*
529          * Check if we can balance. We can balance on the whole
530          * device if no resync is going on, or below the resync window.
531          * We take the first readable disk when above the resync window.
532          */
533  retry:
534         sectors = r1_bio->sectors;
535         best_disk = -1;
536         best_dist_disk = -1;
537         best_dist = MaxSector;
538         best_pending_disk = -1;
539         min_pending = UINT_MAX;
540         best_good_sectors = 0;
541         has_nonrot_disk = 0;
542         choose_next_idle = 0;
543
544         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545             (mddev_is_clustered(conf->mddev) &&
546             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547                     this_sector + sectors)))
548                 choose_first = 1;
549         else
550                 choose_first = 0;
551
552         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553                 sector_t dist;
554                 sector_t first_bad;
555                 int bad_sectors;
556                 unsigned int pending;
557                 bool nonrot;
558
559                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560                 if (r1_bio->bios[disk] == IO_BLOCKED
561                     || rdev == NULL
562                     || test_bit(Faulty, &rdev->flags))
563                         continue;
564                 if (!test_bit(In_sync, &rdev->flags) &&
565                     rdev->recovery_offset < this_sector + sectors)
566                         continue;
567                 if (test_bit(WriteMostly, &rdev->flags)) {
568                         /* Don't balance among write-mostly, just
569                          * use the first as a last resort */
570                         if (best_dist_disk < 0) {
571                                 if (is_badblock(rdev, this_sector, sectors,
572                                                 &first_bad, &bad_sectors)) {
573                                         if (first_bad <= this_sector)
574                                                 /* Cannot use this */
575                                                 continue;
576                                         best_good_sectors = first_bad - this_sector;
577                                 } else
578                                         best_good_sectors = sectors;
579                                 best_dist_disk = disk;
580                                 best_pending_disk = disk;
581                         }
582                         continue;
583                 }
584                 /* This is a reasonable device to use.  It might
585                  * even be best.
586                  */
587                 if (is_badblock(rdev, this_sector, sectors,
588                                 &first_bad, &bad_sectors)) {
589                         if (best_dist < MaxSector)
590                                 /* already have a better device */
591                                 continue;
592                         if (first_bad <= this_sector) {
593                                 /* cannot read here. If this is the 'primary'
594                                  * device, then we must not read beyond
595                                  * bad_sectors from another device..
596                                  */
597                                 bad_sectors -= (this_sector - first_bad);
598                                 if (choose_first && sectors > bad_sectors)
599                                         sectors = bad_sectors;
600                                 if (best_good_sectors > sectors)
601                                         best_good_sectors = sectors;
602
603                         } else {
604                                 sector_t good_sectors = first_bad - this_sector;
605                                 if (good_sectors > best_good_sectors) {
606                                         best_good_sectors = good_sectors;
607                                         best_disk = disk;
608                                 }
609                                 if (choose_first)
610                                         break;
611                         }
612                         continue;
613                 } else
614                         best_good_sectors = sectors;
615
616                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617                 has_nonrot_disk |= nonrot;
618                 pending = atomic_read(&rdev->nr_pending);
619                 dist = abs(this_sector - conf->mirrors[disk].head_position);
620                 if (choose_first) {
621                         best_disk = disk;
622                         break;
623                 }
624                 /* Don't change to another disk for sequential reads */
625                 if (conf->mirrors[disk].next_seq_sect == this_sector
626                     || dist == 0) {
627                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628                         struct raid1_info *mirror = &conf->mirrors[disk];
629
630                         best_disk = disk;
631                         /*
632                          * If buffered sequential IO size exceeds optimal
633                          * iosize, check if there is idle disk. If yes, choose
634                          * the idle disk. read_balance could already choose an
635                          * idle disk before noticing it's a sequential IO in
636                          * this disk. This doesn't matter because this disk
637                          * will idle, next time it will be utilized after the
638                          * first disk has IO size exceeds optimal iosize. In
639                          * this way, iosize of the first disk will be optimal
640                          * iosize at least. iosize of the second disk might be
641                          * small, but not a big deal since when the second disk
642                          * starts IO, the first disk is likely still busy.
643                          */
644                         if (nonrot && opt_iosize > 0 &&
645                             mirror->seq_start != MaxSector &&
646                             mirror->next_seq_sect > opt_iosize &&
647                             mirror->next_seq_sect - opt_iosize >=
648                             mirror->seq_start) {
649                                 choose_next_idle = 1;
650                                 continue;
651                         }
652                         break;
653                 }
654                 /* If device is idle, use it */
655                 if (pending == 0) {
656                         best_disk = disk;
657                         break;
658                 }
659
660                 if (choose_next_idle)
661                         continue;
662
663                 if (min_pending > pending) {
664                         min_pending = pending;
665                         best_pending_disk = disk;
666                 }
667
668                 if (dist < best_dist) {
669                         best_dist = dist;
670                         best_dist_disk = disk;
671                 }
672         }
673
674         /*
675          * If all disks are rotational, choose the closest disk. If any disk is
676          * non-rotational, choose the disk with less pending request even the
677          * disk is rotational, which might/might not be optimal for raids with
678          * mixed ratation/non-rotational disks depending on workload.
679          */
680         if (best_disk == -1) {
681                 if (has_nonrot_disk)
682                         best_disk = best_pending_disk;
683                 else
684                         best_disk = best_dist_disk;
685         }
686
687         if (best_disk >= 0) {
688                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689                 if (!rdev)
690                         goto retry;
691                 atomic_inc(&rdev->nr_pending);
692                 if (test_bit(Faulty, &rdev->flags)) {
693                         /* cannot risk returning a device that failed
694                          * before we inc'ed nr_pending
695                          */
696                         rdev_dec_pending(rdev, conf->mddev);
697                         goto retry;
698                 }
699                 sectors = best_good_sectors;
700
701                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702                         conf->mirrors[best_disk].seq_start = this_sector;
703
704                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705         }
706         rcu_read_unlock();
707         *max_sectors = sectors;
708
709         return best_disk;
710 }
711
712 static int raid1_congested(struct mddev *mddev, int bits)
713 {
714         struct r1conf *conf = mddev->private;
715         int i, ret = 0;
716
717         if ((bits & (1 << WB_async_congested)) &&
718             conf->pending_count >= max_queued_requests)
719                 return 1;
720
721         rcu_read_lock();
722         for (i = 0; i < conf->raid_disks * 2; i++) {
723                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725                         struct request_queue *q = bdev_get_queue(rdev->bdev);
726
727                         BUG_ON(!q);
728
729                         /* Note the '|| 1' - when read_balance prefers
730                          * non-congested targets, it can be removed
731                          */
732                         if ((bits & (1 << WB_async_congested)) || 1)
733                                 ret |= bdi_congested(&q->backing_dev_info, bits);
734                         else
735                                 ret &= bdi_congested(&q->backing_dev_info, bits);
736                 }
737         }
738         rcu_read_unlock();
739         return ret;
740 }
741
742 static void flush_pending_writes(struct r1conf *conf)
743 {
744         /* Any writes that have been queued but are awaiting
745          * bitmap updates get flushed here.
746          */
747         spin_lock_irq(&conf->device_lock);
748
749         if (conf->pending_bio_list.head) {
750                 struct bio *bio;
751                 bio = bio_list_get(&conf->pending_bio_list);
752                 conf->pending_count = 0;
753                 spin_unlock_irq(&conf->device_lock);
754                 /* flush any pending bitmap writes to
755                  * disk before proceeding w/ I/O */
756                 bitmap_unplug(conf->mddev->bitmap);
757                 wake_up(&conf->wait_barrier);
758
759                 while (bio) { /* submit pending writes */
760                         struct bio *next = bio->bi_next;
761                         bio->bi_next = NULL;
762                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764                                 /* Just ignore it */
765                                 bio_endio(bio);
766                         else
767                                 generic_make_request(bio);
768                         bio = next;
769                 }
770         } else
771                 spin_unlock_irq(&conf->device_lock);
772 }
773
774 /* Barriers....
775  * Sometimes we need to suspend IO while we do something else,
776  * either some resync/recovery, or reconfigure the array.
777  * To do this we raise a 'barrier'.
778  * The 'barrier' is a counter that can be raised multiple times
779  * to count how many activities are happening which preclude
780  * normal IO.
781  * We can only raise the barrier if there is no pending IO.
782  * i.e. if nr_pending == 0.
783  * We choose only to raise the barrier if no-one is waiting for the
784  * barrier to go down.  This means that as soon as an IO request
785  * is ready, no other operations which require a barrier will start
786  * until the IO request has had a chance.
787  *
788  * So: regular IO calls 'wait_barrier'.  When that returns there
789  *    is no backgroup IO happening,  It must arrange to call
790  *    allow_barrier when it has finished its IO.
791  * backgroup IO calls must call raise_barrier.  Once that returns
792  *    there is no normal IO happeing.  It must arrange to call
793  *    lower_barrier when the particular background IO completes.
794  */
795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796 {
797         spin_lock_irq(&conf->resync_lock);
798
799         /* Wait until no block IO is waiting */
800         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801                             conf->resync_lock);
802
803         /* block any new IO from starting */
804         conf->barrier++;
805         conf->next_resync = sector_nr;
806
807         /* For these conditions we must wait:
808          * A: while the array is in frozen state
809          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810          *    the max count which allowed.
811          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812          *    next resync will reach to the window which normal bios are
813          *    handling.
814          * D: while there are any active requests in the current window.
815          */
816         wait_event_lock_irq(conf->wait_barrier,
817                             !conf->array_frozen &&
818                             conf->barrier < RESYNC_DEPTH &&
819                             conf->current_window_requests == 0 &&
820                             (conf->start_next_window >=
821                              conf->next_resync + RESYNC_SECTORS),
822                             conf->resync_lock);
823
824         conf->nr_pending++;
825         spin_unlock_irq(&conf->resync_lock);
826 }
827
828 static void lower_barrier(struct r1conf *conf)
829 {
830         unsigned long flags;
831         BUG_ON(conf->barrier <= 0);
832         spin_lock_irqsave(&conf->resync_lock, flags);
833         conf->barrier--;
834         conf->nr_pending--;
835         spin_unlock_irqrestore(&conf->resync_lock, flags);
836         wake_up(&conf->wait_barrier);
837 }
838
839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840 {
841         bool wait = false;
842
843         if (conf->array_frozen || !bio)
844                 wait = true;
845         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846                 if ((conf->mddev->curr_resync_completed
847                      >= bio_end_sector(bio)) ||
848                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
849                      <= bio->bi_iter.bi_sector))
850                         wait = false;
851                 else
852                         wait = true;
853         }
854
855         return wait;
856 }
857
858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859 {
860         sector_t sector = 0;
861
862         spin_lock_irq(&conf->resync_lock);
863         if (need_to_wait_for_sync(conf, bio)) {
864                 conf->nr_waiting++;
865                 /* Wait for the barrier to drop.
866                  * However if there are already pending
867                  * requests (preventing the barrier from
868                  * rising completely), and the
869                  * per-process bio queue isn't empty,
870                  * then don't wait, as we need to empty
871                  * that queue to allow conf->start_next_window
872                  * to increase.
873                  */
874                 wait_event_lock_irq(conf->wait_barrier,
875                                     !conf->array_frozen &&
876                                     (!conf->barrier ||
877                                      ((conf->start_next_window <
878                                        conf->next_resync + RESYNC_SECTORS) &&
879                                       current->bio_list &&
880                                      (!bio_list_empty(&current->bio_list[0]) ||
881                                       !bio_list_empty(&current->bio_list[1])))),
882                                     conf->resync_lock);
883                 conf->nr_waiting--;
884         }
885
886         if (bio && bio_data_dir(bio) == WRITE) {
887                 if (bio->bi_iter.bi_sector >= conf->next_resync) {
888                         if (conf->start_next_window == MaxSector)
889                                 conf->start_next_window =
890                                         conf->next_resync +
891                                         NEXT_NORMALIO_DISTANCE;
892
893                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
894                             <= bio->bi_iter.bi_sector)
895                                 conf->next_window_requests++;
896                         else
897                                 conf->current_window_requests++;
898                         sector = conf->start_next_window;
899                 }
900         }
901
902         conf->nr_pending++;
903         spin_unlock_irq(&conf->resync_lock);
904         return sector;
905 }
906
907 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
908                           sector_t bi_sector)
909 {
910         unsigned long flags;
911
912         spin_lock_irqsave(&conf->resync_lock, flags);
913         conf->nr_pending--;
914         if (start_next_window) {
915                 if (start_next_window == conf->start_next_window) {
916                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
917                             <= bi_sector)
918                                 conf->next_window_requests--;
919                         else
920                                 conf->current_window_requests--;
921                 } else
922                         conf->current_window_requests--;
923
924                 if (!conf->current_window_requests) {
925                         if (conf->next_window_requests) {
926                                 conf->current_window_requests =
927                                         conf->next_window_requests;
928                                 conf->next_window_requests = 0;
929                                 conf->start_next_window +=
930                                         NEXT_NORMALIO_DISTANCE;
931                         } else
932                                 conf->start_next_window = MaxSector;
933                 }
934         }
935         spin_unlock_irqrestore(&conf->resync_lock, flags);
936         wake_up(&conf->wait_barrier);
937 }
938
939 static void freeze_array(struct r1conf *conf, int extra)
940 {
941         /* stop syncio and normal IO and wait for everything to
942          * go quite.
943          * We wait until nr_pending match nr_queued+extra
944          * This is called in the context of one normal IO request
945          * that has failed. Thus any sync request that might be pending
946          * will be blocked by nr_pending, and we need to wait for
947          * pending IO requests to complete or be queued for re-try.
948          * Thus the number queued (nr_queued) plus this request (extra)
949          * must match the number of pending IOs (nr_pending) before
950          * we continue.
951          */
952         spin_lock_irq(&conf->resync_lock);
953         conf->array_frozen = 1;
954         wait_event_lock_irq_cmd(conf->wait_barrier,
955                                 conf->nr_pending == conf->nr_queued+extra,
956                                 conf->resync_lock,
957                                 flush_pending_writes(conf));
958         spin_unlock_irq(&conf->resync_lock);
959 }
960 static void unfreeze_array(struct r1conf *conf)
961 {
962         /* reverse the effect of the freeze */
963         spin_lock_irq(&conf->resync_lock);
964         conf->array_frozen = 0;
965         wake_up(&conf->wait_barrier);
966         spin_unlock_irq(&conf->resync_lock);
967 }
968
969 /* duplicate the data pages for behind I/O
970  */
971 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
972 {
973         int i;
974         struct bio_vec *bvec;
975         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
976                                         GFP_NOIO);
977         if (unlikely(!bvecs))
978                 return;
979
980         bio_for_each_segment_all(bvec, bio, i) {
981                 bvecs[i] = *bvec;
982                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
983                 if (unlikely(!bvecs[i].bv_page))
984                         goto do_sync_io;
985                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
986                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
987                 kunmap(bvecs[i].bv_page);
988                 kunmap(bvec->bv_page);
989         }
990         r1_bio->behind_bvecs = bvecs;
991         r1_bio->behind_page_count = bio->bi_vcnt;
992         set_bit(R1BIO_BehindIO, &r1_bio->state);
993         return;
994
995 do_sync_io:
996         for (i = 0; i < bio->bi_vcnt; i++)
997                 if (bvecs[i].bv_page)
998                         put_page(bvecs[i].bv_page);
999         kfree(bvecs);
1000         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1001                  bio->bi_iter.bi_size);
1002 }
1003
1004 struct raid1_plug_cb {
1005         struct blk_plug_cb      cb;
1006         struct bio_list         pending;
1007         int                     pending_cnt;
1008 };
1009
1010 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1011 {
1012         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1013                                                   cb);
1014         struct mddev *mddev = plug->cb.data;
1015         struct r1conf *conf = mddev->private;
1016         struct bio *bio;
1017
1018         if (from_schedule || current->bio_list) {
1019                 spin_lock_irq(&conf->device_lock);
1020                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1021                 conf->pending_count += plug->pending_cnt;
1022                 spin_unlock_irq(&conf->device_lock);
1023                 wake_up(&conf->wait_barrier);
1024                 md_wakeup_thread(mddev->thread);
1025                 kfree(plug);
1026                 return;
1027         }
1028
1029         /* we aren't scheduling, so we can do the write-out directly. */
1030         bio = bio_list_get(&plug->pending);
1031         bitmap_unplug(mddev->bitmap);
1032         wake_up(&conf->wait_barrier);
1033
1034         while (bio) { /* submit pending writes */
1035                 struct bio *next = bio->bi_next;
1036                 bio->bi_next = NULL;
1037                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1038                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1039                         /* Just ignore it */
1040                         bio_endio(bio);
1041                 else
1042                         generic_make_request(bio);
1043                 bio = next;
1044         }
1045         kfree(plug);
1046 }
1047
1048 static void make_request(struct mddev *mddev, struct bio * bio)
1049 {
1050         struct r1conf *conf = mddev->private;
1051         struct raid1_info *mirror;
1052         struct r1bio *r1_bio;
1053         struct bio *read_bio;
1054         int i, disks;
1055         struct bitmap *bitmap;
1056         unsigned long flags;
1057         const int rw = bio_data_dir(bio);
1058         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1060         const unsigned long do_discard = (bio->bi_rw
1061                                           & (REQ_DISCARD | REQ_SECURE));
1062         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1063         struct md_rdev *blocked_rdev;
1064         struct blk_plug_cb *cb;
1065         struct raid1_plug_cb *plug = NULL;
1066         int first_clone;
1067         int sectors_handled;
1068         int max_sectors;
1069         sector_t start_next_window;
1070
1071         /*
1072          * Register the new request and wait if the reconstruction
1073          * thread has put up a bar for new requests.
1074          * Continue immediately if no resync is active currently.
1075          */
1076
1077         md_write_start(mddev, bio); /* wait on superblock update early */
1078
1079         if (bio_data_dir(bio) == WRITE &&
1080             ((bio_end_sector(bio) > mddev->suspend_lo &&
1081             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1082             (mddev_is_clustered(mddev) &&
1083              md_cluster_ops->area_resyncing(mddev, WRITE,
1084                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1085                 /* As the suspend_* range is controlled by
1086                  * userspace, we want an interruptible
1087                  * wait.
1088                  */
1089                 DEFINE_WAIT(w);
1090                 for (;;) {
1091                         sigset_t full, old;
1092                         prepare_to_wait(&conf->wait_barrier,
1093                                         &w, TASK_INTERRUPTIBLE);
1094                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1095                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1096                             (mddev_is_clustered(mddev) &&
1097                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1098                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1099                                 break;
1100                         sigfillset(&full);
1101                         sigprocmask(SIG_BLOCK, &full, &old);
1102                         schedule();
1103                         sigprocmask(SIG_SETMASK, &old, NULL);
1104                 }
1105                 finish_wait(&conf->wait_barrier, &w);
1106         }
1107
1108         start_next_window = wait_barrier(conf, bio);
1109
1110         bitmap = mddev->bitmap;
1111
1112         /*
1113          * make_request() can abort the operation when READA is being
1114          * used and no empty request is available.
1115          *
1116          */
1117         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1118
1119         r1_bio->master_bio = bio;
1120         r1_bio->sectors = bio_sectors(bio);
1121         r1_bio->state = 0;
1122         r1_bio->mddev = mddev;
1123         r1_bio->sector = bio->bi_iter.bi_sector;
1124
1125         /* We might need to issue multiple reads to different
1126          * devices if there are bad blocks around, so we keep
1127          * track of the number of reads in bio->bi_phys_segments.
1128          * If this is 0, there is only one r1_bio and no locking
1129          * will be needed when requests complete.  If it is
1130          * non-zero, then it is the number of not-completed requests.
1131          */
1132         bio->bi_phys_segments = 0;
1133         bio_clear_flag(bio, BIO_SEG_VALID);
1134
1135         if (rw == READ) {
1136                 /*
1137                  * read balancing logic:
1138                  */
1139                 int rdisk;
1140
1141 read_again:
1142                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1143
1144                 if (rdisk < 0) {
1145                         /* couldn't find anywhere to read from */
1146                         raid_end_bio_io(r1_bio);
1147                         return;
1148                 }
1149                 mirror = conf->mirrors + rdisk;
1150
1151                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1152                     bitmap) {
1153                         /* Reading from a write-mostly device must
1154                          * take care not to over-take any writes
1155                          * that are 'behind'
1156                          */
1157                         wait_event(bitmap->behind_wait,
1158                                    atomic_read(&bitmap->behind_writes) == 0);
1159                 }
1160                 r1_bio->read_disk = rdisk;
1161                 r1_bio->start_next_window = 0;
1162
1163                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1164                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1165                          max_sectors);
1166
1167                 r1_bio->bios[rdisk] = read_bio;
1168
1169                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1170                         mirror->rdev->data_offset;
1171                 read_bio->bi_bdev = mirror->rdev->bdev;
1172                 read_bio->bi_end_io = raid1_end_read_request;
1173                 read_bio->bi_rw = READ | do_sync;
1174                 read_bio->bi_private = r1_bio;
1175
1176                 if (max_sectors < r1_bio->sectors) {
1177                         /* could not read all from this device, so we will
1178                          * need another r1_bio.
1179                          */
1180
1181                         sectors_handled = (r1_bio->sector + max_sectors
1182                                            - bio->bi_iter.bi_sector);
1183                         r1_bio->sectors = max_sectors;
1184                         spin_lock_irq(&conf->device_lock);
1185                         if (bio->bi_phys_segments == 0)
1186                                 bio->bi_phys_segments = 2;
1187                         else
1188                                 bio->bi_phys_segments++;
1189                         spin_unlock_irq(&conf->device_lock);
1190                         /* Cannot call generic_make_request directly
1191                          * as that will be queued in __make_request
1192                          * and subsequent mempool_alloc might block waiting
1193                          * for it.  So hand bio over to raid1d.
1194                          */
1195                         reschedule_retry(r1_bio);
1196
1197                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1198
1199                         r1_bio->master_bio = bio;
1200                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1201                         r1_bio->state = 0;
1202                         r1_bio->mddev = mddev;
1203                         r1_bio->sector = bio->bi_iter.bi_sector +
1204                                 sectors_handled;
1205                         goto read_again;
1206                 } else
1207                         generic_make_request(read_bio);
1208                 return;
1209         }
1210
1211         /*
1212          * WRITE:
1213          */
1214         if (conf->pending_count >= max_queued_requests) {
1215                 md_wakeup_thread(mddev->thread);
1216                 wait_event(conf->wait_barrier,
1217                            conf->pending_count < max_queued_requests);
1218         }
1219         /* first select target devices under rcu_lock and
1220          * inc refcount on their rdev.  Record them by setting
1221          * bios[x] to bio
1222          * If there are known/acknowledged bad blocks on any device on
1223          * which we have seen a write error, we want to avoid writing those
1224          * blocks.
1225          * This potentially requires several writes to write around
1226          * the bad blocks.  Each set of writes gets it's own r1bio
1227          * with a set of bios attached.
1228          */
1229
1230         disks = conf->raid_disks * 2;
1231  retry_write:
1232         r1_bio->start_next_window = start_next_window;
1233         blocked_rdev = NULL;
1234         rcu_read_lock();
1235         max_sectors = r1_bio->sectors;
1236         for (i = 0;  i < disks; i++) {
1237                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1238                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1239                         atomic_inc(&rdev->nr_pending);
1240                         blocked_rdev = rdev;
1241                         break;
1242                 }
1243                 r1_bio->bios[i] = NULL;
1244                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1245                         if (i < conf->raid_disks)
1246                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1247                         continue;
1248                 }
1249
1250                 atomic_inc(&rdev->nr_pending);
1251                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1252                         sector_t first_bad;
1253                         int bad_sectors;
1254                         int is_bad;
1255
1256                         is_bad = is_badblock(rdev, r1_bio->sector,
1257                                              max_sectors,
1258                                              &first_bad, &bad_sectors);
1259                         if (is_bad < 0) {
1260                                 /* mustn't write here until the bad block is
1261                                  * acknowledged*/
1262                                 set_bit(BlockedBadBlocks, &rdev->flags);
1263                                 blocked_rdev = rdev;
1264                                 break;
1265                         }
1266                         if (is_bad && first_bad <= r1_bio->sector) {
1267                                 /* Cannot write here at all */
1268                                 bad_sectors -= (r1_bio->sector - first_bad);
1269                                 if (bad_sectors < max_sectors)
1270                                         /* mustn't write more than bad_sectors
1271                                          * to other devices yet
1272                                          */
1273                                         max_sectors = bad_sectors;
1274                                 rdev_dec_pending(rdev, mddev);
1275                                 /* We don't set R1BIO_Degraded as that
1276                                  * only applies if the disk is
1277                                  * missing, so it might be re-added,
1278                                  * and we want to know to recover this
1279                                  * chunk.
1280                                  * In this case the device is here,
1281                                  * and the fact that this chunk is not
1282                                  * in-sync is recorded in the bad
1283                                  * block log
1284                                  */
1285                                 continue;
1286                         }
1287                         if (is_bad) {
1288                                 int good_sectors = first_bad - r1_bio->sector;
1289                                 if (good_sectors < max_sectors)
1290                                         max_sectors = good_sectors;
1291                         }
1292                 }
1293                 r1_bio->bios[i] = bio;
1294         }
1295         rcu_read_unlock();
1296
1297         if (unlikely(blocked_rdev)) {
1298                 /* Wait for this device to become unblocked */
1299                 int j;
1300                 sector_t old = start_next_window;
1301
1302                 for (j = 0; j < i; j++)
1303                         if (r1_bio->bios[j])
1304                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1305                 r1_bio->state = 0;
1306                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1307                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1308                 start_next_window = wait_barrier(conf, bio);
1309                 /*
1310                  * We must make sure the multi r1bios of bio have
1311                  * the same value of bi_phys_segments
1312                  */
1313                 if (bio->bi_phys_segments && old &&
1314                     old != start_next_window)
1315                         /* Wait for the former r1bio(s) to complete */
1316                         wait_event(conf->wait_barrier,
1317                                    bio->bi_phys_segments == 1);
1318                 goto retry_write;
1319         }
1320
1321         if (max_sectors < r1_bio->sectors) {
1322                 /* We are splitting this write into multiple parts, so
1323                  * we need to prepare for allocating another r1_bio.
1324                  */
1325                 r1_bio->sectors = max_sectors;
1326                 spin_lock_irq(&conf->device_lock);
1327                 if (bio->bi_phys_segments == 0)
1328                         bio->bi_phys_segments = 2;
1329                 else
1330                         bio->bi_phys_segments++;
1331                 spin_unlock_irq(&conf->device_lock);
1332         }
1333         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1334
1335         atomic_set(&r1_bio->remaining, 1);
1336         atomic_set(&r1_bio->behind_remaining, 0);
1337
1338         first_clone = 1;
1339         for (i = 0; i < disks; i++) {
1340                 struct bio *mbio;
1341                 if (!r1_bio->bios[i])
1342                         continue;
1343
1344                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1345                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1346
1347                 if (first_clone) {
1348                         /* do behind I/O ?
1349                          * Not if there are too many, or cannot
1350                          * allocate memory, or a reader on WriteMostly
1351                          * is waiting for behind writes to flush */
1352                         if (bitmap &&
1353                             (atomic_read(&bitmap->behind_writes)
1354                              < mddev->bitmap_info.max_write_behind) &&
1355                             !waitqueue_active(&bitmap->behind_wait))
1356                                 alloc_behind_pages(mbio, r1_bio);
1357
1358                         bitmap_startwrite(bitmap, r1_bio->sector,
1359                                           r1_bio->sectors,
1360                                           test_bit(R1BIO_BehindIO,
1361                                                    &r1_bio->state));
1362                         first_clone = 0;
1363                 }
1364                 if (r1_bio->behind_bvecs) {
1365                         struct bio_vec *bvec;
1366                         int j;
1367
1368                         /*
1369                          * We trimmed the bio, so _all is legit
1370                          */
1371                         bio_for_each_segment_all(bvec, mbio, j)
1372                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1373                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1374                                 atomic_inc(&r1_bio->behind_remaining);
1375                 }
1376
1377                 r1_bio->bios[i] = mbio;
1378
1379                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1380                                    conf->mirrors[i].rdev->data_offset);
1381                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1382                 mbio->bi_end_io = raid1_end_write_request;
1383                 mbio->bi_rw =
1384                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1385                 mbio->bi_private = r1_bio;
1386
1387                 atomic_inc(&r1_bio->remaining);
1388
1389                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1390                 if (cb)
1391                         plug = container_of(cb, struct raid1_plug_cb, cb);
1392                 else
1393                         plug = NULL;
1394                 spin_lock_irqsave(&conf->device_lock, flags);
1395                 if (plug) {
1396                         bio_list_add(&plug->pending, mbio);
1397                         plug->pending_cnt++;
1398                 } else {
1399                         bio_list_add(&conf->pending_bio_list, mbio);
1400                         conf->pending_count++;
1401                 }
1402                 spin_unlock_irqrestore(&conf->device_lock, flags);
1403                 if (!plug)
1404                         md_wakeup_thread(mddev->thread);
1405         }
1406         /* Mustn't call r1_bio_write_done before this next test,
1407          * as it could result in the bio being freed.
1408          */
1409         if (sectors_handled < bio_sectors(bio)) {
1410                 r1_bio_write_done(r1_bio);
1411                 /* We need another r1_bio.  It has already been counted
1412                  * in bio->bi_phys_segments
1413                  */
1414                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1415                 r1_bio->master_bio = bio;
1416                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1417                 r1_bio->state = 0;
1418                 r1_bio->mddev = mddev;
1419                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1420                 goto retry_write;
1421         }
1422
1423         r1_bio_write_done(r1_bio);
1424
1425         /* In case raid1d snuck in to freeze_array */
1426         wake_up(&conf->wait_barrier);
1427 }
1428
1429 static void status(struct seq_file *seq, struct mddev *mddev)
1430 {
1431         struct r1conf *conf = mddev->private;
1432         int i;
1433
1434         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1435                    conf->raid_disks - mddev->degraded);
1436         rcu_read_lock();
1437         for (i = 0; i < conf->raid_disks; i++) {
1438                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1439                 seq_printf(seq, "%s",
1440                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1441         }
1442         rcu_read_unlock();
1443         seq_printf(seq, "]");
1444 }
1445
1446 static void error(struct mddev *mddev, struct md_rdev *rdev)
1447 {
1448         char b[BDEVNAME_SIZE];
1449         struct r1conf *conf = mddev->private;
1450         unsigned long flags;
1451
1452         /*
1453          * If it is not operational, then we have already marked it as dead
1454          * else if it is the last working disks, ignore the error, let the
1455          * next level up know.
1456          * else mark the drive as failed
1457          */
1458         if (test_bit(In_sync, &rdev->flags)
1459             && (conf->raid_disks - mddev->degraded) == 1) {
1460                 /*
1461                  * Don't fail the drive, act as though we were just a
1462                  * normal single drive.
1463                  * However don't try a recovery from this drive as
1464                  * it is very likely to fail.
1465                  */
1466                 conf->recovery_disabled = mddev->recovery_disabled;
1467                 return;
1468         }
1469         set_bit(Blocked, &rdev->flags);
1470         spin_lock_irqsave(&conf->device_lock, flags);
1471         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1472                 mddev->degraded++;
1473                 set_bit(Faulty, &rdev->flags);
1474         } else
1475                 set_bit(Faulty, &rdev->flags);
1476         spin_unlock_irqrestore(&conf->device_lock, flags);
1477         /*
1478          * if recovery is running, make sure it aborts.
1479          */
1480         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1481         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1482         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1483         printk(KERN_ALERT
1484                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1485                "md/raid1:%s: Operation continuing on %d devices.\n",
1486                mdname(mddev), bdevname(rdev->bdev, b),
1487                mdname(mddev), conf->raid_disks - mddev->degraded);
1488 }
1489
1490 static void print_conf(struct r1conf *conf)
1491 {
1492         int i;
1493
1494         printk(KERN_DEBUG "RAID1 conf printout:\n");
1495         if (!conf) {
1496                 printk(KERN_DEBUG "(!conf)\n");
1497                 return;
1498         }
1499         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1500                 conf->raid_disks);
1501
1502         rcu_read_lock();
1503         for (i = 0; i < conf->raid_disks; i++) {
1504                 char b[BDEVNAME_SIZE];
1505                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1506                 if (rdev)
1507                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1508                                i, !test_bit(In_sync, &rdev->flags),
1509                                !test_bit(Faulty, &rdev->flags),
1510                                bdevname(rdev->bdev,b));
1511         }
1512         rcu_read_unlock();
1513 }
1514
1515 static void close_sync(struct r1conf *conf)
1516 {
1517         wait_barrier(conf, NULL);
1518         allow_barrier(conf, 0, 0);
1519
1520         mempool_destroy(conf->r1buf_pool);
1521         conf->r1buf_pool = NULL;
1522
1523         spin_lock_irq(&conf->resync_lock);
1524         conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1525         conf->start_next_window = MaxSector;
1526         conf->current_window_requests +=
1527                 conf->next_window_requests;
1528         conf->next_window_requests = 0;
1529         spin_unlock_irq(&conf->resync_lock);
1530 }
1531
1532 static int raid1_spare_active(struct mddev *mddev)
1533 {
1534         int i;
1535         struct r1conf *conf = mddev->private;
1536         int count = 0;
1537         unsigned long flags;
1538
1539         /*
1540          * Find all failed disks within the RAID1 configuration
1541          * and mark them readable.
1542          * Called under mddev lock, so rcu protection not needed.
1543          * device_lock used to avoid races with raid1_end_read_request
1544          * which expects 'In_sync' flags and ->degraded to be consistent.
1545          */
1546         spin_lock_irqsave(&conf->device_lock, flags);
1547         for (i = 0; i < conf->raid_disks; i++) {
1548                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1549                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1550                 if (repl
1551                     && !test_bit(Candidate, &repl->flags)
1552                     && repl->recovery_offset == MaxSector
1553                     && !test_bit(Faulty, &repl->flags)
1554                     && !test_and_set_bit(In_sync, &repl->flags)) {
1555                         /* replacement has just become active */
1556                         if (!rdev ||
1557                             !test_and_clear_bit(In_sync, &rdev->flags))
1558                                 count++;
1559                         if (rdev) {
1560                                 /* Replaced device not technically
1561                                  * faulty, but we need to be sure
1562                                  * it gets removed and never re-added
1563                                  */
1564                                 set_bit(Faulty, &rdev->flags);
1565                                 sysfs_notify_dirent_safe(
1566                                         rdev->sysfs_state);
1567                         }
1568                 }
1569                 if (rdev
1570                     && rdev->recovery_offset == MaxSector
1571                     && !test_bit(Faulty, &rdev->flags)
1572                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1573                         count++;
1574                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1575                 }
1576         }
1577         mddev->degraded -= count;
1578         spin_unlock_irqrestore(&conf->device_lock, flags);
1579
1580         print_conf(conf);
1581         return count;
1582 }
1583
1584 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1585 {
1586         struct r1conf *conf = mddev->private;
1587         int err = -EEXIST;
1588         int mirror = 0;
1589         struct raid1_info *p;
1590         int first = 0;
1591         int last = conf->raid_disks - 1;
1592
1593         if (mddev->recovery_disabled == conf->recovery_disabled)
1594                 return -EBUSY;
1595
1596         if (md_integrity_add_rdev(rdev, mddev))
1597                 return -ENXIO;
1598
1599         if (rdev->raid_disk >= 0)
1600                 first = last = rdev->raid_disk;
1601
1602         /*
1603          * find the disk ... but prefer rdev->saved_raid_disk
1604          * if possible.
1605          */
1606         if (rdev->saved_raid_disk >= 0 &&
1607             rdev->saved_raid_disk >= first &&
1608             rdev->saved_raid_disk < conf->raid_disks &&
1609             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1610                 first = last = rdev->saved_raid_disk;
1611
1612         for (mirror = first; mirror <= last; mirror++) {
1613                 p = conf->mirrors+mirror;
1614                 if (!p->rdev) {
1615
1616                         if (mddev->gendisk)
1617                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1618                                                   rdev->data_offset << 9);
1619
1620                         p->head_position = 0;
1621                         rdev->raid_disk = mirror;
1622                         err = 0;
1623                         /* As all devices are equivalent, we don't need a full recovery
1624                          * if this was recently any drive of the array
1625                          */
1626                         if (rdev->saved_raid_disk < 0)
1627                                 conf->fullsync = 1;
1628                         rcu_assign_pointer(p->rdev, rdev);
1629                         break;
1630                 }
1631                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1632                     p[conf->raid_disks].rdev == NULL) {
1633                         /* Add this device as a replacement */
1634                         clear_bit(In_sync, &rdev->flags);
1635                         set_bit(Replacement, &rdev->flags);
1636                         rdev->raid_disk = mirror;
1637                         err = 0;
1638                         conf->fullsync = 1;
1639                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1640                         break;
1641                 }
1642         }
1643         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1644                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1645         print_conf(conf);
1646         return err;
1647 }
1648
1649 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651         struct r1conf *conf = mddev->private;
1652         int err = 0;
1653         int number = rdev->raid_disk;
1654         struct raid1_info *p = conf->mirrors + number;
1655
1656         if (rdev != p->rdev)
1657                 p = conf->mirrors + conf->raid_disks + number;
1658
1659         print_conf(conf);
1660         if (rdev == p->rdev) {
1661                 if (test_bit(In_sync, &rdev->flags) ||
1662                     atomic_read(&rdev->nr_pending)) {
1663                         err = -EBUSY;
1664                         goto abort;
1665                 }
1666                 /* Only remove non-faulty devices if recovery
1667                  * is not possible.
1668                  */
1669                 if (!test_bit(Faulty, &rdev->flags) &&
1670                     mddev->recovery_disabled != conf->recovery_disabled &&
1671                     mddev->degraded < conf->raid_disks) {
1672                         err = -EBUSY;
1673                         goto abort;
1674                 }
1675                 p->rdev = NULL;
1676                 synchronize_rcu();
1677                 if (atomic_read(&rdev->nr_pending)) {
1678                         /* lost the race, try later */
1679                         err = -EBUSY;
1680                         p->rdev = rdev;
1681                         goto abort;
1682                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1683                         /* We just removed a device that is being replaced.
1684                          * Move down the replacement.  We drain all IO before
1685                          * doing this to avoid confusion.
1686                          */
1687                         struct md_rdev *repl =
1688                                 conf->mirrors[conf->raid_disks + number].rdev;
1689                         freeze_array(conf, 0);
1690                         if (atomic_read(&repl->nr_pending)) {
1691                                 /* It means that some queued IO of retry_list
1692                                  * hold repl. Thus, we cannot set replacement
1693                                  * as NULL, avoiding rdev NULL pointer
1694                                  * dereference in sync_request_write and
1695                                  * handle_write_finished.
1696                                  */
1697                                 err = -EBUSY;
1698                                 unfreeze_array(conf);
1699                                 goto abort;
1700                         }
1701                         clear_bit(Replacement, &repl->flags);
1702                         p->rdev = repl;
1703                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1704                         unfreeze_array(conf);
1705                         clear_bit(WantReplacement, &rdev->flags);
1706                 } else
1707                         clear_bit(WantReplacement, &rdev->flags);
1708                 err = md_integrity_register(mddev);
1709         }
1710 abort:
1711
1712         print_conf(conf);
1713         return err;
1714 }
1715
1716 static void end_sync_read(struct bio *bio)
1717 {
1718         struct r1bio *r1_bio = bio->bi_private;
1719
1720         update_head_pos(r1_bio->read_disk, r1_bio);
1721
1722         /*
1723          * we have read a block, now it needs to be re-written,
1724          * or re-read if the read failed.
1725          * We don't do much here, just schedule handling by raid1d
1726          */
1727         if (!bio->bi_error)
1728                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1729
1730         if (atomic_dec_and_test(&r1_bio->remaining))
1731                 reschedule_retry(r1_bio);
1732 }
1733
1734 static void end_sync_write(struct bio *bio)
1735 {
1736         int uptodate = !bio->bi_error;
1737         struct r1bio *r1_bio = bio->bi_private;
1738         struct mddev *mddev = r1_bio->mddev;
1739         struct r1conf *conf = mddev->private;
1740         int mirror=0;
1741         sector_t first_bad;
1742         int bad_sectors;
1743
1744         mirror = find_bio_disk(r1_bio, bio);
1745
1746         if (!uptodate) {
1747                 sector_t sync_blocks = 0;
1748                 sector_t s = r1_bio->sector;
1749                 long sectors_to_go = r1_bio->sectors;
1750                 /* make sure these bits doesn't get cleared. */
1751                 do {
1752                         bitmap_end_sync(mddev->bitmap, s,
1753                                         &sync_blocks, 1);
1754                         s += sync_blocks;
1755                         sectors_to_go -= sync_blocks;
1756                 } while (sectors_to_go > 0);
1757                 set_bit(WriteErrorSeen,
1758                         &conf->mirrors[mirror].rdev->flags);
1759                 if (!test_and_set_bit(WantReplacement,
1760                                       &conf->mirrors[mirror].rdev->flags))
1761                         set_bit(MD_RECOVERY_NEEDED, &
1762                                 mddev->recovery);
1763                 set_bit(R1BIO_WriteError, &r1_bio->state);
1764         } else if (is_badblock(conf->mirrors[mirror].rdev,
1765                                r1_bio->sector,
1766                                r1_bio->sectors,
1767                                &first_bad, &bad_sectors) &&
1768                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1769                                 r1_bio->sector,
1770                                 r1_bio->sectors,
1771                                 &first_bad, &bad_sectors)
1772                 )
1773                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1774
1775         if (atomic_dec_and_test(&r1_bio->remaining)) {
1776                 int s = r1_bio->sectors;
1777                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1778                     test_bit(R1BIO_WriteError, &r1_bio->state))
1779                         reschedule_retry(r1_bio);
1780                 else {
1781                         put_buf(r1_bio);
1782                         md_done_sync(mddev, s, uptodate);
1783                 }
1784         }
1785 }
1786
1787 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1788                             int sectors, struct page *page, int rw)
1789 {
1790         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1791                 /* success */
1792                 return 1;
1793         if (rw == WRITE) {
1794                 set_bit(WriteErrorSeen, &rdev->flags);
1795                 if (!test_and_set_bit(WantReplacement,
1796                                       &rdev->flags))
1797                         set_bit(MD_RECOVERY_NEEDED, &
1798                                 rdev->mddev->recovery);
1799         }
1800         /* need to record an error - either for the block or the device */
1801         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1802                 md_error(rdev->mddev, rdev);
1803         return 0;
1804 }
1805
1806 static int fix_sync_read_error(struct r1bio *r1_bio)
1807 {
1808         /* Try some synchronous reads of other devices to get
1809          * good data, much like with normal read errors.  Only
1810          * read into the pages we already have so we don't
1811          * need to re-issue the read request.
1812          * We don't need to freeze the array, because being in an
1813          * active sync request, there is no normal IO, and
1814          * no overlapping syncs.
1815          * We don't need to check is_badblock() again as we
1816          * made sure that anything with a bad block in range
1817          * will have bi_end_io clear.
1818          */
1819         struct mddev *mddev = r1_bio->mddev;
1820         struct r1conf *conf = mddev->private;
1821         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1822         sector_t sect = r1_bio->sector;
1823         int sectors = r1_bio->sectors;
1824         int idx = 0;
1825
1826         while(sectors) {
1827                 int s = sectors;
1828                 int d = r1_bio->read_disk;
1829                 int success = 0;
1830                 struct md_rdev *rdev;
1831                 int start;
1832
1833                 if (s > (PAGE_SIZE>>9))
1834                         s = PAGE_SIZE >> 9;
1835                 do {
1836                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1837                                 /* No rcu protection needed here devices
1838                                  * can only be removed when no resync is
1839                                  * active, and resync is currently active
1840                                  */
1841                                 rdev = conf->mirrors[d].rdev;
1842                                 if (sync_page_io(rdev, sect, s<<9,
1843                                                  bio->bi_io_vec[idx].bv_page,
1844                                                  READ, false)) {
1845                                         success = 1;
1846                                         break;
1847                                 }
1848                         }
1849                         d++;
1850                         if (d == conf->raid_disks * 2)
1851                                 d = 0;
1852                 } while (!success && d != r1_bio->read_disk);
1853
1854                 if (!success) {
1855                         char b[BDEVNAME_SIZE];
1856                         int abort = 0;
1857                         /* Cannot read from anywhere, this block is lost.
1858                          * Record a bad block on each device.  If that doesn't
1859                          * work just disable and interrupt the recovery.
1860                          * Don't fail devices as that won't really help.
1861                          */
1862                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1863                                " for block %llu\n",
1864                                mdname(mddev),
1865                                bdevname(bio->bi_bdev, b),
1866                                (unsigned long long)r1_bio->sector);
1867                         for (d = 0; d < conf->raid_disks * 2; d++) {
1868                                 rdev = conf->mirrors[d].rdev;
1869                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1870                                         continue;
1871                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1872                                         abort = 1;
1873                         }
1874                         if (abort) {
1875                                 conf->recovery_disabled =
1876                                         mddev->recovery_disabled;
1877                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1878                                 md_done_sync(mddev, r1_bio->sectors, 0);
1879                                 put_buf(r1_bio);
1880                                 return 0;
1881                         }
1882                         /* Try next page */
1883                         sectors -= s;
1884                         sect += s;
1885                         idx++;
1886                         continue;
1887                 }
1888
1889                 start = d;
1890                 /* write it back and re-read */
1891                 while (d != r1_bio->read_disk) {
1892                         if (d == 0)
1893                                 d = conf->raid_disks * 2;
1894                         d--;
1895                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1896                                 continue;
1897                         rdev = conf->mirrors[d].rdev;
1898                         if (r1_sync_page_io(rdev, sect, s,
1899                                             bio->bi_io_vec[idx].bv_page,
1900                                             WRITE) == 0) {
1901                                 r1_bio->bios[d]->bi_end_io = NULL;
1902                                 rdev_dec_pending(rdev, mddev);
1903                         }
1904                 }
1905                 d = start;
1906                 while (d != r1_bio->read_disk) {
1907                         if (d == 0)
1908                                 d = conf->raid_disks * 2;
1909                         d--;
1910                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1911                                 continue;
1912                         rdev = conf->mirrors[d].rdev;
1913                         if (r1_sync_page_io(rdev, sect, s,
1914                                             bio->bi_io_vec[idx].bv_page,
1915                                             READ) != 0)
1916                                 atomic_add(s, &rdev->corrected_errors);
1917                 }
1918                 sectors -= s;
1919                 sect += s;
1920                 idx ++;
1921         }
1922         set_bit(R1BIO_Uptodate, &r1_bio->state);
1923         bio->bi_error = 0;
1924         return 1;
1925 }
1926
1927 static void process_checks(struct r1bio *r1_bio)
1928 {
1929         /* We have read all readable devices.  If we haven't
1930          * got the block, then there is no hope left.
1931          * If we have, then we want to do a comparison
1932          * and skip the write if everything is the same.
1933          * If any blocks failed to read, then we need to
1934          * attempt an over-write
1935          */
1936         struct mddev *mddev = r1_bio->mddev;
1937         struct r1conf *conf = mddev->private;
1938         int primary;
1939         int i;
1940         int vcnt;
1941
1942         /* Fix variable parts of all bios */
1943         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1944         for (i = 0; i < conf->raid_disks * 2; i++) {
1945                 int j;
1946                 int size;
1947                 int error;
1948                 struct bio *b = r1_bio->bios[i];
1949                 if (b->bi_end_io != end_sync_read)
1950                         continue;
1951                 /* fixup the bio for reuse, but preserve errno */
1952                 error = b->bi_error;
1953                 bio_reset(b);
1954                 b->bi_error = error;
1955                 b->bi_vcnt = vcnt;
1956                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1957                 b->bi_iter.bi_sector = r1_bio->sector +
1958                         conf->mirrors[i].rdev->data_offset;
1959                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1960                 b->bi_end_io = end_sync_read;
1961                 b->bi_private = r1_bio;
1962
1963                 size = b->bi_iter.bi_size;
1964                 for (j = 0; j < vcnt ; j++) {
1965                         struct bio_vec *bi;
1966                         bi = &b->bi_io_vec[j];
1967                         bi->bv_offset = 0;
1968                         if (size > PAGE_SIZE)
1969                                 bi->bv_len = PAGE_SIZE;
1970                         else
1971                                 bi->bv_len = size;
1972                         size -= PAGE_SIZE;
1973                 }
1974         }
1975         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1976                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1977                     !r1_bio->bios[primary]->bi_error) {
1978                         r1_bio->bios[primary]->bi_end_io = NULL;
1979                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1980                         break;
1981                 }
1982         r1_bio->read_disk = primary;
1983         for (i = 0; i < conf->raid_disks * 2; i++) {
1984                 int j;
1985                 struct bio *pbio = r1_bio->bios[primary];
1986                 struct bio *sbio = r1_bio->bios[i];
1987                 int error = sbio->bi_error;
1988
1989                 if (sbio->bi_end_io != end_sync_read)
1990                         continue;
1991                 /* Now we can 'fixup' the error value */
1992                 sbio->bi_error = 0;
1993
1994                 if (!error) {
1995                         for (j = vcnt; j-- ; ) {
1996                                 struct page *p, *s;
1997                                 p = pbio->bi_io_vec[j].bv_page;
1998                                 s = sbio->bi_io_vec[j].bv_page;
1999                                 if (memcmp(page_address(p),
2000                                            page_address(s),
2001                                            sbio->bi_io_vec[j].bv_len))
2002                                         break;
2003                         }
2004                 } else
2005                         j = 0;
2006                 if (j >= 0)
2007                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2008                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2009                               && !error)) {
2010                         /* No need to write to this device. */
2011                         sbio->bi_end_io = NULL;
2012                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2013                         continue;
2014                 }
2015
2016                 bio_copy_data(sbio, pbio);
2017         }
2018 }
2019
2020 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2021 {
2022         struct r1conf *conf = mddev->private;
2023         int i;
2024         int disks = conf->raid_disks * 2;
2025         struct bio *bio, *wbio;
2026
2027         bio = r1_bio->bios[r1_bio->read_disk];
2028
2029         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2030                 /* ouch - failed to read all of that. */
2031                 if (!fix_sync_read_error(r1_bio))
2032                         return;
2033
2034         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2035                 process_checks(r1_bio);
2036
2037         /*
2038          * schedule writes
2039          */
2040         atomic_set(&r1_bio->remaining, 1);
2041         for (i = 0; i < disks ; i++) {
2042                 wbio = r1_bio->bios[i];
2043                 if (wbio->bi_end_io == NULL ||
2044                     (wbio->bi_end_io == end_sync_read &&
2045                      (i == r1_bio->read_disk ||
2046                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2047                         continue;
2048
2049                 wbio->bi_rw = WRITE;
2050                 wbio->bi_end_io = end_sync_write;
2051                 atomic_inc(&r1_bio->remaining);
2052                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2053
2054                 generic_make_request(wbio);
2055         }
2056
2057         if (atomic_dec_and_test(&r1_bio->remaining)) {
2058                 /* if we're here, all write(s) have completed, so clean up */
2059                 int s = r1_bio->sectors;
2060                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2061                     test_bit(R1BIO_WriteError, &r1_bio->state))
2062                         reschedule_retry(r1_bio);
2063                 else {
2064                         put_buf(r1_bio);
2065                         md_done_sync(mddev, s, 1);
2066                 }
2067         }
2068 }
2069
2070 /*
2071  * This is a kernel thread which:
2072  *
2073  *      1.      Retries failed read operations on working mirrors.
2074  *      2.      Updates the raid superblock when problems encounter.
2075  *      3.      Performs writes following reads for array synchronising.
2076  */
2077
2078 static void fix_read_error(struct r1conf *conf, int read_disk,
2079                            sector_t sect, int sectors)
2080 {
2081         struct mddev *mddev = conf->mddev;
2082         while(sectors) {
2083                 int s = sectors;
2084                 int d = read_disk;
2085                 int success = 0;
2086                 int start;
2087                 struct md_rdev *rdev;
2088
2089                 if (s > (PAGE_SIZE>>9))
2090                         s = PAGE_SIZE >> 9;
2091
2092                 do {
2093                         /* Note: no rcu protection needed here
2094                          * as this is synchronous in the raid1d thread
2095                          * which is the thread that might remove
2096                          * a device.  If raid1d ever becomes multi-threaded....
2097                          */
2098                         sector_t first_bad;
2099                         int bad_sectors;
2100
2101                         rdev = conf->mirrors[d].rdev;
2102                         if (rdev &&
2103                             (test_bit(In_sync, &rdev->flags) ||
2104                              (!test_bit(Faulty, &rdev->flags) &&
2105                               rdev->recovery_offset >= sect + s)) &&
2106                             is_badblock(rdev, sect, s,
2107                                         &first_bad, &bad_sectors) == 0 &&
2108                             sync_page_io(rdev, sect, s<<9,
2109                                          conf->tmppage, READ, false))
2110                                 success = 1;
2111                         else {
2112                                 d++;
2113                                 if (d == conf->raid_disks * 2)
2114                                         d = 0;
2115                         }
2116                 } while (!success && d != read_disk);
2117
2118                 if (!success) {
2119                         /* Cannot read from anywhere - mark it bad */
2120                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2121                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2122                                 md_error(mddev, rdev);
2123                         break;
2124                 }
2125                 /* write it back and re-read */
2126                 start = d;
2127                 while (d != read_disk) {
2128                         if (d==0)
2129                                 d = conf->raid_disks * 2;
2130                         d--;
2131                         rdev = conf->mirrors[d].rdev;
2132                         if (rdev &&
2133                             !test_bit(Faulty, &rdev->flags))
2134                                 r1_sync_page_io(rdev, sect, s,
2135                                                 conf->tmppage, WRITE);
2136                 }
2137                 d = start;
2138                 while (d != read_disk) {
2139                         char b[BDEVNAME_SIZE];
2140                         if (d==0)
2141                                 d = conf->raid_disks * 2;
2142                         d--;
2143                         rdev = conf->mirrors[d].rdev;
2144                         if (rdev &&
2145                             !test_bit(Faulty, &rdev->flags)) {
2146                                 if (r1_sync_page_io(rdev, sect, s,
2147                                                     conf->tmppage, READ)) {
2148                                         atomic_add(s, &rdev->corrected_errors);
2149                                         printk(KERN_INFO
2150                                                "md/raid1:%s: read error corrected "
2151                                                "(%d sectors at %llu on %s)\n",
2152                                                mdname(mddev), s,
2153                                                (unsigned long long)(sect +
2154                                                    rdev->data_offset),
2155                                                bdevname(rdev->bdev, b));
2156                                 }
2157                         }
2158                 }
2159                 sectors -= s;
2160                 sect += s;
2161         }
2162 }
2163
2164 static int narrow_write_error(struct r1bio *r1_bio, int i)
2165 {
2166         struct mddev *mddev = r1_bio->mddev;
2167         struct r1conf *conf = mddev->private;
2168         struct md_rdev *rdev = conf->mirrors[i].rdev;
2169
2170         /* bio has the data to be written to device 'i' where
2171          * we just recently had a write error.
2172          * We repeatedly clone the bio and trim down to one block,
2173          * then try the write.  Where the write fails we record
2174          * a bad block.
2175          * It is conceivable that the bio doesn't exactly align with
2176          * blocks.  We must handle this somehow.
2177          *
2178          * We currently own a reference on the rdev.
2179          */
2180
2181         int block_sectors;
2182         sector_t sector;
2183         int sectors;
2184         int sect_to_write = r1_bio->sectors;
2185         int ok = 1;
2186
2187         if (rdev->badblocks.shift < 0)
2188                 return 0;
2189
2190         block_sectors = roundup(1 << rdev->badblocks.shift,
2191                                 bdev_logical_block_size(rdev->bdev) >> 9);
2192         sector = r1_bio->sector;
2193         sectors = ((sector + block_sectors)
2194                    & ~(sector_t)(block_sectors - 1))
2195                 - sector;
2196
2197         while (sect_to_write) {
2198                 struct bio *wbio;
2199                 if (sectors > sect_to_write)
2200                         sectors = sect_to_write;
2201                 /* Write at 'sector' for 'sectors'*/
2202
2203                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2204                         unsigned vcnt = r1_bio->behind_page_count;
2205                         struct bio_vec *vec = r1_bio->behind_bvecs;
2206
2207                         while (!vec->bv_page) {
2208                                 vec++;
2209                                 vcnt--;
2210                         }
2211
2212                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2213                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2214
2215                         wbio->bi_vcnt = vcnt;
2216                 } else {
2217                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2218                 }
2219
2220                 wbio->bi_rw = WRITE;
2221                 wbio->bi_iter.bi_sector = r1_bio->sector;
2222                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2223
2224                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2225                 wbio->bi_iter.bi_sector += rdev->data_offset;
2226                 wbio->bi_bdev = rdev->bdev;
2227                 if (submit_bio_wait(WRITE, wbio) < 0)
2228                         /* failure! */
2229                         ok = rdev_set_badblocks(rdev, sector,
2230                                                 sectors, 0)
2231                                 && ok;
2232
2233                 bio_put(wbio);
2234                 sect_to_write -= sectors;
2235                 sector += sectors;
2236                 sectors = block_sectors;
2237         }
2238         return ok;
2239 }
2240
2241 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2242 {
2243         int m;
2244         int s = r1_bio->sectors;
2245         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2246                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2247                 struct bio *bio = r1_bio->bios[m];
2248                 if (bio->bi_end_io == NULL)
2249                         continue;
2250                 if (!bio->bi_error &&
2251                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2252                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2253                 }
2254                 if (bio->bi_error &&
2255                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2256                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2257                                 md_error(conf->mddev, rdev);
2258                 }
2259         }
2260         put_buf(r1_bio);
2261         md_done_sync(conf->mddev, s, 1);
2262 }
2263
2264 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2265 {
2266         int m;
2267         bool fail = false;
2268         for (m = 0; m < conf->raid_disks * 2 ; m++)
2269                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2270                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2271                         rdev_clear_badblocks(rdev,
2272                                              r1_bio->sector,
2273                                              r1_bio->sectors, 0);
2274                         rdev_dec_pending(rdev, conf->mddev);
2275                 } else if (r1_bio->bios[m] != NULL) {
2276                         /* This drive got a write error.  We need to
2277                          * narrow down and record precise write
2278                          * errors.
2279                          */
2280                         fail = true;
2281                         if (!narrow_write_error(r1_bio, m)) {
2282                                 md_error(conf->mddev,
2283                                          conf->mirrors[m].rdev);
2284                                 /* an I/O failed, we can't clear the bitmap */
2285                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2286                         }
2287                         rdev_dec_pending(conf->mirrors[m].rdev,
2288                                          conf->mddev);
2289                 }
2290         if (fail) {
2291                 spin_lock_irq(&conf->device_lock);
2292                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2293                 conf->nr_queued++;
2294                 spin_unlock_irq(&conf->device_lock);
2295                 md_wakeup_thread(conf->mddev->thread);
2296         } else {
2297                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2298                         close_write(r1_bio);
2299                 raid_end_bio_io(r1_bio);
2300         }
2301 }
2302
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305         int disk;
2306         int max_sectors;
2307         struct mddev *mddev = conf->mddev;
2308         struct bio *bio;
2309         char b[BDEVNAME_SIZE];
2310         struct md_rdev *rdev;
2311
2312         clear_bit(R1BIO_ReadError, &r1_bio->state);
2313         /* we got a read error. Maybe the drive is bad.  Maybe just
2314          * the block and we can fix it.
2315          * We freeze all other IO, and try reading the block from
2316          * other devices.  When we find one, we re-write
2317          * and check it that fixes the read error.
2318          * This is all done synchronously while the array is
2319          * frozen
2320          */
2321         if (mddev->ro == 0) {
2322                 freeze_array(conf, 1);
2323                 fix_read_error(conf, r1_bio->read_disk,
2324                                r1_bio->sector, r1_bio->sectors);
2325                 unfreeze_array(conf);
2326         } else
2327                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329
2330         bio = r1_bio->bios[r1_bio->read_disk];
2331         bdevname(bio->bi_bdev, b);
2332 read_more:
2333         disk = read_balance(conf, r1_bio, &max_sectors);
2334         if (disk == -1) {
2335                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336                        " read error for block %llu\n",
2337                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338                 raid_end_bio_io(r1_bio);
2339         } else {
2340                 const unsigned long do_sync
2341                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2342                 if (bio) {
2343                         r1_bio->bios[r1_bio->read_disk] =
2344                                 mddev->ro ? IO_BLOCKED : NULL;
2345                         bio_put(bio);
2346                 }
2347                 r1_bio->read_disk = disk;
2348                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350                          max_sectors);
2351                 r1_bio->bios[r1_bio->read_disk] = bio;
2352                 rdev = conf->mirrors[disk].rdev;
2353                 printk_ratelimited(KERN_ERR
2354                                    "md/raid1:%s: redirecting sector %llu"
2355                                    " to other mirror: %s\n",
2356                                    mdname(mddev),
2357                                    (unsigned long long)r1_bio->sector,
2358                                    bdevname(rdev->bdev, b));
2359                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360                 bio->bi_bdev = rdev->bdev;
2361                 bio->bi_end_io = raid1_end_read_request;
2362                 bio->bi_rw = READ | do_sync;
2363                 bio->bi_private = r1_bio;
2364                 if (max_sectors < r1_bio->sectors) {
2365                         /* Drat - have to split this up more */
2366                         struct bio *mbio = r1_bio->master_bio;
2367                         int sectors_handled = (r1_bio->sector + max_sectors
2368                                                - mbio->bi_iter.bi_sector);
2369                         r1_bio->sectors = max_sectors;
2370                         spin_lock_irq(&conf->device_lock);
2371                         if (mbio->bi_phys_segments == 0)
2372                                 mbio->bi_phys_segments = 2;
2373                         else
2374                                 mbio->bi_phys_segments++;
2375                         spin_unlock_irq(&conf->device_lock);
2376                         generic_make_request(bio);
2377                         bio = NULL;
2378
2379                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380
2381                         r1_bio->master_bio = mbio;
2382                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383                         r1_bio->state = 0;
2384                         set_bit(R1BIO_ReadError, &r1_bio->state);
2385                         r1_bio->mddev = mddev;
2386                         r1_bio->sector = mbio->bi_iter.bi_sector +
2387                                 sectors_handled;
2388
2389                         goto read_more;
2390                 } else
2391                         generic_make_request(bio);
2392         }
2393 }
2394
2395 static void raid1d(struct md_thread *thread)
2396 {
2397         struct mddev *mddev = thread->mddev;
2398         struct r1bio *r1_bio;
2399         unsigned long flags;
2400         struct r1conf *conf = mddev->private;
2401         struct list_head *head = &conf->retry_list;
2402         struct blk_plug plug;
2403
2404         md_check_recovery(mddev);
2405
2406         if (!list_empty_careful(&conf->bio_end_io_list) &&
2407             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2408                 LIST_HEAD(tmp);
2409                 spin_lock_irqsave(&conf->device_lock, flags);
2410                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2411                         while (!list_empty(&conf->bio_end_io_list)) {
2412                                 list_move(conf->bio_end_io_list.prev, &tmp);
2413                                 conf->nr_queued--;
2414                         }
2415                 }
2416                 spin_unlock_irqrestore(&conf->device_lock, flags);
2417                 while (!list_empty(&tmp)) {
2418                         r1_bio = list_first_entry(&tmp, struct r1bio,
2419                                                   retry_list);
2420                         list_del(&r1_bio->retry_list);
2421                         if (mddev->degraded)
2422                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2423                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2424                                 close_write(r1_bio);
2425                         raid_end_bio_io(r1_bio);
2426                 }
2427         }
2428
2429         blk_start_plug(&plug);
2430         for (;;) {
2431
2432                 flush_pending_writes(conf);
2433
2434                 spin_lock_irqsave(&conf->device_lock, flags);
2435                 if (list_empty(head)) {
2436                         spin_unlock_irqrestore(&conf->device_lock, flags);
2437                         break;
2438                 }
2439                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2440                 list_del(head->prev);
2441                 conf->nr_queued--;
2442                 spin_unlock_irqrestore(&conf->device_lock, flags);
2443
2444                 mddev = r1_bio->mddev;
2445                 conf = mddev->private;
2446                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2447                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2448                             test_bit(R1BIO_WriteError, &r1_bio->state))
2449                                 handle_sync_write_finished(conf, r1_bio);
2450                         else
2451                                 sync_request_write(mddev, r1_bio);
2452                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2453                            test_bit(R1BIO_WriteError, &r1_bio->state))
2454                         handle_write_finished(conf, r1_bio);
2455                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2456                         handle_read_error(conf, r1_bio);
2457                 else
2458                         /* just a partial read to be scheduled from separate
2459                          * context
2460                          */
2461                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2462
2463                 cond_resched();
2464                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2465                         md_check_recovery(mddev);
2466         }
2467         blk_finish_plug(&plug);
2468 }
2469
2470 static int init_resync(struct r1conf *conf)
2471 {
2472         int buffs;
2473
2474         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2475         BUG_ON(conf->r1buf_pool);
2476         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2477                                           conf->poolinfo);
2478         if (!conf->r1buf_pool)
2479                 return -ENOMEM;
2480         conf->next_resync = 0;
2481         return 0;
2482 }
2483
2484 /*
2485  * perform a "sync" on one "block"
2486  *
2487  * We need to make sure that no normal I/O request - particularly write
2488  * requests - conflict with active sync requests.
2489  *
2490  * This is achieved by tracking pending requests and a 'barrier' concept
2491  * that can be installed to exclude normal IO requests.
2492  */
2493
2494 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2495 {
2496         struct r1conf *conf = mddev->private;
2497         struct r1bio *r1_bio;
2498         struct bio *bio;
2499         sector_t max_sector, nr_sectors;
2500         int disk = -1;
2501         int i;
2502         int wonly = -1;
2503         int write_targets = 0, read_targets = 0;
2504         sector_t sync_blocks;
2505         int still_degraded = 0;
2506         int good_sectors = RESYNC_SECTORS;
2507         int min_bad = 0; /* number of sectors that are bad in all devices */
2508
2509         if (!conf->r1buf_pool)
2510                 if (init_resync(conf))
2511                         return 0;
2512
2513         max_sector = mddev->dev_sectors;
2514         if (sector_nr >= max_sector) {
2515                 /* If we aborted, we need to abort the
2516                  * sync on the 'current' bitmap chunk (there will
2517                  * only be one in raid1 resync.
2518                  * We can find the current addess in mddev->curr_resync
2519                  */
2520                 if (mddev->curr_resync < max_sector) /* aborted */
2521                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2522                                                 &sync_blocks, 1);
2523                 else /* completed sync */
2524                         conf->fullsync = 0;
2525
2526                 bitmap_close_sync(mddev->bitmap);
2527                 close_sync(conf);
2528
2529                 if (mddev_is_clustered(mddev)) {
2530                         conf->cluster_sync_low = 0;
2531                         conf->cluster_sync_high = 0;
2532                 }
2533                 return 0;
2534         }
2535
2536         if (mddev->bitmap == NULL &&
2537             mddev->recovery_cp == MaxSector &&
2538             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2539             conf->fullsync == 0) {
2540                 *skipped = 1;
2541                 return max_sector - sector_nr;
2542         }
2543         /* before building a request, check if we can skip these blocks..
2544          * This call the bitmap_start_sync doesn't actually record anything
2545          */
2546         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2547             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2548                 /* We can skip this block, and probably several more */
2549                 *skipped = 1;
2550                 return sync_blocks;
2551         }
2552
2553         /* we are incrementing sector_nr below. To be safe, we check against
2554          * sector_nr + two times RESYNC_SECTORS
2555          */
2556
2557         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2558                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2559         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2560
2561         raise_barrier(conf, sector_nr);
2562
2563         rcu_read_lock();
2564         /*
2565          * If we get a correctably read error during resync or recovery,
2566          * we might want to read from a different device.  So we
2567          * flag all drives that could conceivably be read from for READ,
2568          * and any others (which will be non-In_sync devices) for WRITE.
2569          * If a read fails, we try reading from something else for which READ
2570          * is OK.
2571          */
2572
2573         r1_bio->mddev = mddev;
2574         r1_bio->sector = sector_nr;
2575         r1_bio->state = 0;
2576         set_bit(R1BIO_IsSync, &r1_bio->state);
2577
2578         for (i = 0; i < conf->raid_disks * 2; i++) {
2579                 struct md_rdev *rdev;
2580                 bio = r1_bio->bios[i];
2581                 bio_reset(bio);
2582
2583                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2584                 if (rdev == NULL ||
2585                     test_bit(Faulty, &rdev->flags)) {
2586                         if (i < conf->raid_disks)
2587                                 still_degraded = 1;
2588                 } else if (!test_bit(In_sync, &rdev->flags)) {
2589                         bio->bi_rw = WRITE;
2590                         bio->bi_end_io = end_sync_write;
2591                         write_targets ++;
2592                 } else {
2593                         /* may need to read from here */
2594                         sector_t first_bad = MaxSector;
2595                         int bad_sectors;
2596
2597                         if (is_badblock(rdev, sector_nr, good_sectors,
2598                                         &first_bad, &bad_sectors)) {
2599                                 if (first_bad > sector_nr)
2600                                         good_sectors = first_bad - sector_nr;
2601                                 else {
2602                                         bad_sectors -= (sector_nr - first_bad);
2603                                         if (min_bad == 0 ||
2604                                             min_bad > bad_sectors)
2605                                                 min_bad = bad_sectors;
2606                                 }
2607                         }
2608                         if (sector_nr < first_bad) {
2609                                 if (test_bit(WriteMostly, &rdev->flags)) {
2610                                         if (wonly < 0)
2611                                                 wonly = i;
2612                                 } else {
2613                                         if (disk < 0)
2614                                                 disk = i;
2615                                 }
2616                                 bio->bi_rw = READ;
2617                                 bio->bi_end_io = end_sync_read;
2618                                 read_targets++;
2619                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2620                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2621                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2622                                 /*
2623                                  * The device is suitable for reading (InSync),
2624                                  * but has bad block(s) here. Let's try to correct them,
2625                                  * if we are doing resync or repair. Otherwise, leave
2626                                  * this device alone for this sync request.
2627                                  */
2628                                 bio->bi_rw = WRITE;
2629                                 bio->bi_end_io = end_sync_write;
2630                                 write_targets++;
2631                         }
2632                 }
2633                 if (rdev && bio->bi_end_io) {
2634                         atomic_inc(&rdev->nr_pending);
2635                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2636                         bio->bi_bdev = rdev->bdev;
2637                         bio->bi_private = r1_bio;
2638                 }
2639         }
2640         rcu_read_unlock();
2641         if (disk < 0)
2642                 disk = wonly;
2643         r1_bio->read_disk = disk;
2644
2645         if (read_targets == 0 && min_bad > 0) {
2646                 /* These sectors are bad on all InSync devices, so we
2647                  * need to mark them bad on all write targets
2648                  */
2649                 int ok = 1;
2650                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2651                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2652                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2653                                 ok = rdev_set_badblocks(rdev, sector_nr,
2654                                                         min_bad, 0
2655                                         ) && ok;
2656                         }
2657                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2658                 *skipped = 1;
2659                 put_buf(r1_bio);
2660
2661                 if (!ok) {
2662                         /* Cannot record the badblocks, so need to
2663                          * abort the resync.
2664                          * If there are multiple read targets, could just
2665                          * fail the really bad ones ???
2666                          */
2667                         conf->recovery_disabled = mddev->recovery_disabled;
2668                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2669                         return 0;
2670                 } else
2671                         return min_bad;
2672
2673         }
2674         if (min_bad > 0 && min_bad < good_sectors) {
2675                 /* only resync enough to reach the next bad->good
2676                  * transition */
2677                 good_sectors = min_bad;
2678         }
2679
2680         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2681                 /* extra read targets are also write targets */
2682                 write_targets += read_targets-1;
2683
2684         if (write_targets == 0 || read_targets == 0) {
2685                 /* There is nowhere to write, so all non-sync
2686                  * drives must be failed - so we are finished
2687                  */
2688                 sector_t rv;
2689                 if (min_bad > 0)
2690                         max_sector = sector_nr + min_bad;
2691                 rv = max_sector - sector_nr;
2692                 *skipped = 1;
2693                 put_buf(r1_bio);
2694                 return rv;
2695         }
2696
2697         if (max_sector > mddev->resync_max)
2698                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2699         if (max_sector > sector_nr + good_sectors)
2700                 max_sector = sector_nr + good_sectors;
2701         nr_sectors = 0;
2702         sync_blocks = 0;
2703         do {
2704                 struct page *page;
2705                 int len = PAGE_SIZE;
2706                 if (sector_nr + (len>>9) > max_sector)
2707                         len = (max_sector - sector_nr) << 9;
2708                 if (len == 0)
2709                         break;
2710                 if (sync_blocks == 0) {
2711                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2712                                                &sync_blocks, still_degraded) &&
2713                             !conf->fullsync &&
2714                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2715                                 break;
2716                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2717                         if ((len >> 9) > sync_blocks)
2718                                 len = sync_blocks<<9;
2719                 }
2720
2721                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2722                         bio = r1_bio->bios[i];
2723                         if (bio->bi_end_io) {
2724                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2725                                 if (bio_add_page(bio, page, len, 0) == 0) {
2726                                         /* stop here */
2727                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2728                                         while (i > 0) {
2729                                                 i--;
2730                                                 bio = r1_bio->bios[i];
2731                                                 if (bio->bi_end_io==NULL)
2732                                                         continue;
2733                                                 /* remove last page from this bio */
2734                                                 bio->bi_vcnt--;
2735                                                 bio->bi_iter.bi_size -= len;
2736                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2737                                         }
2738                                         goto bio_full;
2739                                 }
2740                         }
2741                 }
2742                 nr_sectors += len>>9;
2743                 sector_nr += len>>9;
2744                 sync_blocks -= (len>>9);
2745         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2746  bio_full:
2747         r1_bio->sectors = nr_sectors;
2748
2749         if (mddev_is_clustered(mddev) &&
2750                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2751                 conf->cluster_sync_low = mddev->curr_resync_completed;
2752                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2753                 /* Send resync message */
2754                 md_cluster_ops->resync_info_update(mddev,
2755                                 conf->cluster_sync_low,
2756                                 conf->cluster_sync_high);
2757         }
2758
2759         /* For a user-requested sync, we read all readable devices and do a
2760          * compare
2761          */
2762         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2763                 atomic_set(&r1_bio->remaining, read_targets);
2764                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2765                         bio = r1_bio->bios[i];
2766                         if (bio->bi_end_io == end_sync_read) {
2767                                 read_targets--;
2768                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2769                                 generic_make_request(bio);
2770                         }
2771                 }
2772         } else {
2773                 atomic_set(&r1_bio->remaining, 1);
2774                 bio = r1_bio->bios[r1_bio->read_disk];
2775                 md_sync_acct(bio->bi_bdev, nr_sectors);
2776                 generic_make_request(bio);
2777
2778         }
2779         return nr_sectors;
2780 }
2781
2782 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2783 {
2784         if (sectors)
2785                 return sectors;
2786
2787         return mddev->dev_sectors;
2788 }
2789
2790 static struct r1conf *setup_conf(struct mddev *mddev)
2791 {
2792         struct r1conf *conf;
2793         int i;
2794         struct raid1_info *disk;
2795         struct md_rdev *rdev;
2796         int err = -ENOMEM;
2797
2798         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2799         if (!conf)
2800                 goto abort;
2801
2802         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2803                                 * mddev->raid_disks * 2,
2804                                  GFP_KERNEL);
2805         if (!conf->mirrors)
2806                 goto abort;
2807
2808         conf->tmppage = alloc_page(GFP_KERNEL);
2809         if (!conf->tmppage)
2810                 goto abort;
2811
2812         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2813         if (!conf->poolinfo)
2814                 goto abort;
2815         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2816         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2817                                           r1bio_pool_free,
2818                                           conf->poolinfo);
2819         if (!conf->r1bio_pool)
2820                 goto abort;
2821
2822         conf->poolinfo->mddev = mddev;
2823
2824         err = -EINVAL;
2825         spin_lock_init(&conf->device_lock);
2826         rdev_for_each(rdev, mddev) {
2827                 struct request_queue *q;
2828                 int disk_idx = rdev->raid_disk;
2829                 if (disk_idx >= mddev->raid_disks
2830                     || disk_idx < 0)
2831                         continue;
2832                 if (test_bit(Replacement, &rdev->flags))
2833                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2834                 else
2835                         disk = conf->mirrors + disk_idx;
2836
2837                 if (disk->rdev)
2838                         goto abort;
2839                 disk->rdev = rdev;
2840                 q = bdev_get_queue(rdev->bdev);
2841
2842                 disk->head_position = 0;
2843                 disk->seq_start = MaxSector;
2844         }
2845         conf->raid_disks = mddev->raid_disks;
2846         conf->mddev = mddev;
2847         INIT_LIST_HEAD(&conf->retry_list);
2848         INIT_LIST_HEAD(&conf->bio_end_io_list);
2849
2850         spin_lock_init(&conf->resync_lock);
2851         init_waitqueue_head(&conf->wait_barrier);
2852
2853         bio_list_init(&conf->pending_bio_list);
2854         conf->pending_count = 0;
2855         conf->recovery_disabled = mddev->recovery_disabled - 1;
2856
2857         conf->start_next_window = MaxSector;
2858         conf->current_window_requests = conf->next_window_requests = 0;
2859
2860         err = -EIO;
2861         for (i = 0; i < conf->raid_disks * 2; i++) {
2862
2863                 disk = conf->mirrors + i;
2864
2865                 if (i < conf->raid_disks &&
2866                     disk[conf->raid_disks].rdev) {
2867                         /* This slot has a replacement. */
2868                         if (!disk->rdev) {
2869                                 /* No original, just make the replacement
2870                                  * a recovering spare
2871                                  */
2872                                 disk->rdev =
2873                                         disk[conf->raid_disks].rdev;
2874                                 disk[conf->raid_disks].rdev = NULL;
2875                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2876                                 /* Original is not in_sync - bad */
2877                                 goto abort;
2878                 }
2879
2880                 if (!disk->rdev ||
2881                     !test_bit(In_sync, &disk->rdev->flags)) {
2882                         disk->head_position = 0;
2883                         if (disk->rdev &&
2884                             (disk->rdev->saved_raid_disk < 0))
2885                                 conf->fullsync = 1;
2886                 }
2887         }
2888
2889         err = -ENOMEM;
2890         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2891         if (!conf->thread) {
2892                 printk(KERN_ERR
2893                        "md/raid1:%s: couldn't allocate thread\n",
2894                        mdname(mddev));
2895                 goto abort;
2896         }
2897
2898         return conf;
2899
2900  abort:
2901         if (conf) {
2902                 mempool_destroy(conf->r1bio_pool);
2903                 kfree(conf->mirrors);
2904                 safe_put_page(conf->tmppage);
2905                 kfree(conf->poolinfo);
2906                 kfree(conf);
2907         }
2908         return ERR_PTR(err);
2909 }
2910
2911 static void raid1_free(struct mddev *mddev, void *priv);
2912 static int run(struct mddev *mddev)
2913 {
2914         struct r1conf *conf;
2915         int i;
2916         struct md_rdev *rdev;
2917         int ret;
2918         bool discard_supported = false;
2919
2920         if (mddev->level != 1) {
2921                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2922                        mdname(mddev), mddev->level);
2923                 return -EIO;
2924         }
2925         if (mddev->reshape_position != MaxSector) {
2926                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2927                        mdname(mddev));
2928                 return -EIO;
2929         }
2930         /*
2931          * copy the already verified devices into our private RAID1
2932          * bookkeeping area. [whatever we allocate in run(),
2933          * should be freed in raid1_free()]
2934          */
2935         if (mddev->private == NULL)
2936                 conf = setup_conf(mddev);
2937         else
2938                 conf = mddev->private;
2939
2940         if (IS_ERR(conf))
2941                 return PTR_ERR(conf);
2942
2943         if (mddev->queue)
2944                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2945
2946         rdev_for_each(rdev, mddev) {
2947                 if (!mddev->gendisk)
2948                         continue;
2949                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2950                                   rdev->data_offset << 9);
2951                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2952                         discard_supported = true;
2953         }
2954
2955         mddev->degraded = 0;
2956         for (i=0; i < conf->raid_disks; i++)
2957                 if (conf->mirrors[i].rdev == NULL ||
2958                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2959                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2960                         mddev->degraded++;
2961         /*
2962          * RAID1 needs at least one disk in active
2963          */
2964         if (conf->raid_disks - mddev->degraded < 1) {
2965                 ret = -EINVAL;
2966                 goto abort;
2967         }
2968
2969         if (conf->raid_disks - mddev->degraded == 1)
2970                 mddev->recovery_cp = MaxSector;
2971
2972         if (mddev->recovery_cp != MaxSector)
2973                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2974                        " -- starting background reconstruction\n",
2975                        mdname(mddev));
2976         printk(KERN_INFO
2977                 "md/raid1:%s: active with %d out of %d mirrors\n",
2978                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2979                 mddev->raid_disks);
2980
2981         /*
2982          * Ok, everything is just fine now
2983          */
2984         mddev->thread = conf->thread;
2985         conf->thread = NULL;
2986         mddev->private = conf;
2987
2988         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2989
2990         if (mddev->queue) {
2991                 if (discard_supported)
2992                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2993                                                 mddev->queue);
2994                 else
2995                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2996                                                   mddev->queue);
2997         }
2998
2999         ret =  md_integrity_register(mddev);
3000         if (ret) {
3001                 md_unregister_thread(&mddev->thread);
3002                 goto abort;
3003         }
3004         return 0;
3005
3006 abort:
3007         raid1_free(mddev, conf);
3008         return ret;
3009 }
3010
3011 static void raid1_free(struct mddev *mddev, void *priv)
3012 {
3013         struct r1conf *conf = priv;
3014
3015         mempool_destroy(conf->r1bio_pool);
3016         kfree(conf->mirrors);
3017         safe_put_page(conf->tmppage);
3018         kfree(conf->poolinfo);
3019         kfree(conf);
3020 }
3021
3022 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3023 {
3024         /* no resync is happening, and there is enough space
3025          * on all devices, so we can resize.
3026          * We need to make sure resync covers any new space.
3027          * If the array is shrinking we should possibly wait until
3028          * any io in the removed space completes, but it hardly seems
3029          * worth it.
3030          */
3031         sector_t newsize = raid1_size(mddev, sectors, 0);
3032         if (mddev->external_size &&
3033             mddev->array_sectors > newsize)
3034                 return -EINVAL;
3035         if (mddev->bitmap) {
3036                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3037                 if (ret)
3038                         return ret;
3039         }
3040         md_set_array_sectors(mddev, newsize);
3041         set_capacity(mddev->gendisk, mddev->array_sectors);
3042         revalidate_disk(mddev->gendisk);
3043         if (sectors > mddev->dev_sectors &&
3044             mddev->recovery_cp > mddev->dev_sectors) {
3045                 mddev->recovery_cp = mddev->dev_sectors;
3046                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3047         }
3048         mddev->dev_sectors = sectors;
3049         mddev->resync_max_sectors = sectors;
3050         return 0;
3051 }
3052
3053 static int raid1_reshape(struct mddev *mddev)
3054 {
3055         /* We need to:
3056          * 1/ resize the r1bio_pool
3057          * 2/ resize conf->mirrors
3058          *
3059          * We allocate a new r1bio_pool if we can.
3060          * Then raise a device barrier and wait until all IO stops.
3061          * Then resize conf->mirrors and swap in the new r1bio pool.
3062          *
3063          * At the same time, we "pack" the devices so that all the missing
3064          * devices have the higher raid_disk numbers.
3065          */
3066         mempool_t *newpool, *oldpool;
3067         struct pool_info *newpoolinfo;
3068         struct raid1_info *newmirrors;
3069         struct r1conf *conf = mddev->private;
3070         int cnt, raid_disks;
3071         unsigned long flags;
3072         int d, d2, err;
3073
3074         /* Cannot change chunk_size, layout, or level */
3075         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3076             mddev->layout != mddev->new_layout ||
3077             mddev->level != mddev->new_level) {
3078                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3079                 mddev->new_layout = mddev->layout;
3080                 mddev->new_level = mddev->level;
3081                 return -EINVAL;
3082         }
3083
3084         if (!mddev_is_clustered(mddev)) {
3085                 err = md_allow_write(mddev);
3086                 if (err)
3087                         return err;
3088         }
3089
3090         raid_disks = mddev->raid_disks + mddev->delta_disks;
3091
3092         if (raid_disks < conf->raid_disks) {
3093                 cnt=0;
3094                 for (d= 0; d < conf->raid_disks; d++)
3095                         if (conf->mirrors[d].rdev)
3096                                 cnt++;
3097                 if (cnt > raid_disks)
3098                         return -EBUSY;
3099         }
3100
3101         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3102         if (!newpoolinfo)
3103                 return -ENOMEM;
3104         newpoolinfo->mddev = mddev;
3105         newpoolinfo->raid_disks = raid_disks * 2;
3106
3107         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3108                                  r1bio_pool_free, newpoolinfo);
3109         if (!newpool) {
3110                 kfree(newpoolinfo);
3111                 return -ENOMEM;
3112         }
3113         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3114                              GFP_KERNEL);
3115         if (!newmirrors) {
3116                 kfree(newpoolinfo);
3117                 mempool_destroy(newpool);
3118                 return -ENOMEM;
3119         }
3120
3121         freeze_array(conf, 0);
3122
3123         /* ok, everything is stopped */
3124         oldpool = conf->r1bio_pool;
3125         conf->r1bio_pool = newpool;
3126
3127         for (d = d2 = 0; d < conf->raid_disks; d++) {
3128                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3129                 if (rdev && rdev->raid_disk != d2) {
3130                         sysfs_unlink_rdev(mddev, rdev);
3131                         rdev->raid_disk = d2;
3132                         sysfs_unlink_rdev(mddev, rdev);
3133                         if (sysfs_link_rdev(mddev, rdev))
3134                                 printk(KERN_WARNING
3135                                        "md/raid1:%s: cannot register rd%d\n",
3136                                        mdname(mddev), rdev->raid_disk);
3137                 }
3138                 if (rdev)
3139                         newmirrors[d2++].rdev = rdev;
3140         }
3141         kfree(conf->mirrors);
3142         conf->mirrors = newmirrors;
3143         kfree(conf->poolinfo);
3144         conf->poolinfo = newpoolinfo;
3145
3146         spin_lock_irqsave(&conf->device_lock, flags);
3147         mddev->degraded += (raid_disks - conf->raid_disks);
3148         spin_unlock_irqrestore(&conf->device_lock, flags);
3149         conf->raid_disks = mddev->raid_disks = raid_disks;
3150         mddev->delta_disks = 0;
3151
3152         unfreeze_array(conf);
3153
3154         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3155         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3156         md_wakeup_thread(mddev->thread);
3157
3158         mempool_destroy(oldpool);
3159         return 0;
3160 }
3161
3162 static void raid1_quiesce(struct mddev *mddev, int state)
3163 {
3164         struct r1conf *conf = mddev->private;
3165
3166         switch(state) {
3167         case 2: /* wake for suspend */
3168                 wake_up(&conf->wait_barrier);
3169                 break;
3170         case 1:
3171                 freeze_array(conf, 0);
3172                 break;
3173         case 0:
3174                 unfreeze_array(conf);
3175                 break;
3176         }
3177 }
3178
3179 static void *raid1_takeover(struct mddev *mddev)
3180 {
3181         /* raid1 can take over:
3182          *  raid5 with 2 devices, any layout or chunk size
3183          */
3184         if (mddev->level == 5 && mddev->raid_disks == 2) {
3185                 struct r1conf *conf;
3186                 mddev->new_level = 1;
3187                 mddev->new_layout = 0;
3188                 mddev->new_chunk_sectors = 0;
3189                 conf = setup_conf(mddev);
3190                 if (!IS_ERR(conf))
3191                         /* Array must appear to be quiesced */
3192                         conf->array_frozen = 1;
3193                 return conf;
3194         }
3195         return ERR_PTR(-EINVAL);
3196 }
3197
3198 static struct md_personality raid1_personality =
3199 {
3200         .name           = "raid1",
3201         .level          = 1,
3202         .owner          = THIS_MODULE,
3203         .make_request   = make_request,
3204         .run            = run,
3205         .free           = raid1_free,
3206         .status         = status,
3207         .error_handler  = error,
3208         .hot_add_disk   = raid1_add_disk,
3209         .hot_remove_disk= raid1_remove_disk,
3210         .spare_active   = raid1_spare_active,
3211         .sync_request   = sync_request,
3212         .resize         = raid1_resize,
3213         .size           = raid1_size,
3214         .check_reshape  = raid1_reshape,
3215         .quiesce        = raid1_quiesce,
3216         .takeover       = raid1_takeover,
3217         .congested      = raid1_congested,
3218 };
3219
3220 static int __init raid_init(void)
3221 {
3222         return register_md_personality(&raid1_personality);
3223 }
3224
3225 static void raid_exit(void)
3226 {
3227         unregister_md_personality(&raid1_personality);
3228 }
3229
3230 module_init(raid_init);
3231 module_exit(raid_exit);
3232 MODULE_LICENSE("GPL");
3233 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3234 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3235 MODULE_ALIAS("md-raid1");
3236 MODULE_ALIAS("md-level-1");
3237
3238 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);