GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130                             gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, &conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                            r1_bio->sectors,
390                            !test_bit(R1BIO_Degraded, &r1_bio->state),
391                            test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                 }
438
439                 /*
440                  * When the device is faulty, it is not necessary to
441                  * handle write error.
442                  * For failfast, this is the only remaining device,
443                  * We need to retry the write without FailFast.
444                  */
445                 if (!test_bit(Faulty, &rdev->flags))
446                         set_bit(R1BIO_WriteError, &r1_bio->state);
447                 else {
448                         /* Fail the request */
449                         set_bit(R1BIO_Degraded, &r1_bio->state);
450                         /* Finished with this branch */
451                         r1_bio->bios[mirror] = NULL;
452                         to_put = bio;
453                 }
454         } else {
455                 /*
456                  * Set R1BIO_Uptodate in our master bio, so that we
457                  * will return a good error code for to the higher
458                  * levels even if IO on some other mirrored buffer
459                  * fails.
460                  *
461                  * The 'master' represents the composite IO operation
462                  * to user-side. So if something waits for IO, then it
463                  * will wait for the 'master' bio.
464                  */
465                 sector_t first_bad;
466                 int bad_sectors;
467
468                 r1_bio->bios[mirror] = NULL;
469                 to_put = bio;
470                 /*
471                  * Do not set R1BIO_Uptodate if the current device is
472                  * rebuilding or Faulty. This is because we cannot use
473                  * such device for properly reading the data back (we could
474                  * potentially use it, if the current write would have felt
475                  * before rdev->recovery_offset, but for simplicity we don't
476                  * check this here.
477                  */
478                 if (test_bit(In_sync, &rdev->flags) &&
479                     !test_bit(Faulty, &rdev->flags))
480                         set_bit(R1BIO_Uptodate, &r1_bio->state);
481
482                 /* Maybe we can clear some bad blocks. */
483                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
484                                 &first_bad, &bad_sectors) && !discard_error) {
485                         r1_bio->bios[mirror] = IO_MADE_GOOD;
486                         set_bit(R1BIO_MadeGood, &r1_bio->state);
487                 }
488         }
489
490         if (behind) {
491                 if (test_bit(WriteMostly, &rdev->flags))
492                         atomic_dec(&r1_bio->behind_remaining);
493
494                 /*
495                  * In behind mode, we ACK the master bio once the I/O
496                  * has safely reached all non-writemostly
497                  * disks. Setting the Returned bit ensures that this
498                  * gets done only once -- we don't ever want to return
499                  * -EIO here, instead we'll wait
500                  */
501                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
502                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
503                         /* Maybe we can return now */
504                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
505                                 struct bio *mbio = r1_bio->master_bio;
506                                 pr_debug("raid1: behind end write sectors"
507                                          " %llu-%llu\n",
508                                          (unsigned long long) mbio->bi_iter.bi_sector,
509                                          (unsigned long long) bio_end_sector(mbio) - 1);
510                                 call_bio_endio(r1_bio);
511                         }
512                 }
513         }
514         if (r1_bio->bios[mirror] == NULL)
515                 rdev_dec_pending(rdev, conf->mddev);
516
517         /*
518          * Let's see if all mirrored write operations have finished
519          * already.
520          */
521         r1_bio_write_done(r1_bio);
522
523         if (to_put)
524                 bio_put(to_put);
525 }
526
527 static sector_t align_to_barrier_unit_end(sector_t start_sector,
528                                           sector_t sectors)
529 {
530         sector_t len;
531
532         WARN_ON(sectors == 0);
533         /*
534          * len is the number of sectors from start_sector to end of the
535          * barrier unit which start_sector belongs to.
536          */
537         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
538               start_sector;
539
540         if (len > sectors)
541                 len = sectors;
542
543         return len;
544 }
545
546 /*
547  * This routine returns the disk from which the requested read should
548  * be done. There is a per-array 'next expected sequential IO' sector
549  * number - if this matches on the next IO then we use the last disk.
550  * There is also a per-disk 'last know head position' sector that is
551  * maintained from IRQ contexts, both the normal and the resync IO
552  * completion handlers update this position correctly. If there is no
553  * perfect sequential match then we pick the disk whose head is closest.
554  *
555  * If there are 2 mirrors in the same 2 devices, performance degrades
556  * because position is mirror, not device based.
557  *
558  * The rdev for the device selected will have nr_pending incremented.
559  */
560 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
561 {
562         const sector_t this_sector = r1_bio->sector;
563         int sectors;
564         int best_good_sectors;
565         int best_disk, best_dist_disk, best_pending_disk;
566         int has_nonrot_disk;
567         int disk;
568         sector_t best_dist;
569         unsigned int min_pending;
570         struct md_rdev *rdev;
571         int choose_first;
572         int choose_next_idle;
573
574         rcu_read_lock();
575         /*
576          * Check if we can balance. We can balance on the whole
577          * device if no resync is going on, or below the resync window.
578          * We take the first readable disk when above the resync window.
579          */
580  retry:
581         sectors = r1_bio->sectors;
582         best_disk = -1;
583         best_dist_disk = -1;
584         best_dist = MaxSector;
585         best_pending_disk = -1;
586         min_pending = UINT_MAX;
587         best_good_sectors = 0;
588         has_nonrot_disk = 0;
589         choose_next_idle = 0;
590         clear_bit(R1BIO_FailFast, &r1_bio->state);
591
592         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
593             (mddev_is_clustered(conf->mddev) &&
594             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
595                     this_sector + sectors)))
596                 choose_first = 1;
597         else
598                 choose_first = 0;
599
600         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
601                 sector_t dist;
602                 sector_t first_bad;
603                 int bad_sectors;
604                 unsigned int pending;
605                 bool nonrot;
606
607                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
608                 if (r1_bio->bios[disk] == IO_BLOCKED
609                     || rdev == NULL
610                     || test_bit(Faulty, &rdev->flags))
611                         continue;
612                 if (!test_bit(In_sync, &rdev->flags) &&
613                     rdev->recovery_offset < this_sector + sectors)
614                         continue;
615                 if (test_bit(WriteMostly, &rdev->flags)) {
616                         /* Don't balance among write-mostly, just
617                          * use the first as a last resort */
618                         if (best_dist_disk < 0) {
619                                 if (is_badblock(rdev, this_sector, sectors,
620                                                 &first_bad, &bad_sectors)) {
621                                         if (first_bad <= this_sector)
622                                                 /* Cannot use this */
623                                                 continue;
624                                         best_good_sectors = first_bad - this_sector;
625                                 } else
626                                         best_good_sectors = sectors;
627                                 best_dist_disk = disk;
628                                 best_pending_disk = disk;
629                         }
630                         continue;
631                 }
632                 /* This is a reasonable device to use.  It might
633                  * even be best.
634                  */
635                 if (is_badblock(rdev, this_sector, sectors,
636                                 &first_bad, &bad_sectors)) {
637                         if (best_dist < MaxSector)
638                                 /* already have a better device */
639                                 continue;
640                         if (first_bad <= this_sector) {
641                                 /* cannot read here. If this is the 'primary'
642                                  * device, then we must not read beyond
643                                  * bad_sectors from another device..
644                                  */
645                                 bad_sectors -= (this_sector - first_bad);
646                                 if (choose_first && sectors > bad_sectors)
647                                         sectors = bad_sectors;
648                                 if (best_good_sectors > sectors)
649                                         best_good_sectors = sectors;
650
651                         } else {
652                                 sector_t good_sectors = first_bad - this_sector;
653                                 if (good_sectors > best_good_sectors) {
654                                         best_good_sectors = good_sectors;
655                                         best_disk = disk;
656                                 }
657                                 if (choose_first)
658                                         break;
659                         }
660                         continue;
661                 } else {
662                         if ((sectors > best_good_sectors) && (best_disk >= 0))
663                                 best_disk = -1;
664                         best_good_sectors = sectors;
665                 }
666
667                 if (best_disk >= 0)
668                         /* At least two disks to choose from so failfast is OK */
669                         set_bit(R1BIO_FailFast, &r1_bio->state);
670
671                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
672                 has_nonrot_disk |= nonrot;
673                 pending = atomic_read(&rdev->nr_pending);
674                 dist = abs(this_sector - conf->mirrors[disk].head_position);
675                 if (choose_first) {
676                         best_disk = disk;
677                         break;
678                 }
679                 /* Don't change to another disk for sequential reads */
680                 if (conf->mirrors[disk].next_seq_sect == this_sector
681                     || dist == 0) {
682                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
683                         struct raid1_info *mirror = &conf->mirrors[disk];
684
685                         best_disk = disk;
686                         /*
687                          * If buffered sequential IO size exceeds optimal
688                          * iosize, check if there is idle disk. If yes, choose
689                          * the idle disk. read_balance could already choose an
690                          * idle disk before noticing it's a sequential IO in
691                          * this disk. This doesn't matter because this disk
692                          * will idle, next time it will be utilized after the
693                          * first disk has IO size exceeds optimal iosize. In
694                          * this way, iosize of the first disk will be optimal
695                          * iosize at least. iosize of the second disk might be
696                          * small, but not a big deal since when the second disk
697                          * starts IO, the first disk is likely still busy.
698                          */
699                         if (nonrot && opt_iosize > 0 &&
700                             mirror->seq_start != MaxSector &&
701                             mirror->next_seq_sect > opt_iosize &&
702                             mirror->next_seq_sect - opt_iosize >=
703                             mirror->seq_start) {
704                                 choose_next_idle = 1;
705                                 continue;
706                         }
707                         break;
708                 }
709
710                 if (choose_next_idle)
711                         continue;
712
713                 if (min_pending > pending) {
714                         min_pending = pending;
715                         best_pending_disk = disk;
716                 }
717
718                 if (dist < best_dist) {
719                         best_dist = dist;
720                         best_dist_disk = disk;
721                 }
722         }
723
724         /*
725          * If all disks are rotational, choose the closest disk. If any disk is
726          * non-rotational, choose the disk with less pending request even the
727          * disk is rotational, which might/might not be optimal for raids with
728          * mixed ratation/non-rotational disks depending on workload.
729          */
730         if (best_disk == -1) {
731                 if (has_nonrot_disk || min_pending == 0)
732                         best_disk = best_pending_disk;
733                 else
734                         best_disk = best_dist_disk;
735         }
736
737         if (best_disk >= 0) {
738                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
739                 if (!rdev)
740                         goto retry;
741                 atomic_inc(&rdev->nr_pending);
742                 sectors = best_good_sectors;
743
744                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
745                         conf->mirrors[best_disk].seq_start = this_sector;
746
747                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
748         }
749         rcu_read_unlock();
750         *max_sectors = sectors;
751
752         return best_disk;
753 }
754
755 static int raid1_congested(struct mddev *mddev, int bits)
756 {
757         struct r1conf *conf = mddev->private;
758         int i, ret = 0;
759
760         if ((bits & (1 << WB_async_congested)) &&
761             conf->pending_count >= max_queued_requests)
762                 return 1;
763
764         rcu_read_lock();
765         for (i = 0; i < conf->raid_disks * 2; i++) {
766                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
767                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
768                         struct request_queue *q = bdev_get_queue(rdev->bdev);
769
770                         BUG_ON(!q);
771
772                         /* Note the '|| 1' - when read_balance prefers
773                          * non-congested targets, it can be removed
774                          */
775                         if ((bits & (1 << WB_async_congested)) || 1)
776                                 ret |= bdi_congested(q->backing_dev_info, bits);
777                         else
778                                 ret &= bdi_congested(q->backing_dev_info, bits);
779                 }
780         }
781         rcu_read_unlock();
782         return ret;
783 }
784
785 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
786 {
787         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
788         md_bitmap_unplug(conf->mddev->bitmap);
789         wake_up(&conf->wait_barrier);
790
791         while (bio) { /* submit pending writes */
792                 struct bio *next = bio->bi_next;
793                 struct md_rdev *rdev = (void *)bio->bi_disk;
794                 bio->bi_next = NULL;
795                 bio_set_dev(bio, rdev->bdev);
796                 if (test_bit(Faulty, &rdev->flags)) {
797                         bio_io_error(bio);
798                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
799                                     !blk_queue_discard(bio->bi_disk->queue)))
800                         /* Just ignore it */
801                         bio_endio(bio);
802                 else
803                         generic_make_request(bio);
804                 bio = next;
805         }
806 }
807
808 static void flush_pending_writes(struct r1conf *conf)
809 {
810         /* Any writes that have been queued but are awaiting
811          * bitmap updates get flushed here.
812          */
813         spin_lock_irq(&conf->device_lock);
814
815         if (conf->pending_bio_list.head) {
816                 struct blk_plug plug;
817                 struct bio *bio;
818
819                 bio = bio_list_get(&conf->pending_bio_list);
820                 conf->pending_count = 0;
821                 spin_unlock_irq(&conf->device_lock);
822
823                 /*
824                  * As this is called in a wait_event() loop (see freeze_array),
825                  * current->state might be TASK_UNINTERRUPTIBLE which will
826                  * cause a warning when we prepare to wait again.  As it is
827                  * rare that this path is taken, it is perfectly safe to force
828                  * us to go around the wait_event() loop again, so the warning
829                  * is a false-positive.  Silence the warning by resetting
830                  * thread state
831                  */
832                 __set_current_state(TASK_RUNNING);
833                 blk_start_plug(&plug);
834                 flush_bio_list(conf, bio);
835                 blk_finish_plug(&plug);
836         } else
837                 spin_unlock_irq(&conf->device_lock);
838 }
839
840 /* Barriers....
841  * Sometimes we need to suspend IO while we do something else,
842  * either some resync/recovery, or reconfigure the array.
843  * To do this we raise a 'barrier'.
844  * The 'barrier' is a counter that can be raised multiple times
845  * to count how many activities are happening which preclude
846  * normal IO.
847  * We can only raise the barrier if there is no pending IO.
848  * i.e. if nr_pending == 0.
849  * We choose only to raise the barrier if no-one is waiting for the
850  * barrier to go down.  This means that as soon as an IO request
851  * is ready, no other operations which require a barrier will start
852  * until the IO request has had a chance.
853  *
854  * So: regular IO calls 'wait_barrier'.  When that returns there
855  *    is no backgroup IO happening,  It must arrange to call
856  *    allow_barrier when it has finished its IO.
857  * backgroup IO calls must call raise_barrier.  Once that returns
858  *    there is no normal IO happeing.  It must arrange to call
859  *    lower_barrier when the particular background IO completes.
860  */
861 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
862 {
863         int idx = sector_to_idx(sector_nr);
864
865         spin_lock_irq(&conf->resync_lock);
866
867         /* Wait until no block IO is waiting */
868         wait_event_lock_irq(conf->wait_barrier,
869                             !atomic_read(&conf->nr_waiting[idx]),
870                             conf->resync_lock);
871
872         /* block any new IO from starting */
873         atomic_inc(&conf->barrier[idx]);
874         /*
875          * In raise_barrier() we firstly increase conf->barrier[idx] then
876          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
877          * increase conf->nr_pending[idx] then check conf->barrier[idx].
878          * A memory barrier here to make sure conf->nr_pending[idx] won't
879          * be fetched before conf->barrier[idx] is increased. Otherwise
880          * there will be a race between raise_barrier() and _wait_barrier().
881          */
882         smp_mb__after_atomic();
883
884         /* For these conditions we must wait:
885          * A: while the array is in frozen state
886          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
887          *    existing in corresponding I/O barrier bucket.
888          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
889          *    max resync count which allowed on current I/O barrier bucket.
890          */
891         wait_event_lock_irq(conf->wait_barrier,
892                             (!conf->array_frozen &&
893                              !atomic_read(&conf->nr_pending[idx]) &&
894                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
895                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
896                             conf->resync_lock);
897
898         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
899                 atomic_dec(&conf->barrier[idx]);
900                 spin_unlock_irq(&conf->resync_lock);
901                 wake_up(&conf->wait_barrier);
902                 return -EINTR;
903         }
904
905         atomic_inc(&conf->nr_sync_pending);
906         spin_unlock_irq(&conf->resync_lock);
907
908         return 0;
909 }
910
911 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
912 {
913         int idx = sector_to_idx(sector_nr);
914
915         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
916
917         atomic_dec(&conf->barrier[idx]);
918         atomic_dec(&conf->nr_sync_pending);
919         wake_up(&conf->wait_barrier);
920 }
921
922 static void _wait_barrier(struct r1conf *conf, int idx)
923 {
924         /*
925          * We need to increase conf->nr_pending[idx] very early here,
926          * then raise_barrier() can be blocked when it waits for
927          * conf->nr_pending[idx] to be 0. Then we can avoid holding
928          * conf->resync_lock when there is no barrier raised in same
929          * barrier unit bucket. Also if the array is frozen, I/O
930          * should be blocked until array is unfrozen.
931          */
932         atomic_inc(&conf->nr_pending[idx]);
933         /*
934          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
935          * check conf->barrier[idx]. In raise_barrier() we firstly increase
936          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
937          * barrier is necessary here to make sure conf->barrier[idx] won't be
938          * fetched before conf->nr_pending[idx] is increased. Otherwise there
939          * will be a race between _wait_barrier() and raise_barrier().
940          */
941         smp_mb__after_atomic();
942
943         /*
944          * Don't worry about checking two atomic_t variables at same time
945          * here. If during we check conf->barrier[idx], the array is
946          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
947          * 0, it is safe to return and make the I/O continue. Because the
948          * array is frozen, all I/O returned here will eventually complete
949          * or be queued, no race will happen. See code comment in
950          * frozen_array().
951          */
952         if (!READ_ONCE(conf->array_frozen) &&
953             !atomic_read(&conf->barrier[idx]))
954                 return;
955
956         /*
957          * After holding conf->resync_lock, conf->nr_pending[idx]
958          * should be decreased before waiting for barrier to drop.
959          * Otherwise, we may encounter a race condition because
960          * raise_barrer() might be waiting for conf->nr_pending[idx]
961          * to be 0 at same time.
962          */
963         spin_lock_irq(&conf->resync_lock);
964         atomic_inc(&conf->nr_waiting[idx]);
965         atomic_dec(&conf->nr_pending[idx]);
966         /*
967          * In case freeze_array() is waiting for
968          * get_unqueued_pending() == extra
969          */
970         wake_up(&conf->wait_barrier);
971         /* Wait for the barrier in same barrier unit bucket to drop. */
972         wait_event_lock_irq(conf->wait_barrier,
973                             !conf->array_frozen &&
974                              !atomic_read(&conf->barrier[idx]),
975                             conf->resync_lock);
976         atomic_inc(&conf->nr_pending[idx]);
977         atomic_dec(&conf->nr_waiting[idx]);
978         spin_unlock_irq(&conf->resync_lock);
979 }
980
981 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
982 {
983         int idx = sector_to_idx(sector_nr);
984
985         /*
986          * Very similar to _wait_barrier(). The difference is, for read
987          * I/O we don't need wait for sync I/O, but if the whole array
988          * is frozen, the read I/O still has to wait until the array is
989          * unfrozen. Since there is no ordering requirement with
990          * conf->barrier[idx] here, memory barrier is unnecessary as well.
991          */
992         atomic_inc(&conf->nr_pending[idx]);
993
994         if (!READ_ONCE(conf->array_frozen))
995                 return;
996
997         spin_lock_irq(&conf->resync_lock);
998         atomic_inc(&conf->nr_waiting[idx]);
999         atomic_dec(&conf->nr_pending[idx]);
1000         /*
1001          * In case freeze_array() is waiting for
1002          * get_unqueued_pending() == extra
1003          */
1004         wake_up(&conf->wait_barrier);
1005         /* Wait for array to be unfrozen */
1006         wait_event_lock_irq(conf->wait_barrier,
1007                             !conf->array_frozen,
1008                             conf->resync_lock);
1009         atomic_inc(&conf->nr_pending[idx]);
1010         atomic_dec(&conf->nr_waiting[idx]);
1011         spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1015 {
1016         int idx = sector_to_idx(sector_nr);
1017
1018         _wait_barrier(conf, idx);
1019 }
1020
1021 static void _allow_barrier(struct r1conf *conf, int idx)
1022 {
1023         atomic_dec(&conf->nr_pending[idx]);
1024         wake_up(&conf->wait_barrier);
1025 }
1026
1027 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1028 {
1029         int idx = sector_to_idx(sector_nr);
1030
1031         _allow_barrier(conf, idx);
1032 }
1033
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037         int idx, ret;
1038
1039         ret = atomic_read(&conf->nr_sync_pending);
1040         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041                 ret += atomic_read(&conf->nr_pending[idx]) -
1042                         atomic_read(&conf->nr_queued[idx]);
1043
1044         return ret;
1045 }
1046
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049         /* Stop sync I/O and normal I/O and wait for everything to
1050          * go quiet.
1051          * This is called in two situations:
1052          * 1) management command handlers (reshape, remove disk, quiesce).
1053          * 2) one normal I/O request failed.
1054
1055          * After array_frozen is set to 1, new sync IO will be blocked at
1056          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057          * or wait_read_barrier(). The flying I/Os will either complete or be
1058          * queued. When everything goes quite, there are only queued I/Os left.
1059
1060          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061          * barrier bucket index which this I/O request hits. When all sync and
1062          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064          * in handle_read_error(), we may call freeze_array() before trying to
1065          * fix the read error. In this case, the error read I/O is not queued,
1066          * so get_unqueued_pending() == 1.
1067          *
1068          * Therefore before this function returns, we need to wait until
1069          * get_unqueued_pendings(conf) gets equal to extra. For
1070          * normal I/O context, extra is 1, in rested situations extra is 0.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->array_frozen = 1;
1074         raid1_log(conf->mddev, "wait freeze");
1075         wait_event_lock_irq_cmd(
1076                 conf->wait_barrier,
1077                 get_unqueued_pending(conf) == extra,
1078                 conf->resync_lock,
1079                 flush_pending_writes(conf));
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084         /* reverse the effect of the freeze */
1085         spin_lock_irq(&conf->resync_lock);
1086         conf->array_frozen = 0;
1087         spin_unlock_irq(&conf->resync_lock);
1088         wake_up(&conf->wait_barrier);
1089 }
1090
1091 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1092                                            struct bio *bio)
1093 {
1094         int size = bio->bi_iter.bi_size;
1095         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096         int i = 0;
1097         struct bio *behind_bio = NULL;
1098
1099         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100         if (!behind_bio)
1101                 return;
1102
1103         /* discard op, we don't support writezero/writesame yet */
1104         if (!bio_has_data(bio)) {
1105                 behind_bio->bi_iter.bi_size = size;
1106                 goto skip_copy;
1107         }
1108
1109         behind_bio->bi_write_hint = bio->bi_write_hint;
1110
1111         while (i < vcnt && size) {
1112                 struct page *page;
1113                 int len = min_t(int, PAGE_SIZE, size);
1114
1115                 page = alloc_page(GFP_NOIO);
1116                 if (unlikely(!page))
1117                         goto free_pages;
1118
1119                 bio_add_page(behind_bio, page, len, 0);
1120
1121                 size -= len;
1122                 i++;
1123         }
1124
1125         bio_copy_data(behind_bio, bio);
1126 skip_copy:
1127         r1_bio->behind_master_bio = behind_bio;
1128         set_bit(R1BIO_BehindIO, &r1_bio->state);
1129
1130         return;
1131
1132 free_pages:
1133         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1134                  bio->bi_iter.bi_size);
1135         bio_free_pages(behind_bio);
1136         bio_put(behind_bio);
1137 }
1138
1139 struct raid1_plug_cb {
1140         struct blk_plug_cb      cb;
1141         struct bio_list         pending;
1142         int                     pending_cnt;
1143 };
1144
1145 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1146 {
1147         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1148                                                   cb);
1149         struct mddev *mddev = plug->cb.data;
1150         struct r1conf *conf = mddev->private;
1151         struct bio *bio;
1152
1153         if (from_schedule || current->bio_list) {
1154                 spin_lock_irq(&conf->device_lock);
1155                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1156                 conf->pending_count += plug->pending_cnt;
1157                 spin_unlock_irq(&conf->device_lock);
1158                 wake_up(&conf->wait_barrier);
1159                 md_wakeup_thread(mddev->thread);
1160                 kfree(plug);
1161                 return;
1162         }
1163
1164         /* we aren't scheduling, so we can do the write-out directly. */
1165         bio = bio_list_get(&plug->pending);
1166         flush_bio_list(conf, bio);
1167         kfree(plug);
1168 }
1169
1170 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1171 {
1172         r1_bio->master_bio = bio;
1173         r1_bio->sectors = bio_sectors(bio);
1174         r1_bio->state = 0;
1175         r1_bio->mddev = mddev;
1176         r1_bio->sector = bio->bi_iter.bi_sector;
1177 }
1178
1179 static inline struct r1bio *
1180 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1181 {
1182         struct r1conf *conf = mddev->private;
1183         struct r1bio *r1_bio;
1184
1185         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1186         /* Ensure no bio records IO_BLOCKED */
1187         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1188         init_r1bio(r1_bio, mddev, bio);
1189         return r1_bio;
1190 }
1191
1192 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1193                                int max_read_sectors, struct r1bio *r1_bio)
1194 {
1195         struct r1conf *conf = mddev->private;
1196         struct raid1_info *mirror;
1197         struct bio *read_bio;
1198         struct bitmap *bitmap = mddev->bitmap;
1199         const int op = bio_op(bio);
1200         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1201         int max_sectors;
1202         int rdisk;
1203         bool print_msg = !!r1_bio;
1204         char b[BDEVNAME_SIZE];
1205
1206         /*
1207          * If r1_bio is set, we are blocking the raid1d thread
1208          * so there is a tiny risk of deadlock.  So ask for
1209          * emergency memory if needed.
1210          */
1211         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1212
1213         if (print_msg) {
1214                 /* Need to get the block device name carefully */
1215                 struct md_rdev *rdev;
1216                 rcu_read_lock();
1217                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1218                 if (rdev)
1219                         bdevname(rdev->bdev, b);
1220                 else
1221                         strcpy(b, "???");
1222                 rcu_read_unlock();
1223         }
1224
1225         /*
1226          * Still need barrier for READ in case that whole
1227          * array is frozen.
1228          */
1229         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1230
1231         if (!r1_bio)
1232                 r1_bio = alloc_r1bio(mddev, bio);
1233         else
1234                 init_r1bio(r1_bio, mddev, bio);
1235         r1_bio->sectors = max_read_sectors;
1236
1237         /*
1238          * make_request() can abort the operation when read-ahead is being
1239          * used and no empty request is available.
1240          */
1241         rdisk = read_balance(conf, r1_bio, &max_sectors);
1242
1243         if (rdisk < 0) {
1244                 /* couldn't find anywhere to read from */
1245                 if (print_msg) {
1246                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1247                                             mdname(mddev),
1248                                             b,
1249                                             (unsigned long long)r1_bio->sector);
1250                 }
1251                 raid_end_bio_io(r1_bio);
1252                 return;
1253         }
1254         mirror = conf->mirrors + rdisk;
1255
1256         if (print_msg)
1257                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1258                                     mdname(mddev),
1259                                     (unsigned long long)r1_bio->sector,
1260                                     bdevname(mirror->rdev->bdev, b));
1261
1262         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1263             bitmap) {
1264                 /*
1265                  * Reading from a write-mostly device must take care not to
1266                  * over-take any writes that are 'behind'
1267                  */
1268                 raid1_log(mddev, "wait behind writes");
1269                 wait_event(bitmap->behind_wait,
1270                            atomic_read(&bitmap->behind_writes) == 0);
1271         }
1272
1273         if (max_sectors < bio_sectors(bio)) {
1274                 struct bio *split = bio_split(bio, max_sectors,
1275                                               gfp, &conf->bio_split);
1276                 bio_chain(split, bio);
1277                 generic_make_request(bio);
1278                 bio = split;
1279                 r1_bio->master_bio = bio;
1280                 r1_bio->sectors = max_sectors;
1281         }
1282
1283         r1_bio->read_disk = rdisk;
1284
1285         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1286
1287         r1_bio->bios[rdisk] = read_bio;
1288
1289         read_bio->bi_iter.bi_sector = r1_bio->sector +
1290                 mirror->rdev->data_offset;
1291         bio_set_dev(read_bio, mirror->rdev->bdev);
1292         read_bio->bi_end_io = raid1_end_read_request;
1293         bio_set_op_attrs(read_bio, op, do_sync);
1294         if (test_bit(FailFast, &mirror->rdev->flags) &&
1295             test_bit(R1BIO_FailFast, &r1_bio->state))
1296                 read_bio->bi_opf |= MD_FAILFAST;
1297         read_bio->bi_private = r1_bio;
1298
1299         if (mddev->gendisk)
1300                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1301                                 disk_devt(mddev->gendisk), r1_bio->sector);
1302
1303         generic_make_request(read_bio);
1304 }
1305
1306 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1307                                 int max_write_sectors)
1308 {
1309         struct r1conf *conf = mddev->private;
1310         struct r1bio *r1_bio;
1311         int i, disks;
1312         struct bitmap *bitmap = mddev->bitmap;
1313         unsigned long flags;
1314         struct md_rdev *blocked_rdev;
1315         struct blk_plug_cb *cb;
1316         struct raid1_plug_cb *plug = NULL;
1317         int first_clone;
1318         int max_sectors;
1319
1320         if (mddev_is_clustered(mddev) &&
1321              md_cluster_ops->area_resyncing(mddev, WRITE,
1322                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1323
1324                 DEFINE_WAIT(w);
1325                 for (;;) {
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_IDLE);
1328                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1329                                                         bio->bi_iter.bi_sector,
1330                                                         bio_end_sector(bio)))
1331                                 break;
1332                         schedule();
1333                 }
1334                 finish_wait(&conf->wait_barrier, &w);
1335         }
1336
1337         /*
1338          * Register the new request and wait if the reconstruction
1339          * thread has put up a bar for new requests.
1340          * Continue immediately if no resync is active currently.
1341          */
1342         wait_barrier(conf, bio->bi_iter.bi_sector);
1343
1344         r1_bio = alloc_r1bio(mddev, bio);
1345         r1_bio->sectors = max_write_sectors;
1346
1347         if (conf->pending_count >= max_queued_requests) {
1348                 md_wakeup_thread(mddev->thread);
1349                 raid1_log(mddev, "wait queued");
1350                 wait_event(conf->wait_barrier,
1351                            conf->pending_count < max_queued_requests);
1352         }
1353         /* first select target devices under rcu_lock and
1354          * inc refcount on their rdev.  Record them by setting
1355          * bios[x] to bio
1356          * If there are known/acknowledged bad blocks on any device on
1357          * which we have seen a write error, we want to avoid writing those
1358          * blocks.
1359          * This potentially requires several writes to write around
1360          * the bad blocks.  Each set of writes gets it's own r1bio
1361          * with a set of bios attached.
1362          */
1363
1364         disks = conf->raid_disks * 2;
1365  retry_write:
1366         blocked_rdev = NULL;
1367         rcu_read_lock();
1368         max_sectors = r1_bio->sectors;
1369         for (i = 0;  i < disks; i++) {
1370                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                         atomic_inc(&rdev->nr_pending);
1373                         blocked_rdev = rdev;
1374                         break;
1375                 }
1376                 r1_bio->bios[i] = NULL;
1377                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378                         if (i < conf->raid_disks)
1379                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1380                         continue;
1381                 }
1382
1383                 atomic_inc(&rdev->nr_pending);
1384                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385                         sector_t first_bad;
1386                         int bad_sectors;
1387                         int is_bad;
1388
1389                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390                                              &first_bad, &bad_sectors);
1391                         if (is_bad < 0) {
1392                                 /* mustn't write here until the bad block is
1393                                  * acknowledged*/
1394                                 set_bit(BlockedBadBlocks, &rdev->flags);
1395                                 blocked_rdev = rdev;
1396                                 break;
1397                         }
1398                         if (is_bad && first_bad <= r1_bio->sector) {
1399                                 /* Cannot write here at all */
1400                                 bad_sectors -= (r1_bio->sector - first_bad);
1401                                 if (bad_sectors < max_sectors)
1402                                         /* mustn't write more than bad_sectors
1403                                          * to other devices yet
1404                                          */
1405                                         max_sectors = bad_sectors;
1406                                 rdev_dec_pending(rdev, mddev);
1407                                 /* We don't set R1BIO_Degraded as that
1408                                  * only applies if the disk is
1409                                  * missing, so it might be re-added,
1410                                  * and we want to know to recover this
1411                                  * chunk.
1412                                  * In this case the device is here,
1413                                  * and the fact that this chunk is not
1414                                  * in-sync is recorded in the bad
1415                                  * block log
1416                                  */
1417                                 continue;
1418                         }
1419                         if (is_bad) {
1420                                 int good_sectors = first_bad - r1_bio->sector;
1421                                 if (good_sectors < max_sectors)
1422                                         max_sectors = good_sectors;
1423                         }
1424                 }
1425                 r1_bio->bios[i] = bio;
1426         }
1427         rcu_read_unlock();
1428
1429         if (unlikely(blocked_rdev)) {
1430                 /* Wait for this device to become unblocked */
1431                 int j;
1432
1433                 for (j = 0; j < i; j++)
1434                         if (r1_bio->bios[j])
1435                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436                 r1_bio->state = 0;
1437                 allow_barrier(conf, bio->bi_iter.bi_sector);
1438                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440                 wait_barrier(conf, bio->bi_iter.bi_sector);
1441                 goto retry_write;
1442         }
1443
1444         if (max_sectors < bio_sectors(bio)) {
1445                 struct bio *split = bio_split(bio, max_sectors,
1446                                               GFP_NOIO, &conf->bio_split);
1447                 bio_chain(split, bio);
1448                 generic_make_request(bio);
1449                 bio = split;
1450                 r1_bio->master_bio = bio;
1451                 r1_bio->sectors = max_sectors;
1452         }
1453
1454         atomic_set(&r1_bio->remaining, 1);
1455         atomic_set(&r1_bio->behind_remaining, 0);
1456
1457         first_clone = 1;
1458
1459         for (i = 0; i < disks; i++) {
1460                 struct bio *mbio = NULL;
1461                 if (!r1_bio->bios[i])
1462                         continue;
1463
1464
1465                 if (first_clone) {
1466                         /* do behind I/O ?
1467                          * Not if there are too many, or cannot
1468                          * allocate memory, or a reader on WriteMostly
1469                          * is waiting for behind writes to flush */
1470                         if (bitmap &&
1471                             (atomic_read(&bitmap->behind_writes)
1472                              < mddev->bitmap_info.max_write_behind) &&
1473                             !waitqueue_active(&bitmap->behind_wait)) {
1474                                 alloc_behind_master_bio(r1_bio, bio);
1475                         }
1476
1477                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1478                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1479                         first_clone = 0;
1480                 }
1481
1482                 if (r1_bio->behind_master_bio)
1483                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1484                                               GFP_NOIO, &mddev->bio_set);
1485                 else
1486                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1487
1488                 if (r1_bio->behind_master_bio) {
1489                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1490                                 atomic_inc(&r1_bio->behind_remaining);
1491                 }
1492
1493                 r1_bio->bios[i] = mbio;
1494
1495                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1496                                    conf->mirrors[i].rdev->data_offset);
1497                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1498                 mbio->bi_end_io = raid1_end_write_request;
1499                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1500                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1501                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1502                     conf->raid_disks - mddev->degraded > 1)
1503                         mbio->bi_opf |= MD_FAILFAST;
1504                 mbio->bi_private = r1_bio;
1505
1506                 atomic_inc(&r1_bio->remaining);
1507
1508                 if (mddev->gendisk)
1509                         trace_block_bio_remap(mbio->bi_disk->queue,
1510                                               mbio, disk_devt(mddev->gendisk),
1511                                               r1_bio->sector);
1512                 /* flush_pending_writes() needs access to the rdev so...*/
1513                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1514
1515                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1516                 if (cb)
1517                         plug = container_of(cb, struct raid1_plug_cb, cb);
1518                 else
1519                         plug = NULL;
1520                 if (plug) {
1521                         bio_list_add(&plug->pending, mbio);
1522                         plug->pending_cnt++;
1523                 } else {
1524                         spin_lock_irqsave(&conf->device_lock, flags);
1525                         bio_list_add(&conf->pending_bio_list, mbio);
1526                         conf->pending_count++;
1527                         spin_unlock_irqrestore(&conf->device_lock, flags);
1528                         md_wakeup_thread(mddev->thread);
1529                 }
1530         }
1531
1532         r1_bio_write_done(r1_bio);
1533
1534         /* In case raid1d snuck in to freeze_array */
1535         wake_up(&conf->wait_barrier);
1536 }
1537
1538 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1539 {
1540         sector_t sectors;
1541
1542         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1543             && md_flush_request(mddev, bio))
1544                 return true;
1545
1546         /*
1547          * There is a limit to the maximum size, but
1548          * the read/write handler might find a lower limit
1549          * due to bad blocks.  To avoid multiple splits,
1550          * we pass the maximum number of sectors down
1551          * and let the lower level perform the split.
1552          */
1553         sectors = align_to_barrier_unit_end(
1554                 bio->bi_iter.bi_sector, bio_sectors(bio));
1555
1556         if (bio_data_dir(bio) == READ)
1557                 raid1_read_request(mddev, bio, sectors, NULL);
1558         else {
1559                 if (!md_write_start(mddev,bio))
1560                         return false;
1561                 raid1_write_request(mddev, bio, sectors);
1562         }
1563         return true;
1564 }
1565
1566 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1567 {
1568         struct r1conf *conf = mddev->private;
1569         int i;
1570
1571         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1572                    conf->raid_disks - mddev->degraded);
1573         rcu_read_lock();
1574         for (i = 0; i < conf->raid_disks; i++) {
1575                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1576                 seq_printf(seq, "%s",
1577                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578         }
1579         rcu_read_unlock();
1580         seq_printf(seq, "]");
1581 }
1582
1583 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1584 {
1585         char b[BDEVNAME_SIZE];
1586         struct r1conf *conf = mddev->private;
1587         unsigned long flags;
1588
1589         /*
1590          * If it is not operational, then we have already marked it as dead
1591          * else if it is the last working disks, ignore the error, let the
1592          * next level up know.
1593          * else mark the drive as failed
1594          */
1595         spin_lock_irqsave(&conf->device_lock, flags);
1596         if (test_bit(In_sync, &rdev->flags)
1597             && (conf->raid_disks - mddev->degraded) == 1) {
1598                 /*
1599                  * Don't fail the drive, act as though we were just a
1600                  * normal single drive.
1601                  * However don't try a recovery from this drive as
1602                  * it is very likely to fail.
1603                  */
1604                 conf->recovery_disabled = mddev->recovery_disabled;
1605                 spin_unlock_irqrestore(&conf->device_lock, flags);
1606                 return;
1607         }
1608         set_bit(Blocked, &rdev->flags);
1609         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1610                 mddev->degraded++;
1611                 set_bit(Faulty, &rdev->flags);
1612         } else
1613                 set_bit(Faulty, &rdev->flags);
1614         spin_unlock_irqrestore(&conf->device_lock, flags);
1615         /*
1616          * if recovery is running, make sure it aborts.
1617          */
1618         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1619         set_mask_bits(&mddev->sb_flags, 0,
1620                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1621         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1622                 "md/raid1:%s: Operation continuing on %d devices.\n",
1623                 mdname(mddev), bdevname(rdev->bdev, b),
1624                 mdname(mddev), conf->raid_disks - mddev->degraded);
1625 }
1626
1627 static void print_conf(struct r1conf *conf)
1628 {
1629         int i;
1630
1631         pr_debug("RAID1 conf printout:\n");
1632         if (!conf) {
1633                 pr_debug("(!conf)\n");
1634                 return;
1635         }
1636         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1637                  conf->raid_disks);
1638
1639         rcu_read_lock();
1640         for (i = 0; i < conf->raid_disks; i++) {
1641                 char b[BDEVNAME_SIZE];
1642                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1643                 if (rdev)
1644                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1645                                  i, !test_bit(In_sync, &rdev->flags),
1646                                  !test_bit(Faulty, &rdev->flags),
1647                                  bdevname(rdev->bdev,b));
1648         }
1649         rcu_read_unlock();
1650 }
1651
1652 static void close_sync(struct r1conf *conf)
1653 {
1654         int idx;
1655
1656         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1657                 _wait_barrier(conf, idx);
1658                 _allow_barrier(conf, idx);
1659         }
1660
1661         mempool_exit(&conf->r1buf_pool);
1662 }
1663
1664 static int raid1_spare_active(struct mddev *mddev)
1665 {
1666         int i;
1667         struct r1conf *conf = mddev->private;
1668         int count = 0;
1669         unsigned long flags;
1670
1671         /*
1672          * Find all failed disks within the RAID1 configuration
1673          * and mark them readable.
1674          * Called under mddev lock, so rcu protection not needed.
1675          * device_lock used to avoid races with raid1_end_read_request
1676          * which expects 'In_sync' flags and ->degraded to be consistent.
1677          */
1678         spin_lock_irqsave(&conf->device_lock, flags);
1679         for (i = 0; i < conf->raid_disks; i++) {
1680                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1681                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682                 if (repl
1683                     && !test_bit(Candidate, &repl->flags)
1684                     && repl->recovery_offset == MaxSector
1685                     && !test_bit(Faulty, &repl->flags)
1686                     && !test_and_set_bit(In_sync, &repl->flags)) {
1687                         /* replacement has just become active */
1688                         if (!rdev ||
1689                             !test_and_clear_bit(In_sync, &rdev->flags))
1690                                 count++;
1691                         if (rdev) {
1692                                 /* Replaced device not technically
1693                                  * faulty, but we need to be sure
1694                                  * it gets removed and never re-added
1695                                  */
1696                                 set_bit(Faulty, &rdev->flags);
1697                                 sysfs_notify_dirent_safe(
1698                                         rdev->sysfs_state);
1699                         }
1700                 }
1701                 if (rdev
1702                     && rdev->recovery_offset == MaxSector
1703                     && !test_bit(Faulty, &rdev->flags)
1704                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1705                         count++;
1706                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1707                 }
1708         }
1709         mddev->degraded -= count;
1710         spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712         print_conf(conf);
1713         return count;
1714 }
1715
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717 {
1718         struct r1conf *conf = mddev->private;
1719         int err = -EEXIST;
1720         int mirror = 0;
1721         struct raid1_info *p;
1722         int first = 0;
1723         int last = conf->raid_disks - 1;
1724
1725         if (mddev->recovery_disabled == conf->recovery_disabled)
1726                 return -EBUSY;
1727
1728         if (md_integrity_add_rdev(rdev, mddev))
1729                 return -ENXIO;
1730
1731         if (rdev->raid_disk >= 0)
1732                 first = last = rdev->raid_disk;
1733
1734         /*
1735          * find the disk ... but prefer rdev->saved_raid_disk
1736          * if possible.
1737          */
1738         if (rdev->saved_raid_disk >= 0 &&
1739             rdev->saved_raid_disk >= first &&
1740             rdev->saved_raid_disk < conf->raid_disks &&
1741             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1742                 first = last = rdev->saved_raid_disk;
1743
1744         for (mirror = first; mirror <= last; mirror++) {
1745                 p = conf->mirrors+mirror;
1746                 if (!p->rdev) {
1747
1748                         if (mddev->gendisk)
1749                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1750                                                   rdev->data_offset << 9);
1751
1752                         p->head_position = 0;
1753                         rdev->raid_disk = mirror;
1754                         err = 0;
1755                         /* As all devices are equivalent, we don't need a full recovery
1756                          * if this was recently any drive of the array
1757                          */
1758                         if (rdev->saved_raid_disk < 0)
1759                                 conf->fullsync = 1;
1760                         rcu_assign_pointer(p->rdev, rdev);
1761                         break;
1762                 }
1763                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1764                     p[conf->raid_disks].rdev == NULL) {
1765                         /* Add this device as a replacement */
1766                         clear_bit(In_sync, &rdev->flags);
1767                         set_bit(Replacement, &rdev->flags);
1768                         rdev->raid_disk = mirror;
1769                         err = 0;
1770                         conf->fullsync = 1;
1771                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1772                         break;
1773                 }
1774         }
1775         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1776                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1777         print_conf(conf);
1778         return err;
1779 }
1780
1781 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1782 {
1783         struct r1conf *conf = mddev->private;
1784         int err = 0;
1785         int number = rdev->raid_disk;
1786         struct raid1_info *p = conf->mirrors + number;
1787
1788         if (rdev != p->rdev)
1789                 p = conf->mirrors + conf->raid_disks + number;
1790
1791         print_conf(conf);
1792         if (rdev == p->rdev) {
1793                 if (test_bit(In_sync, &rdev->flags) ||
1794                     atomic_read(&rdev->nr_pending)) {
1795                         err = -EBUSY;
1796                         goto abort;
1797                 }
1798                 /* Only remove non-faulty devices if recovery
1799                  * is not possible.
1800                  */
1801                 if (!test_bit(Faulty, &rdev->flags) &&
1802                     mddev->recovery_disabled != conf->recovery_disabled &&
1803                     mddev->degraded < conf->raid_disks) {
1804                         err = -EBUSY;
1805                         goto abort;
1806                 }
1807                 p->rdev = NULL;
1808                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1809                         synchronize_rcu();
1810                         if (atomic_read(&rdev->nr_pending)) {
1811                                 /* lost the race, try later */
1812                                 err = -EBUSY;
1813                                 p->rdev = rdev;
1814                                 goto abort;
1815                         }
1816                 }
1817                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1818                         /* We just removed a device that is being replaced.
1819                          * Move down the replacement.  We drain all IO before
1820                          * doing this to avoid confusion.
1821                          */
1822                         struct md_rdev *repl =
1823                                 conf->mirrors[conf->raid_disks + number].rdev;
1824                         freeze_array(conf, 0);
1825                         if (atomic_read(&repl->nr_pending)) {
1826                                 /* It means that some queued IO of retry_list
1827                                  * hold repl. Thus, we cannot set replacement
1828                                  * as NULL, avoiding rdev NULL pointer
1829                                  * dereference in sync_request_write and
1830                                  * handle_write_finished.
1831                                  */
1832                                 err = -EBUSY;
1833                                 unfreeze_array(conf);
1834                                 goto abort;
1835                         }
1836                         clear_bit(Replacement, &repl->flags);
1837                         p->rdev = repl;
1838                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1839                         unfreeze_array(conf);
1840                 }
1841
1842                 clear_bit(WantReplacement, &rdev->flags);
1843                 err = md_integrity_register(mddev);
1844         }
1845 abort:
1846
1847         print_conf(conf);
1848         return err;
1849 }
1850
1851 static void end_sync_read(struct bio *bio)
1852 {
1853         struct r1bio *r1_bio = get_resync_r1bio(bio);
1854
1855         update_head_pos(r1_bio->read_disk, r1_bio);
1856
1857         /*
1858          * we have read a block, now it needs to be re-written,
1859          * or re-read if the read failed.
1860          * We don't do much here, just schedule handling by raid1d
1861          */
1862         if (!bio->bi_status)
1863                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1864
1865         if (atomic_dec_and_test(&r1_bio->remaining))
1866                 reschedule_retry(r1_bio);
1867 }
1868
1869 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1870 {
1871         sector_t sync_blocks = 0;
1872         sector_t s = r1_bio->sector;
1873         long sectors_to_go = r1_bio->sectors;
1874
1875         /* make sure these bits don't get cleared. */
1876         do {
1877                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1878                 s += sync_blocks;
1879                 sectors_to_go -= sync_blocks;
1880         } while (sectors_to_go > 0);
1881 }
1882
1883 static void end_sync_write(struct bio *bio)
1884 {
1885         int uptodate = !bio->bi_status;
1886         struct r1bio *r1_bio = get_resync_r1bio(bio);
1887         struct mddev *mddev = r1_bio->mddev;
1888         struct r1conf *conf = mddev->private;
1889         sector_t first_bad;
1890         int bad_sectors;
1891         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1892
1893         if (!uptodate) {
1894                 abort_sync_write(mddev, r1_bio);
1895                 set_bit(WriteErrorSeen, &rdev->flags);
1896                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1897                         set_bit(MD_RECOVERY_NEEDED, &
1898                                 mddev->recovery);
1899                 set_bit(R1BIO_WriteError, &r1_bio->state);
1900         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1901                                &first_bad, &bad_sectors) &&
1902                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1903                                 r1_bio->sector,
1904                                 r1_bio->sectors,
1905                                 &first_bad, &bad_sectors)
1906                 )
1907                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1908
1909         if (atomic_dec_and_test(&r1_bio->remaining)) {
1910                 int s = r1_bio->sectors;
1911                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1912                     test_bit(R1BIO_WriteError, &r1_bio->state))
1913                         reschedule_retry(r1_bio);
1914                 else {
1915                         put_buf(r1_bio);
1916                         md_done_sync(mddev, s, uptodate);
1917                 }
1918         }
1919 }
1920
1921 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1922                             int sectors, struct page *page, int rw)
1923 {
1924         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1925                 /* success */
1926                 return 1;
1927         if (rw == WRITE) {
1928                 set_bit(WriteErrorSeen, &rdev->flags);
1929                 if (!test_and_set_bit(WantReplacement,
1930                                       &rdev->flags))
1931                         set_bit(MD_RECOVERY_NEEDED, &
1932                                 rdev->mddev->recovery);
1933         }
1934         /* need to record an error - either for the block or the device */
1935         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1936                 md_error(rdev->mddev, rdev);
1937         return 0;
1938 }
1939
1940 static int fix_sync_read_error(struct r1bio *r1_bio)
1941 {
1942         /* Try some synchronous reads of other devices to get
1943          * good data, much like with normal read errors.  Only
1944          * read into the pages we already have so we don't
1945          * need to re-issue the read request.
1946          * We don't need to freeze the array, because being in an
1947          * active sync request, there is no normal IO, and
1948          * no overlapping syncs.
1949          * We don't need to check is_badblock() again as we
1950          * made sure that anything with a bad block in range
1951          * will have bi_end_io clear.
1952          */
1953         struct mddev *mddev = r1_bio->mddev;
1954         struct r1conf *conf = mddev->private;
1955         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1956         struct page **pages = get_resync_pages(bio)->pages;
1957         sector_t sect = r1_bio->sector;
1958         int sectors = r1_bio->sectors;
1959         int idx = 0;
1960         struct md_rdev *rdev;
1961
1962         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1963         if (test_bit(FailFast, &rdev->flags)) {
1964                 /* Don't try recovering from here - just fail it
1965                  * ... unless it is the last working device of course */
1966                 md_error(mddev, rdev);
1967                 if (test_bit(Faulty, &rdev->flags))
1968                         /* Don't try to read from here, but make sure
1969                          * put_buf does it's thing
1970                          */
1971                         bio->bi_end_io = end_sync_write;
1972         }
1973
1974         while(sectors) {
1975                 int s = sectors;
1976                 int d = r1_bio->read_disk;
1977                 int success = 0;
1978                 int start;
1979
1980                 if (s > (PAGE_SIZE>>9))
1981                         s = PAGE_SIZE >> 9;
1982                 do {
1983                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1984                                 /* No rcu protection needed here devices
1985                                  * can only be removed when no resync is
1986                                  * active, and resync is currently active
1987                                  */
1988                                 rdev = conf->mirrors[d].rdev;
1989                                 if (sync_page_io(rdev, sect, s<<9,
1990                                                  pages[idx],
1991                                                  REQ_OP_READ, 0, false)) {
1992                                         success = 1;
1993                                         break;
1994                                 }
1995                         }
1996                         d++;
1997                         if (d == conf->raid_disks * 2)
1998                                 d = 0;
1999                 } while (!success && d != r1_bio->read_disk);
2000
2001                 if (!success) {
2002                         char b[BDEVNAME_SIZE];
2003                         int abort = 0;
2004                         /* Cannot read from anywhere, this block is lost.
2005                          * Record a bad block on each device.  If that doesn't
2006                          * work just disable and interrupt the recovery.
2007                          * Don't fail devices as that won't really help.
2008                          */
2009                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2010                                             mdname(mddev), bio_devname(bio, b),
2011                                             (unsigned long long)r1_bio->sector);
2012                         for (d = 0; d < conf->raid_disks * 2; d++) {
2013                                 rdev = conf->mirrors[d].rdev;
2014                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2015                                         continue;
2016                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2017                                         abort = 1;
2018                         }
2019                         if (abort) {
2020                                 conf->recovery_disabled =
2021                                         mddev->recovery_disabled;
2022                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2023                                 md_done_sync(mddev, r1_bio->sectors, 0);
2024                                 put_buf(r1_bio);
2025                                 return 0;
2026                         }
2027                         /* Try next page */
2028                         sectors -= s;
2029                         sect += s;
2030                         idx++;
2031                         continue;
2032                 }
2033
2034                 start = d;
2035                 /* write it back and re-read */
2036                 while (d != r1_bio->read_disk) {
2037                         if (d == 0)
2038                                 d = conf->raid_disks * 2;
2039                         d--;
2040                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2041                                 continue;
2042                         rdev = conf->mirrors[d].rdev;
2043                         if (r1_sync_page_io(rdev, sect, s,
2044                                             pages[idx],
2045                                             WRITE) == 0) {
2046                                 r1_bio->bios[d]->bi_end_io = NULL;
2047                                 rdev_dec_pending(rdev, mddev);
2048                         }
2049                 }
2050                 d = start;
2051                 while (d != r1_bio->read_disk) {
2052                         if (d == 0)
2053                                 d = conf->raid_disks * 2;
2054                         d--;
2055                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2056                                 continue;
2057                         rdev = conf->mirrors[d].rdev;
2058                         if (r1_sync_page_io(rdev, sect, s,
2059                                             pages[idx],
2060                                             READ) != 0)
2061                                 atomic_add(s, &rdev->corrected_errors);
2062                 }
2063                 sectors -= s;
2064                 sect += s;
2065                 idx ++;
2066         }
2067         set_bit(R1BIO_Uptodate, &r1_bio->state);
2068         bio->bi_status = 0;
2069         return 1;
2070 }
2071
2072 static void process_checks(struct r1bio *r1_bio)
2073 {
2074         /* We have read all readable devices.  If we haven't
2075          * got the block, then there is no hope left.
2076          * If we have, then we want to do a comparison
2077          * and skip the write if everything is the same.
2078          * If any blocks failed to read, then we need to
2079          * attempt an over-write
2080          */
2081         struct mddev *mddev = r1_bio->mddev;
2082         struct r1conf *conf = mddev->private;
2083         int primary;
2084         int i;
2085         int vcnt;
2086
2087         /* Fix variable parts of all bios */
2088         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2089         for (i = 0; i < conf->raid_disks * 2; i++) {
2090                 blk_status_t status;
2091                 struct bio *b = r1_bio->bios[i];
2092                 struct resync_pages *rp = get_resync_pages(b);
2093                 if (b->bi_end_io != end_sync_read)
2094                         continue;
2095                 /* fixup the bio for reuse, but preserve errno */
2096                 status = b->bi_status;
2097                 bio_reset(b);
2098                 b->bi_status = status;
2099                 b->bi_iter.bi_sector = r1_bio->sector +
2100                         conf->mirrors[i].rdev->data_offset;
2101                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2102                 b->bi_end_io = end_sync_read;
2103                 rp->raid_bio = r1_bio;
2104                 b->bi_private = rp;
2105
2106                 /* initialize bvec table again */
2107                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2108         }
2109         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2110                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2111                     !r1_bio->bios[primary]->bi_status) {
2112                         r1_bio->bios[primary]->bi_end_io = NULL;
2113                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2114                         break;
2115                 }
2116         r1_bio->read_disk = primary;
2117         for (i = 0; i < conf->raid_disks * 2; i++) {
2118                 int j;
2119                 struct bio *pbio = r1_bio->bios[primary];
2120                 struct bio *sbio = r1_bio->bios[i];
2121                 blk_status_t status = sbio->bi_status;
2122                 struct page **ppages = get_resync_pages(pbio)->pages;
2123                 struct page **spages = get_resync_pages(sbio)->pages;
2124                 struct bio_vec *bi;
2125                 int page_len[RESYNC_PAGES] = { 0 };
2126
2127                 if (sbio->bi_end_io != end_sync_read)
2128                         continue;
2129                 /* Now we can 'fixup' the error value */
2130                 sbio->bi_status = 0;
2131
2132                 bio_for_each_segment_all(bi, sbio, j)
2133                         page_len[j] = bi->bv_len;
2134
2135                 if (!status) {
2136                         for (j = vcnt; j-- ; ) {
2137                                 if (memcmp(page_address(ppages[j]),
2138                                            page_address(spages[j]),
2139                                            page_len[j]))
2140                                         break;
2141                         }
2142                 } else
2143                         j = 0;
2144                 if (j >= 0)
2145                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2146                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2147                               && !status)) {
2148                         /* No need to write to this device. */
2149                         sbio->bi_end_io = NULL;
2150                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2151                         continue;
2152                 }
2153
2154                 bio_copy_data(sbio, pbio);
2155         }
2156 }
2157
2158 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2159 {
2160         struct r1conf *conf = mddev->private;
2161         int i;
2162         int disks = conf->raid_disks * 2;
2163         struct bio *wbio;
2164
2165         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2166                 /* ouch - failed to read all of that. */
2167                 if (!fix_sync_read_error(r1_bio))
2168                         return;
2169
2170         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2171                 process_checks(r1_bio);
2172
2173         /*
2174          * schedule writes
2175          */
2176         atomic_set(&r1_bio->remaining, 1);
2177         for (i = 0; i < disks ; i++) {
2178                 wbio = r1_bio->bios[i];
2179                 if (wbio->bi_end_io == NULL ||
2180                     (wbio->bi_end_io == end_sync_read &&
2181                      (i == r1_bio->read_disk ||
2182                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2183                         continue;
2184                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2185                         abort_sync_write(mddev, r1_bio);
2186                         continue;
2187                 }
2188
2189                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2190                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2191                         wbio->bi_opf |= MD_FAILFAST;
2192
2193                 wbio->bi_end_io = end_sync_write;
2194                 atomic_inc(&r1_bio->remaining);
2195                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2196
2197                 generic_make_request(wbio);
2198         }
2199
2200         if (atomic_dec_and_test(&r1_bio->remaining)) {
2201                 /* if we're here, all write(s) have completed, so clean up */
2202                 int s = r1_bio->sectors;
2203                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2204                     test_bit(R1BIO_WriteError, &r1_bio->state))
2205                         reschedule_retry(r1_bio);
2206                 else {
2207                         put_buf(r1_bio);
2208                         md_done_sync(mddev, s, 1);
2209                 }
2210         }
2211 }
2212
2213 /*
2214  * This is a kernel thread which:
2215  *
2216  *      1.      Retries failed read operations on working mirrors.
2217  *      2.      Updates the raid superblock when problems encounter.
2218  *      3.      Performs writes following reads for array synchronising.
2219  */
2220
2221 static void fix_read_error(struct r1conf *conf, int read_disk,
2222                            sector_t sect, int sectors)
2223 {
2224         struct mddev *mddev = conf->mddev;
2225         while(sectors) {
2226                 int s = sectors;
2227                 int d = read_disk;
2228                 int success = 0;
2229                 int start;
2230                 struct md_rdev *rdev;
2231
2232                 if (s > (PAGE_SIZE>>9))
2233                         s = PAGE_SIZE >> 9;
2234
2235                 do {
2236                         sector_t first_bad;
2237                         int bad_sectors;
2238
2239                         rcu_read_lock();
2240                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2241                         if (rdev &&
2242                             (test_bit(In_sync, &rdev->flags) ||
2243                              (!test_bit(Faulty, &rdev->flags) &&
2244                               rdev->recovery_offset >= sect + s)) &&
2245                             is_badblock(rdev, sect, s,
2246                                         &first_bad, &bad_sectors) == 0) {
2247                                 atomic_inc(&rdev->nr_pending);
2248                                 rcu_read_unlock();
2249                                 if (sync_page_io(rdev, sect, s<<9,
2250                                          conf->tmppage, REQ_OP_READ, 0, false))
2251                                         success = 1;
2252                                 rdev_dec_pending(rdev, mddev);
2253                                 if (success)
2254                                         break;
2255                         } else
2256                                 rcu_read_unlock();
2257                         d++;
2258                         if (d == conf->raid_disks * 2)
2259                                 d = 0;
2260                 } while (!success && d != read_disk);
2261
2262                 if (!success) {
2263                         /* Cannot read from anywhere - mark it bad */
2264                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2265                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2266                                 md_error(mddev, rdev);
2267                         break;
2268                 }
2269                 /* write it back and re-read */
2270                 start = d;
2271                 while (d != read_disk) {
2272                         if (d==0)
2273                                 d = conf->raid_disks * 2;
2274                         d--;
2275                         rcu_read_lock();
2276                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2277                         if (rdev &&
2278                             !test_bit(Faulty, &rdev->flags)) {
2279                                 atomic_inc(&rdev->nr_pending);
2280                                 rcu_read_unlock();
2281                                 r1_sync_page_io(rdev, sect, s,
2282                                                 conf->tmppage, WRITE);
2283                                 rdev_dec_pending(rdev, mddev);
2284                         } else
2285                                 rcu_read_unlock();
2286                 }
2287                 d = start;
2288                 while (d != read_disk) {
2289                         char b[BDEVNAME_SIZE];
2290                         if (d==0)
2291                                 d = conf->raid_disks * 2;
2292                         d--;
2293                         rcu_read_lock();
2294                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2295                         if (rdev &&
2296                             !test_bit(Faulty, &rdev->flags)) {
2297                                 atomic_inc(&rdev->nr_pending);
2298                                 rcu_read_unlock();
2299                                 if (r1_sync_page_io(rdev, sect, s,
2300                                                     conf->tmppage, READ)) {
2301                                         atomic_add(s, &rdev->corrected_errors);
2302                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2303                                                 mdname(mddev), s,
2304                                                 (unsigned long long)(sect +
2305                                                                      rdev->data_offset),
2306                                                 bdevname(rdev->bdev, b));
2307                                 }
2308                                 rdev_dec_pending(rdev, mddev);
2309                         } else
2310                                 rcu_read_unlock();
2311                 }
2312                 sectors -= s;
2313                 sect += s;
2314         }
2315 }
2316
2317 static int narrow_write_error(struct r1bio *r1_bio, int i)
2318 {
2319         struct mddev *mddev = r1_bio->mddev;
2320         struct r1conf *conf = mddev->private;
2321         struct md_rdev *rdev = conf->mirrors[i].rdev;
2322
2323         /* bio has the data to be written to device 'i' where
2324          * we just recently had a write error.
2325          * We repeatedly clone the bio and trim down to one block,
2326          * then try the write.  Where the write fails we record
2327          * a bad block.
2328          * It is conceivable that the bio doesn't exactly align with
2329          * blocks.  We must handle this somehow.
2330          *
2331          * We currently own a reference on the rdev.
2332          */
2333
2334         int block_sectors;
2335         sector_t sector;
2336         int sectors;
2337         int sect_to_write = r1_bio->sectors;
2338         int ok = 1;
2339
2340         if (rdev->badblocks.shift < 0)
2341                 return 0;
2342
2343         block_sectors = roundup(1 << rdev->badblocks.shift,
2344                                 bdev_logical_block_size(rdev->bdev) >> 9);
2345         sector = r1_bio->sector;
2346         sectors = ((sector + block_sectors)
2347                    & ~(sector_t)(block_sectors - 1))
2348                 - sector;
2349
2350         while (sect_to_write) {
2351                 struct bio *wbio;
2352                 if (sectors > sect_to_write)
2353                         sectors = sect_to_write;
2354                 /* Write at 'sector' for 'sectors'*/
2355
2356                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2357                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2358                                               GFP_NOIO,
2359                                               &mddev->bio_set);
2360                 } else {
2361                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2362                                               &mddev->bio_set);
2363                 }
2364
2365                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2366                 wbio->bi_iter.bi_sector = r1_bio->sector;
2367                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2368
2369                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2370                 wbio->bi_iter.bi_sector += rdev->data_offset;
2371                 bio_set_dev(wbio, rdev->bdev);
2372
2373                 if (submit_bio_wait(wbio) < 0)
2374                         /* failure! */
2375                         ok = rdev_set_badblocks(rdev, sector,
2376                                                 sectors, 0)
2377                                 && ok;
2378
2379                 bio_put(wbio);
2380                 sect_to_write -= sectors;
2381                 sector += sectors;
2382                 sectors = block_sectors;
2383         }
2384         return ok;
2385 }
2386
2387 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2388 {
2389         int m;
2390         int s = r1_bio->sectors;
2391         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2392                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2393                 struct bio *bio = r1_bio->bios[m];
2394                 if (bio->bi_end_io == NULL)
2395                         continue;
2396                 if (!bio->bi_status &&
2397                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2398                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2399                 }
2400                 if (bio->bi_status &&
2401                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2402                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2403                                 md_error(conf->mddev, rdev);
2404                 }
2405         }
2406         put_buf(r1_bio);
2407         md_done_sync(conf->mddev, s, 1);
2408 }
2409
2410 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2411 {
2412         int m, idx;
2413         bool fail = false;
2414
2415         for (m = 0; m < conf->raid_disks * 2 ; m++)
2416                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2417                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2418                         rdev_clear_badblocks(rdev,
2419                                              r1_bio->sector,
2420                                              r1_bio->sectors, 0);
2421                         rdev_dec_pending(rdev, conf->mddev);
2422                 } else if (r1_bio->bios[m] != NULL) {
2423                         /* This drive got a write error.  We need to
2424                          * narrow down and record precise write
2425                          * errors.
2426                          */
2427                         fail = true;
2428                         if (!narrow_write_error(r1_bio, m)) {
2429                                 md_error(conf->mddev,
2430                                          conf->mirrors[m].rdev);
2431                                 /* an I/O failed, we can't clear the bitmap */
2432                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2433                         }
2434                         rdev_dec_pending(conf->mirrors[m].rdev,
2435                                          conf->mddev);
2436                 }
2437         if (fail) {
2438                 spin_lock_irq(&conf->device_lock);
2439                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2440                 idx = sector_to_idx(r1_bio->sector);
2441                 atomic_inc(&conf->nr_queued[idx]);
2442                 spin_unlock_irq(&conf->device_lock);
2443                 /*
2444                  * In case freeze_array() is waiting for condition
2445                  * get_unqueued_pending() == extra to be true.
2446                  */
2447                 wake_up(&conf->wait_barrier);
2448                 md_wakeup_thread(conf->mddev->thread);
2449         } else {
2450                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2451                         close_write(r1_bio);
2452                 raid_end_bio_io(r1_bio);
2453         }
2454 }
2455
2456 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2457 {
2458         struct mddev *mddev = conf->mddev;
2459         struct bio *bio;
2460         struct md_rdev *rdev;
2461
2462         clear_bit(R1BIO_ReadError, &r1_bio->state);
2463         /* we got a read error. Maybe the drive is bad.  Maybe just
2464          * the block and we can fix it.
2465          * We freeze all other IO, and try reading the block from
2466          * other devices.  When we find one, we re-write
2467          * and check it that fixes the read error.
2468          * This is all done synchronously while the array is
2469          * frozen
2470          */
2471
2472         bio = r1_bio->bios[r1_bio->read_disk];
2473         bio_put(bio);
2474         r1_bio->bios[r1_bio->read_disk] = NULL;
2475
2476         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2477         if (mddev->ro == 0
2478             && !test_bit(FailFast, &rdev->flags)) {
2479                 freeze_array(conf, 1);
2480                 fix_read_error(conf, r1_bio->read_disk,
2481                                r1_bio->sector, r1_bio->sectors);
2482                 unfreeze_array(conf);
2483         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2484                 md_error(mddev, rdev);
2485         } else {
2486                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2487         }
2488
2489         rdev_dec_pending(rdev, conf->mddev);
2490         allow_barrier(conf, r1_bio->sector);
2491         bio = r1_bio->master_bio;
2492
2493         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2494         r1_bio->state = 0;
2495         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2496 }
2497
2498 static void raid1d(struct md_thread *thread)
2499 {
2500         struct mddev *mddev = thread->mddev;
2501         struct r1bio *r1_bio;
2502         unsigned long flags;
2503         struct r1conf *conf = mddev->private;
2504         struct list_head *head = &conf->retry_list;
2505         struct blk_plug plug;
2506         int idx;
2507
2508         md_check_recovery(mddev);
2509
2510         if (!list_empty_careful(&conf->bio_end_io_list) &&
2511             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2512                 LIST_HEAD(tmp);
2513                 spin_lock_irqsave(&conf->device_lock, flags);
2514                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2515                         list_splice_init(&conf->bio_end_io_list, &tmp);
2516                 spin_unlock_irqrestore(&conf->device_lock, flags);
2517                 while (!list_empty(&tmp)) {
2518                         r1_bio = list_first_entry(&tmp, struct r1bio,
2519                                                   retry_list);
2520                         list_del(&r1_bio->retry_list);
2521                         idx = sector_to_idx(r1_bio->sector);
2522                         atomic_dec(&conf->nr_queued[idx]);
2523                         if (mddev->degraded)
2524                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2525                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2526                                 close_write(r1_bio);
2527                         raid_end_bio_io(r1_bio);
2528                 }
2529         }
2530
2531         blk_start_plug(&plug);
2532         for (;;) {
2533
2534                 flush_pending_writes(conf);
2535
2536                 spin_lock_irqsave(&conf->device_lock, flags);
2537                 if (list_empty(head)) {
2538                         spin_unlock_irqrestore(&conf->device_lock, flags);
2539                         break;
2540                 }
2541                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2542                 list_del(head->prev);
2543                 idx = sector_to_idx(r1_bio->sector);
2544                 atomic_dec(&conf->nr_queued[idx]);
2545                 spin_unlock_irqrestore(&conf->device_lock, flags);
2546
2547                 mddev = r1_bio->mddev;
2548                 conf = mddev->private;
2549                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2550                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2551                             test_bit(R1BIO_WriteError, &r1_bio->state))
2552                                 handle_sync_write_finished(conf, r1_bio);
2553                         else
2554                                 sync_request_write(mddev, r1_bio);
2555                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2556                            test_bit(R1BIO_WriteError, &r1_bio->state))
2557                         handle_write_finished(conf, r1_bio);
2558                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2559                         handle_read_error(conf, r1_bio);
2560                 else
2561                         WARN_ON_ONCE(1);
2562
2563                 cond_resched();
2564                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2565                         md_check_recovery(mddev);
2566         }
2567         blk_finish_plug(&plug);
2568 }
2569
2570 static int init_resync(struct r1conf *conf)
2571 {
2572         int buffs;
2573
2574         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2575         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2576
2577         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2578                             r1buf_pool_free, conf->poolinfo);
2579 }
2580
2581 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2582 {
2583         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2584         struct resync_pages *rps;
2585         struct bio *bio;
2586         int i;
2587
2588         for (i = conf->poolinfo->raid_disks; i--; ) {
2589                 bio = r1bio->bios[i];
2590                 rps = bio->bi_private;
2591                 bio_reset(bio);
2592                 bio->bi_private = rps;
2593         }
2594         r1bio->master_bio = NULL;
2595         return r1bio;
2596 }
2597
2598 /*
2599  * perform a "sync" on one "block"
2600  *
2601  * We need to make sure that no normal I/O request - particularly write
2602  * requests - conflict with active sync requests.
2603  *
2604  * This is achieved by tracking pending requests and a 'barrier' concept
2605  * that can be installed to exclude normal IO requests.
2606  */
2607
2608 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2609                                    int *skipped)
2610 {
2611         struct r1conf *conf = mddev->private;
2612         struct r1bio *r1_bio;
2613         struct bio *bio;
2614         sector_t max_sector, nr_sectors;
2615         int disk = -1;
2616         int i;
2617         int wonly = -1;
2618         int write_targets = 0, read_targets = 0;
2619         sector_t sync_blocks;
2620         int still_degraded = 0;
2621         int good_sectors = RESYNC_SECTORS;
2622         int min_bad = 0; /* number of sectors that are bad in all devices */
2623         int idx = sector_to_idx(sector_nr);
2624         int page_idx = 0;
2625
2626         if (!mempool_initialized(&conf->r1buf_pool))
2627                 if (init_resync(conf))
2628                         return 0;
2629
2630         max_sector = mddev->dev_sectors;
2631         if (sector_nr >= max_sector) {
2632                 /* If we aborted, we need to abort the
2633                  * sync on the 'current' bitmap chunk (there will
2634                  * only be one in raid1 resync.
2635                  * We can find the current addess in mddev->curr_resync
2636                  */
2637                 if (mddev->curr_resync < max_sector) /* aborted */
2638                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2639                                            &sync_blocks, 1);
2640                 else /* completed sync */
2641                         conf->fullsync = 0;
2642
2643                 md_bitmap_close_sync(mddev->bitmap);
2644                 close_sync(conf);
2645
2646                 if (mddev_is_clustered(mddev)) {
2647                         conf->cluster_sync_low = 0;
2648                         conf->cluster_sync_high = 0;
2649                 }
2650                 return 0;
2651         }
2652
2653         if (mddev->bitmap == NULL &&
2654             mddev->recovery_cp == MaxSector &&
2655             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2656             conf->fullsync == 0) {
2657                 *skipped = 1;
2658                 return max_sector - sector_nr;
2659         }
2660         /* before building a request, check if we can skip these blocks..
2661          * This call the bitmap_start_sync doesn't actually record anything
2662          */
2663         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2664             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2665                 /* We can skip this block, and probably several more */
2666                 *skipped = 1;
2667                 return sync_blocks;
2668         }
2669
2670         /*
2671          * If there is non-resync activity waiting for a turn, then let it
2672          * though before starting on this new sync request.
2673          */
2674         if (atomic_read(&conf->nr_waiting[idx]))
2675                 schedule_timeout_uninterruptible(1);
2676
2677         /* we are incrementing sector_nr below. To be safe, we check against
2678          * sector_nr + two times RESYNC_SECTORS
2679          */
2680
2681         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2682                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2683
2684
2685         if (raise_barrier(conf, sector_nr))
2686                 return 0;
2687
2688         r1_bio = raid1_alloc_init_r1buf(conf);
2689
2690         rcu_read_lock();
2691         /*
2692          * If we get a correctably read error during resync or recovery,
2693          * we might want to read from a different device.  So we
2694          * flag all drives that could conceivably be read from for READ,
2695          * and any others (which will be non-In_sync devices) for WRITE.
2696          * If a read fails, we try reading from something else for which READ
2697          * is OK.
2698          */
2699
2700         r1_bio->mddev = mddev;
2701         r1_bio->sector = sector_nr;
2702         r1_bio->state = 0;
2703         set_bit(R1BIO_IsSync, &r1_bio->state);
2704         /* make sure good_sectors won't go across barrier unit boundary */
2705         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2706
2707         for (i = 0; i < conf->raid_disks * 2; i++) {
2708                 struct md_rdev *rdev;
2709                 bio = r1_bio->bios[i];
2710
2711                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2712                 if (rdev == NULL ||
2713                     test_bit(Faulty, &rdev->flags)) {
2714                         if (i < conf->raid_disks)
2715                                 still_degraded = 1;
2716                 } else if (!test_bit(In_sync, &rdev->flags)) {
2717                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2718                         bio->bi_end_io = end_sync_write;
2719                         write_targets ++;
2720                 } else {
2721                         /* may need to read from here */
2722                         sector_t first_bad = MaxSector;
2723                         int bad_sectors;
2724
2725                         if (is_badblock(rdev, sector_nr, good_sectors,
2726                                         &first_bad, &bad_sectors)) {
2727                                 if (first_bad > sector_nr)
2728                                         good_sectors = first_bad - sector_nr;
2729                                 else {
2730                                         bad_sectors -= (sector_nr - first_bad);
2731                                         if (min_bad == 0 ||
2732                                             min_bad > bad_sectors)
2733                                                 min_bad = bad_sectors;
2734                                 }
2735                         }
2736                         if (sector_nr < first_bad) {
2737                                 if (test_bit(WriteMostly, &rdev->flags)) {
2738                                         if (wonly < 0)
2739                                                 wonly = i;
2740                                 } else {
2741                                         if (disk < 0)
2742                                                 disk = i;
2743                                 }
2744                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2745                                 bio->bi_end_io = end_sync_read;
2746                                 read_targets++;
2747                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2748                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2749                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2750                                 /*
2751                                  * The device is suitable for reading (InSync),
2752                                  * but has bad block(s) here. Let's try to correct them,
2753                                  * if we are doing resync or repair. Otherwise, leave
2754                                  * this device alone for this sync request.
2755                                  */
2756                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2757                                 bio->bi_end_io = end_sync_write;
2758                                 write_targets++;
2759                         }
2760                 }
2761                 if (rdev && bio->bi_end_io) {
2762                         atomic_inc(&rdev->nr_pending);
2763                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2764                         bio_set_dev(bio, rdev->bdev);
2765                         if (test_bit(FailFast, &rdev->flags))
2766                                 bio->bi_opf |= MD_FAILFAST;
2767                 }
2768         }
2769         rcu_read_unlock();
2770         if (disk < 0)
2771                 disk = wonly;
2772         r1_bio->read_disk = disk;
2773
2774         if (read_targets == 0 && min_bad > 0) {
2775                 /* These sectors are bad on all InSync devices, so we
2776                  * need to mark them bad on all write targets
2777                  */
2778                 int ok = 1;
2779                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2780                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2781                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2782                                 ok = rdev_set_badblocks(rdev, sector_nr,
2783                                                         min_bad, 0
2784                                         ) && ok;
2785                         }
2786                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2787                 *skipped = 1;
2788                 put_buf(r1_bio);
2789
2790                 if (!ok) {
2791                         /* Cannot record the badblocks, so need to
2792                          * abort the resync.
2793                          * If there are multiple read targets, could just
2794                          * fail the really bad ones ???
2795                          */
2796                         conf->recovery_disabled = mddev->recovery_disabled;
2797                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2798                         return 0;
2799                 } else
2800                         return min_bad;
2801
2802         }
2803         if (min_bad > 0 && min_bad < good_sectors) {
2804                 /* only resync enough to reach the next bad->good
2805                  * transition */
2806                 good_sectors = min_bad;
2807         }
2808
2809         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2810                 /* extra read targets are also write targets */
2811                 write_targets += read_targets-1;
2812
2813         if (write_targets == 0 || read_targets == 0) {
2814                 /* There is nowhere to write, so all non-sync
2815                  * drives must be failed - so we are finished
2816                  */
2817                 sector_t rv;
2818                 if (min_bad > 0)
2819                         max_sector = sector_nr + min_bad;
2820                 rv = max_sector - sector_nr;
2821                 *skipped = 1;
2822                 put_buf(r1_bio);
2823                 return rv;
2824         }
2825
2826         if (max_sector > mddev->resync_max)
2827                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2828         if (max_sector > sector_nr + good_sectors)
2829                 max_sector = sector_nr + good_sectors;
2830         nr_sectors = 0;
2831         sync_blocks = 0;
2832         do {
2833                 struct page *page;
2834                 int len = PAGE_SIZE;
2835                 if (sector_nr + (len>>9) > max_sector)
2836                         len = (max_sector - sector_nr) << 9;
2837                 if (len == 0)
2838                         break;
2839                 if (sync_blocks == 0) {
2840                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2841                                                   &sync_blocks, still_degraded) &&
2842                             !conf->fullsync &&
2843                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2844                                 break;
2845                         if ((len >> 9) > sync_blocks)
2846                                 len = sync_blocks<<9;
2847                 }
2848
2849                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2850                         struct resync_pages *rp;
2851
2852                         bio = r1_bio->bios[i];
2853                         rp = get_resync_pages(bio);
2854                         if (bio->bi_end_io) {
2855                                 page = resync_fetch_page(rp, page_idx);
2856
2857                                 /*
2858                                  * won't fail because the vec table is big
2859                                  * enough to hold all these pages
2860                                  */
2861                                 bio_add_page(bio, page, len, 0);
2862                         }
2863                 }
2864                 nr_sectors += len>>9;
2865                 sector_nr += len>>9;
2866                 sync_blocks -= (len>>9);
2867         } while (++page_idx < RESYNC_PAGES);
2868
2869         r1_bio->sectors = nr_sectors;
2870
2871         if (mddev_is_clustered(mddev) &&
2872                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2873                 conf->cluster_sync_low = mddev->curr_resync_completed;
2874                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2875                 /* Send resync message */
2876                 md_cluster_ops->resync_info_update(mddev,
2877                                 conf->cluster_sync_low,
2878                                 conf->cluster_sync_high);
2879         }
2880
2881         /* For a user-requested sync, we read all readable devices and do a
2882          * compare
2883          */
2884         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2885                 atomic_set(&r1_bio->remaining, read_targets);
2886                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2887                         bio = r1_bio->bios[i];
2888                         if (bio->bi_end_io == end_sync_read) {
2889                                 read_targets--;
2890                                 md_sync_acct_bio(bio, nr_sectors);
2891                                 if (read_targets == 1)
2892                                         bio->bi_opf &= ~MD_FAILFAST;
2893                                 generic_make_request(bio);
2894                         }
2895                 }
2896         } else {
2897                 atomic_set(&r1_bio->remaining, 1);
2898                 bio = r1_bio->bios[r1_bio->read_disk];
2899                 md_sync_acct_bio(bio, nr_sectors);
2900                 if (read_targets == 1)
2901                         bio->bi_opf &= ~MD_FAILFAST;
2902                 generic_make_request(bio);
2903
2904         }
2905         return nr_sectors;
2906 }
2907
2908 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2909 {
2910         if (sectors)
2911                 return sectors;
2912
2913         return mddev->dev_sectors;
2914 }
2915
2916 static struct r1conf *setup_conf(struct mddev *mddev)
2917 {
2918         struct r1conf *conf;
2919         int i;
2920         struct raid1_info *disk;
2921         struct md_rdev *rdev;
2922         int err = -ENOMEM;
2923
2924         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2925         if (!conf)
2926                 goto abort;
2927
2928         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2929                                    sizeof(atomic_t), GFP_KERNEL);
2930         if (!conf->nr_pending)
2931                 goto abort;
2932
2933         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2934                                    sizeof(atomic_t), GFP_KERNEL);
2935         if (!conf->nr_waiting)
2936                 goto abort;
2937
2938         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2939                                   sizeof(atomic_t), GFP_KERNEL);
2940         if (!conf->nr_queued)
2941                 goto abort;
2942
2943         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2944                                 sizeof(atomic_t), GFP_KERNEL);
2945         if (!conf->barrier)
2946                 goto abort;
2947
2948         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2949                                             mddev->raid_disks, 2),
2950                                 GFP_KERNEL);
2951         if (!conf->mirrors)
2952                 goto abort;
2953
2954         conf->tmppage = alloc_page(GFP_KERNEL);
2955         if (!conf->tmppage)
2956                 goto abort;
2957
2958         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2959         if (!conf->poolinfo)
2960                 goto abort;
2961         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2962         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2963                            r1bio_pool_free, conf->poolinfo);
2964         if (err)
2965                 goto abort;
2966
2967         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2968         if (err)
2969                 goto abort;
2970
2971         conf->poolinfo->mddev = mddev;
2972
2973         err = -EINVAL;
2974         spin_lock_init(&conf->device_lock);
2975         rdev_for_each(rdev, mddev) {
2976                 int disk_idx = rdev->raid_disk;
2977                 if (disk_idx >= mddev->raid_disks
2978                     || disk_idx < 0)
2979                         continue;
2980                 if (test_bit(Replacement, &rdev->flags))
2981                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2982                 else
2983                         disk = conf->mirrors + disk_idx;
2984
2985                 if (disk->rdev)
2986                         goto abort;
2987                 disk->rdev = rdev;
2988                 disk->head_position = 0;
2989                 disk->seq_start = MaxSector;
2990         }
2991         conf->raid_disks = mddev->raid_disks;
2992         conf->mddev = mddev;
2993         INIT_LIST_HEAD(&conf->retry_list);
2994         INIT_LIST_HEAD(&conf->bio_end_io_list);
2995
2996         spin_lock_init(&conf->resync_lock);
2997         init_waitqueue_head(&conf->wait_barrier);
2998
2999         bio_list_init(&conf->pending_bio_list);
3000         conf->pending_count = 0;
3001         conf->recovery_disabled = mddev->recovery_disabled - 1;
3002
3003         err = -EIO;
3004         for (i = 0; i < conf->raid_disks * 2; i++) {
3005
3006                 disk = conf->mirrors + i;
3007
3008                 if (i < conf->raid_disks &&
3009                     disk[conf->raid_disks].rdev) {
3010                         /* This slot has a replacement. */
3011                         if (!disk->rdev) {
3012                                 /* No original, just make the replacement
3013                                  * a recovering spare
3014                                  */
3015                                 disk->rdev =
3016                                         disk[conf->raid_disks].rdev;
3017                                 disk[conf->raid_disks].rdev = NULL;
3018                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3019                                 /* Original is not in_sync - bad */
3020                                 goto abort;
3021                 }
3022
3023                 if (!disk->rdev ||
3024                     !test_bit(In_sync, &disk->rdev->flags)) {
3025                         disk->head_position = 0;
3026                         if (disk->rdev &&
3027                             (disk->rdev->saved_raid_disk < 0))
3028                                 conf->fullsync = 1;
3029                 }
3030         }
3031
3032         err = -ENOMEM;
3033         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3034         if (!conf->thread)
3035                 goto abort;
3036
3037         return conf;
3038
3039  abort:
3040         if (conf) {
3041                 mempool_exit(&conf->r1bio_pool);
3042                 kfree(conf->mirrors);
3043                 safe_put_page(conf->tmppage);
3044                 kfree(conf->poolinfo);
3045                 kfree(conf->nr_pending);
3046                 kfree(conf->nr_waiting);
3047                 kfree(conf->nr_queued);
3048                 kfree(conf->barrier);
3049                 bioset_exit(&conf->bio_split);
3050                 kfree(conf);
3051         }
3052         return ERR_PTR(err);
3053 }
3054
3055 static void raid1_free(struct mddev *mddev, void *priv);
3056 static int raid1_run(struct mddev *mddev)
3057 {
3058         struct r1conf *conf;
3059         int i;
3060         struct md_rdev *rdev;
3061         int ret;
3062         bool discard_supported = false;
3063
3064         if (mddev->level != 1) {
3065                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3066                         mdname(mddev), mddev->level);
3067                 return -EIO;
3068         }
3069         if (mddev->reshape_position != MaxSector) {
3070                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3071                         mdname(mddev));
3072                 return -EIO;
3073         }
3074         if (mddev_init_writes_pending(mddev) < 0)
3075                 return -ENOMEM;
3076         /*
3077          * copy the already verified devices into our private RAID1
3078          * bookkeeping area. [whatever we allocate in run(),
3079          * should be freed in raid1_free()]
3080          */
3081         if (mddev->private == NULL)
3082                 conf = setup_conf(mddev);
3083         else
3084                 conf = mddev->private;
3085
3086         if (IS_ERR(conf))
3087                 return PTR_ERR(conf);
3088
3089         if (mddev->queue) {
3090                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3091                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3092         }
3093
3094         rdev_for_each(rdev, mddev) {
3095                 if (!mddev->gendisk)
3096                         continue;
3097                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3098                                   rdev->data_offset << 9);
3099                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3100                         discard_supported = true;
3101         }
3102
3103         mddev->degraded = 0;
3104         for (i=0; i < conf->raid_disks; i++)
3105                 if (conf->mirrors[i].rdev == NULL ||
3106                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3107                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3108                         mddev->degraded++;
3109         /*
3110          * RAID1 needs at least one disk in active
3111          */
3112         if (conf->raid_disks - mddev->degraded < 1) {
3113                 ret = -EINVAL;
3114                 goto abort;
3115         }
3116
3117         if (conf->raid_disks - mddev->degraded == 1)
3118                 mddev->recovery_cp = MaxSector;
3119
3120         if (mddev->recovery_cp != MaxSector)
3121                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3122                         mdname(mddev));
3123         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3124                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3125                 mddev->raid_disks);
3126
3127         /*
3128          * Ok, everything is just fine now
3129          */
3130         mddev->thread = conf->thread;
3131         conf->thread = NULL;
3132         mddev->private = conf;
3133         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3134
3135         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3136
3137         if (mddev->queue) {
3138                 if (discard_supported)
3139                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3140                                                 mddev->queue);
3141                 else
3142                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3143                                                   mddev->queue);
3144         }
3145
3146         ret =  md_integrity_register(mddev);
3147         if (ret) {
3148                 md_unregister_thread(&mddev->thread);
3149                 goto abort;
3150         }
3151         return 0;
3152
3153 abort:
3154         raid1_free(mddev, conf);
3155         return ret;
3156 }
3157
3158 static void raid1_free(struct mddev *mddev, void *priv)
3159 {
3160         struct r1conf *conf = priv;
3161
3162         mempool_exit(&conf->r1bio_pool);
3163         kfree(conf->mirrors);
3164         safe_put_page(conf->tmppage);
3165         kfree(conf->poolinfo);
3166         kfree(conf->nr_pending);
3167         kfree(conf->nr_waiting);
3168         kfree(conf->nr_queued);
3169         kfree(conf->barrier);
3170         bioset_exit(&conf->bio_split);
3171         kfree(conf);
3172 }
3173
3174 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3175 {
3176         /* no resync is happening, and there is enough space
3177          * on all devices, so we can resize.
3178          * We need to make sure resync covers any new space.
3179          * If the array is shrinking we should possibly wait until
3180          * any io in the removed space completes, but it hardly seems
3181          * worth it.
3182          */
3183         sector_t newsize = raid1_size(mddev, sectors, 0);
3184         if (mddev->external_size &&
3185             mddev->array_sectors > newsize)
3186                 return -EINVAL;
3187         if (mddev->bitmap) {
3188                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3189                 if (ret)
3190                         return ret;
3191         }
3192         md_set_array_sectors(mddev, newsize);
3193         if (sectors > mddev->dev_sectors &&
3194             mddev->recovery_cp > mddev->dev_sectors) {
3195                 mddev->recovery_cp = mddev->dev_sectors;
3196                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3197         }
3198         mddev->dev_sectors = sectors;
3199         mddev->resync_max_sectors = sectors;
3200         return 0;
3201 }
3202
3203 static int raid1_reshape(struct mddev *mddev)
3204 {
3205         /* We need to:
3206          * 1/ resize the r1bio_pool
3207          * 2/ resize conf->mirrors
3208          *
3209          * We allocate a new r1bio_pool if we can.
3210          * Then raise a device barrier and wait until all IO stops.
3211          * Then resize conf->mirrors and swap in the new r1bio pool.
3212          *
3213          * At the same time, we "pack" the devices so that all the missing
3214          * devices have the higher raid_disk numbers.
3215          */
3216         mempool_t newpool, oldpool;
3217         struct pool_info *newpoolinfo;
3218         struct raid1_info *newmirrors;
3219         struct r1conf *conf = mddev->private;
3220         int cnt, raid_disks;
3221         unsigned long flags;
3222         int d, d2;
3223         int ret;
3224
3225         memset(&newpool, 0, sizeof(newpool));
3226         memset(&oldpool, 0, sizeof(oldpool));
3227
3228         /* Cannot change chunk_size, layout, or level */
3229         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3230             mddev->layout != mddev->new_layout ||
3231             mddev->level != mddev->new_level) {
3232                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3233                 mddev->new_layout = mddev->layout;
3234                 mddev->new_level = mddev->level;
3235                 return -EINVAL;
3236         }
3237
3238         if (!mddev_is_clustered(mddev))
3239                 md_allow_write(mddev);
3240
3241         raid_disks = mddev->raid_disks + mddev->delta_disks;
3242
3243         if (raid_disks < conf->raid_disks) {
3244                 cnt=0;
3245                 for (d= 0; d < conf->raid_disks; d++)
3246                         if (conf->mirrors[d].rdev)
3247                                 cnt++;
3248                 if (cnt > raid_disks)
3249                         return -EBUSY;
3250         }
3251
3252         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3253         if (!newpoolinfo)
3254                 return -ENOMEM;
3255         newpoolinfo->mddev = mddev;
3256         newpoolinfo->raid_disks = raid_disks * 2;
3257
3258         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3259                            r1bio_pool_free, newpoolinfo);
3260         if (ret) {
3261                 kfree(newpoolinfo);
3262                 return ret;
3263         }
3264         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3265                                          raid_disks, 2),
3266                              GFP_KERNEL);
3267         if (!newmirrors) {
3268                 kfree(newpoolinfo);
3269                 mempool_exit(&newpool);
3270                 return -ENOMEM;
3271         }
3272
3273         freeze_array(conf, 0);
3274
3275         /* ok, everything is stopped */
3276         oldpool = conf->r1bio_pool;
3277         conf->r1bio_pool = newpool;
3278
3279         for (d = d2 = 0; d < conf->raid_disks; d++) {
3280                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3281                 if (rdev && rdev->raid_disk != d2) {
3282                         sysfs_unlink_rdev(mddev, rdev);
3283                         rdev->raid_disk = d2;
3284                         sysfs_unlink_rdev(mddev, rdev);
3285                         if (sysfs_link_rdev(mddev, rdev))
3286                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3287                                         mdname(mddev), rdev->raid_disk);
3288                 }
3289                 if (rdev)
3290                         newmirrors[d2++].rdev = rdev;
3291         }
3292         kfree(conf->mirrors);
3293         conf->mirrors = newmirrors;
3294         kfree(conf->poolinfo);
3295         conf->poolinfo = newpoolinfo;
3296
3297         spin_lock_irqsave(&conf->device_lock, flags);
3298         mddev->degraded += (raid_disks - conf->raid_disks);
3299         spin_unlock_irqrestore(&conf->device_lock, flags);
3300         conf->raid_disks = mddev->raid_disks = raid_disks;
3301         mddev->delta_disks = 0;
3302
3303         unfreeze_array(conf);
3304
3305         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3306         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3307         md_wakeup_thread(mddev->thread);
3308
3309         mempool_exit(&oldpool);
3310         return 0;
3311 }
3312
3313 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3314 {
3315         struct r1conf *conf = mddev->private;
3316
3317         if (quiesce)
3318                 freeze_array(conf, 0);
3319         else
3320                 unfreeze_array(conf);
3321 }
3322
3323 static void *raid1_takeover(struct mddev *mddev)
3324 {
3325         /* raid1 can take over:
3326          *  raid5 with 2 devices, any layout or chunk size
3327          */
3328         if (mddev->level == 5 && mddev->raid_disks == 2) {
3329                 struct r1conf *conf;
3330                 mddev->new_level = 1;
3331                 mddev->new_layout = 0;
3332                 mddev->new_chunk_sectors = 0;
3333                 conf = setup_conf(mddev);
3334                 if (!IS_ERR(conf)) {
3335                         /* Array must appear to be quiesced */
3336                         conf->array_frozen = 1;
3337                         mddev_clear_unsupported_flags(mddev,
3338                                 UNSUPPORTED_MDDEV_FLAGS);
3339                 }
3340                 return conf;
3341         }
3342         return ERR_PTR(-EINVAL);
3343 }
3344
3345 static struct md_personality raid1_personality =
3346 {
3347         .name           = "raid1",
3348         .level          = 1,
3349         .owner          = THIS_MODULE,
3350         .make_request   = raid1_make_request,
3351         .run            = raid1_run,
3352         .free           = raid1_free,
3353         .status         = raid1_status,
3354         .error_handler  = raid1_error,
3355         .hot_add_disk   = raid1_add_disk,
3356         .hot_remove_disk= raid1_remove_disk,
3357         .spare_active   = raid1_spare_active,
3358         .sync_request   = raid1_sync_request,
3359         .resize         = raid1_resize,
3360         .size           = raid1_size,
3361         .check_reshape  = raid1_reshape,
3362         .quiesce        = raid1_quiesce,
3363         .takeover       = raid1_takeover,
3364         .congested      = raid1_congested,
3365 };
3366
3367 static int __init raid_init(void)
3368 {
3369         return register_md_personality(&raid1_personality);
3370 }
3371
3372 static void raid_exit(void)
3373 {
3374         unregister_md_personality(&raid1_personality);
3375 }
3376
3377 module_init(raid_init);
3378 module_exit(raid_exit);
3379 MODULE_LICENSE("GPL");
3380 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3381 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3382 MODULE_ALIAS("md-raid1");
3383 MODULE_ALIAS("md-level-1");
3384
3385 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);