GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710 retry:
711         sectors = r10_bio->sectors;
712         best_slot = -1;
713         best_rdev = NULL;
714         best_dist = MaxSector;
715         best_good_sectors = 0;
716         do_balance = 1;
717         /*
718          * Check if we can balance. We can balance on the whole
719          * device if no resync is going on (recovery is ok), or below
720          * the resync window. We take the first readable disk when
721          * above the resync window.
722          */
723         if (conf->mddev->recovery_cp < MaxSector
724             && (this_sector + sectors >= conf->next_resync))
725                 do_balance = 0;
726
727         for (slot = 0; slot < conf->copies ; slot++) {
728                 sector_t first_bad;
729                 int bad_sectors;
730                 sector_t dev_sector;
731
732                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733                         continue;
734                 disk = r10_bio->devs[slot].devnum;
735                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
739                 if (rdev == NULL ||
740                     test_bit(Faulty, &rdev->flags))
741                         continue;
742                 if (!test_bit(In_sync, &rdev->flags) &&
743                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744                         continue;
745
746                 dev_sector = r10_bio->devs[slot].addr;
747                 if (is_badblock(rdev, dev_sector, sectors,
748                                 &first_bad, &bad_sectors)) {
749                         if (best_dist < MaxSector)
750                                 /* Already have a better slot */
751                                 continue;
752                         if (first_bad <= dev_sector) {
753                                 /* Cannot read here.  If this is the
754                                  * 'primary' device, then we must not read
755                                  * beyond 'bad_sectors' from another device.
756                                  */
757                                 bad_sectors -= (dev_sector - first_bad);
758                                 if (!do_balance && sectors > bad_sectors)
759                                         sectors = bad_sectors;
760                                 if (best_good_sectors > sectors)
761                                         best_good_sectors = sectors;
762                         } else {
763                                 sector_t good_sectors =
764                                         first_bad - dev_sector;
765                                 if (good_sectors > best_good_sectors) {
766                                         best_good_sectors = good_sectors;
767                                         best_slot = slot;
768                                         best_rdev = rdev;
769                                 }
770                                 if (!do_balance)
771                                         /* Must read from here */
772                                         break;
773                         }
774                         continue;
775                 } else
776                         best_good_sectors = sectors;
777
778                 if (!do_balance)
779                         break;
780
781                 /* This optimisation is debatable, and completely destroys
782                  * sequential read speed for 'far copies' arrays.  So only
783                  * keep it for 'near' arrays, and review those later.
784                  */
785                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786                         break;
787
788                 /* for far > 1 always use the lowest address */
789                 if (geo->far_copies > 1)
790                         new_distance = r10_bio->devs[slot].addr;
791                 else
792                         new_distance = abs(r10_bio->devs[slot].addr -
793                                            conf->mirrors[disk].head_position);
794                 if (new_distance < best_dist) {
795                         best_dist = new_distance;
796                         best_slot = slot;
797                         best_rdev = rdev;
798                 }
799         }
800         if (slot >= conf->copies) {
801                 slot = best_slot;
802                 rdev = best_rdev;
803         }
804
805         if (slot >= 0) {
806                 atomic_inc(&rdev->nr_pending);
807                 if (test_bit(Faulty, &rdev->flags)) {
808                         /* Cannot risk returning a device that failed
809                          * before we inc'ed nr_pending
810                          */
811                         rdev_dec_pending(rdev, conf->mddev);
812                         goto retry;
813                 }
814                 r10_bio->read_slot = slot;
815         } else
816                 rdev = NULL;
817         rcu_read_unlock();
818         *max_sectors = best_good_sectors;
819
820         return rdev;
821 }
822
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825         struct r10conf *conf = mddev->private;
826         int i, ret = 0;
827
828         if ((bits & (1 << WB_async_congested)) &&
829             conf->pending_count >= max_queued_requests)
830                 return 1;
831
832         rcu_read_lock();
833         for (i = 0;
834              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835                      && ret == 0;
836              i++) {
837                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839                         struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841                         ret |= bdi_congested(&q->backing_dev_info, bits);
842                 }
843         }
844         rcu_read_unlock();
845         return ret;
846 }
847
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850         /* Any writes that have been queued but are awaiting
851          * bitmap updates get flushed here.
852          */
853         spin_lock_irq(&conf->device_lock);
854
855         if (conf->pending_bio_list.head) {
856                 struct bio *bio;
857                 bio = bio_list_get(&conf->pending_bio_list);
858                 conf->pending_count = 0;
859                 spin_unlock_irq(&conf->device_lock);
860                 /* flush any pending bitmap writes to disk
861                  * before proceeding w/ I/O */
862                 bitmap_unplug(conf->mddev->bitmap);
863                 wake_up(&conf->wait_barrier);
864
865                 while (bio) { /* submit pending writes */
866                         struct bio *next = bio->bi_next;
867                         bio->bi_next = NULL;
868                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870                                 /* Just ignore it */
871                                 bio_endio(bio);
872                         else
873                                 generic_make_request(bio);
874                         bio = next;
875                 }
876         } else
877                 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881  * Sometimes we need to suspend IO while we do something else,
882  * either some resync/recovery, or reconfigure the array.
883  * To do this we raise a 'barrier'.
884  * The 'barrier' is a counter that can be raised multiple times
885  * to count how many activities are happening which preclude
886  * normal IO.
887  * We can only raise the barrier if there is no pending IO.
888  * i.e. if nr_pending == 0.
889  * We choose only to raise the barrier if no-one is waiting for the
890  * barrier to go down.  This means that as soon as an IO request
891  * is ready, no other operations which require a barrier will start
892  * until the IO request has had a chance.
893  *
894  * So: regular IO calls 'wait_barrier'.  When that returns there
895  *    is no backgroup IO happening,  It must arrange to call
896  *    allow_barrier when it has finished its IO.
897  * backgroup IO calls must call raise_barrier.  Once that returns
898  *    there is no normal IO happeing.  It must arrange to call
899  *    lower_barrier when the particular background IO completes.
900  */
901
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904         BUG_ON(force && !conf->barrier);
905         spin_lock_irq(&conf->resync_lock);
906
907         /* Wait until no block IO is waiting (unless 'force') */
908         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909                             conf->resync_lock);
910
911         /* block any new IO from starting */
912         conf->barrier++;
913
914         /* Now wait for all pending IO to complete */
915         wait_event_lock_irq(conf->wait_barrier,
916                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917                             conf->resync_lock);
918
919         spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void lower_barrier(struct r10conf *conf)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&conf->resync_lock, flags);
926         conf->barrier--;
927         spin_unlock_irqrestore(&conf->resync_lock, flags);
928         wake_up(&conf->wait_barrier);
929 }
930
931 static void wait_barrier(struct r10conf *conf)
932 {
933         spin_lock_irq(&conf->resync_lock);
934         if (conf->barrier) {
935                 conf->nr_waiting++;
936                 /* Wait for the barrier to drop.
937                  * However if there are already pending
938                  * requests (preventing the barrier from
939                  * rising completely), and the
940                  * pre-process bio queue isn't empty,
941                  * then don't wait, as we need to empty
942                  * that queue to get the nr_pending
943                  * count down.
944                  */
945                 wait_event_lock_irq(conf->wait_barrier,
946                                     !conf->barrier ||
947                                     (conf->nr_pending &&
948                                      current->bio_list &&
949                                      (!bio_list_empty(&current->bio_list[0]) ||
950                                       !bio_list_empty(&current->bio_list[1]))),
951                                     conf->resync_lock);
952                 conf->nr_waiting--;
953         }
954         conf->nr_pending++;
955         spin_unlock_irq(&conf->resync_lock);
956 }
957
958 static void allow_barrier(struct r10conf *conf)
959 {
960         unsigned long flags;
961         spin_lock_irqsave(&conf->resync_lock, flags);
962         conf->nr_pending--;
963         spin_unlock_irqrestore(&conf->resync_lock, flags);
964         wake_up(&conf->wait_barrier);
965 }
966
967 static void freeze_array(struct r10conf *conf, int extra)
968 {
969         /* stop syncio and normal IO and wait for everything to
970          * go quiet.
971          * We increment barrier and nr_waiting, and then
972          * wait until nr_pending match nr_queued+extra
973          * This is called in the context of one normal IO request
974          * that has failed. Thus any sync request that might be pending
975          * will be blocked by nr_pending, and we need to wait for
976          * pending IO requests to complete or be queued for re-try.
977          * Thus the number queued (nr_queued) plus this request (extra)
978          * must match the number of pending IOs (nr_pending) before
979          * we continue.
980          */
981         spin_lock_irq(&conf->resync_lock);
982         conf->barrier++;
983         conf->nr_waiting++;
984         wait_event_lock_irq_cmd(conf->wait_barrier,
985                                 conf->nr_pending == conf->nr_queued+extra,
986                                 conf->resync_lock,
987                                 flush_pending_writes(conf));
988
989         spin_unlock_irq(&conf->resync_lock);
990 }
991
992 static void unfreeze_array(struct r10conf *conf)
993 {
994         /* reverse the effect of the freeze */
995         spin_lock_irq(&conf->resync_lock);
996         conf->barrier--;
997         conf->nr_waiting--;
998         wake_up(&conf->wait_barrier);
999         spin_unlock_irq(&conf->resync_lock);
1000 }
1001
1002 static sector_t choose_data_offset(struct r10bio *r10_bio,
1003                                    struct md_rdev *rdev)
1004 {
1005         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1006             test_bit(R10BIO_Previous, &r10_bio->state))
1007                 return rdev->data_offset;
1008         else
1009                 return rdev->new_data_offset;
1010 }
1011
1012 struct raid10_plug_cb {
1013         struct blk_plug_cb      cb;
1014         struct bio_list         pending;
1015         int                     pending_cnt;
1016 };
1017
1018 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1019 {
1020         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1021                                                    cb);
1022         struct mddev *mddev = plug->cb.data;
1023         struct r10conf *conf = mddev->private;
1024         struct bio *bio;
1025
1026         if (from_schedule || current->bio_list) {
1027                 spin_lock_irq(&conf->device_lock);
1028                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1029                 conf->pending_count += plug->pending_cnt;
1030                 spin_unlock_irq(&conf->device_lock);
1031                 wake_up(&conf->wait_barrier);
1032                 md_wakeup_thread(mddev->thread);
1033                 kfree(plug);
1034                 return;
1035         }
1036
1037         /* we aren't scheduling, so we can do the write-out directly. */
1038         bio = bio_list_get(&plug->pending);
1039         bitmap_unplug(mddev->bitmap);
1040         wake_up(&conf->wait_barrier);
1041
1042         while (bio) { /* submit pending writes */
1043                 struct bio *next = bio->bi_next;
1044                 bio->bi_next = NULL;
1045                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1046                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1047                         /* Just ignore it */
1048                         bio_endio(bio);
1049                 else
1050                         generic_make_request(bio);
1051                 bio = next;
1052         }
1053         kfree(plug);
1054 }
1055
1056 static void __make_request(struct mddev *mddev, struct bio *bio)
1057 {
1058         struct r10conf *conf = mddev->private;
1059         struct r10bio *r10_bio;
1060         struct bio *read_bio;
1061         int i;
1062         const int rw = bio_data_dir(bio);
1063         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1064         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1065         const unsigned long do_discard = (bio->bi_rw
1066                                           & (REQ_DISCARD | REQ_SECURE));
1067         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1068         unsigned long flags;
1069         struct md_rdev *blocked_rdev;
1070         struct blk_plug_cb *cb;
1071         struct raid10_plug_cb *plug = NULL;
1072         int sectors_handled;
1073         int max_sectors;
1074         int sectors;
1075
1076         md_write_start(mddev, bio);
1077
1078         /*
1079          * Register the new request and wait if the reconstruction
1080          * thread has put up a bar for new requests.
1081          * Continue immediately if no resync is active currently.
1082          */
1083         wait_barrier(conf);
1084
1085         sectors = bio_sectors(bio);
1086         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1087             bio->bi_iter.bi_sector < conf->reshape_progress &&
1088             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1089                 /* IO spans the reshape position.  Need to wait for
1090                  * reshape to pass
1091                  */
1092                 allow_barrier(conf);
1093                 wait_event(conf->wait_barrier,
1094                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1095                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1096                            sectors);
1097                 wait_barrier(conf);
1098         }
1099         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1100             bio_data_dir(bio) == WRITE &&
1101             (mddev->reshape_backwards
1102              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1103                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1104              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1105                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1106                 /* Need to update reshape_position in metadata */
1107                 mddev->reshape_position = conf->reshape_progress;
1108                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1109                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1110                 md_wakeup_thread(mddev->thread);
1111                 wait_event(mddev->sb_wait,
1112                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1113
1114                 conf->reshape_safe = mddev->reshape_position;
1115         }
1116
1117         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1118
1119         r10_bio->master_bio = bio;
1120         r10_bio->sectors = sectors;
1121
1122         r10_bio->mddev = mddev;
1123         r10_bio->sector = bio->bi_iter.bi_sector;
1124         r10_bio->state = 0;
1125
1126         /* We might need to issue multiple reads to different
1127          * devices if there are bad blocks around, so we keep
1128          * track of the number of reads in bio->bi_phys_segments.
1129          * If this is 0, there is only one r10_bio and no locking
1130          * will be needed when the request completes.  If it is
1131          * non-zero, then it is the number of not-completed requests.
1132          */
1133         bio->bi_phys_segments = 0;
1134         bio_clear_flag(bio, BIO_SEG_VALID);
1135
1136         if (rw == READ) {
1137                 /*
1138                  * read balancing logic:
1139                  */
1140                 struct md_rdev *rdev;
1141                 int slot;
1142
1143 read_again:
1144                 rdev = read_balance(conf, r10_bio, &max_sectors);
1145                 if (!rdev) {
1146                         raid_end_bio_io(r10_bio);
1147                         return;
1148                 }
1149                 slot = r10_bio->read_slot;
1150
1151                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1152                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1153                          max_sectors);
1154
1155                 r10_bio->devs[slot].bio = read_bio;
1156                 r10_bio->devs[slot].rdev = rdev;
1157
1158                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1159                         choose_data_offset(r10_bio, rdev);
1160                 read_bio->bi_bdev = rdev->bdev;
1161                 read_bio->bi_end_io = raid10_end_read_request;
1162                 read_bio->bi_rw = READ | do_sync;
1163                 read_bio->bi_private = r10_bio;
1164
1165                 if (max_sectors < r10_bio->sectors) {
1166                         /* Could not read all from this device, so we will
1167                          * need another r10_bio.
1168                          */
1169                         sectors_handled = (r10_bio->sector + max_sectors
1170                                            - bio->bi_iter.bi_sector);
1171                         r10_bio->sectors = max_sectors;
1172                         spin_lock_irq(&conf->device_lock);
1173                         if (bio->bi_phys_segments == 0)
1174                                 bio->bi_phys_segments = 2;
1175                         else
1176                                 bio->bi_phys_segments++;
1177                         spin_unlock_irq(&conf->device_lock);
1178                         /* Cannot call generic_make_request directly
1179                          * as that will be queued in __generic_make_request
1180                          * and subsequent mempool_alloc might block
1181                          * waiting for it.  so hand bio over to raid10d.
1182                          */
1183                         reschedule_retry(r10_bio);
1184
1185                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1186
1187                         r10_bio->master_bio = bio;
1188                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1189                         r10_bio->state = 0;
1190                         r10_bio->mddev = mddev;
1191                         r10_bio->sector = bio->bi_iter.bi_sector +
1192                                 sectors_handled;
1193                         goto read_again;
1194                 } else
1195                         generic_make_request(read_bio);
1196                 return;
1197         }
1198
1199         /*
1200          * WRITE:
1201          */
1202         if (conf->pending_count >= max_queued_requests) {
1203                 md_wakeup_thread(mddev->thread);
1204                 wait_event(conf->wait_barrier,
1205                            conf->pending_count < max_queued_requests);
1206         }
1207         /* first select target devices under rcu_lock and
1208          * inc refcount on their rdev.  Record them by setting
1209          * bios[x] to bio
1210          * If there are known/acknowledged bad blocks on any device
1211          * on which we have seen a write error, we want to avoid
1212          * writing to those blocks.  This potentially requires several
1213          * writes to write around the bad blocks.  Each set of writes
1214          * gets its own r10_bio with a set of bios attached.  The number
1215          * of r10_bios is recored in bio->bi_phys_segments just as with
1216          * the read case.
1217          */
1218
1219         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1220         raid10_find_phys(conf, r10_bio);
1221 retry_write:
1222         blocked_rdev = NULL;
1223         rcu_read_lock();
1224         max_sectors = r10_bio->sectors;
1225
1226         for (i = 0;  i < conf->copies; i++) {
1227                 int d = r10_bio->devs[i].devnum;
1228                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1229                 struct md_rdev *rrdev = rcu_dereference(
1230                         conf->mirrors[d].replacement);
1231                 if (rdev == rrdev)
1232                         rrdev = NULL;
1233                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234                         atomic_inc(&rdev->nr_pending);
1235                         blocked_rdev = rdev;
1236                         break;
1237                 }
1238                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1239                         atomic_inc(&rrdev->nr_pending);
1240                         blocked_rdev = rrdev;
1241                         break;
1242                 }
1243                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1244                         rdev = NULL;
1245                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1246                         rrdev = NULL;
1247
1248                 r10_bio->devs[i].bio = NULL;
1249                 r10_bio->devs[i].repl_bio = NULL;
1250
1251                 if (!rdev && !rrdev) {
1252                         set_bit(R10BIO_Degraded, &r10_bio->state);
1253                         continue;
1254                 }
1255                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1256                         sector_t first_bad;
1257                         sector_t dev_sector = r10_bio->devs[i].addr;
1258                         int bad_sectors;
1259                         int is_bad;
1260
1261                         is_bad = is_badblock(rdev, dev_sector,
1262                                              max_sectors,
1263                                              &first_bad, &bad_sectors);
1264                         if (is_bad < 0) {
1265                                 /* Mustn't write here until the bad block
1266                                  * is acknowledged
1267                                  */
1268                                 atomic_inc(&rdev->nr_pending);
1269                                 set_bit(BlockedBadBlocks, &rdev->flags);
1270                                 blocked_rdev = rdev;
1271                                 break;
1272                         }
1273                         if (is_bad && first_bad <= dev_sector) {
1274                                 /* Cannot write here at all */
1275                                 bad_sectors -= (dev_sector - first_bad);
1276                                 if (bad_sectors < max_sectors)
1277                                         /* Mustn't write more than bad_sectors
1278                                          * to other devices yet
1279                                          */
1280                                         max_sectors = bad_sectors;
1281                                 /* We don't set R10BIO_Degraded as that
1282                                  * only applies if the disk is missing,
1283                                  * so it might be re-added, and we want to
1284                                  * know to recover this chunk.
1285                                  * In this case the device is here, and the
1286                                  * fact that this chunk is not in-sync is
1287                                  * recorded in the bad block log.
1288                                  */
1289                                 continue;
1290                         }
1291                         if (is_bad) {
1292                                 int good_sectors = first_bad - dev_sector;
1293                                 if (good_sectors < max_sectors)
1294                                         max_sectors = good_sectors;
1295                         }
1296                 }
1297                 if (rdev) {
1298                         r10_bio->devs[i].bio = bio;
1299                         atomic_inc(&rdev->nr_pending);
1300                 }
1301                 if (rrdev) {
1302                         r10_bio->devs[i].repl_bio = bio;
1303                         atomic_inc(&rrdev->nr_pending);
1304                 }
1305         }
1306         rcu_read_unlock();
1307
1308         if (unlikely(blocked_rdev)) {
1309                 /* Have to wait for this device to get unblocked, then retry */
1310                 int j;
1311                 int d;
1312
1313                 for (j = 0; j < i; j++) {
1314                         if (r10_bio->devs[j].bio) {
1315                                 d = r10_bio->devs[j].devnum;
1316                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1317                         }
1318                         if (r10_bio->devs[j].repl_bio) {
1319                                 struct md_rdev *rdev;
1320                                 d = r10_bio->devs[j].devnum;
1321                                 rdev = conf->mirrors[d].replacement;
1322                                 if (!rdev) {
1323                                         /* Race with remove_disk */
1324                                         smp_mb();
1325                                         rdev = conf->mirrors[d].rdev;
1326                                 }
1327                                 rdev_dec_pending(rdev, mddev);
1328                         }
1329                 }
1330                 allow_barrier(conf);
1331                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1332                 wait_barrier(conf);
1333                 goto retry_write;
1334         }
1335
1336         if (max_sectors < r10_bio->sectors) {
1337                 /* We are splitting this into multiple parts, so
1338                  * we need to prepare for allocating another r10_bio.
1339                  */
1340                 r10_bio->sectors = max_sectors;
1341                 spin_lock_irq(&conf->device_lock);
1342                 if (bio->bi_phys_segments == 0)
1343                         bio->bi_phys_segments = 2;
1344                 else
1345                         bio->bi_phys_segments++;
1346                 spin_unlock_irq(&conf->device_lock);
1347         }
1348         sectors_handled = r10_bio->sector + max_sectors -
1349                 bio->bi_iter.bi_sector;
1350
1351         atomic_set(&r10_bio->remaining, 1);
1352         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1353
1354         for (i = 0; i < conf->copies; i++) {
1355                 struct bio *mbio;
1356                 int d = r10_bio->devs[i].devnum;
1357                 if (r10_bio->devs[i].bio) {
1358                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1359                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1360                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1361                                  max_sectors);
1362                         r10_bio->devs[i].bio = mbio;
1363
1364                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1365                                            choose_data_offset(r10_bio,
1366                                                               rdev));
1367                         mbio->bi_bdev = rdev->bdev;
1368                         mbio->bi_end_io = raid10_end_write_request;
1369                         mbio->bi_rw =
1370                                 WRITE | do_sync | do_fua | do_discard | do_same;
1371                         mbio->bi_private = r10_bio;
1372
1373                         atomic_inc(&r10_bio->remaining);
1374
1375                         cb = blk_check_plugged(raid10_unplug, mddev,
1376                                                sizeof(*plug));
1377                         if (cb)
1378                                 plug = container_of(cb, struct raid10_plug_cb,
1379                                                     cb);
1380                         else
1381                                 plug = NULL;
1382                         spin_lock_irqsave(&conf->device_lock, flags);
1383                         if (plug) {
1384                                 bio_list_add(&plug->pending, mbio);
1385                                 plug->pending_cnt++;
1386                         } else {
1387                                 bio_list_add(&conf->pending_bio_list, mbio);
1388                                 conf->pending_count++;
1389                         }
1390                         spin_unlock_irqrestore(&conf->device_lock, flags);
1391                         if (!plug)
1392                                 md_wakeup_thread(mddev->thread);
1393                 }
1394
1395                 if (r10_bio->devs[i].repl_bio) {
1396                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1397                         if (rdev == NULL) {
1398                                 /* Replacement just got moved to main 'rdev' */
1399                                 smp_mb();
1400                                 rdev = conf->mirrors[d].rdev;
1401                         }
1402                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1403                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1404                                  max_sectors);
1405                         r10_bio->devs[i].repl_bio = mbio;
1406
1407                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1408                                            choose_data_offset(
1409                                                    r10_bio, rdev));
1410                         mbio->bi_bdev = rdev->bdev;
1411                         mbio->bi_end_io = raid10_end_write_request;
1412                         mbio->bi_rw =
1413                                 WRITE | do_sync | do_fua | do_discard | do_same;
1414                         mbio->bi_private = r10_bio;
1415
1416                         atomic_inc(&r10_bio->remaining);
1417
1418                         cb = blk_check_plugged(raid10_unplug, mddev,
1419                                                sizeof(*plug));
1420                         if (cb)
1421                                 plug = container_of(cb, struct raid10_plug_cb,
1422                                                     cb);
1423                         else
1424                                 plug = NULL;
1425                         spin_lock_irqsave(&conf->device_lock, flags);
1426                         if (plug) {
1427                                 bio_list_add(&plug->pending, mbio);
1428                                 plug->pending_cnt++;
1429                         } else {
1430                                 bio_list_add(&conf->pending_bio_list, mbio);
1431                                 conf->pending_count++;
1432                         }
1433                         spin_unlock_irqrestore(&conf->device_lock, flags);
1434                         if (!plug)
1435                                 md_wakeup_thread(mddev->thread);
1436                 }
1437         }
1438
1439         /* Don't remove the bias on 'remaining' (one_write_done) until
1440          * after checking if we need to go around again.
1441          */
1442
1443         if (sectors_handled < bio_sectors(bio)) {
1444                 one_write_done(r10_bio);
1445                 /* We need another r10_bio.  It has already been counted
1446                  * in bio->bi_phys_segments.
1447                  */
1448                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1449
1450                 r10_bio->master_bio = bio;
1451                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1452
1453                 r10_bio->mddev = mddev;
1454                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1455                 r10_bio->state = 0;
1456                 goto retry_write;
1457         }
1458         one_write_done(r10_bio);
1459 }
1460
1461 static void make_request(struct mddev *mddev, struct bio *bio)
1462 {
1463         struct r10conf *conf = mddev->private;
1464         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1465         int chunk_sects = chunk_mask + 1;
1466
1467         struct bio *split;
1468
1469         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1470                 md_flush_request(mddev, bio);
1471                 return;
1472         }
1473
1474         do {
1475
1476                 /*
1477                  * If this request crosses a chunk boundary, we need to split
1478                  * it.
1479                  */
1480                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1481                              bio_sectors(bio) > chunk_sects
1482                              && (conf->geo.near_copies < conf->geo.raid_disks
1483                                  || conf->prev.near_copies <
1484                                  conf->prev.raid_disks))) {
1485                         split = bio_split(bio, chunk_sects -
1486                                           (bio->bi_iter.bi_sector &
1487                                            (chunk_sects - 1)),
1488                                           GFP_NOIO, fs_bio_set);
1489                         bio_chain(split, bio);
1490                 } else {
1491                         split = bio;
1492                 }
1493
1494                 /*
1495                  * If a bio is splitted, the first part of bio will pass
1496                  * barrier but the bio is queued in current->bio_list (see
1497                  * generic_make_request). If there is a raise_barrier() called
1498                  * here, the second part of bio can't pass barrier. But since
1499                  * the first part bio isn't dispatched to underlaying disks
1500                  * yet, the barrier is never released, hence raise_barrier will
1501                  * alays wait. We have a deadlock.
1502                  * Note, this only happens in read path. For write path, the
1503                  * first part of bio is dispatched in a schedule() call
1504                  * (because of blk plug) or offloaded to raid10d.
1505                  * Quitting from the function immediately can change the bio
1506                  * order queued in bio_list and avoid the deadlock.
1507                  */
1508                 __make_request(mddev, split);
1509                 if (split != bio && bio_data_dir(bio) == READ) {
1510                         generic_make_request(bio);
1511                         break;
1512                 }
1513         } while (split != bio);
1514
1515         /* In case raid10d snuck in to freeze_array */
1516         wake_up(&conf->wait_barrier);
1517 }
1518
1519 static void status(struct seq_file *seq, struct mddev *mddev)
1520 {
1521         struct r10conf *conf = mddev->private;
1522         int i;
1523
1524         if (conf->geo.near_copies < conf->geo.raid_disks)
1525                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1526         if (conf->geo.near_copies > 1)
1527                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1528         if (conf->geo.far_copies > 1) {
1529                 if (conf->geo.far_offset)
1530                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1531                 else
1532                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1533                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1534                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1535         }
1536         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1537                                         conf->geo.raid_disks - mddev->degraded);
1538         for (i = 0; i < conf->geo.raid_disks; i++)
1539                 seq_printf(seq, "%s",
1540                               conf->mirrors[i].rdev &&
1541                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1542         seq_printf(seq, "]");
1543 }
1544
1545 /* check if there are enough drives for
1546  * every block to appear on atleast one.
1547  * Don't consider the device numbered 'ignore'
1548  * as we might be about to remove it.
1549  */
1550 static int _enough(struct r10conf *conf, int previous, int ignore)
1551 {
1552         int first = 0;
1553         int has_enough = 0;
1554         int disks, ncopies;
1555         if (previous) {
1556                 disks = conf->prev.raid_disks;
1557                 ncopies = conf->prev.near_copies;
1558         } else {
1559                 disks = conf->geo.raid_disks;
1560                 ncopies = conf->geo.near_copies;
1561         }
1562
1563         rcu_read_lock();
1564         do {
1565                 int n = conf->copies;
1566                 int cnt = 0;
1567                 int this = first;
1568                 while (n--) {
1569                         struct md_rdev *rdev;
1570                         if (this != ignore &&
1571                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1572                             test_bit(In_sync, &rdev->flags))
1573                                 cnt++;
1574                         this = (this+1) % disks;
1575                 }
1576                 if (cnt == 0)
1577                         goto out;
1578                 first = (first + ncopies) % disks;
1579         } while (first != 0);
1580         has_enough = 1;
1581 out:
1582         rcu_read_unlock();
1583         return has_enough;
1584 }
1585
1586 static int enough(struct r10conf *conf, int ignore)
1587 {
1588         /* when calling 'enough', both 'prev' and 'geo' must
1589          * be stable.
1590          * This is ensured if ->reconfig_mutex or ->device_lock
1591          * is held.
1592          */
1593         return _enough(conf, 0, ignore) &&
1594                 _enough(conf, 1, ignore);
1595 }
1596
1597 static void error(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599         char b[BDEVNAME_SIZE];
1600         struct r10conf *conf = mddev->private;
1601         unsigned long flags;
1602
1603         /*
1604          * If it is not operational, then we have already marked it as dead
1605          * else if it is the last working disks, ignore the error, let the
1606          * next level up know.
1607          * else mark the drive as failed
1608          */
1609         spin_lock_irqsave(&conf->device_lock, flags);
1610         if (test_bit(In_sync, &rdev->flags)
1611             && !enough(conf, rdev->raid_disk)) {
1612                 /*
1613                  * Don't fail the drive, just return an IO error.
1614                  */
1615                 spin_unlock_irqrestore(&conf->device_lock, flags);
1616                 return;
1617         }
1618         if (test_and_clear_bit(In_sync, &rdev->flags))
1619                 mddev->degraded++;
1620         /*
1621          * If recovery is running, make sure it aborts.
1622          */
1623         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1624         set_bit(Blocked, &rdev->flags);
1625         set_bit(Faulty, &rdev->flags);
1626         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1628         spin_unlock_irqrestore(&conf->device_lock, flags);
1629         printk(KERN_ALERT
1630                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1631                "md/raid10:%s: Operation continuing on %d devices.\n",
1632                mdname(mddev), bdevname(rdev->bdev, b),
1633                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1634 }
1635
1636 static void print_conf(struct r10conf *conf)
1637 {
1638         int i;
1639         struct raid10_info *tmp;
1640
1641         printk(KERN_DEBUG "RAID10 conf printout:\n");
1642         if (!conf) {
1643                 printk(KERN_DEBUG "(!conf)\n");
1644                 return;
1645         }
1646         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1647                 conf->geo.raid_disks);
1648
1649         for (i = 0; i < conf->geo.raid_disks; i++) {
1650                 char b[BDEVNAME_SIZE];
1651                 tmp = conf->mirrors + i;
1652                 if (tmp->rdev)
1653                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1654                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1655                                 !test_bit(Faulty, &tmp->rdev->flags),
1656                                 bdevname(tmp->rdev->bdev,b));
1657         }
1658 }
1659
1660 static void close_sync(struct r10conf *conf)
1661 {
1662         wait_barrier(conf);
1663         allow_barrier(conf);
1664
1665         mempool_destroy(conf->r10buf_pool);
1666         conf->r10buf_pool = NULL;
1667 }
1668
1669 static int raid10_spare_active(struct mddev *mddev)
1670 {
1671         int i;
1672         struct r10conf *conf = mddev->private;
1673         struct raid10_info *tmp;
1674         int count = 0;
1675         unsigned long flags;
1676
1677         /*
1678          * Find all non-in_sync disks within the RAID10 configuration
1679          * and mark them in_sync
1680          */
1681         for (i = 0; i < conf->geo.raid_disks; i++) {
1682                 tmp = conf->mirrors + i;
1683                 if (tmp->replacement
1684                     && tmp->replacement->recovery_offset == MaxSector
1685                     && !test_bit(Faulty, &tmp->replacement->flags)
1686                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1687                         /* Replacement has just become active */
1688                         if (!tmp->rdev
1689                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1690                                 count++;
1691                         if (tmp->rdev) {
1692                                 /* Replaced device not technically faulty,
1693                                  * but we need to be sure it gets removed
1694                                  * and never re-added.
1695                                  */
1696                                 set_bit(Faulty, &tmp->rdev->flags);
1697                                 sysfs_notify_dirent_safe(
1698                                         tmp->rdev->sysfs_state);
1699                         }
1700                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1701                 } else if (tmp->rdev
1702                            && tmp->rdev->recovery_offset == MaxSector
1703                            && !test_bit(Faulty, &tmp->rdev->flags)
1704                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705                         count++;
1706                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1707                 }
1708         }
1709         spin_lock_irqsave(&conf->device_lock, flags);
1710         mddev->degraded -= count;
1711         spin_unlock_irqrestore(&conf->device_lock, flags);
1712
1713         print_conf(conf);
1714         return count;
1715 }
1716
1717 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1718 {
1719         struct r10conf *conf = mddev->private;
1720         int err = -EEXIST;
1721         int mirror;
1722         int first = 0;
1723         int last = conf->geo.raid_disks - 1;
1724
1725         if (mddev->recovery_cp < MaxSector)
1726                 /* only hot-add to in-sync arrays, as recovery is
1727                  * very different from resync
1728                  */
1729                 return -EBUSY;
1730         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1731                 return -EINVAL;
1732
1733         if (md_integrity_add_rdev(rdev, mddev))
1734                 return -ENXIO;
1735
1736         if (rdev->raid_disk >= 0)
1737                 first = last = rdev->raid_disk;
1738
1739         if (rdev->saved_raid_disk >= first &&
1740             rdev->saved_raid_disk < conf->geo.raid_disks &&
1741             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1742                 mirror = rdev->saved_raid_disk;
1743         else
1744                 mirror = first;
1745         for ( ; mirror <= last ; mirror++) {
1746                 struct raid10_info *p = &conf->mirrors[mirror];
1747                 if (p->recovery_disabled == mddev->recovery_disabled)
1748                         continue;
1749                 if (p->rdev) {
1750                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1751                             p->replacement != NULL)
1752                                 continue;
1753                         clear_bit(In_sync, &rdev->flags);
1754                         set_bit(Replacement, &rdev->flags);
1755                         rdev->raid_disk = mirror;
1756                         err = 0;
1757                         if (mddev->gendisk)
1758                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1759                                                   rdev->data_offset << 9);
1760                         conf->fullsync = 1;
1761                         rcu_assign_pointer(p->replacement, rdev);
1762                         break;
1763                 }
1764
1765                 if (mddev->gendisk)
1766                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1767                                           rdev->data_offset << 9);
1768
1769                 p->head_position = 0;
1770                 p->recovery_disabled = mddev->recovery_disabled - 1;
1771                 rdev->raid_disk = mirror;
1772                 err = 0;
1773                 if (rdev->saved_raid_disk != mirror)
1774                         conf->fullsync = 1;
1775                 rcu_assign_pointer(p->rdev, rdev);
1776                 break;
1777         }
1778         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1779                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1780
1781         print_conf(conf);
1782         return err;
1783 }
1784
1785 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1786 {
1787         struct r10conf *conf = mddev->private;
1788         int err = 0;
1789         int number = rdev->raid_disk;
1790         struct md_rdev **rdevp;
1791         struct raid10_info *p = conf->mirrors + number;
1792
1793         print_conf(conf);
1794         if (rdev == p->rdev)
1795                 rdevp = &p->rdev;
1796         else if (rdev == p->replacement)
1797                 rdevp = &p->replacement;
1798         else
1799                 return 0;
1800
1801         if (test_bit(In_sync, &rdev->flags) ||
1802             atomic_read(&rdev->nr_pending)) {
1803                 err = -EBUSY;
1804                 goto abort;
1805         }
1806         /* Only remove faulty devices if recovery
1807          * is not possible.
1808          */
1809         if (!test_bit(Faulty, &rdev->flags) &&
1810             mddev->recovery_disabled != p->recovery_disabled &&
1811             (!p->replacement || p->replacement == rdev) &&
1812             number < conf->geo.raid_disks &&
1813             enough(conf, -1)) {
1814                 err = -EBUSY;
1815                 goto abort;
1816         }
1817         *rdevp = NULL;
1818         synchronize_rcu();
1819         if (atomic_read(&rdev->nr_pending)) {
1820                 /* lost the race, try later */
1821                 err = -EBUSY;
1822                 *rdevp = rdev;
1823                 goto abort;
1824         } else if (p->replacement) {
1825                 /* We must have just cleared 'rdev' */
1826                 p->rdev = p->replacement;
1827                 clear_bit(Replacement, &p->replacement->flags);
1828                 smp_mb(); /* Make sure other CPUs may see both as identical
1829                            * but will never see neither -- if they are careful.
1830                            */
1831                 p->replacement = NULL;
1832                 clear_bit(WantReplacement, &rdev->flags);
1833         } else
1834                 /* We might have just remove the Replacement as faulty
1835                  * Clear the flag just in case
1836                  */
1837                 clear_bit(WantReplacement, &rdev->flags);
1838
1839         err = md_integrity_register(mddev);
1840
1841 abort:
1842
1843         print_conf(conf);
1844         return err;
1845 }
1846
1847 static void end_sync_read(struct bio *bio)
1848 {
1849         struct r10bio *r10_bio = bio->bi_private;
1850         struct r10conf *conf = r10_bio->mddev->private;
1851         int d;
1852
1853         if (bio == r10_bio->master_bio) {
1854                 /* this is a reshape read */
1855                 d = r10_bio->read_slot; /* really the read dev */
1856         } else
1857                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1858
1859         if (!bio->bi_error)
1860                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1861         else
1862                 /* The write handler will notice the lack of
1863                  * R10BIO_Uptodate and record any errors etc
1864                  */
1865                 atomic_add(r10_bio->sectors,
1866                            &conf->mirrors[d].rdev->corrected_errors);
1867
1868         /* for reconstruct, we always reschedule after a read.
1869          * for resync, only after all reads
1870          */
1871         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1872         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1873             atomic_dec_and_test(&r10_bio->remaining)) {
1874                 /* we have read all the blocks,
1875                  * do the comparison in process context in raid10d
1876                  */
1877                 reschedule_retry(r10_bio);
1878         }
1879 }
1880
1881 static void end_sync_request(struct r10bio *r10_bio)
1882 {
1883         struct mddev *mddev = r10_bio->mddev;
1884
1885         while (atomic_dec_and_test(&r10_bio->remaining)) {
1886                 if (r10_bio->master_bio == NULL) {
1887                         /* the primary of several recovery bios */
1888                         sector_t s = r10_bio->sectors;
1889                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1890                             test_bit(R10BIO_WriteError, &r10_bio->state))
1891                                 reschedule_retry(r10_bio);
1892                         else
1893                                 put_buf(r10_bio);
1894                         md_done_sync(mddev, s, 1);
1895                         break;
1896                 } else {
1897                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1898                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1899                             test_bit(R10BIO_WriteError, &r10_bio->state))
1900                                 reschedule_retry(r10_bio);
1901                         else
1902                                 put_buf(r10_bio);
1903                         r10_bio = r10_bio2;
1904                 }
1905         }
1906 }
1907
1908 static void end_sync_write(struct bio *bio)
1909 {
1910         struct r10bio *r10_bio = bio->bi_private;
1911         struct mddev *mddev = r10_bio->mddev;
1912         struct r10conf *conf = mddev->private;
1913         int d;
1914         sector_t first_bad;
1915         int bad_sectors;
1916         int slot;
1917         int repl;
1918         struct md_rdev *rdev = NULL;
1919
1920         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1921         if (repl)
1922                 rdev = conf->mirrors[d].replacement;
1923         else
1924                 rdev = conf->mirrors[d].rdev;
1925
1926         if (bio->bi_error) {
1927                 if (repl)
1928                         md_error(mddev, rdev);
1929                 else {
1930                         set_bit(WriteErrorSeen, &rdev->flags);
1931                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1932                                 set_bit(MD_RECOVERY_NEEDED,
1933                                         &rdev->mddev->recovery);
1934                         set_bit(R10BIO_WriteError, &r10_bio->state);
1935                 }
1936         } else if (is_badblock(rdev,
1937                              r10_bio->devs[slot].addr,
1938                              r10_bio->sectors,
1939                              &first_bad, &bad_sectors))
1940                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1941
1942         rdev_dec_pending(rdev, mddev);
1943
1944         end_sync_request(r10_bio);
1945 }
1946
1947 /*
1948  * Note: sync and recover and handled very differently for raid10
1949  * This code is for resync.
1950  * For resync, we read through virtual addresses and read all blocks.
1951  * If there is any error, we schedule a write.  The lowest numbered
1952  * drive is authoritative.
1953  * However requests come for physical address, so we need to map.
1954  * For every physical address there are raid_disks/copies virtual addresses,
1955  * which is always are least one, but is not necessarly an integer.
1956  * This means that a physical address can span multiple chunks, so we may
1957  * have to submit multiple io requests for a single sync request.
1958  */
1959 /*
1960  * We check if all blocks are in-sync and only write to blocks that
1961  * aren't in sync
1962  */
1963 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1964 {
1965         struct r10conf *conf = mddev->private;
1966         int i, first;
1967         struct bio *tbio, *fbio;
1968         int vcnt;
1969
1970         atomic_set(&r10_bio->remaining, 1);
1971
1972         /* find the first device with a block */
1973         for (i=0; i<conf->copies; i++)
1974                 if (!r10_bio->devs[i].bio->bi_error)
1975                         break;
1976
1977         if (i == conf->copies)
1978                 goto done;
1979
1980         first = i;
1981         fbio = r10_bio->devs[i].bio;
1982         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1983         fbio->bi_iter.bi_idx = 0;
1984
1985         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1986         /* now find blocks with errors */
1987         for (i=0 ; i < conf->copies ; i++) {
1988                 int  j, d;
1989
1990                 tbio = r10_bio->devs[i].bio;
1991
1992                 if (tbio->bi_end_io != end_sync_read)
1993                         continue;
1994                 if (i == first)
1995                         continue;
1996                 if (!r10_bio->devs[i].bio->bi_error) {
1997                         /* We know that the bi_io_vec layout is the same for
1998                          * both 'first' and 'i', so we just compare them.
1999                          * All vec entries are PAGE_SIZE;
2000                          */
2001                         int sectors = r10_bio->sectors;
2002                         for (j = 0; j < vcnt; j++) {
2003                                 int len = PAGE_SIZE;
2004                                 if (sectors < (len / 512))
2005                                         len = sectors * 512;
2006                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2007                                            page_address(tbio->bi_io_vec[j].bv_page),
2008                                            len))
2009                                         break;
2010                                 sectors -= len/512;
2011                         }
2012                         if (j == vcnt)
2013                                 continue;
2014                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2015                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2016                                 /* Don't fix anything. */
2017                                 continue;
2018                 }
2019                 /* Ok, we need to write this bio, either to correct an
2020                  * inconsistency or to correct an unreadable block.
2021                  * First we need to fixup bv_offset, bv_len and
2022                  * bi_vecs, as the read request might have corrupted these
2023                  */
2024                 bio_reset(tbio);
2025
2026                 tbio->bi_vcnt = vcnt;
2027                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2028                 tbio->bi_rw = WRITE;
2029                 tbio->bi_private = r10_bio;
2030                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2031                 tbio->bi_end_io = end_sync_write;
2032
2033                 bio_copy_data(tbio, fbio);
2034
2035                 d = r10_bio->devs[i].devnum;
2036                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2037                 atomic_inc(&r10_bio->remaining);
2038                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2039
2040                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2041                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2042                 generic_make_request(tbio);
2043         }
2044
2045         /* Now write out to any replacement devices
2046          * that are active
2047          */
2048         for (i = 0; i < conf->copies; i++) {
2049                 int d;
2050
2051                 tbio = r10_bio->devs[i].repl_bio;
2052                 if (!tbio || !tbio->bi_end_io)
2053                         continue;
2054                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2055                     && r10_bio->devs[i].bio != fbio)
2056                         bio_copy_data(tbio, fbio);
2057                 d = r10_bio->devs[i].devnum;
2058                 atomic_inc(&r10_bio->remaining);
2059                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2060                              bio_sectors(tbio));
2061                 generic_make_request(tbio);
2062         }
2063
2064 done:
2065         if (atomic_dec_and_test(&r10_bio->remaining)) {
2066                 md_done_sync(mddev, r10_bio->sectors, 1);
2067                 put_buf(r10_bio);
2068         }
2069 }
2070
2071 /*
2072  * Now for the recovery code.
2073  * Recovery happens across physical sectors.
2074  * We recover all non-is_sync drives by finding the virtual address of
2075  * each, and then choose a working drive that also has that virt address.
2076  * There is a separate r10_bio for each non-in_sync drive.
2077  * Only the first two slots are in use. The first for reading,
2078  * The second for writing.
2079  *
2080  */
2081 static void fix_recovery_read_error(struct r10bio *r10_bio)
2082 {
2083         /* We got a read error during recovery.
2084          * We repeat the read in smaller page-sized sections.
2085          * If a read succeeds, write it to the new device or record
2086          * a bad block if we cannot.
2087          * If a read fails, record a bad block on both old and
2088          * new devices.
2089          */
2090         struct mddev *mddev = r10_bio->mddev;
2091         struct r10conf *conf = mddev->private;
2092         struct bio *bio = r10_bio->devs[0].bio;
2093         sector_t sect = 0;
2094         int sectors = r10_bio->sectors;
2095         int idx = 0;
2096         int dr = r10_bio->devs[0].devnum;
2097         int dw = r10_bio->devs[1].devnum;
2098
2099         while (sectors) {
2100                 int s = sectors;
2101                 struct md_rdev *rdev;
2102                 sector_t addr;
2103                 int ok;
2104
2105                 if (s > (PAGE_SIZE>>9))
2106                         s = PAGE_SIZE >> 9;
2107
2108                 rdev = conf->mirrors[dr].rdev;
2109                 addr = r10_bio->devs[0].addr + sect,
2110                 ok = sync_page_io(rdev,
2111                                   addr,
2112                                   s << 9,
2113                                   bio->bi_io_vec[idx].bv_page,
2114                                   READ, false);
2115                 if (ok) {
2116                         rdev = conf->mirrors[dw].rdev;
2117                         addr = r10_bio->devs[1].addr + sect;
2118                         ok = sync_page_io(rdev,
2119                                           addr,
2120                                           s << 9,
2121                                           bio->bi_io_vec[idx].bv_page,
2122                                           WRITE, false);
2123                         if (!ok) {
2124                                 set_bit(WriteErrorSeen, &rdev->flags);
2125                                 if (!test_and_set_bit(WantReplacement,
2126                                                       &rdev->flags))
2127                                         set_bit(MD_RECOVERY_NEEDED,
2128                                                 &rdev->mddev->recovery);
2129                         }
2130                 }
2131                 if (!ok) {
2132                         /* We don't worry if we cannot set a bad block -
2133                          * it really is bad so there is no loss in not
2134                          * recording it yet
2135                          */
2136                         rdev_set_badblocks(rdev, addr, s, 0);
2137
2138                         if (rdev != conf->mirrors[dw].rdev) {
2139                                 /* need bad block on destination too */
2140                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2141                                 addr = r10_bio->devs[1].addr + sect;
2142                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2143                                 if (!ok) {
2144                                         /* just abort the recovery */
2145                                         printk(KERN_NOTICE
2146                                                "md/raid10:%s: recovery aborted"
2147                                                " due to read error\n",
2148                                                mdname(mddev));
2149
2150                                         conf->mirrors[dw].recovery_disabled
2151                                                 = mddev->recovery_disabled;
2152                                         set_bit(MD_RECOVERY_INTR,
2153                                                 &mddev->recovery);
2154                                         break;
2155                                 }
2156                         }
2157                 }
2158
2159                 sectors -= s;
2160                 sect += s;
2161                 idx++;
2162         }
2163 }
2164
2165 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2166 {
2167         struct r10conf *conf = mddev->private;
2168         int d;
2169         struct bio *wbio, *wbio2;
2170
2171         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2172                 fix_recovery_read_error(r10_bio);
2173                 end_sync_request(r10_bio);
2174                 return;
2175         }
2176
2177         /*
2178          * share the pages with the first bio
2179          * and submit the write request
2180          */
2181         d = r10_bio->devs[1].devnum;
2182         wbio = r10_bio->devs[1].bio;
2183         wbio2 = r10_bio->devs[1].repl_bio;
2184         /* Need to test wbio2->bi_end_io before we call
2185          * generic_make_request as if the former is NULL,
2186          * the latter is free to free wbio2.
2187          */
2188         if (wbio2 && !wbio2->bi_end_io)
2189                 wbio2 = NULL;
2190         if (wbio->bi_end_io) {
2191                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2192                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2193                 generic_make_request(wbio);
2194         }
2195         if (wbio2) {
2196                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2197                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2198                              bio_sectors(wbio2));
2199                 generic_make_request(wbio2);
2200         }
2201 }
2202
2203 /*
2204  * Used by fix_read_error() to decay the per rdev read_errors.
2205  * We halve the read error count for every hour that has elapsed
2206  * since the last recorded read error.
2207  *
2208  */
2209 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2210 {
2211         struct timespec cur_time_mon;
2212         unsigned long hours_since_last;
2213         unsigned int read_errors = atomic_read(&rdev->read_errors);
2214
2215         ktime_get_ts(&cur_time_mon);
2216
2217         if (rdev->last_read_error.tv_sec == 0 &&
2218             rdev->last_read_error.tv_nsec == 0) {
2219                 /* first time we've seen a read error */
2220                 rdev->last_read_error = cur_time_mon;
2221                 return;
2222         }
2223
2224         hours_since_last = (cur_time_mon.tv_sec -
2225                             rdev->last_read_error.tv_sec) / 3600;
2226
2227         rdev->last_read_error = cur_time_mon;
2228
2229         /*
2230          * if hours_since_last is > the number of bits in read_errors
2231          * just set read errors to 0. We do this to avoid
2232          * overflowing the shift of read_errors by hours_since_last.
2233          */
2234         if (hours_since_last >= 8 * sizeof(read_errors))
2235                 atomic_set(&rdev->read_errors, 0);
2236         else
2237                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2238 }
2239
2240 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2241                             int sectors, struct page *page, int rw)
2242 {
2243         sector_t first_bad;
2244         int bad_sectors;
2245
2246         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2247             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2248                 return -1;
2249         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2250                 /* success */
2251                 return 1;
2252         if (rw == WRITE) {
2253                 set_bit(WriteErrorSeen, &rdev->flags);
2254                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2255                         set_bit(MD_RECOVERY_NEEDED,
2256                                 &rdev->mddev->recovery);
2257         }
2258         /* need to record an error - either for the block or the device */
2259         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2260                 md_error(rdev->mddev, rdev);
2261         return 0;
2262 }
2263
2264 /*
2265  * This is a kernel thread which:
2266  *
2267  *      1.      Retries failed read operations on working mirrors.
2268  *      2.      Updates the raid superblock when problems encounter.
2269  *      3.      Performs writes following reads for array synchronising.
2270  */
2271
2272 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2273 {
2274         int sect = 0; /* Offset from r10_bio->sector */
2275         int sectors = r10_bio->sectors;
2276         struct md_rdev*rdev;
2277         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2278         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2279
2280         /* still own a reference to this rdev, so it cannot
2281          * have been cleared recently.
2282          */
2283         rdev = conf->mirrors[d].rdev;
2284
2285         if (test_bit(Faulty, &rdev->flags))
2286                 /* drive has already been failed, just ignore any
2287                    more fix_read_error() attempts */
2288                 return;
2289
2290         check_decay_read_errors(mddev, rdev);
2291         atomic_inc(&rdev->read_errors);
2292         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2293                 char b[BDEVNAME_SIZE];
2294                 bdevname(rdev->bdev, b);
2295
2296                 printk(KERN_NOTICE
2297                        "md/raid10:%s: %s: Raid device exceeded "
2298                        "read_error threshold [cur %d:max %d]\n",
2299                        mdname(mddev), b,
2300                        atomic_read(&rdev->read_errors), max_read_errors);
2301                 printk(KERN_NOTICE
2302                        "md/raid10:%s: %s: Failing raid device\n",
2303                        mdname(mddev), b);
2304                 md_error(mddev, conf->mirrors[d].rdev);
2305                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2306                 return;
2307         }
2308
2309         while(sectors) {
2310                 int s = sectors;
2311                 int sl = r10_bio->read_slot;
2312                 int success = 0;
2313                 int start;
2314
2315                 if (s > (PAGE_SIZE>>9))
2316                         s = PAGE_SIZE >> 9;
2317
2318                 rcu_read_lock();
2319                 do {
2320                         sector_t first_bad;
2321                         int bad_sectors;
2322
2323                         d = r10_bio->devs[sl].devnum;
2324                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2325                         if (rdev &&
2326                             test_bit(In_sync, &rdev->flags) &&
2327                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2328                                         &first_bad, &bad_sectors) == 0) {
2329                                 atomic_inc(&rdev->nr_pending);
2330                                 rcu_read_unlock();
2331                                 success = sync_page_io(rdev,
2332                                                        r10_bio->devs[sl].addr +
2333                                                        sect,
2334                                                        s<<9,
2335                                                        conf->tmppage, READ, false);
2336                                 rdev_dec_pending(rdev, mddev);
2337                                 rcu_read_lock();
2338                                 if (success)
2339                                         break;
2340                         }
2341                         sl++;
2342                         if (sl == conf->copies)
2343                                 sl = 0;
2344                 } while (!success && sl != r10_bio->read_slot);
2345                 rcu_read_unlock();
2346
2347                 if (!success) {
2348                         /* Cannot read from anywhere, just mark the block
2349                          * as bad on the first device to discourage future
2350                          * reads.
2351                          */
2352                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2353                         rdev = conf->mirrors[dn].rdev;
2354
2355                         if (!rdev_set_badblocks(
2356                                     rdev,
2357                                     r10_bio->devs[r10_bio->read_slot].addr
2358                                     + sect,
2359                                     s, 0)) {
2360                                 md_error(mddev, rdev);
2361                                 r10_bio->devs[r10_bio->read_slot].bio
2362                                         = IO_BLOCKED;
2363                         }
2364                         break;
2365                 }
2366
2367                 start = sl;
2368                 /* write it back and re-read */
2369                 rcu_read_lock();
2370                 while (sl != r10_bio->read_slot) {
2371                         char b[BDEVNAME_SIZE];
2372
2373                         if (sl==0)
2374                                 sl = conf->copies;
2375                         sl--;
2376                         d = r10_bio->devs[sl].devnum;
2377                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2378                         if (!rdev ||
2379                             !test_bit(In_sync, &rdev->flags))
2380                                 continue;
2381
2382                         atomic_inc(&rdev->nr_pending);
2383                         rcu_read_unlock();
2384                         if (r10_sync_page_io(rdev,
2385                                              r10_bio->devs[sl].addr +
2386                                              sect,
2387                                              s, conf->tmppage, WRITE)
2388                             == 0) {
2389                                 /* Well, this device is dead */
2390                                 printk(KERN_NOTICE
2391                                        "md/raid10:%s: read correction "
2392                                        "write failed"
2393                                        " (%d sectors at %llu on %s)\n",
2394                                        mdname(mddev), s,
2395                                        (unsigned long long)(
2396                                                sect +
2397                                                choose_data_offset(r10_bio,
2398                                                                   rdev)),
2399                                        bdevname(rdev->bdev, b));
2400                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2401                                        "drive\n",
2402                                        mdname(mddev),
2403                                        bdevname(rdev->bdev, b));
2404                         }
2405                         rdev_dec_pending(rdev, mddev);
2406                         rcu_read_lock();
2407                 }
2408                 sl = start;
2409                 while (sl != r10_bio->read_slot) {
2410                         char b[BDEVNAME_SIZE];
2411
2412                         if (sl==0)
2413                                 sl = conf->copies;
2414                         sl--;
2415                         d = r10_bio->devs[sl].devnum;
2416                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2417                         if (!rdev ||
2418                             !test_bit(In_sync, &rdev->flags))
2419                                 continue;
2420
2421                         atomic_inc(&rdev->nr_pending);
2422                         rcu_read_unlock();
2423                         switch (r10_sync_page_io(rdev,
2424                                              r10_bio->devs[sl].addr +
2425                                              sect,
2426                                              s, conf->tmppage,
2427                                                  READ)) {
2428                         case 0:
2429                                 /* Well, this device is dead */
2430                                 printk(KERN_NOTICE
2431                                        "md/raid10:%s: unable to read back "
2432                                        "corrected sectors"
2433                                        " (%d sectors at %llu on %s)\n",
2434                                        mdname(mddev), s,
2435                                        (unsigned long long)(
2436                                                sect +
2437                                                choose_data_offset(r10_bio, rdev)),
2438                                        bdevname(rdev->bdev, b));
2439                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2440                                        "drive\n",
2441                                        mdname(mddev),
2442                                        bdevname(rdev->bdev, b));
2443                                 break;
2444                         case 1:
2445                                 printk(KERN_INFO
2446                                        "md/raid10:%s: read error corrected"
2447                                        " (%d sectors at %llu on %s)\n",
2448                                        mdname(mddev), s,
2449                                        (unsigned long long)(
2450                                                sect +
2451                                                choose_data_offset(r10_bio, rdev)),
2452                                        bdevname(rdev->bdev, b));
2453                                 atomic_add(s, &rdev->corrected_errors);
2454                         }
2455
2456                         rdev_dec_pending(rdev, mddev);
2457                         rcu_read_lock();
2458                 }
2459                 rcu_read_unlock();
2460
2461                 sectors -= s;
2462                 sect += s;
2463         }
2464 }
2465
2466 static int narrow_write_error(struct r10bio *r10_bio, int i)
2467 {
2468         struct bio *bio = r10_bio->master_bio;
2469         struct mddev *mddev = r10_bio->mddev;
2470         struct r10conf *conf = mddev->private;
2471         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2472         /* bio has the data to be written to slot 'i' where
2473          * we just recently had a write error.
2474          * We repeatedly clone the bio and trim down to one block,
2475          * then try the write.  Where the write fails we record
2476          * a bad block.
2477          * It is conceivable that the bio doesn't exactly align with
2478          * blocks.  We must handle this.
2479          *
2480          * We currently own a reference to the rdev.
2481          */
2482
2483         int block_sectors;
2484         sector_t sector;
2485         int sectors;
2486         int sect_to_write = r10_bio->sectors;
2487         int ok = 1;
2488
2489         if (rdev->badblocks.shift < 0)
2490                 return 0;
2491
2492         block_sectors = roundup(1 << rdev->badblocks.shift,
2493                                 bdev_logical_block_size(rdev->bdev) >> 9);
2494         sector = r10_bio->sector;
2495         sectors = ((r10_bio->sector + block_sectors)
2496                    & ~(sector_t)(block_sectors - 1))
2497                 - sector;
2498
2499         while (sect_to_write) {
2500                 struct bio *wbio;
2501                 if (sectors > sect_to_write)
2502                         sectors = sect_to_write;
2503                 /* Write at 'sector' for 'sectors' */
2504                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2505                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2506                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2507                                    choose_data_offset(r10_bio, rdev) +
2508                                    (sector - r10_bio->sector));
2509                 wbio->bi_bdev = rdev->bdev;
2510                 if (submit_bio_wait(WRITE, wbio) < 0)
2511                         /* Failure! */
2512                         ok = rdev_set_badblocks(rdev, sector,
2513                                                 sectors, 0)
2514                                 && ok;
2515
2516                 bio_put(wbio);
2517                 sect_to_write -= sectors;
2518                 sector += sectors;
2519                 sectors = block_sectors;
2520         }
2521         return ok;
2522 }
2523
2524 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2525 {
2526         int slot = r10_bio->read_slot;
2527         struct bio *bio;
2528         struct r10conf *conf = mddev->private;
2529         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2530         char b[BDEVNAME_SIZE];
2531         unsigned long do_sync;
2532         int max_sectors;
2533
2534         /* we got a read error. Maybe the drive is bad.  Maybe just
2535          * the block and we can fix it.
2536          * We freeze all other IO, and try reading the block from
2537          * other devices.  When we find one, we re-write
2538          * and check it that fixes the read error.
2539          * This is all done synchronously while the array is
2540          * frozen.
2541          */
2542         bio = r10_bio->devs[slot].bio;
2543         bdevname(bio->bi_bdev, b);
2544         bio_put(bio);
2545         r10_bio->devs[slot].bio = NULL;
2546
2547         if (mddev->ro == 0) {
2548                 freeze_array(conf, 1);
2549                 fix_read_error(conf, mddev, r10_bio);
2550                 unfreeze_array(conf);
2551         } else
2552                 r10_bio->devs[slot].bio = IO_BLOCKED;
2553
2554         rdev_dec_pending(rdev, mddev);
2555
2556 read_more:
2557         rdev = read_balance(conf, r10_bio, &max_sectors);
2558         if (rdev == NULL) {
2559                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2560                        " read error for block %llu\n",
2561                        mdname(mddev), b,
2562                        (unsigned long long)r10_bio->sector);
2563                 raid_end_bio_io(r10_bio);
2564                 return;
2565         }
2566
2567         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2568         slot = r10_bio->read_slot;
2569         printk_ratelimited(
2570                 KERN_ERR
2571                 "md/raid10:%s: %s: redirecting "
2572                 "sector %llu to another mirror\n",
2573                 mdname(mddev),
2574                 bdevname(rdev->bdev, b),
2575                 (unsigned long long)r10_bio->sector);
2576         bio = bio_clone_mddev(r10_bio->master_bio,
2577                               GFP_NOIO, mddev);
2578         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2579         r10_bio->devs[slot].bio = bio;
2580         r10_bio->devs[slot].rdev = rdev;
2581         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2582                 + choose_data_offset(r10_bio, rdev);
2583         bio->bi_bdev = rdev->bdev;
2584         bio->bi_rw = READ | do_sync;
2585         bio->bi_private = r10_bio;
2586         bio->bi_end_io = raid10_end_read_request;
2587         if (max_sectors < r10_bio->sectors) {
2588                 /* Drat - have to split this up more */
2589                 struct bio *mbio = r10_bio->master_bio;
2590                 int sectors_handled =
2591                         r10_bio->sector + max_sectors
2592                         - mbio->bi_iter.bi_sector;
2593                 r10_bio->sectors = max_sectors;
2594                 spin_lock_irq(&conf->device_lock);
2595                 if (mbio->bi_phys_segments == 0)
2596                         mbio->bi_phys_segments = 2;
2597                 else
2598                         mbio->bi_phys_segments++;
2599                 spin_unlock_irq(&conf->device_lock);
2600                 generic_make_request(bio);
2601
2602                 r10_bio = mempool_alloc(conf->r10bio_pool,
2603                                         GFP_NOIO);
2604                 r10_bio->master_bio = mbio;
2605                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2606                 r10_bio->state = 0;
2607                 set_bit(R10BIO_ReadError,
2608                         &r10_bio->state);
2609                 r10_bio->mddev = mddev;
2610                 r10_bio->sector = mbio->bi_iter.bi_sector
2611                         + sectors_handled;
2612
2613                 goto read_more;
2614         } else
2615                 generic_make_request(bio);
2616 }
2617
2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2619 {
2620         /* Some sort of write request has finished and it
2621          * succeeded in writing where we thought there was a
2622          * bad block.  So forget the bad block.
2623          * Or possibly if failed and we need to record
2624          * a bad block.
2625          */
2626         int m;
2627         struct md_rdev *rdev;
2628
2629         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2630             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2631                 for (m = 0; m < conf->copies; m++) {
2632                         int dev = r10_bio->devs[m].devnum;
2633                         rdev = conf->mirrors[dev].rdev;
2634                         if (r10_bio->devs[m].bio == NULL ||
2635                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2636                                 continue;
2637                         if (!r10_bio->devs[m].bio->bi_error) {
2638                                 rdev_clear_badblocks(
2639                                         rdev,
2640                                         r10_bio->devs[m].addr,
2641                                         r10_bio->sectors, 0);
2642                         } else {
2643                                 if (!rdev_set_badblocks(
2644                                             rdev,
2645                                             r10_bio->devs[m].addr,
2646                                             r10_bio->sectors, 0))
2647                                         md_error(conf->mddev, rdev);
2648                         }
2649                         rdev = conf->mirrors[dev].replacement;
2650                         if (r10_bio->devs[m].repl_bio == NULL ||
2651                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2652                                 continue;
2653
2654                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2655                                 rdev_clear_badblocks(
2656                                         rdev,
2657                                         r10_bio->devs[m].addr,
2658                                         r10_bio->sectors, 0);
2659                         } else {
2660                                 if (!rdev_set_badblocks(
2661                                             rdev,
2662                                             r10_bio->devs[m].addr,
2663                                             r10_bio->sectors, 0))
2664                                         md_error(conf->mddev, rdev);
2665                         }
2666                 }
2667                 put_buf(r10_bio);
2668         } else {
2669                 bool fail = false;
2670                 for (m = 0; m < conf->copies; m++) {
2671                         int dev = r10_bio->devs[m].devnum;
2672                         struct bio *bio = r10_bio->devs[m].bio;
2673                         rdev = conf->mirrors[dev].rdev;
2674                         if (bio == IO_MADE_GOOD) {
2675                                 rdev_clear_badblocks(
2676                                         rdev,
2677                                         r10_bio->devs[m].addr,
2678                                         r10_bio->sectors, 0);
2679                                 rdev_dec_pending(rdev, conf->mddev);
2680                         } else if (bio != NULL && bio->bi_error) {
2681                                 fail = true;
2682                                 if (!narrow_write_error(r10_bio, m)) {
2683                                         md_error(conf->mddev, rdev);
2684                                         set_bit(R10BIO_Degraded,
2685                                                 &r10_bio->state);
2686                                 }
2687                                 rdev_dec_pending(rdev, conf->mddev);
2688                         }
2689                         bio = r10_bio->devs[m].repl_bio;
2690                         rdev = conf->mirrors[dev].replacement;
2691                         if (rdev && bio == IO_MADE_GOOD) {
2692                                 rdev_clear_badblocks(
2693                                         rdev,
2694                                         r10_bio->devs[m].addr,
2695                                         r10_bio->sectors, 0);
2696                                 rdev_dec_pending(rdev, conf->mddev);
2697                         }
2698                 }
2699                 if (fail) {
2700                         spin_lock_irq(&conf->device_lock);
2701                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2702                         conf->nr_queued++;
2703                         spin_unlock_irq(&conf->device_lock);
2704                         /*
2705                          * In case freeze_array() is waiting for condition
2706                          * nr_pending == nr_queued + extra to be true.
2707                          */
2708                         wake_up(&conf->wait_barrier);
2709                         md_wakeup_thread(conf->mddev->thread);
2710                 } else {
2711                         if (test_bit(R10BIO_WriteError,
2712                                      &r10_bio->state))
2713                                 close_write(r10_bio);
2714                         raid_end_bio_io(r10_bio);
2715                 }
2716         }
2717 }
2718
2719 static void raid10d(struct md_thread *thread)
2720 {
2721         struct mddev *mddev = thread->mddev;
2722         struct r10bio *r10_bio;
2723         unsigned long flags;
2724         struct r10conf *conf = mddev->private;
2725         struct list_head *head = &conf->retry_list;
2726         struct blk_plug plug;
2727
2728         md_check_recovery(mddev);
2729
2730         if (!list_empty_careful(&conf->bio_end_io_list) &&
2731             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2732                 LIST_HEAD(tmp);
2733                 spin_lock_irqsave(&conf->device_lock, flags);
2734                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2735                         while (!list_empty(&conf->bio_end_io_list)) {
2736                                 list_move(conf->bio_end_io_list.prev, &tmp);
2737                                 conf->nr_queued--;
2738                         }
2739                 }
2740                 spin_unlock_irqrestore(&conf->device_lock, flags);
2741                 while (!list_empty(&tmp)) {
2742                         r10_bio = list_first_entry(&tmp, struct r10bio,
2743                                                    retry_list);
2744                         list_del(&r10_bio->retry_list);
2745                         if (mddev->degraded)
2746                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2747
2748                         if (test_bit(R10BIO_WriteError,
2749                                      &r10_bio->state))
2750                                 close_write(r10_bio);
2751                         raid_end_bio_io(r10_bio);
2752                 }
2753         }
2754
2755         blk_start_plug(&plug);
2756         for (;;) {
2757
2758                 flush_pending_writes(conf);
2759
2760                 spin_lock_irqsave(&conf->device_lock, flags);
2761                 if (list_empty(head)) {
2762                         spin_unlock_irqrestore(&conf->device_lock, flags);
2763                         break;
2764                 }
2765                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766                 list_del(head->prev);
2767                 conf->nr_queued--;
2768                 spin_unlock_irqrestore(&conf->device_lock, flags);
2769
2770                 mddev = r10_bio->mddev;
2771                 conf = mddev->private;
2772                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773                     test_bit(R10BIO_WriteError, &r10_bio->state))
2774                         handle_write_completed(conf, r10_bio);
2775                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776                         reshape_request_write(mddev, r10_bio);
2777                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778                         sync_request_write(mddev, r10_bio);
2779                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780                         recovery_request_write(mddev, r10_bio);
2781                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782                         handle_read_error(mddev, r10_bio);
2783                 else {
2784                         /* just a partial read to be scheduled from a
2785                          * separate context
2786                          */
2787                         int slot = r10_bio->read_slot;
2788                         generic_make_request(r10_bio->devs[slot].bio);
2789                 }
2790
2791                 cond_resched();
2792                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2793                         md_check_recovery(mddev);
2794         }
2795         blk_finish_plug(&plug);
2796 }
2797
2798 static int init_resync(struct r10conf *conf)
2799 {
2800         int buffs;
2801         int i;
2802
2803         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2804         BUG_ON(conf->r10buf_pool);
2805         conf->have_replacement = 0;
2806         for (i = 0; i < conf->geo.raid_disks; i++)
2807                 if (conf->mirrors[i].replacement)
2808                         conf->have_replacement = 1;
2809         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2810         if (!conf->r10buf_pool)
2811                 return -ENOMEM;
2812         conf->next_resync = 0;
2813         return 0;
2814 }
2815
2816 /*
2817  * perform a "sync" on one "block"
2818  *
2819  * We need to make sure that no normal I/O request - particularly write
2820  * requests - conflict with active sync requests.
2821  *
2822  * This is achieved by tracking pending requests and a 'barrier' concept
2823  * that can be installed to exclude normal IO requests.
2824  *
2825  * Resync and recovery are handled very differently.
2826  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2827  *
2828  * For resync, we iterate over virtual addresses, read all copies,
2829  * and update if there are differences.  If only one copy is live,
2830  * skip it.
2831  * For recovery, we iterate over physical addresses, read a good
2832  * value for each non-in_sync drive, and over-write.
2833  *
2834  * So, for recovery we may have several outstanding complex requests for a
2835  * given address, one for each out-of-sync device.  We model this by allocating
2836  * a number of r10_bio structures, one for each out-of-sync device.
2837  * As we setup these structures, we collect all bio's together into a list
2838  * which we then process collectively to add pages, and then process again
2839  * to pass to generic_make_request.
2840  *
2841  * The r10_bio structures are linked using a borrowed master_bio pointer.
2842  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2843  * has its remaining count decremented to 0, the whole complex operation
2844  * is complete.
2845  *
2846  */
2847
2848 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2849                              int *skipped)
2850 {
2851         struct r10conf *conf = mddev->private;
2852         struct r10bio *r10_bio;
2853         struct bio *biolist = NULL, *bio;
2854         sector_t max_sector, nr_sectors;
2855         int i;
2856         int max_sync;
2857         sector_t sync_blocks;
2858         sector_t sectors_skipped = 0;
2859         int chunks_skipped = 0;
2860         sector_t chunk_mask = conf->geo.chunk_mask;
2861
2862         if (!conf->r10buf_pool)
2863                 if (init_resync(conf))
2864                         return 0;
2865
2866         /*
2867          * Allow skipping a full rebuild for incremental assembly
2868          * of a clean array, like RAID1 does.
2869          */
2870         if (mddev->bitmap == NULL &&
2871             mddev->recovery_cp == MaxSector &&
2872             mddev->reshape_position == MaxSector &&
2873             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2874             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2875             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2876             conf->fullsync == 0) {
2877                 *skipped = 1;
2878                 return mddev->dev_sectors - sector_nr;
2879         }
2880
2881  skipped:
2882         max_sector = mddev->dev_sectors;
2883         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2884             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2885                 max_sector = mddev->resync_max_sectors;
2886         if (sector_nr >= max_sector) {
2887                 /* If we aborted, we need to abort the
2888                  * sync on the 'current' bitmap chucks (there can
2889                  * be several when recovering multiple devices).
2890                  * as we may have started syncing it but not finished.
2891                  * We can find the current address in
2892                  * mddev->curr_resync, but for recovery,
2893                  * we need to convert that to several
2894                  * virtual addresses.
2895                  */
2896                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2897                         end_reshape(conf);
2898                         close_sync(conf);
2899                         return 0;
2900                 }
2901
2902                 if (mddev->curr_resync < max_sector) { /* aborted */
2903                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2904                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2905                                                 &sync_blocks, 1);
2906                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2907                                 sector_t sect =
2908                                         raid10_find_virt(conf, mddev->curr_resync, i);
2909                                 bitmap_end_sync(mddev->bitmap, sect,
2910                                                 &sync_blocks, 1);
2911                         }
2912                 } else {
2913                         /* completed sync */
2914                         if ((!mddev->bitmap || conf->fullsync)
2915                             && conf->have_replacement
2916                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2917                                 /* Completed a full sync so the replacements
2918                                  * are now fully recovered.
2919                                  */
2920                                 for (i = 0; i < conf->geo.raid_disks; i++)
2921                                         if (conf->mirrors[i].replacement)
2922                                                 conf->mirrors[i].replacement
2923                                                         ->recovery_offset
2924                                                         = MaxSector;
2925                         }
2926                         conf->fullsync = 0;
2927                 }
2928                 bitmap_close_sync(mddev->bitmap);
2929                 close_sync(conf);
2930                 *skipped = 1;
2931                 return sectors_skipped;
2932         }
2933
2934         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2935                 return reshape_request(mddev, sector_nr, skipped);
2936
2937         if (chunks_skipped >= conf->geo.raid_disks) {
2938                 /* if there has been nothing to do on any drive,
2939                  * then there is nothing to do at all..
2940                  */
2941                 *skipped = 1;
2942                 return (max_sector - sector_nr) + sectors_skipped;
2943         }
2944
2945         if (max_sector > mddev->resync_max)
2946                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2947
2948         /* make sure whole request will fit in a chunk - if chunks
2949          * are meaningful
2950          */
2951         if (conf->geo.near_copies < conf->geo.raid_disks &&
2952             max_sector > (sector_nr | chunk_mask))
2953                 max_sector = (sector_nr | chunk_mask) + 1;
2954
2955         /* Again, very different code for resync and recovery.
2956          * Both must result in an r10bio with a list of bios that
2957          * have bi_end_io, bi_sector, bi_bdev set,
2958          * and bi_private set to the r10bio.
2959          * For recovery, we may actually create several r10bios
2960          * with 2 bios in each, that correspond to the bios in the main one.
2961          * In this case, the subordinate r10bios link back through a
2962          * borrowed master_bio pointer, and the counter in the master
2963          * includes a ref from each subordinate.
2964          */
2965         /* First, we decide what to do and set ->bi_end_io
2966          * To end_sync_read if we want to read, and
2967          * end_sync_write if we will want to write.
2968          */
2969
2970         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2971         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2972                 /* recovery... the complicated one */
2973                 int j;
2974                 r10_bio = NULL;
2975
2976                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2977                         int still_degraded;
2978                         struct r10bio *rb2;
2979                         sector_t sect;
2980                         int must_sync;
2981                         int any_working;
2982                         struct raid10_info *mirror = &conf->mirrors[i];
2983
2984                         if ((mirror->rdev == NULL ||
2985                              test_bit(In_sync, &mirror->rdev->flags))
2986                             &&
2987                             (mirror->replacement == NULL ||
2988                              test_bit(Faulty,
2989                                       &mirror->replacement->flags)))
2990                                 continue;
2991
2992                         still_degraded = 0;
2993                         /* want to reconstruct this device */
2994                         rb2 = r10_bio;
2995                         sect = raid10_find_virt(conf, sector_nr, i);
2996                         if (sect >= mddev->resync_max_sectors) {
2997                                 /* last stripe is not complete - don't
2998                                  * try to recover this sector.
2999                                  */
3000                                 continue;
3001                         }
3002                         /* Unless we are doing a full sync, or a replacement
3003                          * we only need to recover the block if it is set in
3004                          * the bitmap
3005                          */
3006                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3007                                                       &sync_blocks, 1);
3008                         if (sync_blocks < max_sync)
3009                                 max_sync = sync_blocks;
3010                         if (!must_sync &&
3011                             mirror->replacement == NULL &&
3012                             !conf->fullsync) {
3013                                 /* yep, skip the sync_blocks here, but don't assume
3014                                  * that there will never be anything to do here
3015                                  */
3016                                 chunks_skipped = -1;
3017                                 continue;
3018                         }
3019
3020                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3021                         r10_bio->state = 0;
3022                         raise_barrier(conf, rb2 != NULL);
3023                         atomic_set(&r10_bio->remaining, 0);
3024
3025                         r10_bio->master_bio = (struct bio*)rb2;
3026                         if (rb2)
3027                                 atomic_inc(&rb2->remaining);
3028                         r10_bio->mddev = mddev;
3029                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3030                         r10_bio->sector = sect;
3031
3032                         raid10_find_phys(conf, r10_bio);
3033
3034                         /* Need to check if the array will still be
3035                          * degraded
3036                          */
3037                         for (j = 0; j < conf->geo.raid_disks; j++)
3038                                 if (conf->mirrors[j].rdev == NULL ||
3039                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3040                                         still_degraded = 1;
3041                                         break;
3042                                 }
3043
3044                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3045                                                       &sync_blocks, still_degraded);
3046
3047                         any_working = 0;
3048                         for (j=0; j<conf->copies;j++) {
3049                                 int k;
3050                                 int d = r10_bio->devs[j].devnum;
3051                                 sector_t from_addr, to_addr;
3052                                 struct md_rdev *rdev;
3053                                 sector_t sector, first_bad;
3054                                 int bad_sectors;
3055                                 if (!conf->mirrors[d].rdev ||
3056                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3057                                         continue;
3058                                 /* This is where we read from */
3059                                 any_working = 1;
3060                                 rdev = conf->mirrors[d].rdev;
3061                                 sector = r10_bio->devs[j].addr;
3062
3063                                 if (is_badblock(rdev, sector, max_sync,
3064                                                 &first_bad, &bad_sectors)) {
3065                                         if (first_bad > sector)
3066                                                 max_sync = first_bad - sector;
3067                                         else {
3068                                                 bad_sectors -= (sector
3069                                                                 - first_bad);
3070                                                 if (max_sync > bad_sectors)
3071                                                         max_sync = bad_sectors;
3072                                                 continue;
3073                                         }
3074                                 }
3075                                 bio = r10_bio->devs[0].bio;
3076                                 bio_reset(bio);
3077                                 bio->bi_next = biolist;
3078                                 biolist = bio;
3079                                 bio->bi_private = r10_bio;
3080                                 bio->bi_end_io = end_sync_read;
3081                                 bio->bi_rw = READ;
3082                                 from_addr = r10_bio->devs[j].addr;
3083                                 bio->bi_iter.bi_sector = from_addr +
3084                                         rdev->data_offset;
3085                                 bio->bi_bdev = rdev->bdev;
3086                                 atomic_inc(&rdev->nr_pending);
3087                                 /* and we write to 'i' (if not in_sync) */
3088
3089                                 for (k=0; k<conf->copies; k++)
3090                                         if (r10_bio->devs[k].devnum == i)
3091                                                 break;
3092                                 BUG_ON(k == conf->copies);
3093                                 to_addr = r10_bio->devs[k].addr;
3094                                 r10_bio->devs[0].devnum = d;
3095                                 r10_bio->devs[0].addr = from_addr;
3096                                 r10_bio->devs[1].devnum = i;
3097                                 r10_bio->devs[1].addr = to_addr;
3098
3099                                 rdev = mirror->rdev;
3100                                 if (!test_bit(In_sync, &rdev->flags)) {
3101                                         bio = r10_bio->devs[1].bio;
3102                                         bio_reset(bio);
3103                                         bio->bi_next = biolist;
3104                                         biolist = bio;
3105                                         bio->bi_private = r10_bio;
3106                                         bio->bi_end_io = end_sync_write;
3107                                         bio->bi_rw = WRITE;
3108                                         bio->bi_iter.bi_sector = to_addr
3109                                                 + rdev->data_offset;
3110                                         bio->bi_bdev = rdev->bdev;
3111                                         atomic_inc(&r10_bio->remaining);
3112                                 } else
3113                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3114
3115                                 /* and maybe write to replacement */
3116                                 bio = r10_bio->devs[1].repl_bio;
3117                                 if (bio)
3118                                         bio->bi_end_io = NULL;
3119                                 rdev = mirror->replacement;
3120                                 /* Note: if rdev != NULL, then bio
3121                                  * cannot be NULL as r10buf_pool_alloc will
3122                                  * have allocated it.
3123                                  * So the second test here is pointless.
3124                                  * But it keeps semantic-checkers happy, and
3125                                  * this comment keeps human reviewers
3126                                  * happy.
3127                                  */
3128                                 if (rdev == NULL || bio == NULL ||
3129                                     test_bit(Faulty, &rdev->flags))
3130                                         break;
3131                                 bio_reset(bio);
3132                                 bio->bi_next = biolist;
3133                                 biolist = bio;
3134                                 bio->bi_private = r10_bio;
3135                                 bio->bi_end_io = end_sync_write;
3136                                 bio->bi_rw = WRITE;
3137                                 bio->bi_iter.bi_sector = to_addr +
3138                                         rdev->data_offset;
3139                                 bio->bi_bdev = rdev->bdev;
3140                                 atomic_inc(&r10_bio->remaining);
3141                                 break;
3142                         }
3143                         if (j == conf->copies) {
3144                                 /* Cannot recover, so abort the recovery or
3145                                  * record a bad block */
3146                                 if (any_working) {
3147                                         /* problem is that there are bad blocks
3148                                          * on other device(s)
3149                                          */
3150                                         int k;
3151                                         for (k = 0; k < conf->copies; k++)
3152                                                 if (r10_bio->devs[k].devnum == i)
3153                                                         break;
3154                                         if (!test_bit(In_sync,
3155                                                       &mirror->rdev->flags)
3156                                             && !rdev_set_badblocks(
3157                                                     mirror->rdev,
3158                                                     r10_bio->devs[k].addr,
3159                                                     max_sync, 0))
3160                                                 any_working = 0;
3161                                         if (mirror->replacement &&
3162                                             !rdev_set_badblocks(
3163                                                     mirror->replacement,
3164                                                     r10_bio->devs[k].addr,
3165                                                     max_sync, 0))
3166                                                 any_working = 0;
3167                                 }
3168                                 if (!any_working)  {
3169                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3170                                                               &mddev->recovery))
3171                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3172                                                        "working devices for recovery.\n",
3173                                                        mdname(mddev));
3174                                         mirror->recovery_disabled
3175                                                 = mddev->recovery_disabled;
3176                                 }
3177                                 put_buf(r10_bio);
3178                                 if (rb2)
3179                                         atomic_dec(&rb2->remaining);
3180                                 r10_bio = rb2;
3181                                 break;
3182                         }
3183                 }
3184                 if (biolist == NULL) {
3185                         while (r10_bio) {
3186                                 struct r10bio *rb2 = r10_bio;
3187                                 r10_bio = (struct r10bio*) rb2->master_bio;
3188                                 rb2->master_bio = NULL;
3189                                 put_buf(rb2);
3190                         }
3191                         goto giveup;
3192                 }
3193         } else {
3194                 /* resync. Schedule a read for every block at this virt offset */
3195                 int count = 0;
3196
3197                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3198
3199                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3200                                        &sync_blocks, mddev->degraded) &&
3201                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3202                                                  &mddev->recovery)) {
3203                         /* We can skip this block */
3204                         *skipped = 1;
3205                         return sync_blocks + sectors_skipped;
3206                 }
3207                 if (sync_blocks < max_sync)
3208                         max_sync = sync_blocks;
3209                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3210                 r10_bio->state = 0;
3211
3212                 r10_bio->mddev = mddev;
3213                 atomic_set(&r10_bio->remaining, 0);
3214                 raise_barrier(conf, 0);
3215                 conf->next_resync = sector_nr;
3216
3217                 r10_bio->master_bio = NULL;
3218                 r10_bio->sector = sector_nr;
3219                 set_bit(R10BIO_IsSync, &r10_bio->state);
3220                 raid10_find_phys(conf, r10_bio);
3221                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3222
3223                 for (i = 0; i < conf->copies; i++) {
3224                         int d = r10_bio->devs[i].devnum;
3225                         sector_t first_bad, sector;
3226                         int bad_sectors;
3227
3228                         if (r10_bio->devs[i].repl_bio)
3229                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3230
3231                         bio = r10_bio->devs[i].bio;
3232                         bio_reset(bio);
3233                         bio->bi_error = -EIO;
3234                         if (conf->mirrors[d].rdev == NULL ||
3235                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3236                                 continue;
3237                         sector = r10_bio->devs[i].addr;
3238                         if (is_badblock(conf->mirrors[d].rdev,
3239                                         sector, max_sync,
3240                                         &first_bad, &bad_sectors)) {
3241                                 if (first_bad > sector)
3242                                         max_sync = first_bad - sector;
3243                                 else {
3244                                         bad_sectors -= (sector - first_bad);
3245                                         if (max_sync > bad_sectors)
3246                                                 max_sync = bad_sectors;
3247                                         continue;
3248                                 }
3249                         }
3250                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3251                         atomic_inc(&r10_bio->remaining);
3252                         bio->bi_next = biolist;
3253                         biolist = bio;
3254                         bio->bi_private = r10_bio;
3255                         bio->bi_end_io = end_sync_read;
3256                         bio->bi_rw = READ;
3257                         bio->bi_iter.bi_sector = sector +
3258                                 conf->mirrors[d].rdev->data_offset;
3259                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3260                         count++;
3261
3262                         if (conf->mirrors[d].replacement == NULL ||
3263                             test_bit(Faulty,
3264                                      &conf->mirrors[d].replacement->flags))
3265                                 continue;
3266
3267                         /* Need to set up for writing to the replacement */
3268                         bio = r10_bio->devs[i].repl_bio;
3269                         bio_reset(bio);
3270                         bio->bi_error = -EIO;
3271
3272                         sector = r10_bio->devs[i].addr;
3273                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3274                         bio->bi_next = biolist;
3275                         biolist = bio;
3276                         bio->bi_private = r10_bio;
3277                         bio->bi_end_io = end_sync_write;
3278                         bio->bi_rw = WRITE;
3279                         bio->bi_iter.bi_sector = sector +
3280                                 conf->mirrors[d].replacement->data_offset;
3281                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3282                         count++;
3283                 }
3284
3285                 if (count < 2) {
3286                         for (i=0; i<conf->copies; i++) {
3287                                 int d = r10_bio->devs[i].devnum;
3288                                 if (r10_bio->devs[i].bio->bi_end_io)
3289                                         rdev_dec_pending(conf->mirrors[d].rdev,
3290                                                          mddev);
3291                                 if (r10_bio->devs[i].repl_bio &&
3292                                     r10_bio->devs[i].repl_bio->bi_end_io)
3293                                         rdev_dec_pending(
3294                                                 conf->mirrors[d].replacement,
3295                                                 mddev);
3296                         }
3297                         put_buf(r10_bio);
3298                         biolist = NULL;
3299                         goto giveup;
3300                 }
3301         }
3302
3303         nr_sectors = 0;
3304         if (sector_nr + max_sync < max_sector)
3305                 max_sector = sector_nr + max_sync;
3306         do {
3307                 struct page *page;
3308                 int len = PAGE_SIZE;
3309                 if (sector_nr + (len>>9) > max_sector)
3310                         len = (max_sector - sector_nr) << 9;
3311                 if (len == 0)
3312                         break;
3313                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3314                         struct bio *bio2;
3315                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3316                         if (bio_add_page(bio, page, len, 0))
3317                                 continue;
3318
3319                         /* stop here */
3320                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3321                         for (bio2 = biolist;
3322                              bio2 && bio2 != bio;
3323                              bio2 = bio2->bi_next) {
3324                                 /* remove last page from this bio */
3325                                 bio2->bi_vcnt--;
3326                                 bio2->bi_iter.bi_size -= len;
3327                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3328                         }
3329                         goto bio_full;
3330                 }
3331                 nr_sectors += len>>9;
3332                 sector_nr += len>>9;
3333         } while (biolist->bi_vcnt < RESYNC_PAGES);
3334  bio_full:
3335         r10_bio->sectors = nr_sectors;
3336
3337         while (biolist) {
3338                 bio = biolist;
3339                 biolist = biolist->bi_next;
3340
3341                 bio->bi_next = NULL;
3342                 r10_bio = bio->bi_private;
3343                 r10_bio->sectors = nr_sectors;
3344
3345                 if (bio->bi_end_io == end_sync_read) {
3346                         md_sync_acct(bio->bi_bdev, nr_sectors);
3347                         bio->bi_error = 0;
3348                         generic_make_request(bio);
3349                 }
3350         }
3351
3352         if (sectors_skipped)
3353                 /* pretend they weren't skipped, it makes
3354                  * no important difference in this case
3355                  */
3356                 md_done_sync(mddev, sectors_skipped, 1);
3357
3358         return sectors_skipped + nr_sectors;
3359  giveup:
3360         /* There is nowhere to write, so all non-sync
3361          * drives must be failed or in resync, all drives
3362          * have a bad block, so try the next chunk...
3363          */
3364         if (sector_nr + max_sync < max_sector)
3365                 max_sector = sector_nr + max_sync;
3366
3367         sectors_skipped += (max_sector - sector_nr);
3368         chunks_skipped ++;
3369         sector_nr = max_sector;
3370         goto skipped;
3371 }
3372
3373 static sector_t
3374 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3375 {
3376         sector_t size;
3377         struct r10conf *conf = mddev->private;
3378
3379         if (!raid_disks)
3380                 raid_disks = min(conf->geo.raid_disks,
3381                                  conf->prev.raid_disks);
3382         if (!sectors)
3383                 sectors = conf->dev_sectors;
3384
3385         size = sectors >> conf->geo.chunk_shift;
3386         sector_div(size, conf->geo.far_copies);
3387         size = size * raid_disks;
3388         sector_div(size, conf->geo.near_copies);
3389
3390         return size << conf->geo.chunk_shift;
3391 }
3392
3393 static void calc_sectors(struct r10conf *conf, sector_t size)
3394 {
3395         /* Calculate the number of sectors-per-device that will
3396          * actually be used, and set conf->dev_sectors and
3397          * conf->stride
3398          */
3399
3400         size = size >> conf->geo.chunk_shift;
3401         sector_div(size, conf->geo.far_copies);
3402         size = size * conf->geo.raid_disks;
3403         sector_div(size, conf->geo.near_copies);
3404         /* 'size' is now the number of chunks in the array */
3405         /* calculate "used chunks per device" */
3406         size = size * conf->copies;
3407
3408         /* We need to round up when dividing by raid_disks to
3409          * get the stride size.
3410          */
3411         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3412
3413         conf->dev_sectors = size << conf->geo.chunk_shift;
3414
3415         if (conf->geo.far_offset)
3416                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3417         else {
3418                 sector_div(size, conf->geo.far_copies);
3419                 conf->geo.stride = size << conf->geo.chunk_shift;
3420         }
3421 }
3422
3423 enum geo_type {geo_new, geo_old, geo_start};
3424 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3425 {
3426         int nc, fc, fo;
3427         int layout, chunk, disks;
3428         switch (new) {
3429         case geo_old:
3430                 layout = mddev->layout;
3431                 chunk = mddev->chunk_sectors;
3432                 disks = mddev->raid_disks - mddev->delta_disks;
3433                 break;
3434         case geo_new:
3435                 layout = mddev->new_layout;
3436                 chunk = mddev->new_chunk_sectors;
3437                 disks = mddev->raid_disks;
3438                 break;
3439         default: /* avoid 'may be unused' warnings */
3440         case geo_start: /* new when starting reshape - raid_disks not
3441                          * updated yet. */
3442                 layout = mddev->new_layout;
3443                 chunk = mddev->new_chunk_sectors;
3444                 disks = mddev->raid_disks + mddev->delta_disks;
3445                 break;
3446         }
3447         if (layout >> 19)
3448                 return -1;
3449         if (chunk < (PAGE_SIZE >> 9) ||
3450             !is_power_of_2(chunk))
3451                 return -2;
3452         nc = layout & 255;
3453         fc = (layout >> 8) & 255;
3454         fo = layout & (1<<16);
3455         geo->raid_disks = disks;
3456         geo->near_copies = nc;
3457         geo->far_copies = fc;
3458         geo->far_offset = fo;
3459         switch (layout >> 17) {
3460         case 0: /* original layout.  simple but not always optimal */
3461                 geo->far_set_size = disks;
3462                 break;
3463         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3464                  * actually using this, but leave code here just in case.*/
3465                 geo->far_set_size = disks/fc;
3466                 WARN(geo->far_set_size < fc,
3467                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3468                 break;
3469         case 2: /* "improved" layout fixed to match documentation */
3470                 geo->far_set_size = fc * nc;
3471                 break;
3472         default: /* Not a valid layout */
3473                 return -1;
3474         }
3475         geo->chunk_mask = chunk - 1;
3476         geo->chunk_shift = ffz(~chunk);
3477         return nc*fc;
3478 }
3479
3480 static struct r10conf *setup_conf(struct mddev *mddev)
3481 {
3482         struct r10conf *conf = NULL;
3483         int err = -EINVAL;
3484         struct geom geo;
3485         int copies;
3486
3487         copies = setup_geo(&geo, mddev, geo_new);
3488
3489         if (copies == -2) {
3490                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3491                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3492                        mdname(mddev), PAGE_SIZE);
3493                 goto out;
3494         }
3495
3496         if (copies < 2 || copies > mddev->raid_disks) {
3497                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3498                        mdname(mddev), mddev->new_layout);
3499                 goto out;
3500         }
3501
3502         err = -ENOMEM;
3503         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3504         if (!conf)
3505                 goto out;
3506
3507         /* FIXME calc properly */
3508         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3509                                                             max(0,-mddev->delta_disks)),
3510                                 GFP_KERNEL);
3511         if (!conf->mirrors)
3512                 goto out;
3513
3514         conf->tmppage = alloc_page(GFP_KERNEL);
3515         if (!conf->tmppage)
3516                 goto out;
3517
3518         conf->geo = geo;
3519         conf->copies = copies;
3520         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3521                                            r10bio_pool_free, conf);
3522         if (!conf->r10bio_pool)
3523                 goto out;
3524
3525         calc_sectors(conf, mddev->dev_sectors);
3526         if (mddev->reshape_position == MaxSector) {
3527                 conf->prev = conf->geo;
3528                 conf->reshape_progress = MaxSector;
3529         } else {
3530                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3531                         err = -EINVAL;
3532                         goto out;
3533                 }
3534                 conf->reshape_progress = mddev->reshape_position;
3535                 if (conf->prev.far_offset)
3536                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3537                 else
3538                         /* far_copies must be 1 */
3539                         conf->prev.stride = conf->dev_sectors;
3540         }
3541         conf->reshape_safe = conf->reshape_progress;
3542         spin_lock_init(&conf->device_lock);
3543         INIT_LIST_HEAD(&conf->retry_list);
3544         INIT_LIST_HEAD(&conf->bio_end_io_list);
3545
3546         spin_lock_init(&conf->resync_lock);
3547         init_waitqueue_head(&conf->wait_barrier);
3548
3549         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3550         if (!conf->thread)
3551                 goto out;
3552
3553         conf->mddev = mddev;
3554         return conf;
3555
3556  out:
3557         if (err == -ENOMEM)
3558                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559                        mdname(mddev));
3560         if (conf) {
3561                 mempool_destroy(conf->r10bio_pool);
3562                 kfree(conf->mirrors);
3563                 safe_put_page(conf->tmppage);
3564                 kfree(conf);
3565         }
3566         return ERR_PTR(err);
3567 }
3568
3569 static int run(struct mddev *mddev)
3570 {
3571         struct r10conf *conf;
3572         int i, disk_idx, chunk_size;
3573         struct raid10_info *disk;
3574         struct md_rdev *rdev;
3575         sector_t size;
3576         sector_t min_offset_diff = 0;
3577         int first = 1;
3578         bool discard_supported = false;
3579
3580         if (mddev->private == NULL) {
3581                 conf = setup_conf(mddev);
3582                 if (IS_ERR(conf))
3583                         return PTR_ERR(conf);
3584                 mddev->private = conf;
3585         }
3586         conf = mddev->private;
3587         if (!conf)
3588                 goto out;
3589
3590         mddev->thread = conf->thread;
3591         conf->thread = NULL;
3592
3593         chunk_size = mddev->chunk_sectors << 9;
3594         if (mddev->queue) {
3595                 blk_queue_max_discard_sectors(mddev->queue,
3596                                               mddev->chunk_sectors);
3597                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3598                 blk_queue_io_min(mddev->queue, chunk_size);
3599                 if (conf->geo.raid_disks % conf->geo.near_copies)
3600                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601                 else
3602                         blk_queue_io_opt(mddev->queue, chunk_size *
3603                                          (conf->geo.raid_disks / conf->geo.near_copies));
3604         }
3605
3606         rdev_for_each(rdev, mddev) {
3607                 long long diff;
3608                 struct request_queue *q;
3609
3610                 disk_idx = rdev->raid_disk;
3611                 if (disk_idx < 0)
3612                         continue;
3613                 if (disk_idx >= conf->geo.raid_disks &&
3614                     disk_idx >= conf->prev.raid_disks)
3615                         continue;
3616                 disk = conf->mirrors + disk_idx;
3617
3618                 if (test_bit(Replacement, &rdev->flags)) {
3619                         if (disk->replacement)
3620                                 goto out_free_conf;
3621                         disk->replacement = rdev;
3622                 } else {
3623                         if (disk->rdev)
3624                                 goto out_free_conf;
3625                         disk->rdev = rdev;
3626                 }
3627                 q = bdev_get_queue(rdev->bdev);
3628                 diff = (rdev->new_data_offset - rdev->data_offset);
3629                 if (!mddev->reshape_backwards)
3630                         diff = -diff;
3631                 if (diff < 0)
3632                         diff = 0;
3633                 if (first || diff < min_offset_diff)
3634                         min_offset_diff = diff;
3635
3636                 if (mddev->gendisk)
3637                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3638                                           rdev->data_offset << 9);
3639
3640                 disk->head_position = 0;
3641
3642                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643                         discard_supported = true;
3644                 first = 0;
3645         }
3646
3647         if (mddev->queue) {
3648                 if (discard_supported)
3649                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3650                                                 mddev->queue);
3651                 else
3652                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3653                                                   mddev->queue);
3654         }
3655         /* need to check that every block has at least one working mirror */
3656         if (!enough(conf, -1)) {
3657                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3658                        mdname(mddev));
3659                 goto out_free_conf;
3660         }
3661
3662         if (conf->reshape_progress != MaxSector) {
3663                 /* must ensure that shape change is supported */
3664                 if (conf->geo.far_copies != 1 &&
3665                     conf->geo.far_offset == 0)
3666                         goto out_free_conf;
3667                 if (conf->prev.far_copies != 1 &&
3668                     conf->prev.far_offset == 0)
3669                         goto out_free_conf;
3670         }
3671
3672         mddev->degraded = 0;
3673         for (i = 0;
3674              i < conf->geo.raid_disks
3675                      || i < conf->prev.raid_disks;
3676              i++) {
3677
3678                 disk = conf->mirrors + i;
3679
3680                 if (!disk->rdev && disk->replacement) {
3681                         /* The replacement is all we have - use it */
3682                         disk->rdev = disk->replacement;
3683                         disk->replacement = NULL;
3684                         clear_bit(Replacement, &disk->rdev->flags);
3685                 }
3686
3687                 if (!disk->rdev ||
3688                     !test_bit(In_sync, &disk->rdev->flags)) {
3689                         disk->head_position = 0;
3690                         mddev->degraded++;
3691                         if (disk->rdev &&
3692                             disk->rdev->saved_raid_disk < 0)
3693                                 conf->fullsync = 1;
3694                 }
3695
3696                 if (disk->replacement &&
3697                     !test_bit(In_sync, &disk->replacement->flags) &&
3698                     disk->replacement->saved_raid_disk < 0) {
3699                         conf->fullsync = 1;
3700                 }
3701
3702                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3703         }
3704
3705         if (mddev->recovery_cp != MaxSector)
3706                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3707                        " -- starting background reconstruction\n",
3708                        mdname(mddev));
3709         printk(KERN_INFO
3710                 "md/raid10:%s: active with %d out of %d devices\n",
3711                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3712                 conf->geo.raid_disks);
3713         /*
3714          * Ok, everything is just fine now
3715          */
3716         mddev->dev_sectors = conf->dev_sectors;
3717         size = raid10_size(mddev, 0, 0);
3718         md_set_array_sectors(mddev, size);
3719         mddev->resync_max_sectors = size;
3720
3721         if (mddev->queue) {
3722                 int stripe = conf->geo.raid_disks *
3723                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3724
3725                 /* Calculate max read-ahead size.
3726                  * We need to readahead at least twice a whole stripe....
3727                  * maybe...
3728                  */
3729                 stripe /= conf->geo.near_copies;
3730                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3731                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3732         }
3733
3734         if (md_integrity_register(mddev))
3735                 goto out_free_conf;
3736
3737         if (conf->reshape_progress != MaxSector) {
3738                 unsigned long before_length, after_length;
3739
3740                 before_length = ((1 << conf->prev.chunk_shift) *
3741                                  conf->prev.far_copies);
3742                 after_length = ((1 << conf->geo.chunk_shift) *
3743                                 conf->geo.far_copies);
3744
3745                 if (max(before_length, after_length) > min_offset_diff) {
3746                         /* This cannot work */
3747                         printk("md/raid10: offset difference not enough to continue reshape\n");
3748                         goto out_free_conf;
3749                 }
3750                 conf->offset_diff = min_offset_diff;
3751
3752                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3753                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3754                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3755                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3756                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3757                                                         "reshape");
3758                 if (!mddev->sync_thread)
3759                         goto out_free_conf;
3760         }
3761
3762         return 0;
3763
3764 out_free_conf:
3765         md_unregister_thread(&mddev->thread);
3766         mempool_destroy(conf->r10bio_pool);
3767         safe_put_page(conf->tmppage);
3768         kfree(conf->mirrors);
3769         kfree(conf);
3770         mddev->private = NULL;
3771 out:
3772         return -EIO;
3773 }
3774
3775 static void raid10_free(struct mddev *mddev, void *priv)
3776 {
3777         struct r10conf *conf = priv;
3778
3779         mempool_destroy(conf->r10bio_pool);
3780         safe_put_page(conf->tmppage);
3781         kfree(conf->mirrors);
3782         kfree(conf->mirrors_old);
3783         kfree(conf->mirrors_new);
3784         kfree(conf);
3785 }
3786
3787 static void raid10_quiesce(struct mddev *mddev, int state)
3788 {
3789         struct r10conf *conf = mddev->private;
3790
3791         switch(state) {
3792         case 1:
3793                 raise_barrier(conf, 0);
3794                 break;
3795         case 0:
3796                 lower_barrier(conf);
3797                 break;
3798         }
3799 }
3800
3801 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3802 {
3803         /* Resize of 'far' arrays is not supported.
3804          * For 'near' and 'offset' arrays we can set the
3805          * number of sectors used to be an appropriate multiple
3806          * of the chunk size.
3807          * For 'offset', this is far_copies*chunksize.
3808          * For 'near' the multiplier is the LCM of
3809          * near_copies and raid_disks.
3810          * So if far_copies > 1 && !far_offset, fail.
3811          * Else find LCM(raid_disks, near_copy)*far_copies and
3812          * multiply by chunk_size.  Then round to this number.
3813          * This is mostly done by raid10_size()
3814          */
3815         struct r10conf *conf = mddev->private;
3816         sector_t oldsize, size;
3817
3818         if (mddev->reshape_position != MaxSector)
3819                 return -EBUSY;
3820
3821         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3822                 return -EINVAL;
3823
3824         oldsize = raid10_size(mddev, 0, 0);
3825         size = raid10_size(mddev, sectors, 0);
3826         if (mddev->external_size &&
3827             mddev->array_sectors > size)
3828                 return -EINVAL;
3829         if (mddev->bitmap) {
3830                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3831                 if (ret)
3832                         return ret;
3833         }
3834         md_set_array_sectors(mddev, size);
3835         set_capacity(mddev->gendisk, mddev->array_sectors);
3836         revalidate_disk(mddev->gendisk);
3837         if (sectors > mddev->dev_sectors &&
3838             mddev->recovery_cp > oldsize) {
3839                 mddev->recovery_cp = oldsize;
3840                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3841         }
3842         calc_sectors(conf, sectors);
3843         mddev->dev_sectors = conf->dev_sectors;
3844         mddev->resync_max_sectors = size;
3845         return 0;
3846 }
3847
3848 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3849 {
3850         struct md_rdev *rdev;
3851         struct r10conf *conf;
3852
3853         if (mddev->degraded > 0) {
3854                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3855                        mdname(mddev));
3856                 return ERR_PTR(-EINVAL);
3857         }
3858         sector_div(size, devs);
3859
3860         /* Set new parameters */
3861         mddev->new_level = 10;
3862         /* new layout: far_copies = 1, near_copies = 2 */
3863         mddev->new_layout = (1<<8) + 2;
3864         mddev->new_chunk_sectors = mddev->chunk_sectors;
3865         mddev->delta_disks = mddev->raid_disks;
3866         mddev->raid_disks *= 2;
3867         /* make sure it will be not marked as dirty */
3868         mddev->recovery_cp = MaxSector;
3869         mddev->dev_sectors = size;
3870
3871         conf = setup_conf(mddev);
3872         if (!IS_ERR(conf)) {
3873                 rdev_for_each(rdev, mddev)
3874                         if (rdev->raid_disk >= 0) {
3875                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3876                                 rdev->sectors = size;
3877                         }
3878                 conf->barrier = 1;
3879         }
3880
3881         return conf;
3882 }
3883
3884 static void *raid10_takeover(struct mddev *mddev)
3885 {
3886         struct r0conf *raid0_conf;
3887
3888         /* raid10 can take over:
3889          *  raid0 - providing it has only two drives
3890          */
3891         if (mddev->level == 0) {
3892                 /* for raid0 takeover only one zone is supported */
3893                 raid0_conf = mddev->private;
3894                 if (raid0_conf->nr_strip_zones > 1) {
3895                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3896                                " with more than one zone.\n",
3897                                mdname(mddev));
3898                         return ERR_PTR(-EINVAL);
3899                 }
3900                 return raid10_takeover_raid0(mddev,
3901                         raid0_conf->strip_zone->zone_end,
3902                         raid0_conf->strip_zone->nb_dev);
3903         }
3904         return ERR_PTR(-EINVAL);
3905 }
3906
3907 static int raid10_check_reshape(struct mddev *mddev)
3908 {
3909         /* Called when there is a request to change
3910          * - layout (to ->new_layout)
3911          * - chunk size (to ->new_chunk_sectors)
3912          * - raid_disks (by delta_disks)
3913          * or when trying to restart a reshape that was ongoing.
3914          *
3915          * We need to validate the request and possibly allocate
3916          * space if that might be an issue later.
3917          *
3918          * Currently we reject any reshape of a 'far' mode array,
3919          * allow chunk size to change if new is generally acceptable,
3920          * allow raid_disks to increase, and allow
3921          * a switch between 'near' mode and 'offset' mode.
3922          */
3923         struct r10conf *conf = mddev->private;
3924         struct geom geo;
3925
3926         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3927                 return -EINVAL;
3928
3929         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3930                 /* mustn't change number of copies */
3931                 return -EINVAL;
3932         if (geo.far_copies > 1 && !geo.far_offset)
3933                 /* Cannot switch to 'far' mode */
3934                 return -EINVAL;
3935
3936         if (mddev->array_sectors & geo.chunk_mask)
3937                         /* not factor of array size */
3938                         return -EINVAL;
3939
3940         if (!enough(conf, -1))
3941                 return -EINVAL;
3942
3943         kfree(conf->mirrors_new);
3944         conf->mirrors_new = NULL;
3945         if (mddev->delta_disks > 0) {
3946                 /* allocate new 'mirrors' list */
3947                 conf->mirrors_new = kzalloc(
3948                         sizeof(struct raid10_info)
3949                         *(mddev->raid_disks +
3950                           mddev->delta_disks),
3951                         GFP_KERNEL);
3952                 if (!conf->mirrors_new)
3953                         return -ENOMEM;
3954         }
3955         return 0;
3956 }
3957
3958 /*
3959  * Need to check if array has failed when deciding whether to:
3960  *  - start an array
3961  *  - remove non-faulty devices
3962  *  - add a spare
3963  *  - allow a reshape
3964  * This determination is simple when no reshape is happening.
3965  * However if there is a reshape, we need to carefully check
3966  * both the before and after sections.
3967  * This is because some failed devices may only affect one
3968  * of the two sections, and some non-in_sync devices may
3969  * be insync in the section most affected by failed devices.
3970  */
3971 static int calc_degraded(struct r10conf *conf)
3972 {
3973         int degraded, degraded2;
3974         int i;
3975
3976         rcu_read_lock();
3977         degraded = 0;
3978         /* 'prev' section first */
3979         for (i = 0; i < conf->prev.raid_disks; i++) {
3980                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3981                 if (!rdev || test_bit(Faulty, &rdev->flags))
3982                         degraded++;
3983                 else if (!test_bit(In_sync, &rdev->flags))
3984                         /* When we can reduce the number of devices in
3985                          * an array, this might not contribute to
3986                          * 'degraded'.  It does now.
3987                          */
3988                         degraded++;
3989         }
3990         rcu_read_unlock();
3991         if (conf->geo.raid_disks == conf->prev.raid_disks)
3992                 return degraded;
3993         rcu_read_lock();
3994         degraded2 = 0;
3995         for (i = 0; i < conf->geo.raid_disks; i++) {
3996                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3997                 if (!rdev || test_bit(Faulty, &rdev->flags))
3998                         degraded2++;
3999                 else if (!test_bit(In_sync, &rdev->flags)) {
4000                         /* If reshape is increasing the number of devices,
4001                          * this section has already been recovered, so
4002                          * it doesn't contribute to degraded.
4003                          * else it does.
4004                          */
4005                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4006                                 degraded2++;
4007                 }
4008         }
4009         rcu_read_unlock();
4010         if (degraded2 > degraded)
4011                 return degraded2;
4012         return degraded;
4013 }
4014
4015 static int raid10_start_reshape(struct mddev *mddev)
4016 {
4017         /* A 'reshape' has been requested. This commits
4018          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4019          * This also checks if there are enough spares and adds them
4020          * to the array.
4021          * We currently require enough spares to make the final
4022          * array non-degraded.  We also require that the difference
4023          * between old and new data_offset - on each device - is
4024          * enough that we never risk over-writing.
4025          */
4026
4027         unsigned long before_length, after_length;
4028         sector_t min_offset_diff = 0;
4029         int first = 1;
4030         struct geom new;
4031         struct r10conf *conf = mddev->private;
4032         struct md_rdev *rdev;
4033         int spares = 0;
4034         int ret;
4035
4036         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4037                 return -EBUSY;
4038
4039         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4040                 return -EINVAL;
4041
4042         before_length = ((1 << conf->prev.chunk_shift) *
4043                          conf->prev.far_copies);
4044         after_length = ((1 << conf->geo.chunk_shift) *
4045                         conf->geo.far_copies);
4046
4047         rdev_for_each(rdev, mddev) {
4048                 if (!test_bit(In_sync, &rdev->flags)
4049                     && !test_bit(Faulty, &rdev->flags))
4050                         spares++;
4051                 if (rdev->raid_disk >= 0) {
4052                         long long diff = (rdev->new_data_offset
4053                                           - rdev->data_offset);
4054                         if (!mddev->reshape_backwards)
4055                                 diff = -diff;
4056                         if (diff < 0)
4057                                 diff = 0;
4058                         if (first || diff < min_offset_diff)
4059                                 min_offset_diff = diff;
4060                         first = 0;
4061                 }
4062         }
4063
4064         if (max(before_length, after_length) > min_offset_diff)
4065                 return -EINVAL;
4066
4067         if (spares < mddev->delta_disks)
4068                 return -EINVAL;
4069
4070         conf->offset_diff = min_offset_diff;
4071         spin_lock_irq(&conf->device_lock);
4072         if (conf->mirrors_new) {
4073                 memcpy(conf->mirrors_new, conf->mirrors,
4074                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4075                 smp_mb();
4076                 kfree(conf->mirrors_old);
4077                 conf->mirrors_old = conf->mirrors;
4078                 conf->mirrors = conf->mirrors_new;
4079                 conf->mirrors_new = NULL;
4080         }
4081         setup_geo(&conf->geo, mddev, geo_start);
4082         smp_mb();
4083         if (mddev->reshape_backwards) {
4084                 sector_t size = raid10_size(mddev, 0, 0);
4085                 if (size < mddev->array_sectors) {
4086                         spin_unlock_irq(&conf->device_lock);
4087                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4088                                mdname(mddev));
4089                         return -EINVAL;
4090                 }
4091                 mddev->resync_max_sectors = size;
4092                 conf->reshape_progress = size;
4093         } else
4094                 conf->reshape_progress = 0;
4095         conf->reshape_safe = conf->reshape_progress;
4096         spin_unlock_irq(&conf->device_lock);
4097
4098         if (mddev->delta_disks && mddev->bitmap) {
4099                 ret = bitmap_resize(mddev->bitmap,
4100                                     raid10_size(mddev, 0,
4101                                                 conf->geo.raid_disks),
4102                                     0, 0);
4103                 if (ret)
4104                         goto abort;
4105         }
4106         if (mddev->delta_disks > 0) {
4107                 rdev_for_each(rdev, mddev)
4108                         if (rdev->raid_disk < 0 &&
4109                             !test_bit(Faulty, &rdev->flags)) {
4110                                 if (raid10_add_disk(mddev, rdev) == 0) {
4111                                         if (rdev->raid_disk >=
4112                                             conf->prev.raid_disks)
4113                                                 set_bit(In_sync, &rdev->flags);
4114                                         else
4115                                                 rdev->recovery_offset = 0;
4116
4117                                         if (sysfs_link_rdev(mddev, rdev))
4118                                                 /* Failure here  is OK */;
4119                                 }
4120                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4121                                    && !test_bit(Faulty, &rdev->flags)) {
4122                                 /* This is a spare that was manually added */
4123                                 set_bit(In_sync, &rdev->flags);
4124                         }
4125         }
4126         /* When a reshape changes the number of devices,
4127          * ->degraded is measured against the larger of the
4128          * pre and  post numbers.
4129          */
4130         spin_lock_irq(&conf->device_lock);
4131         mddev->degraded = calc_degraded(conf);
4132         spin_unlock_irq(&conf->device_lock);
4133         mddev->raid_disks = conf->geo.raid_disks;
4134         mddev->reshape_position = conf->reshape_progress;
4135         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4136
4137         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4138         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4139         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4140         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4141         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4142
4143         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4144                                                 "reshape");
4145         if (!mddev->sync_thread) {
4146                 ret = -EAGAIN;
4147                 goto abort;
4148         }
4149         conf->reshape_checkpoint = jiffies;
4150         md_wakeup_thread(mddev->sync_thread);
4151         md_new_event(mddev);
4152         return 0;
4153
4154 abort:
4155         mddev->recovery = 0;
4156         spin_lock_irq(&conf->device_lock);
4157         conf->geo = conf->prev;
4158         mddev->raid_disks = conf->geo.raid_disks;
4159         rdev_for_each(rdev, mddev)
4160                 rdev->new_data_offset = rdev->data_offset;
4161         smp_wmb();
4162         conf->reshape_progress = MaxSector;
4163         conf->reshape_safe = MaxSector;
4164         mddev->reshape_position = MaxSector;
4165         spin_unlock_irq(&conf->device_lock);
4166         return ret;
4167 }
4168
4169 /* Calculate the last device-address that could contain
4170  * any block from the chunk that includes the array-address 's'
4171  * and report the next address.
4172  * i.e. the address returned will be chunk-aligned and after
4173  * any data that is in the chunk containing 's'.
4174  */
4175 static sector_t last_dev_address(sector_t s, struct geom *geo)
4176 {
4177         s = (s | geo->chunk_mask) + 1;
4178         s >>= geo->chunk_shift;
4179         s *= geo->near_copies;
4180         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4181         s *= geo->far_copies;
4182         s <<= geo->chunk_shift;
4183         return s;
4184 }
4185
4186 /* Calculate the first device-address that could contain
4187  * any block from the chunk that includes the array-address 's'.
4188  * This too will be the start of a chunk
4189  */
4190 static sector_t first_dev_address(sector_t s, struct geom *geo)
4191 {
4192         s >>= geo->chunk_shift;
4193         s *= geo->near_copies;
4194         sector_div(s, geo->raid_disks);
4195         s *= geo->far_copies;
4196         s <<= geo->chunk_shift;
4197         return s;
4198 }
4199
4200 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4201                                 int *skipped)
4202 {
4203         /* We simply copy at most one chunk (smallest of old and new)
4204          * at a time, possibly less if that exceeds RESYNC_PAGES,
4205          * or we hit a bad block or something.
4206          * This might mean we pause for normal IO in the middle of
4207          * a chunk, but that is not a problem as mddev->reshape_position
4208          * can record any location.
4209          *
4210          * If we will want to write to a location that isn't
4211          * yet recorded as 'safe' (i.e. in metadata on disk) then
4212          * we need to flush all reshape requests and update the metadata.
4213          *
4214          * When reshaping forwards (e.g. to more devices), we interpret
4215          * 'safe' as the earliest block which might not have been copied
4216          * down yet.  We divide this by previous stripe size and multiply
4217          * by previous stripe length to get lowest device offset that we
4218          * cannot write to yet.
4219          * We interpret 'sector_nr' as an address that we want to write to.
4220          * From this we use last_device_address() to find where we might
4221          * write to, and first_device_address on the  'safe' position.
4222          * If this 'next' write position is after the 'safe' position,
4223          * we must update the metadata to increase the 'safe' position.
4224          *
4225          * When reshaping backwards, we round in the opposite direction
4226          * and perform the reverse test:  next write position must not be
4227          * less than current safe position.
4228          *
4229          * In all this the minimum difference in data offsets
4230          * (conf->offset_diff - always positive) allows a bit of slack,
4231          * so next can be after 'safe', but not by more than offset_diff
4232          *
4233          * We need to prepare all the bios here before we start any IO
4234          * to ensure the size we choose is acceptable to all devices.
4235          * The means one for each copy for write-out and an extra one for
4236          * read-in.
4237          * We store the read-in bio in ->master_bio and the others in
4238          * ->devs[x].bio and ->devs[x].repl_bio.
4239          */
4240         struct r10conf *conf = mddev->private;
4241         struct r10bio *r10_bio;
4242         sector_t next, safe, last;
4243         int max_sectors;
4244         int nr_sectors;
4245         int s;
4246         struct md_rdev *rdev;
4247         int need_flush = 0;
4248         struct bio *blist;
4249         struct bio *bio, *read_bio;
4250         int sectors_done = 0;
4251
4252         if (sector_nr == 0) {
4253                 /* If restarting in the middle, skip the initial sectors */
4254                 if (mddev->reshape_backwards &&
4255                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4256                         sector_nr = (raid10_size(mddev, 0, 0)
4257                                      - conf->reshape_progress);
4258                 } else if (!mddev->reshape_backwards &&
4259                            conf->reshape_progress > 0)
4260                         sector_nr = conf->reshape_progress;
4261                 if (sector_nr) {
4262                         mddev->curr_resync_completed = sector_nr;
4263                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4264                         *skipped = 1;
4265                         return sector_nr;
4266                 }
4267         }
4268
4269         /* We don't use sector_nr to track where we are up to
4270          * as that doesn't work well for ->reshape_backwards.
4271          * So just use ->reshape_progress.
4272          */
4273         if (mddev->reshape_backwards) {
4274                 /* 'next' is the earliest device address that we might
4275                  * write to for this chunk in the new layout
4276                  */
4277                 next = first_dev_address(conf->reshape_progress - 1,
4278                                          &conf->geo);
4279
4280                 /* 'safe' is the last device address that we might read from
4281                  * in the old layout after a restart
4282                  */
4283                 safe = last_dev_address(conf->reshape_safe - 1,
4284                                         &conf->prev);
4285
4286                 if (next + conf->offset_diff < safe)
4287                         need_flush = 1;
4288
4289                 last = conf->reshape_progress - 1;
4290                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4291                                                & conf->prev.chunk_mask);
4292                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4293                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4294         } else {
4295                 /* 'next' is after the last device address that we
4296                  * might write to for this chunk in the new layout
4297                  */
4298                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4299
4300                 /* 'safe' is the earliest device address that we might
4301                  * read from in the old layout after a restart
4302                  */
4303                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4304
4305                 /* Need to update metadata if 'next' might be beyond 'safe'
4306                  * as that would possibly corrupt data
4307                  */
4308                 if (next > safe + conf->offset_diff)
4309                         need_flush = 1;
4310
4311                 sector_nr = conf->reshape_progress;
4312                 last  = sector_nr | (conf->geo.chunk_mask
4313                                      & conf->prev.chunk_mask);
4314
4315                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4316                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4317         }
4318
4319         if (need_flush ||
4320             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4321                 /* Need to update reshape_position in metadata */
4322                 wait_barrier(conf);
4323                 mddev->reshape_position = conf->reshape_progress;
4324                 if (mddev->reshape_backwards)
4325                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4326                                 - conf->reshape_progress;
4327                 else
4328                         mddev->curr_resync_completed = conf->reshape_progress;
4329                 conf->reshape_checkpoint = jiffies;
4330                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4331                 md_wakeup_thread(mddev->thread);
4332                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4333                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4334                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4335                         allow_barrier(conf);
4336                         return sectors_done;
4337                 }
4338                 conf->reshape_safe = mddev->reshape_position;
4339                 allow_barrier(conf);
4340         }
4341
4342         raise_barrier(conf, 0);
4343 read_more:
4344         /* Now schedule reads for blocks from sector_nr to last */
4345         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4346         r10_bio->state = 0;
4347         raise_barrier(conf, 1);
4348         atomic_set(&r10_bio->remaining, 0);
4349         r10_bio->mddev = mddev;
4350         r10_bio->sector = sector_nr;
4351         set_bit(R10BIO_IsReshape, &r10_bio->state);
4352         r10_bio->sectors = last - sector_nr + 1;
4353         rdev = read_balance(conf, r10_bio, &max_sectors);
4354         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4355
4356         if (!rdev) {
4357                 /* Cannot read from here, so need to record bad blocks
4358                  * on all the target devices.
4359                  */
4360                 // FIXME
4361                 mempool_free(r10_bio, conf->r10buf_pool);
4362                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4363                 return sectors_done;
4364         }
4365
4366         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4367
4368         read_bio->bi_bdev = rdev->bdev;
4369         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4370                                + rdev->data_offset);
4371         read_bio->bi_private = r10_bio;
4372         read_bio->bi_end_io = end_sync_read;
4373         read_bio->bi_rw = READ;
4374         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4375         read_bio->bi_error = 0;
4376         read_bio->bi_vcnt = 0;
4377         read_bio->bi_iter.bi_size = 0;
4378         r10_bio->master_bio = read_bio;
4379         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4380
4381         /* Now find the locations in the new layout */
4382         __raid10_find_phys(&conf->geo, r10_bio);
4383
4384         blist = read_bio;
4385         read_bio->bi_next = NULL;
4386
4387         for (s = 0; s < conf->copies*2; s++) {
4388                 struct bio *b;
4389                 int d = r10_bio->devs[s/2].devnum;
4390                 struct md_rdev *rdev2;
4391                 if (s&1) {
4392                         rdev2 = conf->mirrors[d].replacement;
4393                         b = r10_bio->devs[s/2].repl_bio;
4394                 } else {
4395                         rdev2 = conf->mirrors[d].rdev;
4396                         b = r10_bio->devs[s/2].bio;
4397                 }
4398                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4399                         continue;
4400
4401                 bio_reset(b);
4402                 b->bi_bdev = rdev2->bdev;
4403                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4404                         rdev2->new_data_offset;
4405                 b->bi_private = r10_bio;
4406                 b->bi_end_io = end_reshape_write;
4407                 b->bi_rw = WRITE;
4408                 b->bi_next = blist;
4409                 blist = b;
4410         }
4411
4412         /* Now add as many pages as possible to all of these bios. */
4413
4414         nr_sectors = 0;
4415         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4416                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4417                 int len = (max_sectors - s) << 9;
4418                 if (len > PAGE_SIZE)
4419                         len = PAGE_SIZE;
4420                 for (bio = blist; bio ; bio = bio->bi_next) {
4421                         struct bio *bio2;
4422                         if (bio_add_page(bio, page, len, 0))
4423                                 continue;
4424
4425                         /* Didn't fit, must stop */
4426                         for (bio2 = blist;
4427                              bio2 && bio2 != bio;
4428                              bio2 = bio2->bi_next) {
4429                                 /* Remove last page from this bio */
4430                                 bio2->bi_vcnt--;
4431                                 bio2->bi_iter.bi_size -= len;
4432                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4433                         }
4434                         goto bio_full;
4435                 }
4436                 sector_nr += len >> 9;
4437                 nr_sectors += len >> 9;
4438         }
4439 bio_full:
4440         r10_bio->sectors = nr_sectors;
4441
4442         /* Now submit the read */
4443         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4444         atomic_inc(&r10_bio->remaining);
4445         read_bio->bi_next = NULL;
4446         generic_make_request(read_bio);
4447         sectors_done += nr_sectors;
4448         if (sector_nr <= last)
4449                 goto read_more;
4450
4451         lower_barrier(conf);
4452
4453         /* Now that we have done the whole section we can
4454          * update reshape_progress
4455          */
4456         if (mddev->reshape_backwards)
4457                 conf->reshape_progress -= sectors_done;
4458         else
4459                 conf->reshape_progress += sectors_done;
4460
4461         return sectors_done;
4462 }
4463
4464 static void end_reshape_request(struct r10bio *r10_bio);
4465 static int handle_reshape_read_error(struct mddev *mddev,
4466                                      struct r10bio *r10_bio);
4467 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4468 {
4469         /* Reshape read completed.  Hopefully we have a block
4470          * to write out.
4471          * If we got a read error then we do sync 1-page reads from
4472          * elsewhere until we find the data - or give up.
4473          */
4474         struct r10conf *conf = mddev->private;
4475         int s;
4476
4477         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4478                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4479                         /* Reshape has been aborted */
4480                         md_done_sync(mddev, r10_bio->sectors, 0);
4481                         return;
4482                 }
4483
4484         /* We definitely have the data in the pages, schedule the
4485          * writes.
4486          */
4487         atomic_set(&r10_bio->remaining, 1);
4488         for (s = 0; s < conf->copies*2; s++) {
4489                 struct bio *b;
4490                 int d = r10_bio->devs[s/2].devnum;
4491                 struct md_rdev *rdev;
4492                 if (s&1) {
4493                         rdev = conf->mirrors[d].replacement;
4494                         b = r10_bio->devs[s/2].repl_bio;
4495                 } else {
4496                         rdev = conf->mirrors[d].rdev;
4497                         b = r10_bio->devs[s/2].bio;
4498                 }
4499                 if (!rdev || test_bit(Faulty, &rdev->flags))
4500                         continue;
4501                 atomic_inc(&rdev->nr_pending);
4502                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4503                 atomic_inc(&r10_bio->remaining);
4504                 b->bi_next = NULL;
4505                 generic_make_request(b);
4506         }
4507         end_reshape_request(r10_bio);
4508 }
4509
4510 static void end_reshape(struct r10conf *conf)
4511 {
4512         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4513                 return;
4514
4515         spin_lock_irq(&conf->device_lock);
4516         conf->prev = conf->geo;
4517         md_finish_reshape(conf->mddev);
4518         smp_wmb();
4519         conf->reshape_progress = MaxSector;
4520         conf->reshape_safe = MaxSector;
4521         spin_unlock_irq(&conf->device_lock);
4522
4523         /* read-ahead size must cover two whole stripes, which is
4524          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4525          */
4526         if (conf->mddev->queue) {
4527                 int stripe = conf->geo.raid_disks *
4528                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4529                 stripe /= conf->geo.near_copies;
4530                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4531                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4532         }
4533         conf->fullsync = 0;
4534 }
4535
4536 static int handle_reshape_read_error(struct mddev *mddev,
4537                                      struct r10bio *r10_bio)
4538 {
4539         /* Use sync reads to get the blocks from somewhere else */
4540         int sectors = r10_bio->sectors;
4541         struct r10conf *conf = mddev->private;
4542         struct {
4543                 struct r10bio r10_bio;
4544                 struct r10dev devs[conf->copies];
4545         } on_stack;
4546         struct r10bio *r10b = &on_stack.r10_bio;
4547         int slot = 0;
4548         int idx = 0;
4549         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4550
4551         r10b->sector = r10_bio->sector;
4552         __raid10_find_phys(&conf->prev, r10b);
4553
4554         while (sectors) {
4555                 int s = sectors;
4556                 int success = 0;
4557                 int first_slot = slot;
4558
4559                 if (s > (PAGE_SIZE >> 9))
4560                         s = PAGE_SIZE >> 9;
4561
4562                 while (!success) {
4563                         int d = r10b->devs[slot].devnum;
4564                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4565                         sector_t addr;
4566                         if (rdev == NULL ||
4567                             test_bit(Faulty, &rdev->flags) ||
4568                             !test_bit(In_sync, &rdev->flags))
4569                                 goto failed;
4570
4571                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4572                         success = sync_page_io(rdev,
4573                                                addr,
4574                                                s << 9,
4575                                                bvec[idx].bv_page,
4576                                                READ, false);
4577                         if (success)
4578                                 break;
4579                 failed:
4580                         slot++;
4581                         if (slot >= conf->copies)
4582                                 slot = 0;
4583                         if (slot == first_slot)
4584                                 break;
4585                 }
4586                 if (!success) {
4587                         /* couldn't read this block, must give up */
4588                         set_bit(MD_RECOVERY_INTR,
4589                                 &mddev->recovery);
4590                         return -EIO;
4591                 }
4592                 sectors -= s;
4593                 idx++;
4594         }
4595         return 0;
4596 }
4597
4598 static void end_reshape_write(struct bio *bio)
4599 {
4600         struct r10bio *r10_bio = bio->bi_private;
4601         struct mddev *mddev = r10_bio->mddev;
4602         struct r10conf *conf = mddev->private;
4603         int d;
4604         int slot;
4605         int repl;
4606         struct md_rdev *rdev = NULL;
4607
4608         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4609         if (repl)
4610                 rdev = conf->mirrors[d].replacement;
4611         if (!rdev) {
4612                 smp_mb();
4613                 rdev = conf->mirrors[d].rdev;
4614         }
4615
4616         if (bio->bi_error) {
4617                 /* FIXME should record badblock */
4618                 md_error(mddev, rdev);
4619         }
4620
4621         rdev_dec_pending(rdev, mddev);
4622         end_reshape_request(r10_bio);
4623 }
4624
4625 static void end_reshape_request(struct r10bio *r10_bio)
4626 {
4627         if (!atomic_dec_and_test(&r10_bio->remaining))
4628                 return;
4629         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4630         bio_put(r10_bio->master_bio);
4631         put_buf(r10_bio);
4632 }
4633
4634 static void raid10_finish_reshape(struct mddev *mddev)
4635 {
4636         struct r10conf *conf = mddev->private;
4637
4638         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4639                 return;
4640
4641         if (mddev->delta_disks > 0) {
4642                 sector_t size = raid10_size(mddev, 0, 0);
4643                 md_set_array_sectors(mddev, size);
4644                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4645                         mddev->recovery_cp = mddev->resync_max_sectors;
4646                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4647                 }
4648                 mddev->resync_max_sectors = size;
4649                 set_capacity(mddev->gendisk, mddev->array_sectors);
4650                 revalidate_disk(mddev->gendisk);
4651         } else {
4652                 int d;
4653                 for (d = conf->geo.raid_disks ;
4654                      d < conf->geo.raid_disks - mddev->delta_disks;
4655                      d++) {
4656                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4657                         if (rdev)
4658                                 clear_bit(In_sync, &rdev->flags);
4659                         rdev = conf->mirrors[d].replacement;
4660                         if (rdev)
4661                                 clear_bit(In_sync, &rdev->flags);
4662                 }
4663         }
4664         mddev->layout = mddev->new_layout;
4665         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4666         mddev->reshape_position = MaxSector;
4667         mddev->delta_disks = 0;
4668         mddev->reshape_backwards = 0;
4669 }
4670
4671 static struct md_personality raid10_personality =
4672 {
4673         .name           = "raid10",
4674         .level          = 10,
4675         .owner          = THIS_MODULE,
4676         .make_request   = make_request,
4677         .run            = run,
4678         .free           = raid10_free,
4679         .status         = status,
4680         .error_handler  = error,
4681         .hot_add_disk   = raid10_add_disk,
4682         .hot_remove_disk= raid10_remove_disk,
4683         .spare_active   = raid10_spare_active,
4684         .sync_request   = sync_request,
4685         .quiesce        = raid10_quiesce,
4686         .size           = raid10_size,
4687         .resize         = raid10_resize,
4688         .takeover       = raid10_takeover,
4689         .check_reshape  = raid10_check_reshape,
4690         .start_reshape  = raid10_start_reshape,
4691         .finish_reshape = raid10_finish_reshape,
4692         .congested      = raid10_congested,
4693 };
4694
4695 static int __init raid_init(void)
4696 {
4697         return register_md_personality(&raid10_personality);
4698 }
4699
4700 static void raid_exit(void)
4701 {
4702         unregister_md_personality(&raid10_personality);
4703 }
4704
4705 module_init(raid_init);
4706 module_exit(raid_exit);
4707 MODULE_LICENSE("GPL");
4708 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4709 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4710 MODULE_ALIAS("md-raid10");
4711 MODULE_ALIAS("md-level-10");
4712
4713 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);