GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156         struct r10conf *conf = data;
157         struct r10bio *r10_bio;
158         struct bio *bio;
159         int j;
160         int nalloc, nalloc_rp;
161         struct resync_pages *rps;
162
163         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164         if (!r10_bio)
165                 return NULL;
166
167         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169                 nalloc = conf->copies; /* resync */
170         else
171                 nalloc = 2; /* recovery */
172
173         /* allocate once for all bios */
174         if (!conf->have_replacement)
175                 nalloc_rp = nalloc;
176         else
177                 nalloc_rp = nalloc * 2;
178         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179         if (!rps)
180                 goto out_free_r10bio;
181
182         /*
183          * Allocate bios.
184          */
185         for (j = nalloc ; j-- ; ) {
186                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187                 if (!bio)
188                         goto out_free_bio;
189                 r10_bio->devs[j].bio = bio;
190                 if (!conf->have_replacement)
191                         continue;
192                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193                 if (!bio)
194                         goto out_free_bio;
195                 r10_bio->devs[j].repl_bio = bio;
196         }
197         /*
198          * Allocate RESYNC_PAGES data pages and attach them
199          * where needed.
200          */
201         for (j = 0; j < nalloc; j++) {
202                 struct bio *rbio = r10_bio->devs[j].repl_bio;
203                 struct resync_pages *rp, *rp_repl;
204
205                 rp = &rps[j];
206                 if (rbio)
207                         rp_repl = &rps[nalloc + j];
208
209                 bio = r10_bio->devs[j].bio;
210
211                 if (!j || test_bit(MD_RECOVERY_SYNC,
212                                    &conf->mddev->recovery)) {
213                         if (resync_alloc_pages(rp, gfp_flags))
214                                 goto out_free_pages;
215                 } else {
216                         memcpy(rp, &rps[0], sizeof(*rp));
217                         resync_get_all_pages(rp);
218                 }
219
220                 rp->raid_bio = r10_bio;
221                 bio->bi_private = rp;
222                 if (rbio) {
223                         memcpy(rp_repl, rp, sizeof(*rp));
224                         rbio->bi_private = rp_repl;
225                 }
226         }
227
228         return r10_bio;
229
230 out_free_pages:
231         while (--j >= 0)
232                 resync_free_pages(&rps[j]);
233
234         j = 0;
235 out_free_bio:
236         for ( ; j < nalloc; j++) {
237                 if (r10_bio->devs[j].bio)
238                         bio_put(r10_bio->devs[j].bio);
239                 if (r10_bio->devs[j].repl_bio)
240                         bio_put(r10_bio->devs[j].repl_bio);
241         }
242         kfree(rps);
243 out_free_r10bio:
244         r10bio_pool_free(r10_bio, conf);
245         return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250         struct r10conf *conf = data;
251         struct r10bio *r10bio = __r10_bio;
252         int j;
253         struct resync_pages *rp = NULL;
254
255         for (j = conf->copies; j--; ) {
256                 struct bio *bio = r10bio->devs[j].bio;
257
258                 if (bio) {
259                         rp = get_resync_pages(bio);
260                         resync_free_pages(rp);
261                         bio_put(bio);
262                 }
263
264                 bio = r10bio->devs[j].repl_bio;
265                 if (bio)
266                         bio_put(bio);
267         }
268
269         /* resync pages array stored in the 1st bio's .bi_private */
270         kfree(rp);
271
272         r10bio_pool_free(r10bio, conf);
273 }
274
275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277         int i;
278
279         for (i = 0; i < conf->copies; i++) {
280                 struct bio **bio = & r10_bio->devs[i].bio;
281                 if (!BIO_SPECIAL(*bio))
282                         bio_put(*bio);
283                 *bio = NULL;
284                 bio = &r10_bio->devs[i].repl_bio;
285                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286                         bio_put(*bio);
287                 *bio = NULL;
288         }
289 }
290
291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293         struct r10conf *conf = r10_bio->mddev->private;
294
295         put_all_bios(conf, r10_bio);
296         mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298
299 static void put_buf(struct r10bio *r10_bio)
300 {
301         struct r10conf *conf = r10_bio->mddev->private;
302
303         mempool_free(r10_bio, &conf->r10buf_pool);
304
305         lower_barrier(conf);
306 }
307
308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310         unsigned long flags;
311         struct mddev *mddev = r10_bio->mddev;
312         struct r10conf *conf = mddev->private;
313
314         spin_lock_irqsave(&conf->device_lock, flags);
315         list_add(&r10_bio->retry_list, &conf->retry_list);
316         conf->nr_queued ++;
317         spin_unlock_irqrestore(&conf->device_lock, flags);
318
319         /* wake up frozen array... */
320         wake_up(&conf->wait_barrier);
321
322         md_wakeup_thread(mddev->thread);
323 }
324
325 /*
326  * raid_end_bio_io() is called when we have finished servicing a mirrored
327  * operation and are ready to return a success/failure code to the buffer
328  * cache layer.
329  */
330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332         struct bio *bio = r10_bio->master_bio;
333         struct r10conf *conf = r10_bio->mddev->private;
334
335         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336                 bio->bi_status = BLK_STS_IOERR;
337
338         bio_endio(bio);
339         /*
340          * Wake up any possible resync thread that waits for the device
341          * to go idle.
342          */
343         allow_barrier(conf);
344
345         free_r10bio(r10_bio);
346 }
347
348 /*
349  * Update disk head position estimator based on IRQ completion info.
350  */
351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353         struct r10conf *conf = r10_bio->mddev->private;
354
355         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356                 r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358
359 /*
360  * Find the disk number which triggered given bio
361  */
362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363                          struct bio *bio, int *slotp, int *replp)
364 {
365         int slot;
366         int repl = 0;
367
368         for (slot = 0; slot < conf->copies; slot++) {
369                 if (r10_bio->devs[slot].bio == bio)
370                         break;
371                 if (r10_bio->devs[slot].repl_bio == bio) {
372                         repl = 1;
373                         break;
374                 }
375         }
376
377         BUG_ON(slot == conf->copies);
378         update_head_pos(slot, r10_bio);
379
380         if (slotp)
381                 *slotp = slot;
382         if (replp)
383                 *replp = repl;
384         return r10_bio->devs[slot].devnum;
385 }
386
387 static void raid10_end_read_request(struct bio *bio)
388 {
389         int uptodate = !bio->bi_status;
390         struct r10bio *r10_bio = bio->bi_private;
391         int slot;
392         struct md_rdev *rdev;
393         struct r10conf *conf = r10_bio->mddev->private;
394
395         slot = r10_bio->read_slot;
396         rdev = r10_bio->devs[slot].rdev;
397         /*
398          * this branch is our 'one mirror IO has finished' event handler:
399          */
400         update_head_pos(slot, r10_bio);
401
402         if (uptodate) {
403                 /*
404                  * Set R10BIO_Uptodate in our master bio, so that
405                  * we will return a good error code to the higher
406                  * levels even if IO on some other mirrored buffer fails.
407                  *
408                  * The 'master' represents the composite IO operation to
409                  * user-side. So if something waits for IO, then it will
410                  * wait for the 'master' bio.
411                  */
412                 set_bit(R10BIO_Uptodate, &r10_bio->state);
413         } else {
414                 /* If all other devices that store this block have
415                  * failed, we want to return the error upwards rather
416                  * than fail the last device.  Here we redefine
417                  * "uptodate" to mean "Don't want to retry"
418                  */
419                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420                              rdev->raid_disk))
421                         uptodate = 1;
422         }
423         if (uptodate) {
424                 raid_end_bio_io(r10_bio);
425                 rdev_dec_pending(rdev, conf->mddev);
426         } else {
427                 /*
428                  * oops, read error - keep the refcount on the rdev
429                  */
430                 char b[BDEVNAME_SIZE];
431                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432                                    mdname(conf->mddev),
433                                    bdevname(rdev->bdev, b),
434                                    (unsigned long long)r10_bio->sector);
435                 set_bit(R10BIO_ReadError, &r10_bio->state);
436                 reschedule_retry(r10_bio);
437         }
438 }
439
440 static void close_write(struct r10bio *r10_bio)
441 {
442         /* clear the bitmap if all writes complete successfully */
443         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444                            r10_bio->sectors,
445                            !test_bit(R10BIO_Degraded, &r10_bio->state),
446                            0);
447         md_write_end(r10_bio->mddev);
448 }
449
450 static void one_write_done(struct r10bio *r10_bio)
451 {
452         if (atomic_dec_and_test(&r10_bio->remaining)) {
453                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454                         reschedule_retry(r10_bio);
455                 else {
456                         close_write(r10_bio);
457                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458                                 reschedule_retry(r10_bio);
459                         else
460                                 raid_end_bio_io(r10_bio);
461                 }
462         }
463 }
464
465 static void raid10_end_write_request(struct bio *bio)
466 {
467         struct r10bio *r10_bio = bio->bi_private;
468         int dev;
469         int dec_rdev = 1;
470         struct r10conf *conf = r10_bio->mddev->private;
471         int slot, repl;
472         struct md_rdev *rdev = NULL;
473         struct bio *to_put = NULL;
474         bool discard_error;
475
476         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477
478         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479
480         if (repl)
481                 rdev = conf->mirrors[dev].replacement;
482         if (!rdev) {
483                 smp_rmb();
484                 repl = 0;
485                 rdev = conf->mirrors[dev].rdev;
486         }
487         /*
488          * this branch is our 'one mirror IO has finished' event handler:
489          */
490         if (bio->bi_status && !discard_error) {
491                 if (repl)
492                         /* Never record new bad blocks to replacement,
493                          * just fail it.
494                          */
495                         md_error(rdev->mddev, rdev);
496                 else {
497                         set_bit(WriteErrorSeen, &rdev->flags);
498                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
499                                 set_bit(MD_RECOVERY_NEEDED,
500                                         &rdev->mddev->recovery);
501
502                         dec_rdev = 0;
503                         if (test_bit(FailFast, &rdev->flags) &&
504                             (bio->bi_opf & MD_FAILFAST)) {
505                                 md_error(rdev->mddev, rdev);
506                                 if (!test_bit(Faulty, &rdev->flags))
507                                         /* This is the only remaining device,
508                                          * We need to retry the write without
509                                          * FailFast
510                                          */
511                                         set_bit(R10BIO_WriteError, &r10_bio->state);
512                                 else {
513                                         r10_bio->devs[slot].bio = NULL;
514                                         to_put = bio;
515                                         dec_rdev = 1;
516                                 }
517                         } else
518                                 set_bit(R10BIO_WriteError, &r10_bio->state);
519                 }
520         } else {
521                 /*
522                  * Set R10BIO_Uptodate in our master bio, so that
523                  * we will return a good error code for to the higher
524                  * levels even if IO on some other mirrored buffer fails.
525                  *
526                  * The 'master' represents the composite IO operation to
527                  * user-side. So if something waits for IO, then it will
528                  * wait for the 'master' bio.
529                  */
530                 sector_t first_bad;
531                 int bad_sectors;
532
533                 /*
534                  * Do not set R10BIO_Uptodate if the current device is
535                  * rebuilding or Faulty. This is because we cannot use
536                  * such device for properly reading the data back (we could
537                  * potentially use it, if the current write would have felt
538                  * before rdev->recovery_offset, but for simplicity we don't
539                  * check this here.
540                  */
541                 if (test_bit(In_sync, &rdev->flags) &&
542                     !test_bit(Faulty, &rdev->flags))
543                         set_bit(R10BIO_Uptodate, &r10_bio->state);
544
545                 /* Maybe we can clear some bad blocks. */
546                 if (is_badblock(rdev,
547                                 r10_bio->devs[slot].addr,
548                                 r10_bio->sectors,
549                                 &first_bad, &bad_sectors) && !discard_error) {
550                         bio_put(bio);
551                         if (repl)
552                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553                         else
554                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
555                         dec_rdev = 0;
556                         set_bit(R10BIO_MadeGood, &r10_bio->state);
557                 }
558         }
559
560         /*
561          *
562          * Let's see if all mirrored write operations have finished
563          * already.
564          */
565         one_write_done(r10_bio);
566         if (dec_rdev)
567                 rdev_dec_pending(rdev, conf->mddev);
568         if (to_put)
569                 bio_put(to_put);
570 }
571
572 /*
573  * RAID10 layout manager
574  * As well as the chunksize and raid_disks count, there are two
575  * parameters: near_copies and far_copies.
576  * near_copies * far_copies must be <= raid_disks.
577  * Normally one of these will be 1.
578  * If both are 1, we get raid0.
579  * If near_copies == raid_disks, we get raid1.
580  *
581  * Chunks are laid out in raid0 style with near_copies copies of the
582  * first chunk, followed by near_copies copies of the next chunk and
583  * so on.
584  * If far_copies > 1, then after 1/far_copies of the array has been assigned
585  * as described above, we start again with a device offset of near_copies.
586  * So we effectively have another copy of the whole array further down all
587  * the drives, but with blocks on different drives.
588  * With this layout, and block is never stored twice on the one device.
589  *
590  * raid10_find_phys finds the sector offset of a given virtual sector
591  * on each device that it is on.
592  *
593  * raid10_find_virt does the reverse mapping, from a device and a
594  * sector offset to a virtual address
595  */
596
597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599         int n,f;
600         sector_t sector;
601         sector_t chunk;
602         sector_t stripe;
603         int dev;
604         int slot = 0;
605         int last_far_set_start, last_far_set_size;
606
607         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608         last_far_set_start *= geo->far_set_size;
609
610         last_far_set_size = geo->far_set_size;
611         last_far_set_size += (geo->raid_disks % geo->far_set_size);
612
613         /* now calculate first sector/dev */
614         chunk = r10bio->sector >> geo->chunk_shift;
615         sector = r10bio->sector & geo->chunk_mask;
616
617         chunk *= geo->near_copies;
618         stripe = chunk;
619         dev = sector_div(stripe, geo->raid_disks);
620         if (geo->far_offset)
621                 stripe *= geo->far_copies;
622
623         sector += stripe << geo->chunk_shift;
624
625         /* and calculate all the others */
626         for (n = 0; n < geo->near_copies; n++) {
627                 int d = dev;
628                 int set;
629                 sector_t s = sector;
630                 r10bio->devs[slot].devnum = d;
631                 r10bio->devs[slot].addr = s;
632                 slot++;
633
634                 for (f = 1; f < geo->far_copies; f++) {
635                         set = d / geo->far_set_size;
636                         d += geo->near_copies;
637
638                         if ((geo->raid_disks % geo->far_set_size) &&
639                             (d > last_far_set_start)) {
640                                 d -= last_far_set_start;
641                                 d %= last_far_set_size;
642                                 d += last_far_set_start;
643                         } else {
644                                 d %= geo->far_set_size;
645                                 d += geo->far_set_size * set;
646                         }
647                         s += geo->stride;
648                         r10bio->devs[slot].devnum = d;
649                         r10bio->devs[slot].addr = s;
650                         slot++;
651                 }
652                 dev++;
653                 if (dev >= geo->raid_disks) {
654                         dev = 0;
655                         sector += (geo->chunk_mask + 1);
656                 }
657         }
658 }
659
660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662         struct geom *geo = &conf->geo;
663
664         if (conf->reshape_progress != MaxSector &&
665             ((r10bio->sector >= conf->reshape_progress) !=
666              conf->mddev->reshape_backwards)) {
667                 set_bit(R10BIO_Previous, &r10bio->state);
668                 geo = &conf->prev;
669         } else
670                 clear_bit(R10BIO_Previous, &r10bio->state);
671
672         __raid10_find_phys(geo, r10bio);
673 }
674
675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677         sector_t offset, chunk, vchunk;
678         /* Never use conf->prev as this is only called during resync
679          * or recovery, so reshape isn't happening
680          */
681         struct geom *geo = &conf->geo;
682         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683         int far_set_size = geo->far_set_size;
684         int last_far_set_start;
685
686         if (geo->raid_disks % geo->far_set_size) {
687                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688                 last_far_set_start *= geo->far_set_size;
689
690                 if (dev >= last_far_set_start) {
691                         far_set_size = geo->far_set_size;
692                         far_set_size += (geo->raid_disks % geo->far_set_size);
693                         far_set_start = last_far_set_start;
694                 }
695         }
696
697         offset = sector & geo->chunk_mask;
698         if (geo->far_offset) {
699                 int fc;
700                 chunk = sector >> geo->chunk_shift;
701                 fc = sector_div(chunk, geo->far_copies);
702                 dev -= fc * geo->near_copies;
703                 if (dev < far_set_start)
704                         dev += far_set_size;
705         } else {
706                 while (sector >= geo->stride) {
707                         sector -= geo->stride;
708                         if (dev < (geo->near_copies + far_set_start))
709                                 dev += far_set_size - geo->near_copies;
710                         else
711                                 dev -= geo->near_copies;
712                 }
713                 chunk = sector >> geo->chunk_shift;
714         }
715         vchunk = chunk * geo->raid_disks + dev;
716         sector_div(vchunk, geo->near_copies);
717         return (vchunk << geo->chunk_shift) + offset;
718 }
719
720 /*
721  * This routine returns the disk from which the requested read should
722  * be done. There is a per-array 'next expected sequential IO' sector
723  * number - if this matches on the next IO then we use the last disk.
724  * There is also a per-disk 'last know head position' sector that is
725  * maintained from IRQ contexts, both the normal and the resync IO
726  * completion handlers update this position correctly. If there is no
727  * perfect sequential match then we pick the disk whose head is closest.
728  *
729  * If there are 2 mirrors in the same 2 devices, performance degrades
730  * because position is mirror, not device based.
731  *
732  * The rdev for the device selected will have nr_pending incremented.
733  */
734
735 /*
736  * FIXME: possibly should rethink readbalancing and do it differently
737  * depending on near_copies / far_copies geometry.
738  */
739 static struct md_rdev *read_balance(struct r10conf *conf,
740                                     struct r10bio *r10_bio,
741                                     int *max_sectors)
742 {
743         const sector_t this_sector = r10_bio->sector;
744         int disk, slot;
745         int sectors = r10_bio->sectors;
746         int best_good_sectors;
747         sector_t new_distance, best_dist;
748         struct md_rdev *best_rdev, *rdev = NULL;
749         int do_balance;
750         int best_slot;
751         struct geom *geo = &conf->geo;
752
753         raid10_find_phys(conf, r10_bio);
754         rcu_read_lock();
755         best_slot = -1;
756         best_rdev = NULL;
757         best_dist = MaxSector;
758         best_good_sectors = 0;
759         do_balance = 1;
760         clear_bit(R10BIO_FailFast, &r10_bio->state);
761         /*
762          * Check if we can balance. We can balance on the whole
763          * device if no resync is going on (recovery is ok), or below
764          * the resync window. We take the first readable disk when
765          * above the resync window.
766          */
767         if ((conf->mddev->recovery_cp < MaxSector
768              && (this_sector + sectors >= conf->next_resync)) ||
769             (mddev_is_clustered(conf->mddev) &&
770              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771                                             this_sector + sectors)))
772                 do_balance = 0;
773
774         for (slot = 0; slot < conf->copies ; slot++) {
775                 sector_t first_bad;
776                 int bad_sectors;
777                 sector_t dev_sector;
778
779                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780                         continue;
781                 disk = r10_bio->devs[slot].devnum;
782                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
786                 if (rdev == NULL ||
787                     test_bit(Faulty, &rdev->flags))
788                         continue;
789                 if (!test_bit(In_sync, &rdev->flags) &&
790                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791                         continue;
792
793                 dev_sector = r10_bio->devs[slot].addr;
794                 if (is_badblock(rdev, dev_sector, sectors,
795                                 &first_bad, &bad_sectors)) {
796                         if (best_dist < MaxSector)
797                                 /* Already have a better slot */
798                                 continue;
799                         if (first_bad <= dev_sector) {
800                                 /* Cannot read here.  If this is the
801                                  * 'primary' device, then we must not read
802                                  * beyond 'bad_sectors' from another device.
803                                  */
804                                 bad_sectors -= (dev_sector - first_bad);
805                                 if (!do_balance && sectors > bad_sectors)
806                                         sectors = bad_sectors;
807                                 if (best_good_sectors > sectors)
808                                         best_good_sectors = sectors;
809                         } else {
810                                 sector_t good_sectors =
811                                         first_bad - dev_sector;
812                                 if (good_sectors > best_good_sectors) {
813                                         best_good_sectors = good_sectors;
814                                         best_slot = slot;
815                                         best_rdev = rdev;
816                                 }
817                                 if (!do_balance)
818                                         /* Must read from here */
819                                         break;
820                         }
821                         continue;
822                 } else
823                         best_good_sectors = sectors;
824
825                 if (!do_balance)
826                         break;
827
828                 if (best_slot >= 0)
829                         /* At least 2 disks to choose from so failfast is OK */
830                         set_bit(R10BIO_FailFast, &r10_bio->state);
831                 /* This optimisation is debatable, and completely destroys
832                  * sequential read speed for 'far copies' arrays.  So only
833                  * keep it for 'near' arrays, and review those later.
834                  */
835                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836                         new_distance = 0;
837
838                 /* for far > 1 always use the lowest address */
839                 else if (geo->far_copies > 1)
840                         new_distance = r10_bio->devs[slot].addr;
841                 else
842                         new_distance = abs(r10_bio->devs[slot].addr -
843                                            conf->mirrors[disk].head_position);
844                 if (new_distance < best_dist) {
845                         best_dist = new_distance;
846                         best_slot = slot;
847                         best_rdev = rdev;
848                 }
849         }
850         if (slot >= conf->copies) {
851                 slot = best_slot;
852                 rdev = best_rdev;
853         }
854
855         if (slot >= 0) {
856                 atomic_inc(&rdev->nr_pending);
857                 r10_bio->read_slot = slot;
858         } else
859                 rdev = NULL;
860         rcu_read_unlock();
861         *max_sectors = best_good_sectors;
862
863         return rdev;
864 }
865
866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868         struct r10conf *conf = mddev->private;
869         int i, ret = 0;
870
871         if ((bits & (1 << WB_async_congested)) &&
872             conf->pending_count >= max_queued_requests)
873                 return 1;
874
875         rcu_read_lock();
876         for (i = 0;
877              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878                      && ret == 0;
879              i++) {
880                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882                         struct request_queue *q = bdev_get_queue(rdev->bdev);
883
884                         ret |= bdi_congested(q->backing_dev_info, bits);
885                 }
886         }
887         rcu_read_unlock();
888         return ret;
889 }
890
891 static void flush_pending_writes(struct r10conf *conf)
892 {
893         /* Any writes that have been queued but are awaiting
894          * bitmap updates get flushed here.
895          */
896         spin_lock_irq(&conf->device_lock);
897
898         if (conf->pending_bio_list.head) {
899                 struct blk_plug plug;
900                 struct bio *bio;
901
902                 bio = bio_list_get(&conf->pending_bio_list);
903                 conf->pending_count = 0;
904                 spin_unlock_irq(&conf->device_lock);
905
906                 /*
907                  * As this is called in a wait_event() loop (see freeze_array),
908                  * current->state might be TASK_UNINTERRUPTIBLE which will
909                  * cause a warning when we prepare to wait again.  As it is
910                  * rare that this path is taken, it is perfectly safe to force
911                  * us to go around the wait_event() loop again, so the warning
912                  * is a false-positive. Silence the warning by resetting
913                  * thread state
914                  */
915                 __set_current_state(TASK_RUNNING);
916
917                 blk_start_plug(&plug);
918                 /* flush any pending bitmap writes to disk
919                  * before proceeding w/ I/O */
920                 md_bitmap_unplug(conf->mddev->bitmap);
921                 wake_up(&conf->wait_barrier);
922
923                 while (bio) { /* submit pending writes */
924                         struct bio *next = bio->bi_next;
925                         struct md_rdev *rdev = (void*)bio->bi_disk;
926                         bio->bi_next = NULL;
927                         bio_set_dev(bio, rdev->bdev);
928                         if (test_bit(Faulty, &rdev->flags)) {
929                                 bio_io_error(bio);
930                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
931                                             !blk_queue_discard(bio->bi_disk->queue)))
932                                 /* Just ignore it */
933                                 bio_endio(bio);
934                         else
935                                 generic_make_request(bio);
936                         bio = next;
937                 }
938                 blk_finish_plug(&plug);
939         } else
940                 spin_unlock_irq(&conf->device_lock);
941 }
942
943 /* Barriers....
944  * Sometimes we need to suspend IO while we do something else,
945  * either some resync/recovery, or reconfigure the array.
946  * To do this we raise a 'barrier'.
947  * The 'barrier' is a counter that can be raised multiple times
948  * to count how many activities are happening which preclude
949  * normal IO.
950  * We can only raise the barrier if there is no pending IO.
951  * i.e. if nr_pending == 0.
952  * We choose only to raise the barrier if no-one is waiting for the
953  * barrier to go down.  This means that as soon as an IO request
954  * is ready, no other operations which require a barrier will start
955  * until the IO request has had a chance.
956  *
957  * So: regular IO calls 'wait_barrier'.  When that returns there
958  *    is no backgroup IO happening,  It must arrange to call
959  *    allow_barrier when it has finished its IO.
960  * backgroup IO calls must call raise_barrier.  Once that returns
961  *    there is no normal IO happeing.  It must arrange to call
962  *    lower_barrier when the particular background IO completes.
963  */
964
965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967         BUG_ON(force && !conf->barrier);
968         spin_lock_irq(&conf->resync_lock);
969
970         /* Wait until no block IO is waiting (unless 'force') */
971         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972                             conf->resync_lock);
973
974         /* block any new IO from starting */
975         conf->barrier++;
976
977         /* Now wait for all pending IO to complete */
978         wait_event_lock_irq(conf->wait_barrier,
979                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980                             conf->resync_lock);
981
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void lower_barrier(struct r10conf *conf)
986 {
987         unsigned long flags;
988         spin_lock_irqsave(&conf->resync_lock, flags);
989         conf->barrier--;
990         spin_unlock_irqrestore(&conf->resync_lock, flags);
991         wake_up(&conf->wait_barrier);
992 }
993
994 static void wait_barrier(struct r10conf *conf)
995 {
996         spin_lock_irq(&conf->resync_lock);
997         if (conf->barrier) {
998                 conf->nr_waiting++;
999                 /* Wait for the barrier to drop.
1000                  * However if there are already pending
1001                  * requests (preventing the barrier from
1002                  * rising completely), and the
1003                  * pre-process bio queue isn't empty,
1004                  * then don't wait, as we need to empty
1005                  * that queue to get the nr_pending
1006                  * count down.
1007                  */
1008                 raid10_log(conf->mddev, "wait barrier");
1009                 wait_event_lock_irq(conf->wait_barrier,
1010                                     !conf->barrier ||
1011                                     (atomic_read(&conf->nr_pending) &&
1012                                      current->bio_list &&
1013                                      (!bio_list_empty(&current->bio_list[0]) ||
1014                                       !bio_list_empty(&current->bio_list[1]))),
1015                                     conf->resync_lock);
1016                 conf->nr_waiting--;
1017                 if (!conf->nr_waiting)
1018                         wake_up(&conf->wait_barrier);
1019         }
1020         atomic_inc(&conf->nr_pending);
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027                         (conf->array_freeze_pending))
1028                 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033         /* stop syncio and normal IO and wait for everything to
1034          * go quiet.
1035          * We increment barrier and nr_waiting, and then
1036          * wait until nr_pending match nr_queued+extra
1037          * This is called in the context of one normal IO request
1038          * that has failed. Thus any sync request that might be pending
1039          * will be blocked by nr_pending, and we need to wait for
1040          * pending IO requests to complete or be queued for re-try.
1041          * Thus the number queued (nr_queued) plus this request (extra)
1042          * must match the number of pending IOs (nr_pending) before
1043          * we continue.
1044          */
1045         spin_lock_irq(&conf->resync_lock);
1046         conf->array_freeze_pending++;
1047         conf->barrier++;
1048         conf->nr_waiting++;
1049         wait_event_lock_irq_cmd(conf->wait_barrier,
1050                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051                                 conf->resync_lock,
1052                                 flush_pending_writes(conf));
1053
1054         conf->array_freeze_pending--;
1055         spin_unlock_irq(&conf->resync_lock);
1056 }
1057
1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060         /* reverse the effect of the freeze */
1061         spin_lock_irq(&conf->resync_lock);
1062         conf->barrier--;
1063         conf->nr_waiting--;
1064         wake_up(&conf->wait_barrier);
1065         spin_unlock_irq(&conf->resync_lock);
1066 }
1067
1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069                                    struct md_rdev *rdev)
1070 {
1071         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072             test_bit(R10BIO_Previous, &r10_bio->state))
1073                 return rdev->data_offset;
1074         else
1075                 return rdev->new_data_offset;
1076 }
1077
1078 struct raid10_plug_cb {
1079         struct blk_plug_cb      cb;
1080         struct bio_list         pending;
1081         int                     pending_cnt;
1082 };
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087                                                    cb);
1088         struct mddev *mddev = plug->cb.data;
1089         struct r10conf *conf = mddev->private;
1090         struct bio *bio;
1091
1092         if (from_schedule || current->bio_list) {
1093                 spin_lock_irq(&conf->device_lock);
1094                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095                 conf->pending_count += plug->pending_cnt;
1096                 spin_unlock_irq(&conf->device_lock);
1097                 wake_up(&conf->wait_barrier);
1098                 md_wakeup_thread(mddev->thread);
1099                 kfree(plug);
1100                 return;
1101         }
1102
1103         /* we aren't scheduling, so we can do the write-out directly. */
1104         bio = bio_list_get(&plug->pending);
1105         md_bitmap_unplug(mddev->bitmap);
1106         wake_up(&conf->wait_barrier);
1107
1108         while (bio) { /* submit pending writes */
1109                 struct bio *next = bio->bi_next;
1110                 struct md_rdev *rdev = (void*)bio->bi_disk;
1111                 bio->bi_next = NULL;
1112                 bio_set_dev(bio, rdev->bdev);
1113                 if (test_bit(Faulty, &rdev->flags)) {
1114                         bio_io_error(bio);
1115                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1116                                     !blk_queue_discard(bio->bi_disk->queue)))
1117                         /* Just ignore it */
1118                         bio_endio(bio);
1119                 else
1120                         generic_make_request(bio);
1121                 bio = next;
1122         }
1123         kfree(plug);
1124 }
1125
1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127                                 struct r10bio *r10_bio)
1128 {
1129         struct r10conf *conf = mddev->private;
1130         struct bio *read_bio;
1131         const int op = bio_op(bio);
1132         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133         int max_sectors;
1134         sector_t sectors;
1135         struct md_rdev *rdev;
1136         char b[BDEVNAME_SIZE];
1137         int slot = r10_bio->read_slot;
1138         struct md_rdev *err_rdev = NULL;
1139         gfp_t gfp = GFP_NOIO;
1140
1141         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1142                 /*
1143                  * This is an error retry, but we cannot
1144                  * safely dereference the rdev in the r10_bio,
1145                  * we must use the one in conf.
1146                  * If it has already been disconnected (unlikely)
1147                  * we lose the device name in error messages.
1148                  */
1149                 int disk;
1150                 /*
1151                  * As we are blocking raid10, it is a little safer to
1152                  * use __GFP_HIGH.
1153                  */
1154                 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156                 rcu_read_lock();
1157                 disk = r10_bio->devs[slot].devnum;
1158                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159                 if (err_rdev)
1160                         bdevname(err_rdev->bdev, b);
1161                 else {
1162                         strcpy(b, "???");
1163                         /* This never gets dereferenced */
1164                         err_rdev = r10_bio->devs[slot].rdev;
1165                 }
1166                 rcu_read_unlock();
1167         }
1168         /*
1169          * Register the new request and wait if the reconstruction
1170          * thread has put up a bar for new requests.
1171          * Continue immediately if no resync is active currently.
1172          */
1173         wait_barrier(conf);
1174
1175         sectors = r10_bio->sectors;
1176         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177             bio->bi_iter.bi_sector < conf->reshape_progress &&
1178             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179                 /*
1180                  * IO spans the reshape position.  Need to wait for reshape to
1181                  * pass
1182                  */
1183                 raid10_log(conf->mddev, "wait reshape");
1184                 allow_barrier(conf);
1185                 wait_event(conf->wait_barrier,
1186                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1188                            sectors);
1189                 wait_barrier(conf);
1190         }
1191
1192         rdev = read_balance(conf, r10_bio, &max_sectors);
1193         if (!rdev) {
1194                 if (err_rdev) {
1195                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196                                             mdname(mddev), b,
1197                                             (unsigned long long)r10_bio->sector);
1198                 }
1199                 raid_end_bio_io(r10_bio);
1200                 return;
1201         }
1202         if (err_rdev)
1203                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204                                    mdname(mddev),
1205                                    bdevname(rdev->bdev, b),
1206                                    (unsigned long long)r10_bio->sector);
1207         if (max_sectors < bio_sectors(bio)) {
1208                 struct bio *split = bio_split(bio, max_sectors,
1209                                               gfp, &conf->bio_split);
1210                 bio_chain(split, bio);
1211                 allow_barrier(conf);
1212                 generic_make_request(bio);
1213                 wait_barrier(conf);
1214                 bio = split;
1215                 r10_bio->master_bio = bio;
1216                 r10_bio->sectors = max_sectors;
1217         }
1218         slot = r10_bio->read_slot;
1219
1220         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1221
1222         r10_bio->devs[slot].bio = read_bio;
1223         r10_bio->devs[slot].rdev = rdev;
1224
1225         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1226                 choose_data_offset(r10_bio, rdev);
1227         bio_set_dev(read_bio, rdev->bdev);
1228         read_bio->bi_end_io = raid10_end_read_request;
1229         bio_set_op_attrs(read_bio, op, do_sync);
1230         if (test_bit(FailFast, &rdev->flags) &&
1231             test_bit(R10BIO_FailFast, &r10_bio->state))
1232                 read_bio->bi_opf |= MD_FAILFAST;
1233         read_bio->bi_private = r10_bio;
1234
1235         if (mddev->gendisk)
1236                 trace_block_bio_remap(read_bio->bi_disk->queue,
1237                                       read_bio, disk_devt(mddev->gendisk),
1238                                       r10_bio->sector);
1239         generic_make_request(read_bio);
1240         return;
1241 }
1242
1243 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1244                                   struct bio *bio, bool replacement,
1245                                   int n_copy)
1246 {
1247         const int op = bio_op(bio);
1248         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1249         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1250         unsigned long flags;
1251         struct blk_plug_cb *cb;
1252         struct raid10_plug_cb *plug = NULL;
1253         struct r10conf *conf = mddev->private;
1254         struct md_rdev *rdev;
1255         int devnum = r10_bio->devs[n_copy].devnum;
1256         struct bio *mbio;
1257
1258         if (replacement) {
1259                 rdev = conf->mirrors[devnum].replacement;
1260                 if (rdev == NULL) {
1261                         /* Replacement just got moved to main 'rdev' */
1262                         smp_mb();
1263                         rdev = conf->mirrors[devnum].rdev;
1264                 }
1265         } else
1266                 rdev = conf->mirrors[devnum].rdev;
1267
1268         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1269         if (replacement)
1270                 r10_bio->devs[n_copy].repl_bio = mbio;
1271         else
1272                 r10_bio->devs[n_copy].bio = mbio;
1273
1274         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1275                                    choose_data_offset(r10_bio, rdev));
1276         bio_set_dev(mbio, rdev->bdev);
1277         mbio->bi_end_io = raid10_end_write_request;
1278         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1279         if (!replacement && test_bit(FailFast,
1280                                      &conf->mirrors[devnum].rdev->flags)
1281                          && enough(conf, devnum))
1282                 mbio->bi_opf |= MD_FAILFAST;
1283         mbio->bi_private = r10_bio;
1284
1285         if (conf->mddev->gendisk)
1286                 trace_block_bio_remap(mbio->bi_disk->queue,
1287                                       mbio, disk_devt(conf->mddev->gendisk),
1288                                       r10_bio->sector);
1289         /* flush_pending_writes() needs access to the rdev so...*/
1290         mbio->bi_disk = (void *)rdev;
1291
1292         atomic_inc(&r10_bio->remaining);
1293
1294         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1295         if (cb)
1296                 plug = container_of(cb, struct raid10_plug_cb, cb);
1297         else
1298                 plug = NULL;
1299         if (plug) {
1300                 bio_list_add(&plug->pending, mbio);
1301                 plug->pending_cnt++;
1302         } else {
1303                 spin_lock_irqsave(&conf->device_lock, flags);
1304                 bio_list_add(&conf->pending_bio_list, mbio);
1305                 conf->pending_count++;
1306                 spin_unlock_irqrestore(&conf->device_lock, flags);
1307                 md_wakeup_thread(mddev->thread);
1308         }
1309 }
1310
1311 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1312                                  struct r10bio *r10_bio)
1313 {
1314         struct r10conf *conf = mddev->private;
1315         int i;
1316         struct md_rdev *blocked_rdev;
1317         sector_t sectors;
1318         int max_sectors;
1319
1320         if ((mddev_is_clustered(mddev) &&
1321              md_cluster_ops->area_resyncing(mddev, WRITE,
1322                                             bio->bi_iter.bi_sector,
1323                                             bio_end_sector(bio)))) {
1324                 DEFINE_WAIT(w);
1325                 for (;;) {
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_IDLE);
1328                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1329                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1330                                 break;
1331                         schedule();
1332                 }
1333                 finish_wait(&conf->wait_barrier, &w);
1334         }
1335
1336         /*
1337          * Register the new request and wait if the reconstruction
1338          * thread has put up a bar for new requests.
1339          * Continue immediately if no resync is active currently.
1340          */
1341         wait_barrier(conf);
1342
1343         sectors = r10_bio->sectors;
1344         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345             bio->bi_iter.bi_sector < conf->reshape_progress &&
1346             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1347                 /*
1348                  * IO spans the reshape position.  Need to wait for reshape to
1349                  * pass
1350                  */
1351                 raid10_log(conf->mddev, "wait reshape");
1352                 allow_barrier(conf);
1353                 wait_event(conf->wait_barrier,
1354                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1355                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1356                            sectors);
1357                 wait_barrier(conf);
1358         }
1359
1360         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1361             (mddev->reshape_backwards
1362              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1363                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1364              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1365                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1366                 /* Need to update reshape_position in metadata */
1367                 mddev->reshape_position = conf->reshape_progress;
1368                 set_mask_bits(&mddev->sb_flags, 0,
1369                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1370                 md_wakeup_thread(mddev->thread);
1371                 raid10_log(conf->mddev, "wait reshape metadata");
1372                 wait_event(mddev->sb_wait,
1373                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1374
1375                 conf->reshape_safe = mddev->reshape_position;
1376         }
1377
1378         if (conf->pending_count >= max_queued_requests) {
1379                 md_wakeup_thread(mddev->thread);
1380                 raid10_log(mddev, "wait queued");
1381                 wait_event(conf->wait_barrier,
1382                            conf->pending_count < max_queued_requests);
1383         }
1384         /* first select target devices under rcu_lock and
1385          * inc refcount on their rdev.  Record them by setting
1386          * bios[x] to bio
1387          * If there are known/acknowledged bad blocks on any device
1388          * on which we have seen a write error, we want to avoid
1389          * writing to those blocks.  This potentially requires several
1390          * writes to write around the bad blocks.  Each set of writes
1391          * gets its own r10_bio with a set of bios attached.
1392          */
1393
1394         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1395         raid10_find_phys(conf, r10_bio);
1396 retry_write:
1397         blocked_rdev = NULL;
1398         rcu_read_lock();
1399         max_sectors = r10_bio->sectors;
1400
1401         for (i = 0;  i < conf->copies; i++) {
1402                 int d = r10_bio->devs[i].devnum;
1403                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1404                 struct md_rdev *rrdev = rcu_dereference(
1405                         conf->mirrors[d].replacement);
1406                 if (rdev == rrdev)
1407                         rrdev = NULL;
1408                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409                         atomic_inc(&rdev->nr_pending);
1410                         blocked_rdev = rdev;
1411                         break;
1412                 }
1413                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1414                         atomic_inc(&rrdev->nr_pending);
1415                         blocked_rdev = rrdev;
1416                         break;
1417                 }
1418                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1419                         rdev = NULL;
1420                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1421                         rrdev = NULL;
1422
1423                 r10_bio->devs[i].bio = NULL;
1424                 r10_bio->devs[i].repl_bio = NULL;
1425
1426                 if (!rdev && !rrdev) {
1427                         set_bit(R10BIO_Degraded, &r10_bio->state);
1428                         continue;
1429                 }
1430                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1431                         sector_t first_bad;
1432                         sector_t dev_sector = r10_bio->devs[i].addr;
1433                         int bad_sectors;
1434                         int is_bad;
1435
1436                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1437                                              &first_bad, &bad_sectors);
1438                         if (is_bad < 0) {
1439                                 /* Mustn't write here until the bad block
1440                                  * is acknowledged
1441                                  */
1442                                 atomic_inc(&rdev->nr_pending);
1443                                 set_bit(BlockedBadBlocks, &rdev->flags);
1444                                 blocked_rdev = rdev;
1445                                 break;
1446                         }
1447                         if (is_bad && first_bad <= dev_sector) {
1448                                 /* Cannot write here at all */
1449                                 bad_sectors -= (dev_sector - first_bad);
1450                                 if (bad_sectors < max_sectors)
1451                                         /* Mustn't write more than bad_sectors
1452                                          * to other devices yet
1453                                          */
1454                                         max_sectors = bad_sectors;
1455                                 /* We don't set R10BIO_Degraded as that
1456                                  * only applies if the disk is missing,
1457                                  * so it might be re-added, and we want to
1458                                  * know to recover this chunk.
1459                                  * In this case the device is here, and the
1460                                  * fact that this chunk is not in-sync is
1461                                  * recorded in the bad block log.
1462                                  */
1463                                 continue;
1464                         }
1465                         if (is_bad) {
1466                                 int good_sectors = first_bad - dev_sector;
1467                                 if (good_sectors < max_sectors)
1468                                         max_sectors = good_sectors;
1469                         }
1470                 }
1471                 if (rdev) {
1472                         r10_bio->devs[i].bio = bio;
1473                         atomic_inc(&rdev->nr_pending);
1474                 }
1475                 if (rrdev) {
1476                         r10_bio->devs[i].repl_bio = bio;
1477                         atomic_inc(&rrdev->nr_pending);
1478                 }
1479         }
1480         rcu_read_unlock();
1481
1482         if (unlikely(blocked_rdev)) {
1483                 /* Have to wait for this device to get unblocked, then retry */
1484                 int j;
1485                 int d;
1486
1487                 for (j = 0; j < i; j++) {
1488                         if (r10_bio->devs[j].bio) {
1489                                 d = r10_bio->devs[j].devnum;
1490                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491                         }
1492                         if (r10_bio->devs[j].repl_bio) {
1493                                 struct md_rdev *rdev;
1494                                 d = r10_bio->devs[j].devnum;
1495                                 rdev = conf->mirrors[d].replacement;
1496                                 if (!rdev) {
1497                                         /* Race with remove_disk */
1498                                         smp_mb();
1499                                         rdev = conf->mirrors[d].rdev;
1500                                 }
1501                                 rdev_dec_pending(rdev, mddev);
1502                         }
1503                 }
1504                 allow_barrier(conf);
1505                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1506                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1507                 wait_barrier(conf);
1508                 goto retry_write;
1509         }
1510
1511         if (max_sectors < r10_bio->sectors)
1512                 r10_bio->sectors = max_sectors;
1513
1514         if (r10_bio->sectors < bio_sectors(bio)) {
1515                 struct bio *split = bio_split(bio, r10_bio->sectors,
1516                                               GFP_NOIO, &conf->bio_split);
1517                 bio_chain(split, bio);
1518                 allow_barrier(conf);
1519                 generic_make_request(bio);
1520                 wait_barrier(conf);
1521                 bio = split;
1522                 r10_bio->master_bio = bio;
1523         }
1524
1525         atomic_set(&r10_bio->remaining, 1);
1526         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1527
1528         for (i = 0; i < conf->copies; i++) {
1529                 if (r10_bio->devs[i].bio)
1530                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1531                 if (r10_bio->devs[i].repl_bio)
1532                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1533         }
1534         one_write_done(r10_bio);
1535 }
1536
1537 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1538 {
1539         struct r10conf *conf = mddev->private;
1540         struct r10bio *r10_bio;
1541
1542         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1543
1544         r10_bio->master_bio = bio;
1545         r10_bio->sectors = sectors;
1546
1547         r10_bio->mddev = mddev;
1548         r10_bio->sector = bio->bi_iter.bi_sector;
1549         r10_bio->state = 0;
1550         r10_bio->read_slot = -1;
1551         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1552
1553         if (bio_data_dir(bio) == READ)
1554                 raid10_read_request(mddev, bio, r10_bio);
1555         else
1556                 raid10_write_request(mddev, bio, r10_bio);
1557 }
1558
1559 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1560 {
1561         struct r10conf *conf = mddev->private;
1562         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1563         int chunk_sects = chunk_mask + 1;
1564         int sectors = bio_sectors(bio);
1565
1566         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1567             && md_flush_request(mddev, bio))
1568                 return true;
1569
1570         if (!md_write_start(mddev, bio))
1571                 return false;
1572
1573         /*
1574          * If this request crosses a chunk boundary, we need to split
1575          * it.
1576          */
1577         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1578                      sectors > chunk_sects
1579                      && (conf->geo.near_copies < conf->geo.raid_disks
1580                          || conf->prev.near_copies <
1581                          conf->prev.raid_disks)))
1582                 sectors = chunk_sects -
1583                         (bio->bi_iter.bi_sector &
1584                          (chunk_sects - 1));
1585         __make_request(mddev, bio, sectors);
1586
1587         /* In case raid10d snuck in to freeze_array */
1588         wake_up(&conf->wait_barrier);
1589         return true;
1590 }
1591
1592 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1593 {
1594         struct r10conf *conf = mddev->private;
1595         int i;
1596
1597         if (conf->geo.near_copies < conf->geo.raid_disks)
1598                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1599         if (conf->geo.near_copies > 1)
1600                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1601         if (conf->geo.far_copies > 1) {
1602                 if (conf->geo.far_offset)
1603                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1604                 else
1605                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1606                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1607                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1608         }
1609         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1610                                         conf->geo.raid_disks - mddev->degraded);
1611         rcu_read_lock();
1612         for (i = 0; i < conf->geo.raid_disks; i++) {
1613                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1614                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1615         }
1616         rcu_read_unlock();
1617         seq_printf(seq, "]");
1618 }
1619
1620 /* check if there are enough drives for
1621  * every block to appear on atleast one.
1622  * Don't consider the device numbered 'ignore'
1623  * as we might be about to remove it.
1624  */
1625 static int _enough(struct r10conf *conf, int previous, int ignore)
1626 {
1627         int first = 0;
1628         int has_enough = 0;
1629         int disks, ncopies;
1630         if (previous) {
1631                 disks = conf->prev.raid_disks;
1632                 ncopies = conf->prev.near_copies;
1633         } else {
1634                 disks = conf->geo.raid_disks;
1635                 ncopies = conf->geo.near_copies;
1636         }
1637
1638         rcu_read_lock();
1639         do {
1640                 int n = conf->copies;
1641                 int cnt = 0;
1642                 int this = first;
1643                 while (n--) {
1644                         struct md_rdev *rdev;
1645                         if (this != ignore &&
1646                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1647                             test_bit(In_sync, &rdev->flags))
1648                                 cnt++;
1649                         this = (this+1) % disks;
1650                 }
1651                 if (cnt == 0)
1652                         goto out;
1653                 first = (first + ncopies) % disks;
1654         } while (first != 0);
1655         has_enough = 1;
1656 out:
1657         rcu_read_unlock();
1658         return has_enough;
1659 }
1660
1661 static int enough(struct r10conf *conf, int ignore)
1662 {
1663         /* when calling 'enough', both 'prev' and 'geo' must
1664          * be stable.
1665          * This is ensured if ->reconfig_mutex or ->device_lock
1666          * is held.
1667          */
1668         return _enough(conf, 0, ignore) &&
1669                 _enough(conf, 1, ignore);
1670 }
1671
1672 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1673 {
1674         char b[BDEVNAME_SIZE];
1675         struct r10conf *conf = mddev->private;
1676         unsigned long flags;
1677
1678         /*
1679          * If it is not operational, then we have already marked it as dead
1680          * else if it is the last working disks, ignore the error, let the
1681          * next level up know.
1682          * else mark the drive as failed
1683          */
1684         spin_lock_irqsave(&conf->device_lock, flags);
1685         if (test_bit(In_sync, &rdev->flags)
1686             && !enough(conf, rdev->raid_disk)) {
1687                 /*
1688                  * Don't fail the drive, just return an IO error.
1689                  */
1690                 spin_unlock_irqrestore(&conf->device_lock, flags);
1691                 return;
1692         }
1693         if (test_and_clear_bit(In_sync, &rdev->flags))
1694                 mddev->degraded++;
1695         /*
1696          * If recovery is running, make sure it aborts.
1697          */
1698         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1699         set_bit(Blocked, &rdev->flags);
1700         set_bit(Faulty, &rdev->flags);
1701         set_mask_bits(&mddev->sb_flags, 0,
1702                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1703         spin_unlock_irqrestore(&conf->device_lock, flags);
1704         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1705                 "md/raid10:%s: Operation continuing on %d devices.\n",
1706                 mdname(mddev), bdevname(rdev->bdev, b),
1707                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1708 }
1709
1710 static void print_conf(struct r10conf *conf)
1711 {
1712         int i;
1713         struct md_rdev *rdev;
1714
1715         pr_debug("RAID10 conf printout:\n");
1716         if (!conf) {
1717                 pr_debug("(!conf)\n");
1718                 return;
1719         }
1720         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1721                  conf->geo.raid_disks);
1722
1723         /* This is only called with ->reconfix_mutex held, so
1724          * rcu protection of rdev is not needed */
1725         for (i = 0; i < conf->geo.raid_disks; i++) {
1726                 char b[BDEVNAME_SIZE];
1727                 rdev = conf->mirrors[i].rdev;
1728                 if (rdev)
1729                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1730                                  i, !test_bit(In_sync, &rdev->flags),
1731                                  !test_bit(Faulty, &rdev->flags),
1732                                  bdevname(rdev->bdev,b));
1733         }
1734 }
1735
1736 static void close_sync(struct r10conf *conf)
1737 {
1738         wait_barrier(conf);
1739         allow_barrier(conf);
1740
1741         mempool_exit(&conf->r10buf_pool);
1742 }
1743
1744 static int raid10_spare_active(struct mddev *mddev)
1745 {
1746         int i;
1747         struct r10conf *conf = mddev->private;
1748         struct raid10_info *tmp;
1749         int count = 0;
1750         unsigned long flags;
1751
1752         /*
1753          * Find all non-in_sync disks within the RAID10 configuration
1754          * and mark them in_sync
1755          */
1756         for (i = 0; i < conf->geo.raid_disks; i++) {
1757                 tmp = conf->mirrors + i;
1758                 if (tmp->replacement
1759                     && tmp->replacement->recovery_offset == MaxSector
1760                     && !test_bit(Faulty, &tmp->replacement->flags)
1761                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1762                         /* Replacement has just become active */
1763                         if (!tmp->rdev
1764                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1765                                 count++;
1766                         if (tmp->rdev) {
1767                                 /* Replaced device not technically faulty,
1768                                  * but we need to be sure it gets removed
1769                                  * and never re-added.
1770                                  */
1771                                 set_bit(Faulty, &tmp->rdev->flags);
1772                                 sysfs_notify_dirent_safe(
1773                                         tmp->rdev->sysfs_state);
1774                         }
1775                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1776                 } else if (tmp->rdev
1777                            && tmp->rdev->recovery_offset == MaxSector
1778                            && !test_bit(Faulty, &tmp->rdev->flags)
1779                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1780                         count++;
1781                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1782                 }
1783         }
1784         spin_lock_irqsave(&conf->device_lock, flags);
1785         mddev->degraded -= count;
1786         spin_unlock_irqrestore(&conf->device_lock, flags);
1787
1788         print_conf(conf);
1789         return count;
1790 }
1791
1792 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1793 {
1794         struct r10conf *conf = mddev->private;
1795         int err = -EEXIST;
1796         int mirror;
1797         int first = 0;
1798         int last = conf->geo.raid_disks - 1;
1799
1800         if (mddev->recovery_cp < MaxSector)
1801                 /* only hot-add to in-sync arrays, as recovery is
1802                  * very different from resync
1803                  */
1804                 return -EBUSY;
1805         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1806                 return -EINVAL;
1807
1808         if (md_integrity_add_rdev(rdev, mddev))
1809                 return -ENXIO;
1810
1811         if (rdev->raid_disk >= 0)
1812                 first = last = rdev->raid_disk;
1813
1814         if (rdev->saved_raid_disk >= first &&
1815             rdev->saved_raid_disk < conf->geo.raid_disks &&
1816             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1817                 mirror = rdev->saved_raid_disk;
1818         else
1819                 mirror = first;
1820         for ( ; mirror <= last ; mirror++) {
1821                 struct raid10_info *p = &conf->mirrors[mirror];
1822                 if (p->recovery_disabled == mddev->recovery_disabled)
1823                         continue;
1824                 if (p->rdev) {
1825                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1826                             p->replacement != NULL)
1827                                 continue;
1828                         clear_bit(In_sync, &rdev->flags);
1829                         set_bit(Replacement, &rdev->flags);
1830                         rdev->raid_disk = mirror;
1831                         err = 0;
1832                         if (mddev->gendisk)
1833                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1834                                                   rdev->data_offset << 9);
1835                         conf->fullsync = 1;
1836                         rcu_assign_pointer(p->replacement, rdev);
1837                         break;
1838                 }
1839
1840                 if (mddev->gendisk)
1841                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1842                                           rdev->data_offset << 9);
1843
1844                 p->head_position = 0;
1845                 p->recovery_disabled = mddev->recovery_disabled - 1;
1846                 rdev->raid_disk = mirror;
1847                 err = 0;
1848                 if (rdev->saved_raid_disk != mirror)
1849                         conf->fullsync = 1;
1850                 rcu_assign_pointer(p->rdev, rdev);
1851                 break;
1852         }
1853         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1854                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1855
1856         print_conf(conf);
1857         return err;
1858 }
1859
1860 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1861 {
1862         struct r10conf *conf = mddev->private;
1863         int err = 0;
1864         int number = rdev->raid_disk;
1865         struct md_rdev **rdevp;
1866         struct raid10_info *p;
1867
1868         print_conf(conf);
1869         if (unlikely(number >= mddev->raid_disks))
1870                 return 0;
1871         p = conf->mirrors + number;
1872         if (rdev == p->rdev)
1873                 rdevp = &p->rdev;
1874         else if (rdev == p->replacement)
1875                 rdevp = &p->replacement;
1876         else
1877                 return 0;
1878
1879         if (test_bit(In_sync, &rdev->flags) ||
1880             atomic_read(&rdev->nr_pending)) {
1881                 err = -EBUSY;
1882                 goto abort;
1883         }
1884         /* Only remove non-faulty devices if recovery
1885          * is not possible.
1886          */
1887         if (!test_bit(Faulty, &rdev->flags) &&
1888             mddev->recovery_disabled != p->recovery_disabled &&
1889             (!p->replacement || p->replacement == rdev) &&
1890             number < conf->geo.raid_disks &&
1891             enough(conf, -1)) {
1892                 err = -EBUSY;
1893                 goto abort;
1894         }
1895         *rdevp = NULL;
1896         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1897                 synchronize_rcu();
1898                 if (atomic_read(&rdev->nr_pending)) {
1899                         /* lost the race, try later */
1900                         err = -EBUSY;
1901                         *rdevp = rdev;
1902                         goto abort;
1903                 }
1904         }
1905         if (p->replacement) {
1906                 /* We must have just cleared 'rdev' */
1907                 p->rdev = p->replacement;
1908                 clear_bit(Replacement, &p->replacement->flags);
1909                 smp_mb(); /* Make sure other CPUs may see both as identical
1910                            * but will never see neither -- if they are careful.
1911                            */
1912                 p->replacement = NULL;
1913         }
1914
1915         clear_bit(WantReplacement, &rdev->flags);
1916         err = md_integrity_register(mddev);
1917
1918 abort:
1919
1920         print_conf(conf);
1921         return err;
1922 }
1923
1924 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1925 {
1926         struct r10conf *conf = r10_bio->mddev->private;
1927
1928         if (!bio->bi_status)
1929                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1930         else
1931                 /* The write handler will notice the lack of
1932                  * R10BIO_Uptodate and record any errors etc
1933                  */
1934                 atomic_add(r10_bio->sectors,
1935                            &conf->mirrors[d].rdev->corrected_errors);
1936
1937         /* for reconstruct, we always reschedule after a read.
1938          * for resync, only after all reads
1939          */
1940         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1941         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1942             atomic_dec_and_test(&r10_bio->remaining)) {
1943                 /* we have read all the blocks,
1944                  * do the comparison in process context in raid10d
1945                  */
1946                 reschedule_retry(r10_bio);
1947         }
1948 }
1949
1950 static void end_sync_read(struct bio *bio)
1951 {
1952         struct r10bio *r10_bio = get_resync_r10bio(bio);
1953         struct r10conf *conf = r10_bio->mddev->private;
1954         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1955
1956         __end_sync_read(r10_bio, bio, d);
1957 }
1958
1959 static void end_reshape_read(struct bio *bio)
1960 {
1961         /* reshape read bio isn't allocated from r10buf_pool */
1962         struct r10bio *r10_bio = bio->bi_private;
1963
1964         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1965 }
1966
1967 static void end_sync_request(struct r10bio *r10_bio)
1968 {
1969         struct mddev *mddev = r10_bio->mddev;
1970
1971         while (atomic_dec_and_test(&r10_bio->remaining)) {
1972                 if (r10_bio->master_bio == NULL) {
1973                         /* the primary of several recovery bios */
1974                         sector_t s = r10_bio->sectors;
1975                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976                             test_bit(R10BIO_WriteError, &r10_bio->state))
1977                                 reschedule_retry(r10_bio);
1978                         else
1979                                 put_buf(r10_bio);
1980                         md_done_sync(mddev, s, 1);
1981                         break;
1982                 } else {
1983                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1984                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985                             test_bit(R10BIO_WriteError, &r10_bio->state))
1986                                 reschedule_retry(r10_bio);
1987                         else
1988                                 put_buf(r10_bio);
1989                         r10_bio = r10_bio2;
1990                 }
1991         }
1992 }
1993
1994 static void end_sync_write(struct bio *bio)
1995 {
1996         struct r10bio *r10_bio = get_resync_r10bio(bio);
1997         struct mddev *mddev = r10_bio->mddev;
1998         struct r10conf *conf = mddev->private;
1999         int d;
2000         sector_t first_bad;
2001         int bad_sectors;
2002         int slot;
2003         int repl;
2004         struct md_rdev *rdev = NULL;
2005
2006         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2007         if (repl)
2008                 rdev = conf->mirrors[d].replacement;
2009         else
2010                 rdev = conf->mirrors[d].rdev;
2011
2012         if (bio->bi_status) {
2013                 if (repl)
2014                         md_error(mddev, rdev);
2015                 else {
2016                         set_bit(WriteErrorSeen, &rdev->flags);
2017                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2018                                 set_bit(MD_RECOVERY_NEEDED,
2019                                         &rdev->mddev->recovery);
2020                         set_bit(R10BIO_WriteError, &r10_bio->state);
2021                 }
2022         } else if (is_badblock(rdev,
2023                              r10_bio->devs[slot].addr,
2024                              r10_bio->sectors,
2025                              &first_bad, &bad_sectors))
2026                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2027
2028         rdev_dec_pending(rdev, mddev);
2029
2030         end_sync_request(r10_bio);
2031 }
2032
2033 /*
2034  * Note: sync and recover and handled very differently for raid10
2035  * This code is for resync.
2036  * For resync, we read through virtual addresses and read all blocks.
2037  * If there is any error, we schedule a write.  The lowest numbered
2038  * drive is authoritative.
2039  * However requests come for physical address, so we need to map.
2040  * For every physical address there are raid_disks/copies virtual addresses,
2041  * which is always are least one, but is not necessarly an integer.
2042  * This means that a physical address can span multiple chunks, so we may
2043  * have to submit multiple io requests for a single sync request.
2044  */
2045 /*
2046  * We check if all blocks are in-sync and only write to blocks that
2047  * aren't in sync
2048  */
2049 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2050 {
2051         struct r10conf *conf = mddev->private;
2052         int i, first;
2053         struct bio *tbio, *fbio;
2054         int vcnt;
2055         struct page **tpages, **fpages;
2056
2057         atomic_set(&r10_bio->remaining, 1);
2058
2059         /* find the first device with a block */
2060         for (i=0; i<conf->copies; i++)
2061                 if (!r10_bio->devs[i].bio->bi_status)
2062                         break;
2063
2064         if (i == conf->copies)
2065                 goto done;
2066
2067         first = i;
2068         fbio = r10_bio->devs[i].bio;
2069         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2070         fbio->bi_iter.bi_idx = 0;
2071         fpages = get_resync_pages(fbio)->pages;
2072
2073         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2074         /* now find blocks with errors */
2075         for (i=0 ; i < conf->copies ; i++) {
2076                 int  j, d;
2077                 struct md_rdev *rdev;
2078                 struct resync_pages *rp;
2079
2080                 tbio = r10_bio->devs[i].bio;
2081
2082                 if (tbio->bi_end_io != end_sync_read)
2083                         continue;
2084                 if (i == first)
2085                         continue;
2086
2087                 tpages = get_resync_pages(tbio)->pages;
2088                 d = r10_bio->devs[i].devnum;
2089                 rdev = conf->mirrors[d].rdev;
2090                 if (!r10_bio->devs[i].bio->bi_status) {
2091                         /* We know that the bi_io_vec layout is the same for
2092                          * both 'first' and 'i', so we just compare them.
2093                          * All vec entries are PAGE_SIZE;
2094                          */
2095                         int sectors = r10_bio->sectors;
2096                         for (j = 0; j < vcnt; j++) {
2097                                 int len = PAGE_SIZE;
2098                                 if (sectors < (len / 512))
2099                                         len = sectors * 512;
2100                                 if (memcmp(page_address(fpages[j]),
2101                                            page_address(tpages[j]),
2102                                            len))
2103                                         break;
2104                                 sectors -= len/512;
2105                         }
2106                         if (j == vcnt)
2107                                 continue;
2108                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2109                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2110                                 /* Don't fix anything. */
2111                                 continue;
2112                 } else if (test_bit(FailFast, &rdev->flags)) {
2113                         /* Just give up on this device */
2114                         md_error(rdev->mddev, rdev);
2115                         continue;
2116                 }
2117                 /* Ok, we need to write this bio, either to correct an
2118                  * inconsistency or to correct an unreadable block.
2119                  * First we need to fixup bv_offset, bv_len and
2120                  * bi_vecs, as the read request might have corrupted these
2121                  */
2122                 rp = get_resync_pages(tbio);
2123                 bio_reset(tbio);
2124
2125                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2126
2127                 rp->raid_bio = r10_bio;
2128                 tbio->bi_private = rp;
2129                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2130                 tbio->bi_end_io = end_sync_write;
2131                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2132
2133                 bio_copy_data(tbio, fbio);
2134
2135                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2136                 atomic_inc(&r10_bio->remaining);
2137                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2138
2139                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2140                         tbio->bi_opf |= MD_FAILFAST;
2141                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2142                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2143                 generic_make_request(tbio);
2144         }
2145
2146         /* Now write out to any replacement devices
2147          * that are active
2148          */
2149         for (i = 0; i < conf->copies; i++) {
2150                 int d;
2151
2152                 tbio = r10_bio->devs[i].repl_bio;
2153                 if (!tbio || !tbio->bi_end_io)
2154                         continue;
2155                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2156                     && r10_bio->devs[i].bio != fbio)
2157                         bio_copy_data(tbio, fbio);
2158                 d = r10_bio->devs[i].devnum;
2159                 atomic_inc(&r10_bio->remaining);
2160                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2161                              bio_sectors(tbio));
2162                 generic_make_request(tbio);
2163         }
2164
2165 done:
2166         if (atomic_dec_and_test(&r10_bio->remaining)) {
2167                 md_done_sync(mddev, r10_bio->sectors, 1);
2168                 put_buf(r10_bio);
2169         }
2170 }
2171
2172 /*
2173  * Now for the recovery code.
2174  * Recovery happens across physical sectors.
2175  * We recover all non-is_sync drives by finding the virtual address of
2176  * each, and then choose a working drive that also has that virt address.
2177  * There is a separate r10_bio for each non-in_sync drive.
2178  * Only the first two slots are in use. The first for reading,
2179  * The second for writing.
2180  *
2181  */
2182 static void fix_recovery_read_error(struct r10bio *r10_bio)
2183 {
2184         /* We got a read error during recovery.
2185          * We repeat the read in smaller page-sized sections.
2186          * If a read succeeds, write it to the new device or record
2187          * a bad block if we cannot.
2188          * If a read fails, record a bad block on both old and
2189          * new devices.
2190          */
2191         struct mddev *mddev = r10_bio->mddev;
2192         struct r10conf *conf = mddev->private;
2193         struct bio *bio = r10_bio->devs[0].bio;
2194         sector_t sect = 0;
2195         int sectors = r10_bio->sectors;
2196         int idx = 0;
2197         int dr = r10_bio->devs[0].devnum;
2198         int dw = r10_bio->devs[1].devnum;
2199         struct page **pages = get_resync_pages(bio)->pages;
2200
2201         while (sectors) {
2202                 int s = sectors;
2203                 struct md_rdev *rdev;
2204                 sector_t addr;
2205                 int ok;
2206
2207                 if (s > (PAGE_SIZE>>9))
2208                         s = PAGE_SIZE >> 9;
2209
2210                 rdev = conf->mirrors[dr].rdev;
2211                 addr = r10_bio->devs[0].addr + sect,
2212                 ok = sync_page_io(rdev,
2213                                   addr,
2214                                   s << 9,
2215                                   pages[idx],
2216                                   REQ_OP_READ, 0, false);
2217                 if (ok) {
2218                         rdev = conf->mirrors[dw].rdev;
2219                         addr = r10_bio->devs[1].addr + sect;
2220                         ok = sync_page_io(rdev,
2221                                           addr,
2222                                           s << 9,
2223                                           pages[idx],
2224                                           REQ_OP_WRITE, 0, false);
2225                         if (!ok) {
2226                                 set_bit(WriteErrorSeen, &rdev->flags);
2227                                 if (!test_and_set_bit(WantReplacement,
2228                                                       &rdev->flags))
2229                                         set_bit(MD_RECOVERY_NEEDED,
2230                                                 &rdev->mddev->recovery);
2231                         }
2232                 }
2233                 if (!ok) {
2234                         /* We don't worry if we cannot set a bad block -
2235                          * it really is bad so there is no loss in not
2236                          * recording it yet
2237                          */
2238                         rdev_set_badblocks(rdev, addr, s, 0);
2239
2240                         if (rdev != conf->mirrors[dw].rdev) {
2241                                 /* need bad block on destination too */
2242                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2243                                 addr = r10_bio->devs[1].addr + sect;
2244                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2245                                 if (!ok) {
2246                                         /* just abort the recovery */
2247                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2248                                                   mdname(mddev));
2249
2250                                         conf->mirrors[dw].recovery_disabled
2251                                                 = mddev->recovery_disabled;
2252                                         set_bit(MD_RECOVERY_INTR,
2253                                                 &mddev->recovery);
2254                                         break;
2255                                 }
2256                         }
2257                 }
2258
2259                 sectors -= s;
2260                 sect += s;
2261                 idx++;
2262         }
2263 }
2264
2265 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2266 {
2267         struct r10conf *conf = mddev->private;
2268         int d;
2269         struct bio *wbio, *wbio2;
2270
2271         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2272                 fix_recovery_read_error(r10_bio);
2273                 end_sync_request(r10_bio);
2274                 return;
2275         }
2276
2277         /*
2278          * share the pages with the first bio
2279          * and submit the write request
2280          */
2281         d = r10_bio->devs[1].devnum;
2282         wbio = r10_bio->devs[1].bio;
2283         wbio2 = r10_bio->devs[1].repl_bio;
2284         /* Need to test wbio2->bi_end_io before we call
2285          * generic_make_request as if the former is NULL,
2286          * the latter is free to free wbio2.
2287          */
2288         if (wbio2 && !wbio2->bi_end_io)
2289                 wbio2 = NULL;
2290         if (wbio->bi_end_io) {
2291                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2292                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2293                 generic_make_request(wbio);
2294         }
2295         if (wbio2) {
2296                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2297                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2298                              bio_sectors(wbio2));
2299                 generic_make_request(wbio2);
2300         }
2301 }
2302
2303 /*
2304  * Used by fix_read_error() to decay the per rdev read_errors.
2305  * We halve the read error count for every hour that has elapsed
2306  * since the last recorded read error.
2307  *
2308  */
2309 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2310 {
2311         long cur_time_mon;
2312         unsigned long hours_since_last;
2313         unsigned int read_errors = atomic_read(&rdev->read_errors);
2314
2315         cur_time_mon = ktime_get_seconds();
2316
2317         if (rdev->last_read_error == 0) {
2318                 /* first time we've seen a read error */
2319                 rdev->last_read_error = cur_time_mon;
2320                 return;
2321         }
2322
2323         hours_since_last = (long)(cur_time_mon -
2324                             rdev->last_read_error) / 3600;
2325
2326         rdev->last_read_error = cur_time_mon;
2327
2328         /*
2329          * if hours_since_last is > the number of bits in read_errors
2330          * just set read errors to 0. We do this to avoid
2331          * overflowing the shift of read_errors by hours_since_last.
2332          */
2333         if (hours_since_last >= 8 * sizeof(read_errors))
2334                 atomic_set(&rdev->read_errors, 0);
2335         else
2336                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2337 }
2338
2339 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2340                             int sectors, struct page *page, int rw)
2341 {
2342         sector_t first_bad;
2343         int bad_sectors;
2344
2345         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2346             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2347                 return -1;
2348         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2349                 /* success */
2350                 return 1;
2351         if (rw == WRITE) {
2352                 set_bit(WriteErrorSeen, &rdev->flags);
2353                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2354                         set_bit(MD_RECOVERY_NEEDED,
2355                                 &rdev->mddev->recovery);
2356         }
2357         /* need to record an error - either for the block or the device */
2358         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2359                 md_error(rdev->mddev, rdev);
2360         return 0;
2361 }
2362
2363 /*
2364  * This is a kernel thread which:
2365  *
2366  *      1.      Retries failed read operations on working mirrors.
2367  *      2.      Updates the raid superblock when problems encounter.
2368  *      3.      Performs writes following reads for array synchronising.
2369  */
2370
2371 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2372 {
2373         int sect = 0; /* Offset from r10_bio->sector */
2374         int sectors = r10_bio->sectors;
2375         struct md_rdev *rdev;
2376         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2377         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2378
2379         /* still own a reference to this rdev, so it cannot
2380          * have been cleared recently.
2381          */
2382         rdev = conf->mirrors[d].rdev;
2383
2384         if (test_bit(Faulty, &rdev->flags))
2385                 /* drive has already been failed, just ignore any
2386                    more fix_read_error() attempts */
2387                 return;
2388
2389         check_decay_read_errors(mddev, rdev);
2390         atomic_inc(&rdev->read_errors);
2391         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2392                 char b[BDEVNAME_SIZE];
2393                 bdevname(rdev->bdev, b);
2394
2395                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2396                           mdname(mddev), b,
2397                           atomic_read(&rdev->read_errors), max_read_errors);
2398                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2399                           mdname(mddev), b);
2400                 md_error(mddev, rdev);
2401                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2402                 return;
2403         }
2404
2405         while(sectors) {
2406                 int s = sectors;
2407                 int sl = r10_bio->read_slot;
2408                 int success = 0;
2409                 int start;
2410
2411                 if (s > (PAGE_SIZE>>9))
2412                         s = PAGE_SIZE >> 9;
2413
2414                 rcu_read_lock();
2415                 do {
2416                         sector_t first_bad;
2417                         int bad_sectors;
2418
2419                         d = r10_bio->devs[sl].devnum;
2420                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2421                         if (rdev &&
2422                             test_bit(In_sync, &rdev->flags) &&
2423                             !test_bit(Faulty, &rdev->flags) &&
2424                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2425                                         &first_bad, &bad_sectors) == 0) {
2426                                 atomic_inc(&rdev->nr_pending);
2427                                 rcu_read_unlock();
2428                                 success = sync_page_io(rdev,
2429                                                        r10_bio->devs[sl].addr +
2430                                                        sect,
2431                                                        s<<9,
2432                                                        conf->tmppage,
2433                                                        REQ_OP_READ, 0, false);
2434                                 rdev_dec_pending(rdev, mddev);
2435                                 rcu_read_lock();
2436                                 if (success)
2437                                         break;
2438                         }
2439                         sl++;
2440                         if (sl == conf->copies)
2441                                 sl = 0;
2442                 } while (!success && sl != r10_bio->read_slot);
2443                 rcu_read_unlock();
2444
2445                 if (!success) {
2446                         /* Cannot read from anywhere, just mark the block
2447                          * as bad on the first device to discourage future
2448                          * reads.
2449                          */
2450                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451                         rdev = conf->mirrors[dn].rdev;
2452
2453                         if (!rdev_set_badblocks(
2454                                     rdev,
2455                                     r10_bio->devs[r10_bio->read_slot].addr
2456                                     + sect,
2457                                     s, 0)) {
2458                                 md_error(mddev, rdev);
2459                                 r10_bio->devs[r10_bio->read_slot].bio
2460                                         = IO_BLOCKED;
2461                         }
2462                         break;
2463                 }
2464
2465                 start = sl;
2466                 /* write it back and re-read */
2467                 rcu_read_lock();
2468                 while (sl != r10_bio->read_slot) {
2469                         char b[BDEVNAME_SIZE];
2470
2471                         if (sl==0)
2472                                 sl = conf->copies;
2473                         sl--;
2474                         d = r10_bio->devs[sl].devnum;
2475                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2476                         if (!rdev ||
2477                             test_bit(Faulty, &rdev->flags) ||
2478                             !test_bit(In_sync, &rdev->flags))
2479                                 continue;
2480
2481                         atomic_inc(&rdev->nr_pending);
2482                         rcu_read_unlock();
2483                         if (r10_sync_page_io(rdev,
2484                                              r10_bio->devs[sl].addr +
2485                                              sect,
2486                                              s, conf->tmppage, WRITE)
2487                             == 0) {
2488                                 /* Well, this device is dead */
2489                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2490                                           mdname(mddev), s,
2491                                           (unsigned long long)(
2492                                                   sect +
2493                                                   choose_data_offset(r10_bio,
2494                                                                      rdev)),
2495                                           bdevname(rdev->bdev, b));
2496                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2497                                           mdname(mddev),
2498                                           bdevname(rdev->bdev, b));
2499                         }
2500                         rdev_dec_pending(rdev, mddev);
2501                         rcu_read_lock();
2502                 }
2503                 sl = start;
2504                 while (sl != r10_bio->read_slot) {
2505                         char b[BDEVNAME_SIZE];
2506
2507                         if (sl==0)
2508                                 sl = conf->copies;
2509                         sl--;
2510                         d = r10_bio->devs[sl].devnum;
2511                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2512                         if (!rdev ||
2513                             test_bit(Faulty, &rdev->flags) ||
2514                             !test_bit(In_sync, &rdev->flags))
2515                                 continue;
2516
2517                         atomic_inc(&rdev->nr_pending);
2518                         rcu_read_unlock();
2519                         switch (r10_sync_page_io(rdev,
2520                                              r10_bio->devs[sl].addr +
2521                                              sect,
2522                                              s, conf->tmppage,
2523                                                  READ)) {
2524                         case 0:
2525                                 /* Well, this device is dead */
2526                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2527                                        mdname(mddev), s,
2528                                        (unsigned long long)(
2529                                                sect +
2530                                                choose_data_offset(r10_bio, rdev)),
2531                                        bdevname(rdev->bdev, b));
2532                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2533                                        mdname(mddev),
2534                                        bdevname(rdev->bdev, b));
2535                                 break;
2536                         case 1:
2537                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2538                                        mdname(mddev), s,
2539                                        (unsigned long long)(
2540                                                sect +
2541                                                choose_data_offset(r10_bio, rdev)),
2542                                        bdevname(rdev->bdev, b));
2543                                 atomic_add(s, &rdev->corrected_errors);
2544                         }
2545
2546                         rdev_dec_pending(rdev, mddev);
2547                         rcu_read_lock();
2548                 }
2549                 rcu_read_unlock();
2550
2551                 sectors -= s;
2552                 sect += s;
2553         }
2554 }
2555
2556 static int narrow_write_error(struct r10bio *r10_bio, int i)
2557 {
2558         struct bio *bio = r10_bio->master_bio;
2559         struct mddev *mddev = r10_bio->mddev;
2560         struct r10conf *conf = mddev->private;
2561         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2562         /* bio has the data to be written to slot 'i' where
2563          * we just recently had a write error.
2564          * We repeatedly clone the bio and trim down to one block,
2565          * then try the write.  Where the write fails we record
2566          * a bad block.
2567          * It is conceivable that the bio doesn't exactly align with
2568          * blocks.  We must handle this.
2569          *
2570          * We currently own a reference to the rdev.
2571          */
2572
2573         int block_sectors;
2574         sector_t sector;
2575         int sectors;
2576         int sect_to_write = r10_bio->sectors;
2577         int ok = 1;
2578
2579         if (rdev->badblocks.shift < 0)
2580                 return 0;
2581
2582         block_sectors = roundup(1 << rdev->badblocks.shift,
2583                                 bdev_logical_block_size(rdev->bdev) >> 9);
2584         sector = r10_bio->sector;
2585         sectors = ((r10_bio->sector + block_sectors)
2586                    & ~(sector_t)(block_sectors - 1))
2587                 - sector;
2588
2589         while (sect_to_write) {
2590                 struct bio *wbio;
2591                 sector_t wsector;
2592                 if (sectors > sect_to_write)
2593                         sectors = sect_to_write;
2594                 /* Write at 'sector' for 'sectors' */
2595                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2596                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2597                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2598                 wbio->bi_iter.bi_sector = wsector +
2599                                    choose_data_offset(r10_bio, rdev);
2600                 bio_set_dev(wbio, rdev->bdev);
2601                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2602
2603                 if (submit_bio_wait(wbio) < 0)
2604                         /* Failure! */
2605                         ok = rdev_set_badblocks(rdev, wsector,
2606                                                 sectors, 0)
2607                                 && ok;
2608
2609                 bio_put(wbio);
2610                 sect_to_write -= sectors;
2611                 sector += sectors;
2612                 sectors = block_sectors;
2613         }
2614         return ok;
2615 }
2616
2617 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2618 {
2619         int slot = r10_bio->read_slot;
2620         struct bio *bio;
2621         struct r10conf *conf = mddev->private;
2622         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2623
2624         /* we got a read error. Maybe the drive is bad.  Maybe just
2625          * the block and we can fix it.
2626          * We freeze all other IO, and try reading the block from
2627          * other devices.  When we find one, we re-write
2628          * and check it that fixes the read error.
2629          * This is all done synchronously while the array is
2630          * frozen.
2631          */
2632         bio = r10_bio->devs[slot].bio;
2633         bio_put(bio);
2634         r10_bio->devs[slot].bio = NULL;
2635
2636         if (mddev->ro)
2637                 r10_bio->devs[slot].bio = IO_BLOCKED;
2638         else if (!test_bit(FailFast, &rdev->flags)) {
2639                 freeze_array(conf, 1);
2640                 fix_read_error(conf, mddev, r10_bio);
2641                 unfreeze_array(conf);
2642         } else
2643                 md_error(mddev, rdev);
2644
2645         rdev_dec_pending(rdev, mddev);
2646         allow_barrier(conf);
2647         r10_bio->state = 0;
2648         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2649 }
2650
2651 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2652 {
2653         /* Some sort of write request has finished and it
2654          * succeeded in writing where we thought there was a
2655          * bad block.  So forget the bad block.
2656          * Or possibly if failed and we need to record
2657          * a bad block.
2658          */
2659         int m;
2660         struct md_rdev *rdev;
2661
2662         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2663             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2664                 for (m = 0; m < conf->copies; m++) {
2665                         int dev = r10_bio->devs[m].devnum;
2666                         rdev = conf->mirrors[dev].rdev;
2667                         if (r10_bio->devs[m].bio == NULL ||
2668                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2669                                 continue;
2670                         if (!r10_bio->devs[m].bio->bi_status) {
2671                                 rdev_clear_badblocks(
2672                                         rdev,
2673                                         r10_bio->devs[m].addr,
2674                                         r10_bio->sectors, 0);
2675                         } else {
2676                                 if (!rdev_set_badblocks(
2677                                             rdev,
2678                                             r10_bio->devs[m].addr,
2679                                             r10_bio->sectors, 0))
2680                                         md_error(conf->mddev, rdev);
2681                         }
2682                         rdev = conf->mirrors[dev].replacement;
2683                         if (r10_bio->devs[m].repl_bio == NULL ||
2684                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2685                                 continue;
2686
2687                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2688                                 rdev_clear_badblocks(
2689                                         rdev,
2690                                         r10_bio->devs[m].addr,
2691                                         r10_bio->sectors, 0);
2692                         } else {
2693                                 if (!rdev_set_badblocks(
2694                                             rdev,
2695                                             r10_bio->devs[m].addr,
2696                                             r10_bio->sectors, 0))
2697                                         md_error(conf->mddev, rdev);
2698                         }
2699                 }
2700                 put_buf(r10_bio);
2701         } else {
2702                 bool fail = false;
2703                 for (m = 0; m < conf->copies; m++) {
2704                         int dev = r10_bio->devs[m].devnum;
2705                         struct bio *bio = r10_bio->devs[m].bio;
2706                         rdev = conf->mirrors[dev].rdev;
2707                         if (bio == IO_MADE_GOOD) {
2708                                 rdev_clear_badblocks(
2709                                         rdev,
2710                                         r10_bio->devs[m].addr,
2711                                         r10_bio->sectors, 0);
2712                                 rdev_dec_pending(rdev, conf->mddev);
2713                         } else if (bio != NULL && bio->bi_status) {
2714                                 fail = true;
2715                                 if (!narrow_write_error(r10_bio, m)) {
2716                                         md_error(conf->mddev, rdev);
2717                                         set_bit(R10BIO_Degraded,
2718                                                 &r10_bio->state);
2719                                 }
2720                                 rdev_dec_pending(rdev, conf->mddev);
2721                         }
2722                         bio = r10_bio->devs[m].repl_bio;
2723                         rdev = conf->mirrors[dev].replacement;
2724                         if (rdev && bio == IO_MADE_GOOD) {
2725                                 rdev_clear_badblocks(
2726                                         rdev,
2727                                         r10_bio->devs[m].addr,
2728                                         r10_bio->sectors, 0);
2729                                 rdev_dec_pending(rdev, conf->mddev);
2730                         }
2731                 }
2732                 if (fail) {
2733                         spin_lock_irq(&conf->device_lock);
2734                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2735                         conf->nr_queued++;
2736                         spin_unlock_irq(&conf->device_lock);
2737                         /*
2738                          * In case freeze_array() is waiting for condition
2739                          * nr_pending == nr_queued + extra to be true.
2740                          */
2741                         wake_up(&conf->wait_barrier);
2742                         md_wakeup_thread(conf->mddev->thread);
2743                 } else {
2744                         if (test_bit(R10BIO_WriteError,
2745                                      &r10_bio->state))
2746                                 close_write(r10_bio);
2747                         raid_end_bio_io(r10_bio);
2748                 }
2749         }
2750 }
2751
2752 static void raid10d(struct md_thread *thread)
2753 {
2754         struct mddev *mddev = thread->mddev;
2755         struct r10bio *r10_bio;
2756         unsigned long flags;
2757         struct r10conf *conf = mddev->private;
2758         struct list_head *head = &conf->retry_list;
2759         struct blk_plug plug;
2760
2761         md_check_recovery(mddev);
2762
2763         if (!list_empty_careful(&conf->bio_end_io_list) &&
2764             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2765                 LIST_HEAD(tmp);
2766                 spin_lock_irqsave(&conf->device_lock, flags);
2767                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2768                         while (!list_empty(&conf->bio_end_io_list)) {
2769                                 list_move(conf->bio_end_io_list.prev, &tmp);
2770                                 conf->nr_queued--;
2771                         }
2772                 }
2773                 spin_unlock_irqrestore(&conf->device_lock, flags);
2774                 while (!list_empty(&tmp)) {
2775                         r10_bio = list_first_entry(&tmp, struct r10bio,
2776                                                    retry_list);
2777                         list_del(&r10_bio->retry_list);
2778                         if (mddev->degraded)
2779                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2780
2781                         if (test_bit(R10BIO_WriteError,
2782                                      &r10_bio->state))
2783                                 close_write(r10_bio);
2784                         raid_end_bio_io(r10_bio);
2785                 }
2786         }
2787
2788         blk_start_plug(&plug);
2789         for (;;) {
2790
2791                 flush_pending_writes(conf);
2792
2793                 spin_lock_irqsave(&conf->device_lock, flags);
2794                 if (list_empty(head)) {
2795                         spin_unlock_irqrestore(&conf->device_lock, flags);
2796                         break;
2797                 }
2798                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2799                 list_del(head->prev);
2800                 conf->nr_queued--;
2801                 spin_unlock_irqrestore(&conf->device_lock, flags);
2802
2803                 mddev = r10_bio->mddev;
2804                 conf = mddev->private;
2805                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2806                     test_bit(R10BIO_WriteError, &r10_bio->state))
2807                         handle_write_completed(conf, r10_bio);
2808                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2809                         reshape_request_write(mddev, r10_bio);
2810                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2811                         sync_request_write(mddev, r10_bio);
2812                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2813                         recovery_request_write(mddev, r10_bio);
2814                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2815                         handle_read_error(mddev, r10_bio);
2816                 else
2817                         WARN_ON_ONCE(1);
2818
2819                 cond_resched();
2820                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2821                         md_check_recovery(mddev);
2822         }
2823         blk_finish_plug(&plug);
2824 }
2825
2826 static int init_resync(struct r10conf *conf)
2827 {
2828         int ret, buffs, i;
2829
2830         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2831         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2832         conf->have_replacement = 0;
2833         for (i = 0; i < conf->geo.raid_disks; i++)
2834                 if (conf->mirrors[i].replacement)
2835                         conf->have_replacement = 1;
2836         ret = mempool_init(&conf->r10buf_pool, buffs,
2837                            r10buf_pool_alloc, r10buf_pool_free, conf);
2838         if (ret)
2839                 return ret;
2840         conf->next_resync = 0;
2841         return 0;
2842 }
2843
2844 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2845 {
2846         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2847         struct rsync_pages *rp;
2848         struct bio *bio;
2849         int nalloc;
2850         int i;
2851
2852         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2853             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2854                 nalloc = conf->copies; /* resync */
2855         else
2856                 nalloc = 2; /* recovery */
2857
2858         for (i = 0; i < nalloc; i++) {
2859                 bio = r10bio->devs[i].bio;
2860                 rp = bio->bi_private;
2861                 bio_reset(bio);
2862                 bio->bi_private = rp;
2863                 bio = r10bio->devs[i].repl_bio;
2864                 if (bio) {
2865                         rp = bio->bi_private;
2866                         bio_reset(bio);
2867                         bio->bi_private = rp;
2868                 }
2869         }
2870         return r10bio;
2871 }
2872
2873 /*
2874  * Set cluster_sync_high since we need other nodes to add the
2875  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2876  */
2877 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2878 {
2879         sector_t window_size;
2880         int extra_chunk, chunks;
2881
2882         /*
2883          * First, here we define "stripe" as a unit which across
2884          * all member devices one time, so we get chunks by use
2885          * raid_disks / near_copies. Otherwise, if near_copies is
2886          * close to raid_disks, then resync window could increases
2887          * linearly with the increase of raid_disks, which means
2888          * we will suspend a really large IO window while it is not
2889          * necessary. If raid_disks is not divisible by near_copies,
2890          * an extra chunk is needed to ensure the whole "stripe" is
2891          * covered.
2892          */
2893
2894         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2895         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2896                 extra_chunk = 0;
2897         else
2898                 extra_chunk = 1;
2899         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2900
2901         /*
2902          * At least use a 32M window to align with raid1's resync window
2903          */
2904         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2905                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2906
2907         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2908 }
2909
2910 /*
2911  * perform a "sync" on one "block"
2912  *
2913  * We need to make sure that no normal I/O request - particularly write
2914  * requests - conflict with active sync requests.
2915  *
2916  * This is achieved by tracking pending requests and a 'barrier' concept
2917  * that can be installed to exclude normal IO requests.
2918  *
2919  * Resync and recovery are handled very differently.
2920  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2921  *
2922  * For resync, we iterate over virtual addresses, read all copies,
2923  * and update if there are differences.  If only one copy is live,
2924  * skip it.
2925  * For recovery, we iterate over physical addresses, read a good
2926  * value for each non-in_sync drive, and over-write.
2927  *
2928  * So, for recovery we may have several outstanding complex requests for a
2929  * given address, one for each out-of-sync device.  We model this by allocating
2930  * a number of r10_bio structures, one for each out-of-sync device.
2931  * As we setup these structures, we collect all bio's together into a list
2932  * which we then process collectively to add pages, and then process again
2933  * to pass to generic_make_request.
2934  *
2935  * The r10_bio structures are linked using a borrowed master_bio pointer.
2936  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2937  * has its remaining count decremented to 0, the whole complex operation
2938  * is complete.
2939  *
2940  */
2941
2942 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2943                              int *skipped)
2944 {
2945         struct r10conf *conf = mddev->private;
2946         struct r10bio *r10_bio;
2947         struct bio *biolist = NULL, *bio;
2948         sector_t max_sector, nr_sectors;
2949         int i;
2950         int max_sync;
2951         sector_t sync_blocks;
2952         sector_t sectors_skipped = 0;
2953         int chunks_skipped = 0;
2954         sector_t chunk_mask = conf->geo.chunk_mask;
2955         int page_idx = 0;
2956
2957         if (!mempool_initialized(&conf->r10buf_pool))
2958                 if (init_resync(conf))
2959                         return 0;
2960
2961         /*
2962          * Allow skipping a full rebuild for incremental assembly
2963          * of a clean array, like RAID1 does.
2964          */
2965         if (mddev->bitmap == NULL &&
2966             mddev->recovery_cp == MaxSector &&
2967             mddev->reshape_position == MaxSector &&
2968             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2969             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2970             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2971             conf->fullsync == 0) {
2972                 *skipped = 1;
2973                 return mddev->dev_sectors - sector_nr;
2974         }
2975
2976  skipped:
2977         max_sector = mddev->dev_sectors;
2978         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2979             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2980                 max_sector = mddev->resync_max_sectors;
2981         if (sector_nr >= max_sector) {
2982                 conf->cluster_sync_low = 0;
2983                 conf->cluster_sync_high = 0;
2984
2985                 /* If we aborted, we need to abort the
2986                  * sync on the 'current' bitmap chucks (there can
2987                  * be several when recovering multiple devices).
2988                  * as we may have started syncing it but not finished.
2989                  * We can find the current address in
2990                  * mddev->curr_resync, but for recovery,
2991                  * we need to convert that to several
2992                  * virtual addresses.
2993                  */
2994                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2995                         end_reshape(conf);
2996                         close_sync(conf);
2997                         return 0;
2998                 }
2999
3000                 if (mddev->curr_resync < max_sector) { /* aborted */
3001                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3002                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3003                                                    &sync_blocks, 1);
3004                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3005                                 sector_t sect =
3006                                         raid10_find_virt(conf, mddev->curr_resync, i);
3007                                 md_bitmap_end_sync(mddev->bitmap, sect,
3008                                                    &sync_blocks, 1);
3009                         }
3010                 } else {
3011                         /* completed sync */
3012                         if ((!mddev->bitmap || conf->fullsync)
3013                             && conf->have_replacement
3014                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3015                                 /* Completed a full sync so the replacements
3016                                  * are now fully recovered.
3017                                  */
3018                                 rcu_read_lock();
3019                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3020                                         struct md_rdev *rdev =
3021                                                 rcu_dereference(conf->mirrors[i].replacement);
3022                                         if (rdev)
3023                                                 rdev->recovery_offset = MaxSector;
3024                                 }
3025                                 rcu_read_unlock();
3026                         }
3027                         conf->fullsync = 0;
3028                 }
3029                 md_bitmap_close_sync(mddev->bitmap);
3030                 close_sync(conf);
3031                 *skipped = 1;
3032                 return sectors_skipped;
3033         }
3034
3035         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3036                 return reshape_request(mddev, sector_nr, skipped);
3037
3038         if (chunks_skipped >= conf->geo.raid_disks) {
3039                 /* if there has been nothing to do on any drive,
3040                  * then there is nothing to do at all..
3041                  */
3042                 *skipped = 1;
3043                 return (max_sector - sector_nr) + sectors_skipped;
3044         }
3045
3046         if (max_sector > mddev->resync_max)
3047                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3048
3049         /* make sure whole request will fit in a chunk - if chunks
3050          * are meaningful
3051          */
3052         if (conf->geo.near_copies < conf->geo.raid_disks &&
3053             max_sector > (sector_nr | chunk_mask))
3054                 max_sector = (sector_nr | chunk_mask) + 1;
3055
3056         /*
3057          * If there is non-resync activity waiting for a turn, then let it
3058          * though before starting on this new sync request.
3059          */
3060         if (conf->nr_waiting)
3061                 schedule_timeout_uninterruptible(1);
3062
3063         /* Again, very different code for resync and recovery.
3064          * Both must result in an r10bio with a list of bios that
3065          * have bi_end_io, bi_sector, bi_disk set,
3066          * and bi_private set to the r10bio.
3067          * For recovery, we may actually create several r10bios
3068          * with 2 bios in each, that correspond to the bios in the main one.
3069          * In this case, the subordinate r10bios link back through a
3070          * borrowed master_bio pointer, and the counter in the master
3071          * includes a ref from each subordinate.
3072          */
3073         /* First, we decide what to do and set ->bi_end_io
3074          * To end_sync_read if we want to read, and
3075          * end_sync_write if we will want to write.
3076          */
3077
3078         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3079         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3080                 /* recovery... the complicated one */
3081                 int j;
3082                 r10_bio = NULL;
3083
3084                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3085                         int still_degraded;
3086                         struct r10bio *rb2;
3087                         sector_t sect;
3088                         int must_sync;
3089                         int any_working;
3090                         struct raid10_info *mirror = &conf->mirrors[i];
3091                         struct md_rdev *mrdev, *mreplace;
3092
3093                         rcu_read_lock();
3094                         mrdev = rcu_dereference(mirror->rdev);
3095                         mreplace = rcu_dereference(mirror->replacement);
3096
3097                         if ((mrdev == NULL ||
3098                              test_bit(Faulty, &mrdev->flags) ||
3099                              test_bit(In_sync, &mrdev->flags)) &&
3100                             (mreplace == NULL ||
3101                              test_bit(Faulty, &mreplace->flags))) {
3102                                 rcu_read_unlock();
3103                                 continue;
3104                         }
3105
3106                         still_degraded = 0;
3107                         /* want to reconstruct this device */
3108                         rb2 = r10_bio;
3109                         sect = raid10_find_virt(conf, sector_nr, i);
3110                         if (sect >= mddev->resync_max_sectors) {
3111                                 /* last stripe is not complete - don't
3112                                  * try to recover this sector.
3113                                  */
3114                                 rcu_read_unlock();
3115                                 continue;
3116                         }
3117                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3118                                 mreplace = NULL;
3119                         /* Unless we are doing a full sync, or a replacement
3120                          * we only need to recover the block if it is set in
3121                          * the bitmap
3122                          */
3123                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3124                                                          &sync_blocks, 1);
3125                         if (sync_blocks < max_sync)
3126                                 max_sync = sync_blocks;
3127                         if (!must_sync &&
3128                             mreplace == NULL &&
3129                             !conf->fullsync) {
3130                                 /* yep, skip the sync_blocks here, but don't assume
3131                                  * that there will never be anything to do here
3132                                  */
3133                                 chunks_skipped = -1;
3134                                 rcu_read_unlock();
3135                                 continue;
3136                         }
3137                         atomic_inc(&mrdev->nr_pending);
3138                         if (mreplace)
3139                                 atomic_inc(&mreplace->nr_pending);
3140                         rcu_read_unlock();
3141
3142                         r10_bio = raid10_alloc_init_r10buf(conf);
3143                         r10_bio->state = 0;
3144                         raise_barrier(conf, rb2 != NULL);
3145                         atomic_set(&r10_bio->remaining, 0);
3146
3147                         r10_bio->master_bio = (struct bio*)rb2;
3148                         if (rb2)
3149                                 atomic_inc(&rb2->remaining);
3150                         r10_bio->mddev = mddev;
3151                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3152                         r10_bio->sector = sect;
3153
3154                         raid10_find_phys(conf, r10_bio);
3155
3156                         /* Need to check if the array will still be
3157                          * degraded
3158                          */
3159                         rcu_read_lock();
3160                         for (j = 0; j < conf->geo.raid_disks; j++) {
3161                                 struct md_rdev *rdev = rcu_dereference(
3162                                         conf->mirrors[j].rdev);
3163                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3164                                         still_degraded = 1;
3165                                         break;
3166                                 }
3167                         }
3168
3169                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3170                                                          &sync_blocks, still_degraded);
3171
3172                         any_working = 0;
3173                         for (j=0; j<conf->copies;j++) {
3174                                 int k;
3175                                 int d = r10_bio->devs[j].devnum;
3176                                 sector_t from_addr, to_addr;
3177                                 struct md_rdev *rdev =
3178                                         rcu_dereference(conf->mirrors[d].rdev);
3179                                 sector_t sector, first_bad;
3180                                 int bad_sectors;
3181                                 if (!rdev ||
3182                                     !test_bit(In_sync, &rdev->flags))
3183                                         continue;
3184                                 /* This is where we read from */
3185                                 any_working = 1;
3186                                 sector = r10_bio->devs[j].addr;
3187
3188                                 if (is_badblock(rdev, sector, max_sync,
3189                                                 &first_bad, &bad_sectors)) {
3190                                         if (first_bad > sector)
3191                                                 max_sync = first_bad - sector;
3192                                         else {
3193                                                 bad_sectors -= (sector
3194                                                                 - first_bad);
3195                                                 if (max_sync > bad_sectors)
3196                                                         max_sync = bad_sectors;
3197                                                 continue;
3198                                         }
3199                                 }
3200                                 bio = r10_bio->devs[0].bio;
3201                                 bio->bi_next = biolist;
3202                                 biolist = bio;
3203                                 bio->bi_end_io = end_sync_read;
3204                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3205                                 if (test_bit(FailFast, &rdev->flags))
3206                                         bio->bi_opf |= MD_FAILFAST;
3207                                 from_addr = r10_bio->devs[j].addr;
3208                                 bio->bi_iter.bi_sector = from_addr +
3209                                         rdev->data_offset;
3210                                 bio_set_dev(bio, rdev->bdev);
3211                                 atomic_inc(&rdev->nr_pending);
3212                                 /* and we write to 'i' (if not in_sync) */
3213
3214                                 for (k=0; k<conf->copies; k++)
3215                                         if (r10_bio->devs[k].devnum == i)
3216                                                 break;
3217                                 BUG_ON(k == conf->copies);
3218                                 to_addr = r10_bio->devs[k].addr;
3219                                 r10_bio->devs[0].devnum = d;
3220                                 r10_bio->devs[0].addr = from_addr;
3221                                 r10_bio->devs[1].devnum = i;
3222                                 r10_bio->devs[1].addr = to_addr;
3223
3224                                 if (!test_bit(In_sync, &mrdev->flags)) {
3225                                         bio = r10_bio->devs[1].bio;
3226                                         bio->bi_next = biolist;
3227                                         biolist = bio;
3228                                         bio->bi_end_io = end_sync_write;
3229                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3230                                         bio->bi_iter.bi_sector = to_addr
3231                                                 + mrdev->data_offset;
3232                                         bio_set_dev(bio, mrdev->bdev);
3233                                         atomic_inc(&r10_bio->remaining);
3234                                 } else
3235                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3236
3237                                 /* and maybe write to replacement */
3238                                 bio = r10_bio->devs[1].repl_bio;
3239                                 if (bio)
3240                                         bio->bi_end_io = NULL;
3241                                 /* Note: if mreplace != NULL, then bio
3242                                  * cannot be NULL as r10buf_pool_alloc will
3243                                  * have allocated it.
3244                                  * So the second test here is pointless.
3245                                  * But it keeps semantic-checkers happy, and
3246                                  * this comment keeps human reviewers
3247                                  * happy.
3248                                  */
3249                                 if (mreplace == NULL || bio == NULL ||
3250                                     test_bit(Faulty, &mreplace->flags))
3251                                         break;
3252                                 bio->bi_next = biolist;
3253                                 biolist = bio;
3254                                 bio->bi_end_io = end_sync_write;
3255                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3256                                 bio->bi_iter.bi_sector = to_addr +
3257                                         mreplace->data_offset;
3258                                 bio_set_dev(bio, mreplace->bdev);
3259                                 atomic_inc(&r10_bio->remaining);
3260                                 break;
3261                         }
3262                         rcu_read_unlock();
3263                         if (j == conf->copies) {
3264                                 /* Cannot recover, so abort the recovery or
3265                                  * record a bad block */
3266                                 if (any_working) {
3267                                         /* problem is that there are bad blocks
3268                                          * on other device(s)
3269                                          */
3270                                         int k;
3271                                         for (k = 0; k < conf->copies; k++)
3272                                                 if (r10_bio->devs[k].devnum == i)
3273                                                         break;
3274                                         if (!test_bit(In_sync,
3275                                                       &mrdev->flags)
3276                                             && !rdev_set_badblocks(
3277                                                     mrdev,
3278                                                     r10_bio->devs[k].addr,
3279                                                     max_sync, 0))
3280                                                 any_working = 0;
3281                                         if (mreplace &&
3282                                             !rdev_set_badblocks(
3283                                                     mreplace,
3284                                                     r10_bio->devs[k].addr,
3285                                                     max_sync, 0))
3286                                                 any_working = 0;
3287                                 }
3288                                 if (!any_working)  {
3289                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3290                                                               &mddev->recovery))
3291                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3292                                                        mdname(mddev));
3293                                         mirror->recovery_disabled
3294                                                 = mddev->recovery_disabled;
3295                                 }
3296                                 put_buf(r10_bio);
3297                                 if (rb2)
3298                                         atomic_dec(&rb2->remaining);
3299                                 r10_bio = rb2;
3300                                 rdev_dec_pending(mrdev, mddev);
3301                                 if (mreplace)
3302                                         rdev_dec_pending(mreplace, mddev);
3303                                 break;
3304                         }
3305                         rdev_dec_pending(mrdev, mddev);
3306                         if (mreplace)
3307                                 rdev_dec_pending(mreplace, mddev);
3308                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3309                                 /* Only want this if there is elsewhere to
3310                                  * read from. 'j' is currently the first
3311                                  * readable copy.
3312                                  */
3313                                 int targets = 1;
3314                                 for (; j < conf->copies; j++) {
3315                                         int d = r10_bio->devs[j].devnum;
3316                                         if (conf->mirrors[d].rdev &&
3317                                             test_bit(In_sync,
3318                                                       &conf->mirrors[d].rdev->flags))
3319                                                 targets++;
3320                                 }
3321                                 if (targets == 1)
3322                                         r10_bio->devs[0].bio->bi_opf
3323                                                 &= ~MD_FAILFAST;
3324                         }
3325                 }
3326                 if (biolist == NULL) {
3327                         while (r10_bio) {
3328                                 struct r10bio *rb2 = r10_bio;
3329                                 r10_bio = (struct r10bio*) rb2->master_bio;
3330                                 rb2->master_bio = NULL;
3331                                 put_buf(rb2);
3332                         }
3333                         goto giveup;
3334                 }
3335         } else {
3336                 /* resync. Schedule a read for every block at this virt offset */
3337                 int count = 0;
3338
3339                 /*
3340                  * Since curr_resync_completed could probably not update in
3341                  * time, and we will set cluster_sync_low based on it.
3342                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3343                  * safety reason, which ensures curr_resync_completed is
3344                  * updated in bitmap_cond_end_sync.
3345                  */
3346                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3347                                         mddev_is_clustered(mddev) &&
3348                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3349
3350                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3351                                           &sync_blocks, mddev->degraded) &&
3352                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3353                                                  &mddev->recovery)) {
3354                         /* We can skip this block */
3355                         *skipped = 1;
3356                         return sync_blocks + sectors_skipped;
3357                 }
3358                 if (sync_blocks < max_sync)
3359                         max_sync = sync_blocks;
3360                 r10_bio = raid10_alloc_init_r10buf(conf);
3361                 r10_bio->state = 0;
3362
3363                 r10_bio->mddev = mddev;
3364                 atomic_set(&r10_bio->remaining, 0);
3365                 raise_barrier(conf, 0);
3366                 conf->next_resync = sector_nr;
3367
3368                 r10_bio->master_bio = NULL;
3369                 r10_bio->sector = sector_nr;
3370                 set_bit(R10BIO_IsSync, &r10_bio->state);
3371                 raid10_find_phys(conf, r10_bio);
3372                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3373
3374                 for (i = 0; i < conf->copies; i++) {
3375                         int d = r10_bio->devs[i].devnum;
3376                         sector_t first_bad, sector;
3377                         int bad_sectors;
3378                         struct md_rdev *rdev;
3379
3380                         if (r10_bio->devs[i].repl_bio)
3381                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3382
3383                         bio = r10_bio->devs[i].bio;
3384                         bio->bi_status = BLK_STS_IOERR;
3385                         rcu_read_lock();
3386                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3387                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3388                                 rcu_read_unlock();
3389                                 continue;
3390                         }
3391                         sector = r10_bio->devs[i].addr;
3392                         if (is_badblock(rdev, sector, max_sync,
3393                                         &first_bad, &bad_sectors)) {
3394                                 if (first_bad > sector)
3395                                         max_sync = first_bad - sector;
3396                                 else {
3397                                         bad_sectors -= (sector - first_bad);
3398                                         if (max_sync > bad_sectors)
3399                                                 max_sync = bad_sectors;
3400                                         rcu_read_unlock();
3401                                         continue;
3402                                 }
3403                         }
3404                         atomic_inc(&rdev->nr_pending);
3405                         atomic_inc(&r10_bio->remaining);
3406                         bio->bi_next = biolist;
3407                         biolist = bio;
3408                         bio->bi_end_io = end_sync_read;
3409                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3410                         if (test_bit(FailFast, &rdev->flags))
3411                                 bio->bi_opf |= MD_FAILFAST;
3412                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413                         bio_set_dev(bio, rdev->bdev);
3414                         count++;
3415
3416                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3417                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3418                                 rcu_read_unlock();
3419                                 continue;
3420                         }
3421                         atomic_inc(&rdev->nr_pending);
3422
3423                         /* Need to set up for writing to the replacement */
3424                         bio = r10_bio->devs[i].repl_bio;
3425                         bio->bi_status = BLK_STS_IOERR;
3426
3427                         sector = r10_bio->devs[i].addr;
3428                         bio->bi_next = biolist;
3429                         biolist = bio;
3430                         bio->bi_end_io = end_sync_write;
3431                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3432                         if (test_bit(FailFast, &rdev->flags))
3433                                 bio->bi_opf |= MD_FAILFAST;
3434                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3435                         bio_set_dev(bio, rdev->bdev);
3436                         count++;
3437                         rcu_read_unlock();
3438                 }
3439
3440                 if (count < 2) {
3441                         for (i=0; i<conf->copies; i++) {
3442                                 int d = r10_bio->devs[i].devnum;
3443                                 if (r10_bio->devs[i].bio->bi_end_io)
3444                                         rdev_dec_pending(conf->mirrors[d].rdev,
3445                                                          mddev);
3446                                 if (r10_bio->devs[i].repl_bio &&
3447                                     r10_bio->devs[i].repl_bio->bi_end_io)
3448                                         rdev_dec_pending(
3449                                                 conf->mirrors[d].replacement,
3450                                                 mddev);
3451                         }
3452                         put_buf(r10_bio);
3453                         biolist = NULL;
3454                         goto giveup;
3455                 }
3456         }
3457
3458         nr_sectors = 0;
3459         if (sector_nr + max_sync < max_sector)
3460                 max_sector = sector_nr + max_sync;
3461         do {
3462                 struct page *page;
3463                 int len = PAGE_SIZE;
3464                 if (sector_nr + (len>>9) > max_sector)
3465                         len = (max_sector - sector_nr) << 9;
3466                 if (len == 0)
3467                         break;
3468                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3469                         struct resync_pages *rp = get_resync_pages(bio);
3470                         page = resync_fetch_page(rp, page_idx);
3471                         /*
3472                          * won't fail because the vec table is big enough
3473                          * to hold all these pages
3474                          */
3475                         bio_add_page(bio, page, len, 0);
3476                 }
3477                 nr_sectors += len>>9;
3478                 sector_nr += len>>9;
3479         } while (++page_idx < RESYNC_PAGES);
3480         r10_bio->sectors = nr_sectors;
3481
3482         if (mddev_is_clustered(mddev) &&
3483             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3484                 /* It is resync not recovery */
3485                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3486                         conf->cluster_sync_low = mddev->curr_resync_completed;
3487                         raid10_set_cluster_sync_high(conf);
3488                         /* Send resync message */
3489                         md_cluster_ops->resync_info_update(mddev,
3490                                                 conf->cluster_sync_low,
3491                                                 conf->cluster_sync_high);
3492                 }
3493         } else if (mddev_is_clustered(mddev)) {
3494                 /* This is recovery not resync */
3495                 sector_t sect_va1, sect_va2;
3496                 bool broadcast_msg = false;
3497
3498                 for (i = 0; i < conf->geo.raid_disks; i++) {
3499                         /*
3500                          * sector_nr is a device address for recovery, so we
3501                          * need translate it to array address before compare
3502                          * with cluster_sync_high.
3503                          */
3504                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3505
3506                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3507                                 broadcast_msg = true;
3508                                 /*
3509                                  * curr_resync_completed is similar as
3510                                  * sector_nr, so make the translation too.
3511                                  */
3512                                 sect_va2 = raid10_find_virt(conf,
3513                                         mddev->curr_resync_completed, i);
3514
3515                                 if (conf->cluster_sync_low == 0 ||
3516                                     conf->cluster_sync_low > sect_va2)
3517                                         conf->cluster_sync_low = sect_va2;
3518                         }
3519                 }
3520                 if (broadcast_msg) {
3521                         raid10_set_cluster_sync_high(conf);
3522                         md_cluster_ops->resync_info_update(mddev,
3523                                                 conf->cluster_sync_low,
3524                                                 conf->cluster_sync_high);
3525                 }
3526         }
3527
3528         while (biolist) {
3529                 bio = biolist;
3530                 biolist = biolist->bi_next;
3531
3532                 bio->bi_next = NULL;
3533                 r10_bio = get_resync_r10bio(bio);
3534                 r10_bio->sectors = nr_sectors;
3535
3536                 if (bio->bi_end_io == end_sync_read) {
3537                         md_sync_acct_bio(bio, nr_sectors);
3538                         bio->bi_status = 0;
3539                         generic_make_request(bio);
3540                 }
3541         }
3542
3543         if (sectors_skipped)
3544                 /* pretend they weren't skipped, it makes
3545                  * no important difference in this case
3546                  */
3547                 md_done_sync(mddev, sectors_skipped, 1);
3548
3549         return sectors_skipped + nr_sectors;
3550  giveup:
3551         /* There is nowhere to write, so all non-sync
3552          * drives must be failed or in resync, all drives
3553          * have a bad block, so try the next chunk...
3554          */
3555         if (sector_nr + max_sync < max_sector)
3556                 max_sector = sector_nr + max_sync;
3557
3558         sectors_skipped += (max_sector - sector_nr);
3559         chunks_skipped ++;
3560         sector_nr = max_sector;
3561         goto skipped;
3562 }
3563
3564 static sector_t
3565 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3566 {
3567         sector_t size;
3568         struct r10conf *conf = mddev->private;
3569
3570         if (!raid_disks)
3571                 raid_disks = min(conf->geo.raid_disks,
3572                                  conf->prev.raid_disks);
3573         if (!sectors)
3574                 sectors = conf->dev_sectors;
3575
3576         size = sectors >> conf->geo.chunk_shift;
3577         sector_div(size, conf->geo.far_copies);
3578         size = size * raid_disks;
3579         sector_div(size, conf->geo.near_copies);
3580
3581         return size << conf->geo.chunk_shift;
3582 }
3583
3584 static void calc_sectors(struct r10conf *conf, sector_t size)
3585 {
3586         /* Calculate the number of sectors-per-device that will
3587          * actually be used, and set conf->dev_sectors and
3588          * conf->stride
3589          */
3590
3591         size = size >> conf->geo.chunk_shift;
3592         sector_div(size, conf->geo.far_copies);
3593         size = size * conf->geo.raid_disks;
3594         sector_div(size, conf->geo.near_copies);
3595         /* 'size' is now the number of chunks in the array */
3596         /* calculate "used chunks per device" */
3597         size = size * conf->copies;
3598
3599         /* We need to round up when dividing by raid_disks to
3600          * get the stride size.
3601          */
3602         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3603
3604         conf->dev_sectors = size << conf->geo.chunk_shift;
3605
3606         if (conf->geo.far_offset)
3607                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3608         else {
3609                 sector_div(size, conf->geo.far_copies);
3610                 conf->geo.stride = size << conf->geo.chunk_shift;
3611         }
3612 }
3613
3614 enum geo_type {geo_new, geo_old, geo_start};
3615 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3616 {
3617         int nc, fc, fo;
3618         int layout, chunk, disks;
3619         switch (new) {
3620         case geo_old:
3621                 layout = mddev->layout;
3622                 chunk = mddev->chunk_sectors;
3623                 disks = mddev->raid_disks - mddev->delta_disks;
3624                 break;
3625         case geo_new:
3626                 layout = mddev->new_layout;
3627                 chunk = mddev->new_chunk_sectors;
3628                 disks = mddev->raid_disks;
3629                 break;
3630         default: /* avoid 'may be unused' warnings */
3631         case geo_start: /* new when starting reshape - raid_disks not
3632                          * updated yet. */
3633                 layout = mddev->new_layout;
3634                 chunk = mddev->new_chunk_sectors;
3635                 disks = mddev->raid_disks + mddev->delta_disks;
3636                 break;
3637         }
3638         if (layout >> 19)
3639                 return -1;
3640         if (chunk < (PAGE_SIZE >> 9) ||
3641             !is_power_of_2(chunk))
3642                 return -2;
3643         nc = layout & 255;
3644         fc = (layout >> 8) & 255;
3645         fo = layout & (1<<16);
3646         geo->raid_disks = disks;
3647         geo->near_copies = nc;
3648         geo->far_copies = fc;
3649         geo->far_offset = fo;
3650         switch (layout >> 17) {
3651         case 0: /* original layout.  simple but not always optimal */
3652                 geo->far_set_size = disks;
3653                 break;
3654         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3655                  * actually using this, but leave code here just in case.*/
3656                 geo->far_set_size = disks/fc;
3657                 WARN(geo->far_set_size < fc,
3658                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3659                 break;
3660         case 2: /* "improved" layout fixed to match documentation */
3661                 geo->far_set_size = fc * nc;
3662                 break;
3663         default: /* Not a valid layout */
3664                 return -1;
3665         }
3666         geo->chunk_mask = chunk - 1;
3667         geo->chunk_shift = ffz(~chunk);
3668         return nc*fc;
3669 }
3670
3671 static struct r10conf *setup_conf(struct mddev *mddev)
3672 {
3673         struct r10conf *conf = NULL;
3674         int err = -EINVAL;
3675         struct geom geo;
3676         int copies;
3677
3678         copies = setup_geo(&geo, mddev, geo_new);
3679
3680         if (copies == -2) {
3681                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3682                         mdname(mddev), PAGE_SIZE);
3683                 goto out;
3684         }
3685
3686         if (copies < 2 || copies > mddev->raid_disks) {
3687                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3688                         mdname(mddev), mddev->new_layout);
3689                 goto out;
3690         }
3691
3692         err = -ENOMEM;
3693         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3694         if (!conf)
3695                 goto out;
3696
3697         /* FIXME calc properly */
3698         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3699                                 sizeof(struct raid10_info),
3700                                 GFP_KERNEL);
3701         if (!conf->mirrors)
3702                 goto out;
3703
3704         conf->tmppage = alloc_page(GFP_KERNEL);
3705         if (!conf->tmppage)
3706                 goto out;
3707
3708         conf->geo = geo;
3709         conf->copies = copies;
3710         err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3711                            r10bio_pool_free, conf);
3712         if (err)
3713                 goto out;
3714
3715         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3716         if (err)
3717                 goto out;
3718
3719         calc_sectors(conf, mddev->dev_sectors);
3720         if (mddev->reshape_position == MaxSector) {
3721                 conf->prev = conf->geo;
3722                 conf->reshape_progress = MaxSector;
3723         } else {
3724                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3725                         err = -EINVAL;
3726                         goto out;
3727                 }
3728                 conf->reshape_progress = mddev->reshape_position;
3729                 if (conf->prev.far_offset)
3730                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3731                 else
3732                         /* far_copies must be 1 */
3733                         conf->prev.stride = conf->dev_sectors;
3734         }
3735         conf->reshape_safe = conf->reshape_progress;
3736         spin_lock_init(&conf->device_lock);
3737         INIT_LIST_HEAD(&conf->retry_list);
3738         INIT_LIST_HEAD(&conf->bio_end_io_list);
3739
3740         spin_lock_init(&conf->resync_lock);
3741         init_waitqueue_head(&conf->wait_barrier);
3742         atomic_set(&conf->nr_pending, 0);
3743
3744         err = -ENOMEM;
3745         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3746         if (!conf->thread)
3747                 goto out;
3748
3749         conf->mddev = mddev;
3750         return conf;
3751
3752  out:
3753         if (conf) {
3754                 mempool_exit(&conf->r10bio_pool);
3755                 kfree(conf->mirrors);
3756                 safe_put_page(conf->tmppage);
3757                 bioset_exit(&conf->bio_split);
3758                 kfree(conf);
3759         }
3760         return ERR_PTR(err);
3761 }
3762
3763 static int raid10_run(struct mddev *mddev)
3764 {
3765         struct r10conf *conf;
3766         int i, disk_idx, chunk_size;
3767         struct raid10_info *disk;
3768         struct md_rdev *rdev;
3769         sector_t size;
3770         sector_t min_offset_diff = 0;
3771         int first = 1;
3772         bool discard_supported = false;
3773
3774         if (mddev_init_writes_pending(mddev) < 0)
3775                 return -ENOMEM;
3776
3777         if (mddev->private == NULL) {
3778                 conf = setup_conf(mddev);
3779                 if (IS_ERR(conf))
3780                         return PTR_ERR(conf);
3781                 mddev->private = conf;
3782         }
3783         conf = mddev->private;
3784         if (!conf)
3785                 goto out;
3786
3787         if (mddev_is_clustered(conf->mddev)) {
3788                 int fc, fo;
3789
3790                 fc = (mddev->layout >> 8) & 255;
3791                 fo = mddev->layout & (1<<16);
3792                 if (fc > 1 || fo > 0) {
3793                         pr_err("only near layout is supported by clustered"
3794                                 " raid10\n");
3795                         goto out_free_conf;
3796                 }
3797         }
3798
3799         mddev->thread = conf->thread;
3800         conf->thread = NULL;
3801
3802         chunk_size = mddev->chunk_sectors << 9;
3803         if (mddev->queue) {
3804                 blk_queue_max_discard_sectors(mddev->queue,
3805                                               mddev->chunk_sectors);
3806                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3807                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3808                 blk_queue_io_min(mddev->queue, chunk_size);
3809                 if (conf->geo.raid_disks % conf->geo.near_copies)
3810                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3811                 else
3812                         blk_queue_io_opt(mddev->queue, chunk_size *
3813                                          (conf->geo.raid_disks / conf->geo.near_copies));
3814         }
3815
3816         rdev_for_each(rdev, mddev) {
3817                 long long diff;
3818
3819                 disk_idx = rdev->raid_disk;
3820                 if (disk_idx < 0)
3821                         continue;
3822                 if (disk_idx >= conf->geo.raid_disks &&
3823                     disk_idx >= conf->prev.raid_disks)
3824                         continue;
3825                 disk = conf->mirrors + disk_idx;
3826
3827                 if (test_bit(Replacement, &rdev->flags)) {
3828                         if (disk->replacement)
3829                                 goto out_free_conf;
3830                         disk->replacement = rdev;
3831                 } else {
3832                         if (disk->rdev)
3833                                 goto out_free_conf;
3834                         disk->rdev = rdev;
3835                 }
3836                 diff = (rdev->new_data_offset - rdev->data_offset);
3837                 if (!mddev->reshape_backwards)
3838                         diff = -diff;
3839                 if (diff < 0)
3840                         diff = 0;
3841                 if (first || diff < min_offset_diff)
3842                         min_offset_diff = diff;
3843
3844                 if (mddev->gendisk)
3845                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3846                                           rdev->data_offset << 9);
3847
3848                 disk->head_position = 0;
3849
3850                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3851                         discard_supported = true;
3852                 first = 0;
3853         }
3854
3855         if (mddev->queue) {
3856                 if (discard_supported)
3857                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3858                                                 mddev->queue);
3859                 else
3860                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3861                                                   mddev->queue);
3862         }
3863         /* need to check that every block has at least one working mirror */
3864         if (!enough(conf, -1)) {
3865                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3866                        mdname(mddev));
3867                 goto out_free_conf;
3868         }
3869
3870         if (conf->reshape_progress != MaxSector) {
3871                 /* must ensure that shape change is supported */
3872                 if (conf->geo.far_copies != 1 &&
3873                     conf->geo.far_offset == 0)
3874                         goto out_free_conf;
3875                 if (conf->prev.far_copies != 1 &&
3876                     conf->prev.far_offset == 0)
3877                         goto out_free_conf;
3878         }
3879
3880         mddev->degraded = 0;
3881         for (i = 0;
3882              i < conf->geo.raid_disks
3883                      || i < conf->prev.raid_disks;
3884              i++) {
3885
3886                 disk = conf->mirrors + i;
3887
3888                 if (!disk->rdev && disk->replacement) {
3889                         /* The replacement is all we have - use it */
3890                         disk->rdev = disk->replacement;
3891                         disk->replacement = NULL;
3892                         clear_bit(Replacement, &disk->rdev->flags);
3893                 }
3894
3895                 if (!disk->rdev ||
3896                     !test_bit(In_sync, &disk->rdev->flags)) {
3897                         disk->head_position = 0;
3898                         mddev->degraded++;
3899                         if (disk->rdev &&
3900                             disk->rdev->saved_raid_disk < 0)
3901                                 conf->fullsync = 1;
3902                 }
3903
3904                 if (disk->replacement &&
3905                     !test_bit(In_sync, &disk->replacement->flags) &&
3906                     disk->replacement->saved_raid_disk < 0) {
3907                         conf->fullsync = 1;
3908                 }
3909
3910                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3911         }
3912
3913         if (mddev->recovery_cp != MaxSector)
3914                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3915                           mdname(mddev));
3916         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3917                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3918                 conf->geo.raid_disks);
3919         /*
3920          * Ok, everything is just fine now
3921          */
3922         mddev->dev_sectors = conf->dev_sectors;
3923         size = raid10_size(mddev, 0, 0);
3924         md_set_array_sectors(mddev, size);
3925         mddev->resync_max_sectors = size;
3926         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3927
3928         if (mddev->queue) {
3929                 int stripe = conf->geo.raid_disks *
3930                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3931
3932                 /* Calculate max read-ahead size.
3933                  * We need to readahead at least twice a whole stripe....
3934                  * maybe...
3935                  */
3936                 stripe /= conf->geo.near_copies;
3937                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3938                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3939         }
3940
3941         if (md_integrity_register(mddev))
3942                 goto out_free_conf;
3943
3944         if (conf->reshape_progress != MaxSector) {
3945                 unsigned long before_length, after_length;
3946
3947                 before_length = ((1 << conf->prev.chunk_shift) *
3948                                  conf->prev.far_copies);
3949                 after_length = ((1 << conf->geo.chunk_shift) *
3950                                 conf->geo.far_copies);
3951
3952                 if (max(before_length, after_length) > min_offset_diff) {
3953                         /* This cannot work */
3954                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3955                         goto out_free_conf;
3956                 }
3957                 conf->offset_diff = min_offset_diff;
3958
3959                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3960                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3961                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3962                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3963                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3964                                                         "reshape");
3965                 if (!mddev->sync_thread)
3966                         goto out_free_conf;
3967         }
3968
3969         return 0;
3970
3971 out_free_conf:
3972         md_unregister_thread(&mddev->thread);
3973         mempool_exit(&conf->r10bio_pool);
3974         safe_put_page(conf->tmppage);
3975         kfree(conf->mirrors);
3976         kfree(conf);
3977         mddev->private = NULL;
3978 out:
3979         return -EIO;
3980 }
3981
3982 static void raid10_free(struct mddev *mddev, void *priv)
3983 {
3984         struct r10conf *conf = priv;
3985
3986         mempool_exit(&conf->r10bio_pool);
3987         safe_put_page(conf->tmppage);
3988         kfree(conf->mirrors);
3989         kfree(conf->mirrors_old);
3990         kfree(conf->mirrors_new);
3991         bioset_exit(&conf->bio_split);
3992         kfree(conf);
3993 }
3994
3995 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3996 {
3997         struct r10conf *conf = mddev->private;
3998
3999         if (quiesce)
4000                 raise_barrier(conf, 0);
4001         else
4002                 lower_barrier(conf);
4003 }
4004
4005 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4006 {
4007         /* Resize of 'far' arrays is not supported.
4008          * For 'near' and 'offset' arrays we can set the
4009          * number of sectors used to be an appropriate multiple
4010          * of the chunk size.
4011          * For 'offset', this is far_copies*chunksize.
4012          * For 'near' the multiplier is the LCM of
4013          * near_copies and raid_disks.
4014          * So if far_copies > 1 && !far_offset, fail.
4015          * Else find LCM(raid_disks, near_copy)*far_copies and
4016          * multiply by chunk_size.  Then round to this number.
4017          * This is mostly done by raid10_size()
4018          */
4019         struct r10conf *conf = mddev->private;
4020         sector_t oldsize, size;
4021
4022         if (mddev->reshape_position != MaxSector)
4023                 return -EBUSY;
4024
4025         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4026                 return -EINVAL;
4027
4028         oldsize = raid10_size(mddev, 0, 0);
4029         size = raid10_size(mddev, sectors, 0);
4030         if (mddev->external_size &&
4031             mddev->array_sectors > size)
4032                 return -EINVAL;
4033         if (mddev->bitmap) {
4034                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4035                 if (ret)
4036                         return ret;
4037         }
4038         md_set_array_sectors(mddev, size);
4039         if (sectors > mddev->dev_sectors &&
4040             mddev->recovery_cp > oldsize) {
4041                 mddev->recovery_cp = oldsize;
4042                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4043         }
4044         calc_sectors(conf, sectors);
4045         mddev->dev_sectors = conf->dev_sectors;
4046         mddev->resync_max_sectors = size;
4047         return 0;
4048 }
4049
4050 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4051 {
4052         struct md_rdev *rdev;
4053         struct r10conf *conf;
4054
4055         if (mddev->degraded > 0) {
4056                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4057                         mdname(mddev));
4058                 return ERR_PTR(-EINVAL);
4059         }
4060         sector_div(size, devs);
4061
4062         /* Set new parameters */
4063         mddev->new_level = 10;
4064         /* new layout: far_copies = 1, near_copies = 2 */
4065         mddev->new_layout = (1<<8) + 2;
4066         mddev->new_chunk_sectors = mddev->chunk_sectors;
4067         mddev->delta_disks = mddev->raid_disks;
4068         mddev->raid_disks *= 2;
4069         /* make sure it will be not marked as dirty */
4070         mddev->recovery_cp = MaxSector;
4071         mddev->dev_sectors = size;
4072
4073         conf = setup_conf(mddev);
4074         if (!IS_ERR(conf)) {
4075                 rdev_for_each(rdev, mddev)
4076                         if (rdev->raid_disk >= 0) {
4077                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4078                                 rdev->sectors = size;
4079                         }
4080                 conf->barrier = 1;
4081         }
4082
4083         return conf;
4084 }
4085
4086 static void *raid10_takeover(struct mddev *mddev)
4087 {
4088         struct r0conf *raid0_conf;
4089
4090         /* raid10 can take over:
4091          *  raid0 - providing it has only two drives
4092          */
4093         if (mddev->level == 0) {
4094                 /* for raid0 takeover only one zone is supported */
4095                 raid0_conf = mddev->private;
4096                 if (raid0_conf->nr_strip_zones > 1) {
4097                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4098                                 mdname(mddev));
4099                         return ERR_PTR(-EINVAL);
4100                 }
4101                 return raid10_takeover_raid0(mddev,
4102                         raid0_conf->strip_zone->zone_end,
4103                         raid0_conf->strip_zone->nb_dev);
4104         }
4105         return ERR_PTR(-EINVAL);
4106 }
4107
4108 static int raid10_check_reshape(struct mddev *mddev)
4109 {
4110         /* Called when there is a request to change
4111          * - layout (to ->new_layout)
4112          * - chunk size (to ->new_chunk_sectors)
4113          * - raid_disks (by delta_disks)
4114          * or when trying to restart a reshape that was ongoing.
4115          *
4116          * We need to validate the request and possibly allocate
4117          * space if that might be an issue later.
4118          *
4119          * Currently we reject any reshape of a 'far' mode array,
4120          * allow chunk size to change if new is generally acceptable,
4121          * allow raid_disks to increase, and allow
4122          * a switch between 'near' mode and 'offset' mode.
4123          */
4124         struct r10conf *conf = mddev->private;
4125         struct geom geo;
4126
4127         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4128                 return -EINVAL;
4129
4130         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4131                 /* mustn't change number of copies */
4132                 return -EINVAL;
4133         if (geo.far_copies > 1 && !geo.far_offset)
4134                 /* Cannot switch to 'far' mode */
4135                 return -EINVAL;
4136
4137         if (mddev->array_sectors & geo.chunk_mask)
4138                         /* not factor of array size */
4139                         return -EINVAL;
4140
4141         if (!enough(conf, -1))
4142                 return -EINVAL;
4143
4144         kfree(conf->mirrors_new);
4145         conf->mirrors_new = NULL;
4146         if (mddev->delta_disks > 0) {
4147                 /* allocate new 'mirrors' list */
4148                 conf->mirrors_new =
4149                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4150                                 sizeof(struct raid10_info),
4151                                 GFP_KERNEL);
4152                 if (!conf->mirrors_new)
4153                         return -ENOMEM;
4154         }
4155         return 0;
4156 }
4157
4158 /*
4159  * Need to check if array has failed when deciding whether to:
4160  *  - start an array
4161  *  - remove non-faulty devices
4162  *  - add a spare
4163  *  - allow a reshape
4164  * This determination is simple when no reshape is happening.
4165  * However if there is a reshape, we need to carefully check
4166  * both the before and after sections.
4167  * This is because some failed devices may only affect one
4168  * of the two sections, and some non-in_sync devices may
4169  * be insync in the section most affected by failed devices.
4170  */
4171 static int calc_degraded(struct r10conf *conf)
4172 {
4173         int degraded, degraded2;
4174         int i;
4175
4176         rcu_read_lock();
4177         degraded = 0;
4178         /* 'prev' section first */
4179         for (i = 0; i < conf->prev.raid_disks; i++) {
4180                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4181                 if (!rdev || test_bit(Faulty, &rdev->flags))
4182                         degraded++;
4183                 else if (!test_bit(In_sync, &rdev->flags))
4184                         /* When we can reduce the number of devices in
4185                          * an array, this might not contribute to
4186                          * 'degraded'.  It does now.
4187                          */
4188                         degraded++;
4189         }
4190         rcu_read_unlock();
4191         if (conf->geo.raid_disks == conf->prev.raid_disks)
4192                 return degraded;
4193         rcu_read_lock();
4194         degraded2 = 0;
4195         for (i = 0; i < conf->geo.raid_disks; i++) {
4196                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4197                 if (!rdev || test_bit(Faulty, &rdev->flags))
4198                         degraded2++;
4199                 else if (!test_bit(In_sync, &rdev->flags)) {
4200                         /* If reshape is increasing the number of devices,
4201                          * this section has already been recovered, so
4202                          * it doesn't contribute to degraded.
4203                          * else it does.
4204                          */
4205                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4206                                 degraded2++;
4207                 }
4208         }
4209         rcu_read_unlock();
4210         if (degraded2 > degraded)
4211                 return degraded2;
4212         return degraded;
4213 }
4214
4215 static int raid10_start_reshape(struct mddev *mddev)
4216 {
4217         /* A 'reshape' has been requested. This commits
4218          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4219          * This also checks if there are enough spares and adds them
4220          * to the array.
4221          * We currently require enough spares to make the final
4222          * array non-degraded.  We also require that the difference
4223          * between old and new data_offset - on each device - is
4224          * enough that we never risk over-writing.
4225          */
4226
4227         unsigned long before_length, after_length;
4228         sector_t min_offset_diff = 0;
4229         int first = 1;
4230         struct geom new;
4231         struct r10conf *conf = mddev->private;
4232         struct md_rdev *rdev;
4233         int spares = 0;
4234         int ret;
4235
4236         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4237                 return -EBUSY;
4238
4239         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4240                 return -EINVAL;
4241
4242         before_length = ((1 << conf->prev.chunk_shift) *
4243                          conf->prev.far_copies);
4244         after_length = ((1 << conf->geo.chunk_shift) *
4245                         conf->geo.far_copies);
4246
4247         rdev_for_each(rdev, mddev) {
4248                 if (!test_bit(In_sync, &rdev->flags)
4249                     && !test_bit(Faulty, &rdev->flags))
4250                         spares++;
4251                 if (rdev->raid_disk >= 0) {
4252                         long long diff = (rdev->new_data_offset
4253                                           - rdev->data_offset);
4254                         if (!mddev->reshape_backwards)
4255                                 diff = -diff;
4256                         if (diff < 0)
4257                                 diff = 0;
4258                         if (first || diff < min_offset_diff)
4259                                 min_offset_diff = diff;
4260                         first = 0;
4261                 }
4262         }
4263
4264         if (max(before_length, after_length) > min_offset_diff)
4265                 return -EINVAL;
4266
4267         if (spares < mddev->delta_disks)
4268                 return -EINVAL;
4269
4270         conf->offset_diff = min_offset_diff;
4271         spin_lock_irq(&conf->device_lock);
4272         if (conf->mirrors_new) {
4273                 memcpy(conf->mirrors_new, conf->mirrors,
4274                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4275                 smp_mb();
4276                 kfree(conf->mirrors_old);
4277                 conf->mirrors_old = conf->mirrors;
4278                 conf->mirrors = conf->mirrors_new;
4279                 conf->mirrors_new = NULL;
4280         }
4281         setup_geo(&conf->geo, mddev, geo_start);
4282         smp_mb();
4283         if (mddev->reshape_backwards) {
4284                 sector_t size = raid10_size(mddev, 0, 0);
4285                 if (size < mddev->array_sectors) {
4286                         spin_unlock_irq(&conf->device_lock);
4287                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4288                                 mdname(mddev));
4289                         return -EINVAL;
4290                 }
4291                 mddev->resync_max_sectors = size;
4292                 conf->reshape_progress = size;
4293         } else
4294                 conf->reshape_progress = 0;
4295         conf->reshape_safe = conf->reshape_progress;
4296         spin_unlock_irq(&conf->device_lock);
4297
4298         if (mddev->delta_disks && mddev->bitmap) {
4299                 ret = md_bitmap_resize(mddev->bitmap,
4300                                        raid10_size(mddev, 0, conf->geo.raid_disks),
4301                                        0, 0);
4302                 if (ret)
4303                         goto abort;
4304         }
4305         if (mddev->delta_disks > 0) {
4306                 rdev_for_each(rdev, mddev)
4307                         if (rdev->raid_disk < 0 &&
4308                             !test_bit(Faulty, &rdev->flags)) {
4309                                 if (raid10_add_disk(mddev, rdev) == 0) {
4310                                         if (rdev->raid_disk >=
4311                                             conf->prev.raid_disks)
4312                                                 set_bit(In_sync, &rdev->flags);
4313                                         else
4314                                                 rdev->recovery_offset = 0;
4315
4316                                         if (sysfs_link_rdev(mddev, rdev))
4317                                                 /* Failure here  is OK */;
4318                                 }
4319                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4320                                    && !test_bit(Faulty, &rdev->flags)) {
4321                                 /* This is a spare that was manually added */
4322                                 set_bit(In_sync, &rdev->flags);
4323                         }
4324         }
4325         /* When a reshape changes the number of devices,
4326          * ->degraded is measured against the larger of the
4327          * pre and  post numbers.
4328          */
4329         spin_lock_irq(&conf->device_lock);
4330         mddev->degraded = calc_degraded(conf);
4331         spin_unlock_irq(&conf->device_lock);
4332         mddev->raid_disks = conf->geo.raid_disks;
4333         mddev->reshape_position = conf->reshape_progress;
4334         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4335
4336         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4337         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4338         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4339         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4340         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4341
4342         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4343                                                 "reshape");
4344         if (!mddev->sync_thread) {
4345                 ret = -EAGAIN;
4346                 goto abort;
4347         }
4348         conf->reshape_checkpoint = jiffies;
4349         md_wakeup_thread(mddev->sync_thread);
4350         md_new_event(mddev);
4351         return 0;
4352
4353 abort:
4354         mddev->recovery = 0;
4355         spin_lock_irq(&conf->device_lock);
4356         conf->geo = conf->prev;
4357         mddev->raid_disks = conf->geo.raid_disks;
4358         rdev_for_each(rdev, mddev)
4359                 rdev->new_data_offset = rdev->data_offset;
4360         smp_wmb();
4361         conf->reshape_progress = MaxSector;
4362         conf->reshape_safe = MaxSector;
4363         mddev->reshape_position = MaxSector;
4364         spin_unlock_irq(&conf->device_lock);
4365         return ret;
4366 }
4367
4368 /* Calculate the last device-address that could contain
4369  * any block from the chunk that includes the array-address 's'
4370  * and report the next address.
4371  * i.e. the address returned will be chunk-aligned and after
4372  * any data that is in the chunk containing 's'.
4373  */
4374 static sector_t last_dev_address(sector_t s, struct geom *geo)
4375 {
4376         s = (s | geo->chunk_mask) + 1;
4377         s >>= geo->chunk_shift;
4378         s *= geo->near_copies;
4379         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4380         s *= geo->far_copies;
4381         s <<= geo->chunk_shift;
4382         return s;
4383 }
4384
4385 /* Calculate the first device-address that could contain
4386  * any block from the chunk that includes the array-address 's'.
4387  * This too will be the start of a chunk
4388  */
4389 static sector_t first_dev_address(sector_t s, struct geom *geo)
4390 {
4391         s >>= geo->chunk_shift;
4392         s *= geo->near_copies;
4393         sector_div(s, geo->raid_disks);
4394         s *= geo->far_copies;
4395         s <<= geo->chunk_shift;
4396         return s;
4397 }
4398
4399 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4400                                 int *skipped)
4401 {
4402         /* We simply copy at most one chunk (smallest of old and new)
4403          * at a time, possibly less if that exceeds RESYNC_PAGES,
4404          * or we hit a bad block or something.
4405          * This might mean we pause for normal IO in the middle of
4406          * a chunk, but that is not a problem as mddev->reshape_position
4407          * can record any location.
4408          *
4409          * If we will want to write to a location that isn't
4410          * yet recorded as 'safe' (i.e. in metadata on disk) then
4411          * we need to flush all reshape requests and update the metadata.
4412          *
4413          * When reshaping forwards (e.g. to more devices), we interpret
4414          * 'safe' as the earliest block which might not have been copied
4415          * down yet.  We divide this by previous stripe size and multiply
4416          * by previous stripe length to get lowest device offset that we
4417          * cannot write to yet.
4418          * We interpret 'sector_nr' as an address that we want to write to.
4419          * From this we use last_device_address() to find where we might
4420          * write to, and first_device_address on the  'safe' position.
4421          * If this 'next' write position is after the 'safe' position,
4422          * we must update the metadata to increase the 'safe' position.
4423          *
4424          * When reshaping backwards, we round in the opposite direction
4425          * and perform the reverse test:  next write position must not be
4426          * less than current safe position.
4427          *
4428          * In all this the minimum difference in data offsets
4429          * (conf->offset_diff - always positive) allows a bit of slack,
4430          * so next can be after 'safe', but not by more than offset_diff
4431          *
4432          * We need to prepare all the bios here before we start any IO
4433          * to ensure the size we choose is acceptable to all devices.
4434          * The means one for each copy for write-out and an extra one for
4435          * read-in.
4436          * We store the read-in bio in ->master_bio and the others in
4437          * ->devs[x].bio and ->devs[x].repl_bio.
4438          */
4439         struct r10conf *conf = mddev->private;
4440         struct r10bio *r10_bio;
4441         sector_t next, safe, last;
4442         int max_sectors;
4443         int nr_sectors;
4444         int s;
4445         struct md_rdev *rdev;
4446         int need_flush = 0;
4447         struct bio *blist;
4448         struct bio *bio, *read_bio;
4449         int sectors_done = 0;
4450         struct page **pages;
4451
4452         if (sector_nr == 0) {
4453                 /* If restarting in the middle, skip the initial sectors */
4454                 if (mddev->reshape_backwards &&
4455                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4456                         sector_nr = (raid10_size(mddev, 0, 0)
4457                                      - conf->reshape_progress);
4458                 } else if (!mddev->reshape_backwards &&
4459                            conf->reshape_progress > 0)
4460                         sector_nr = conf->reshape_progress;
4461                 if (sector_nr) {
4462                         mddev->curr_resync_completed = sector_nr;
4463                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4464                         *skipped = 1;
4465                         return sector_nr;
4466                 }
4467         }
4468
4469         /* We don't use sector_nr to track where we are up to
4470          * as that doesn't work well for ->reshape_backwards.
4471          * So just use ->reshape_progress.
4472          */
4473         if (mddev->reshape_backwards) {
4474                 /* 'next' is the earliest device address that we might
4475                  * write to for this chunk in the new layout
4476                  */
4477                 next = first_dev_address(conf->reshape_progress - 1,
4478                                          &conf->geo);
4479
4480                 /* 'safe' is the last device address that we might read from
4481                  * in the old layout after a restart
4482                  */
4483                 safe = last_dev_address(conf->reshape_safe - 1,
4484                                         &conf->prev);
4485
4486                 if (next + conf->offset_diff < safe)
4487                         need_flush = 1;
4488
4489                 last = conf->reshape_progress - 1;
4490                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4491                                                & conf->prev.chunk_mask);
4492                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4493                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4494         } else {
4495                 /* 'next' is after the last device address that we
4496                  * might write to for this chunk in the new layout
4497                  */
4498                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4499
4500                 /* 'safe' is the earliest device address that we might
4501                  * read from in the old layout after a restart
4502                  */
4503                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4504
4505                 /* Need to update metadata if 'next' might be beyond 'safe'
4506                  * as that would possibly corrupt data
4507                  */
4508                 if (next > safe + conf->offset_diff)
4509                         need_flush = 1;
4510
4511                 sector_nr = conf->reshape_progress;
4512                 last  = sector_nr | (conf->geo.chunk_mask
4513                                      & conf->prev.chunk_mask);
4514
4515                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4516                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4517         }
4518
4519         if (need_flush ||
4520             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4521                 /* Need to update reshape_position in metadata */
4522                 wait_barrier(conf);
4523                 mddev->reshape_position = conf->reshape_progress;
4524                 if (mddev->reshape_backwards)
4525                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4526                                 - conf->reshape_progress;
4527                 else
4528                         mddev->curr_resync_completed = conf->reshape_progress;
4529                 conf->reshape_checkpoint = jiffies;
4530                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4531                 md_wakeup_thread(mddev->thread);
4532                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4533                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4534                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4535                         allow_barrier(conf);
4536                         return sectors_done;
4537                 }
4538                 conf->reshape_safe = mddev->reshape_position;
4539                 allow_barrier(conf);
4540         }
4541
4542         raise_barrier(conf, 0);
4543 read_more:
4544         /* Now schedule reads for blocks from sector_nr to last */
4545         r10_bio = raid10_alloc_init_r10buf(conf);
4546         r10_bio->state = 0;
4547         raise_barrier(conf, 1);
4548         atomic_set(&r10_bio->remaining, 0);
4549         r10_bio->mddev = mddev;
4550         r10_bio->sector = sector_nr;
4551         set_bit(R10BIO_IsReshape, &r10_bio->state);
4552         r10_bio->sectors = last - sector_nr + 1;
4553         rdev = read_balance(conf, r10_bio, &max_sectors);
4554         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4555
4556         if (!rdev) {
4557                 /* Cannot read from here, so need to record bad blocks
4558                  * on all the target devices.
4559                  */
4560                 // FIXME
4561                 mempool_free(r10_bio, &conf->r10buf_pool);
4562                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4563                 return sectors_done;
4564         }
4565
4566         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4567
4568         bio_set_dev(read_bio, rdev->bdev);
4569         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4570                                + rdev->data_offset);
4571         read_bio->bi_private = r10_bio;
4572         read_bio->bi_end_io = end_reshape_read;
4573         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4574         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4575         read_bio->bi_status = 0;
4576         read_bio->bi_vcnt = 0;
4577         read_bio->bi_iter.bi_size = 0;
4578         r10_bio->master_bio = read_bio;
4579         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4580
4581         /* Now find the locations in the new layout */
4582         __raid10_find_phys(&conf->geo, r10_bio);
4583
4584         blist = read_bio;
4585         read_bio->bi_next = NULL;
4586
4587         rcu_read_lock();
4588         for (s = 0; s < conf->copies*2; s++) {
4589                 struct bio *b;
4590                 int d = r10_bio->devs[s/2].devnum;
4591                 struct md_rdev *rdev2;
4592                 if (s&1) {
4593                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4594                         b = r10_bio->devs[s/2].repl_bio;
4595                 } else {
4596                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4597                         b = r10_bio->devs[s/2].bio;
4598                 }
4599                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4600                         continue;
4601
4602                 bio_set_dev(b, rdev2->bdev);
4603                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4604                         rdev2->new_data_offset;
4605                 b->bi_end_io = end_reshape_write;
4606                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4607                 b->bi_next = blist;
4608                 blist = b;
4609         }
4610
4611         /* Now add as many pages as possible to all of these bios. */
4612
4613         nr_sectors = 0;
4614         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4615         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4616                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4617                 int len = (max_sectors - s) << 9;
4618                 if (len > PAGE_SIZE)
4619                         len = PAGE_SIZE;
4620                 for (bio = blist; bio ; bio = bio->bi_next) {
4621                         /*
4622                          * won't fail because the vec table is big enough
4623                          * to hold all these pages
4624                          */
4625                         bio_add_page(bio, page, len, 0);
4626                 }
4627                 sector_nr += len >> 9;
4628                 nr_sectors += len >> 9;
4629         }
4630         rcu_read_unlock();
4631         r10_bio->sectors = nr_sectors;
4632
4633         /* Now submit the read */
4634         md_sync_acct_bio(read_bio, r10_bio->sectors);
4635         atomic_inc(&r10_bio->remaining);
4636         read_bio->bi_next = NULL;
4637         generic_make_request(read_bio);
4638         sectors_done += nr_sectors;
4639         if (sector_nr <= last)
4640                 goto read_more;
4641
4642         lower_barrier(conf);
4643
4644         /* Now that we have done the whole section we can
4645          * update reshape_progress
4646          */
4647         if (mddev->reshape_backwards)
4648                 conf->reshape_progress -= sectors_done;
4649         else
4650                 conf->reshape_progress += sectors_done;
4651
4652         return sectors_done;
4653 }
4654
4655 static void end_reshape_request(struct r10bio *r10_bio);
4656 static int handle_reshape_read_error(struct mddev *mddev,
4657                                      struct r10bio *r10_bio);
4658 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4659 {
4660         /* Reshape read completed.  Hopefully we have a block
4661          * to write out.
4662          * If we got a read error then we do sync 1-page reads from
4663          * elsewhere until we find the data - or give up.
4664          */
4665         struct r10conf *conf = mddev->private;
4666         int s;
4667
4668         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4669                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4670                         /* Reshape has been aborted */
4671                         md_done_sync(mddev, r10_bio->sectors, 0);
4672                         return;
4673                 }
4674
4675         /* We definitely have the data in the pages, schedule the
4676          * writes.
4677          */
4678         atomic_set(&r10_bio->remaining, 1);
4679         for (s = 0; s < conf->copies*2; s++) {
4680                 struct bio *b;
4681                 int d = r10_bio->devs[s/2].devnum;
4682                 struct md_rdev *rdev;
4683                 rcu_read_lock();
4684                 if (s&1) {
4685                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4686                         b = r10_bio->devs[s/2].repl_bio;
4687                 } else {
4688                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4689                         b = r10_bio->devs[s/2].bio;
4690                 }
4691                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4692                         rcu_read_unlock();
4693                         continue;
4694                 }
4695                 atomic_inc(&rdev->nr_pending);
4696                 rcu_read_unlock();
4697                 md_sync_acct_bio(b, r10_bio->sectors);
4698                 atomic_inc(&r10_bio->remaining);
4699                 b->bi_next = NULL;
4700                 generic_make_request(b);
4701         }
4702         end_reshape_request(r10_bio);
4703 }
4704
4705 static void end_reshape(struct r10conf *conf)
4706 {
4707         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4708                 return;
4709
4710         spin_lock_irq(&conf->device_lock);
4711         conf->prev = conf->geo;
4712         md_finish_reshape(conf->mddev);
4713         smp_wmb();
4714         conf->reshape_progress = MaxSector;
4715         conf->reshape_safe = MaxSector;
4716         spin_unlock_irq(&conf->device_lock);
4717
4718         /* read-ahead size must cover two whole stripes, which is
4719          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4720          */
4721         if (conf->mddev->queue) {
4722                 int stripe = conf->geo.raid_disks *
4723                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4724                 stripe /= conf->geo.near_copies;
4725                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4726                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4727         }
4728         conf->fullsync = 0;
4729 }
4730
4731 static int handle_reshape_read_error(struct mddev *mddev,
4732                                      struct r10bio *r10_bio)
4733 {
4734         /* Use sync reads to get the blocks from somewhere else */
4735         int sectors = r10_bio->sectors;
4736         struct r10conf *conf = mddev->private;
4737         struct r10bio *r10b;
4738         int slot = 0;
4739         int idx = 0;
4740         struct page **pages;
4741
4742         r10b = kmalloc(sizeof(*r10b) +
4743                sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4744         if (!r10b) {
4745                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4746                 return -ENOMEM;
4747         }
4748
4749         /* reshape IOs share pages from .devs[0].bio */
4750         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4751
4752         r10b->sector = r10_bio->sector;
4753         __raid10_find_phys(&conf->prev, r10b);
4754
4755         while (sectors) {
4756                 int s = sectors;
4757                 int success = 0;
4758                 int first_slot = slot;
4759
4760                 if (s > (PAGE_SIZE >> 9))
4761                         s = PAGE_SIZE >> 9;
4762
4763                 rcu_read_lock();
4764                 while (!success) {
4765                         int d = r10b->devs[slot].devnum;
4766                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4767                         sector_t addr;
4768                         if (rdev == NULL ||
4769                             test_bit(Faulty, &rdev->flags) ||
4770                             !test_bit(In_sync, &rdev->flags))
4771                                 goto failed;
4772
4773                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4774                         atomic_inc(&rdev->nr_pending);
4775                         rcu_read_unlock();
4776                         success = sync_page_io(rdev,
4777                                                addr,
4778                                                s << 9,
4779                                                pages[idx],
4780                                                REQ_OP_READ, 0, false);
4781                         rdev_dec_pending(rdev, mddev);
4782                         rcu_read_lock();
4783                         if (success)
4784                                 break;
4785                 failed:
4786                         slot++;
4787                         if (slot >= conf->copies)
4788                                 slot = 0;
4789                         if (slot == first_slot)
4790                                 break;
4791                 }
4792                 rcu_read_unlock();
4793                 if (!success) {
4794                         /* couldn't read this block, must give up */
4795                         set_bit(MD_RECOVERY_INTR,
4796                                 &mddev->recovery);
4797                         kfree(r10b);
4798                         return -EIO;
4799                 }
4800                 sectors -= s;
4801                 idx++;
4802         }
4803         kfree(r10b);
4804         return 0;
4805 }
4806
4807 static void end_reshape_write(struct bio *bio)
4808 {
4809         struct r10bio *r10_bio = get_resync_r10bio(bio);
4810         struct mddev *mddev = r10_bio->mddev;
4811         struct r10conf *conf = mddev->private;
4812         int d;
4813         int slot;
4814         int repl;
4815         struct md_rdev *rdev = NULL;
4816
4817         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4818         if (repl)
4819                 rdev = conf->mirrors[d].replacement;
4820         if (!rdev) {
4821                 smp_mb();
4822                 rdev = conf->mirrors[d].rdev;
4823         }
4824
4825         if (bio->bi_status) {
4826                 /* FIXME should record badblock */
4827                 md_error(mddev, rdev);
4828         }
4829
4830         rdev_dec_pending(rdev, mddev);
4831         end_reshape_request(r10_bio);
4832 }
4833
4834 static void end_reshape_request(struct r10bio *r10_bio)
4835 {
4836         if (!atomic_dec_and_test(&r10_bio->remaining))
4837                 return;
4838         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4839         bio_put(r10_bio->master_bio);
4840         put_buf(r10_bio);
4841 }
4842
4843 static void raid10_finish_reshape(struct mddev *mddev)
4844 {
4845         struct r10conf *conf = mddev->private;
4846
4847         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4848                 return;
4849
4850         if (mddev->delta_disks > 0) {
4851                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4852                         mddev->recovery_cp = mddev->resync_max_sectors;
4853                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4854                 }
4855                 mddev->resync_max_sectors = mddev->array_sectors;
4856         } else {
4857                 int d;
4858                 rcu_read_lock();
4859                 for (d = conf->geo.raid_disks ;
4860                      d < conf->geo.raid_disks - mddev->delta_disks;
4861                      d++) {
4862                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4863                         if (rdev)
4864                                 clear_bit(In_sync, &rdev->flags);
4865                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4866                         if (rdev)
4867                                 clear_bit(In_sync, &rdev->flags);
4868                 }
4869                 rcu_read_unlock();
4870         }
4871         mddev->layout = mddev->new_layout;
4872         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4873         mddev->reshape_position = MaxSector;
4874         mddev->delta_disks = 0;
4875         mddev->reshape_backwards = 0;
4876 }
4877
4878 static struct md_personality raid10_personality =
4879 {
4880         .name           = "raid10",
4881         .level          = 10,
4882         .owner          = THIS_MODULE,
4883         .make_request   = raid10_make_request,
4884         .run            = raid10_run,
4885         .free           = raid10_free,
4886         .status         = raid10_status,
4887         .error_handler  = raid10_error,
4888         .hot_add_disk   = raid10_add_disk,
4889         .hot_remove_disk= raid10_remove_disk,
4890         .spare_active   = raid10_spare_active,
4891         .sync_request   = raid10_sync_request,
4892         .quiesce        = raid10_quiesce,
4893         .size           = raid10_size,
4894         .resize         = raid10_resize,
4895         .takeover       = raid10_takeover,
4896         .check_reshape  = raid10_check_reshape,
4897         .start_reshape  = raid10_start_reshape,
4898         .finish_reshape = raid10_finish_reshape,
4899         .congested      = raid10_congested,
4900 };
4901
4902 static int __init raid_init(void)
4903 {
4904         return register_md_personality(&raid10_personality);
4905 }
4906
4907 static void raid_exit(void)
4908 {
4909         unregister_md_personality(&raid10_personality);
4910 }
4911
4912 module_init(raid_init);
4913 module_exit(raid_exit);
4914 MODULE_LICENSE("GPL");
4915 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4916 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4917 MODULE_ALIAS("md-raid10");
4918 MODULE_ALIAS("md-level-10");
4919
4920 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);