GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156         struct r10conf *conf = data;
157         struct r10bio *r10_bio;
158         struct bio *bio;
159         int j;
160         int nalloc, nalloc_rp;
161         struct resync_pages *rps;
162
163         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164         if (!r10_bio)
165                 return NULL;
166
167         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169                 nalloc = conf->copies; /* resync */
170         else
171                 nalloc = 2; /* recovery */
172
173         /* allocate once for all bios */
174         if (!conf->have_replacement)
175                 nalloc_rp = nalloc;
176         else
177                 nalloc_rp = nalloc * 2;
178         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179         if (!rps)
180                 goto out_free_r10bio;
181
182         /*
183          * Allocate bios.
184          */
185         for (j = nalloc ; j-- ; ) {
186                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187                 if (!bio)
188                         goto out_free_bio;
189                 r10_bio->devs[j].bio = bio;
190                 if (!conf->have_replacement)
191                         continue;
192                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193                 if (!bio)
194                         goto out_free_bio;
195                 r10_bio->devs[j].repl_bio = bio;
196         }
197         /*
198          * Allocate RESYNC_PAGES data pages and attach them
199          * where needed.
200          */
201         for (j = 0; j < nalloc; j++) {
202                 struct bio *rbio = r10_bio->devs[j].repl_bio;
203                 struct resync_pages *rp, *rp_repl;
204
205                 rp = &rps[j];
206                 if (rbio)
207                         rp_repl = &rps[nalloc + j];
208
209                 bio = r10_bio->devs[j].bio;
210
211                 if (!j || test_bit(MD_RECOVERY_SYNC,
212                                    &conf->mddev->recovery)) {
213                         if (resync_alloc_pages(rp, gfp_flags))
214                                 goto out_free_pages;
215                 } else {
216                         memcpy(rp, &rps[0], sizeof(*rp));
217                         resync_get_all_pages(rp);
218                 }
219
220                 rp->raid_bio = r10_bio;
221                 bio->bi_private = rp;
222                 if (rbio) {
223                         memcpy(rp_repl, rp, sizeof(*rp));
224                         rbio->bi_private = rp_repl;
225                 }
226         }
227
228         return r10_bio;
229
230 out_free_pages:
231         while (--j >= 0)
232                 resync_free_pages(&rps[j]);
233
234         j = 0;
235 out_free_bio:
236         for ( ; j < nalloc; j++) {
237                 if (r10_bio->devs[j].bio)
238                         bio_put(r10_bio->devs[j].bio);
239                 if (r10_bio->devs[j].repl_bio)
240                         bio_put(r10_bio->devs[j].repl_bio);
241         }
242         kfree(rps);
243 out_free_r10bio:
244         r10bio_pool_free(r10_bio, conf);
245         return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250         struct r10conf *conf = data;
251         struct r10bio *r10bio = __r10_bio;
252         int j;
253         struct resync_pages *rp = NULL;
254
255         for (j = conf->copies; j--; ) {
256                 struct bio *bio = r10bio->devs[j].bio;
257
258                 if (bio) {
259                         rp = get_resync_pages(bio);
260                         resync_free_pages(rp);
261                         bio_put(bio);
262                 }
263
264                 bio = r10bio->devs[j].repl_bio;
265                 if (bio)
266                         bio_put(bio);
267         }
268
269         /* resync pages array stored in the 1st bio's .bi_private */
270         kfree(rp);
271
272         r10bio_pool_free(r10bio, conf);
273 }
274
275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277         int i;
278
279         for (i = 0; i < conf->copies; i++) {
280                 struct bio **bio = & r10_bio->devs[i].bio;
281                 if (!BIO_SPECIAL(*bio))
282                         bio_put(*bio);
283                 *bio = NULL;
284                 bio = &r10_bio->devs[i].repl_bio;
285                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286                         bio_put(*bio);
287                 *bio = NULL;
288         }
289 }
290
291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293         struct r10conf *conf = r10_bio->mddev->private;
294
295         put_all_bios(conf, r10_bio);
296         mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298
299 static void put_buf(struct r10bio *r10_bio)
300 {
301         struct r10conf *conf = r10_bio->mddev->private;
302
303         mempool_free(r10_bio, &conf->r10buf_pool);
304
305         lower_barrier(conf);
306 }
307
308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310         unsigned long flags;
311         struct mddev *mddev = r10_bio->mddev;
312         struct r10conf *conf = mddev->private;
313
314         spin_lock_irqsave(&conf->device_lock, flags);
315         list_add(&r10_bio->retry_list, &conf->retry_list);
316         conf->nr_queued ++;
317         spin_unlock_irqrestore(&conf->device_lock, flags);
318
319         /* wake up frozen array... */
320         wake_up(&conf->wait_barrier);
321
322         md_wakeup_thread(mddev->thread);
323 }
324
325 /*
326  * raid_end_bio_io() is called when we have finished servicing a mirrored
327  * operation and are ready to return a success/failure code to the buffer
328  * cache layer.
329  */
330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332         struct bio *bio = r10_bio->master_bio;
333         struct r10conf *conf = r10_bio->mddev->private;
334
335         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336                 bio->bi_status = BLK_STS_IOERR;
337
338         bio_endio(bio);
339         /*
340          * Wake up any possible resync thread that waits for the device
341          * to go idle.
342          */
343         allow_barrier(conf);
344
345         free_r10bio(r10_bio);
346 }
347
348 /*
349  * Update disk head position estimator based on IRQ completion info.
350  */
351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353         struct r10conf *conf = r10_bio->mddev->private;
354
355         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356                 r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358
359 /*
360  * Find the disk number which triggered given bio
361  */
362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363                          struct bio *bio, int *slotp, int *replp)
364 {
365         int slot;
366         int repl = 0;
367
368         for (slot = 0; slot < conf->copies; slot++) {
369                 if (r10_bio->devs[slot].bio == bio)
370                         break;
371                 if (r10_bio->devs[slot].repl_bio == bio) {
372                         repl = 1;
373                         break;
374                 }
375         }
376
377         BUG_ON(slot == conf->copies);
378         update_head_pos(slot, r10_bio);
379
380         if (slotp)
381                 *slotp = slot;
382         if (replp)
383                 *replp = repl;
384         return r10_bio->devs[slot].devnum;
385 }
386
387 static void raid10_end_read_request(struct bio *bio)
388 {
389         int uptodate = !bio->bi_status;
390         struct r10bio *r10_bio = bio->bi_private;
391         int slot;
392         struct md_rdev *rdev;
393         struct r10conf *conf = r10_bio->mddev->private;
394
395         slot = r10_bio->read_slot;
396         rdev = r10_bio->devs[slot].rdev;
397         /*
398          * this branch is our 'one mirror IO has finished' event handler:
399          */
400         update_head_pos(slot, r10_bio);
401
402         if (uptodate) {
403                 /*
404                  * Set R10BIO_Uptodate in our master bio, so that
405                  * we will return a good error code to the higher
406                  * levels even if IO on some other mirrored buffer fails.
407                  *
408                  * The 'master' represents the composite IO operation to
409                  * user-side. So if something waits for IO, then it will
410                  * wait for the 'master' bio.
411                  */
412                 set_bit(R10BIO_Uptodate, &r10_bio->state);
413         } else {
414                 /* If all other devices that store this block have
415                  * failed, we want to return the error upwards rather
416                  * than fail the last device.  Here we redefine
417                  * "uptodate" to mean "Don't want to retry"
418                  */
419                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420                              rdev->raid_disk))
421                         uptodate = 1;
422         }
423         if (uptodate) {
424                 raid_end_bio_io(r10_bio);
425                 rdev_dec_pending(rdev, conf->mddev);
426         } else {
427                 /*
428                  * oops, read error - keep the refcount on the rdev
429                  */
430                 char b[BDEVNAME_SIZE];
431                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432                                    mdname(conf->mddev),
433                                    bdevname(rdev->bdev, b),
434                                    (unsigned long long)r10_bio->sector);
435                 set_bit(R10BIO_ReadError, &r10_bio->state);
436                 reschedule_retry(r10_bio);
437         }
438 }
439
440 static void close_write(struct r10bio *r10_bio)
441 {
442         /* clear the bitmap if all writes complete successfully */
443         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444                            r10_bio->sectors,
445                            !test_bit(R10BIO_Degraded, &r10_bio->state),
446                            0);
447         md_write_end(r10_bio->mddev);
448 }
449
450 static void one_write_done(struct r10bio *r10_bio)
451 {
452         if (atomic_dec_and_test(&r10_bio->remaining)) {
453                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454                         reschedule_retry(r10_bio);
455                 else {
456                         close_write(r10_bio);
457                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458                                 reschedule_retry(r10_bio);
459                         else
460                                 raid_end_bio_io(r10_bio);
461                 }
462         }
463 }
464
465 static void raid10_end_write_request(struct bio *bio)
466 {
467         struct r10bio *r10_bio = bio->bi_private;
468         int dev;
469         int dec_rdev = 1;
470         struct r10conf *conf = r10_bio->mddev->private;
471         int slot, repl;
472         struct md_rdev *rdev = NULL;
473         struct bio *to_put = NULL;
474         bool discard_error;
475
476         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477
478         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479
480         if (repl)
481                 rdev = conf->mirrors[dev].replacement;
482         if (!rdev) {
483                 smp_rmb();
484                 repl = 0;
485                 rdev = conf->mirrors[dev].rdev;
486         }
487         /*
488          * this branch is our 'one mirror IO has finished' event handler:
489          */
490         if (bio->bi_status && !discard_error) {
491                 if (repl)
492                         /* Never record new bad blocks to replacement,
493                          * just fail it.
494                          */
495                         md_error(rdev->mddev, rdev);
496                 else {
497                         set_bit(WriteErrorSeen, &rdev->flags);
498                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
499                                 set_bit(MD_RECOVERY_NEEDED,
500                                         &rdev->mddev->recovery);
501
502                         dec_rdev = 0;
503                         if (test_bit(FailFast, &rdev->flags) &&
504                             (bio->bi_opf & MD_FAILFAST)) {
505                                 md_error(rdev->mddev, rdev);
506                                 if (!test_bit(Faulty, &rdev->flags))
507                                         /* This is the only remaining device,
508                                          * We need to retry the write without
509                                          * FailFast
510                                          */
511                                         set_bit(R10BIO_WriteError, &r10_bio->state);
512                                 else {
513                                         r10_bio->devs[slot].bio = NULL;
514                                         to_put = bio;
515                                         dec_rdev = 1;
516                                 }
517                         } else
518                                 set_bit(R10BIO_WriteError, &r10_bio->state);
519                 }
520         } else {
521                 /*
522                  * Set R10BIO_Uptodate in our master bio, so that
523                  * we will return a good error code for to the higher
524                  * levels even if IO on some other mirrored buffer fails.
525                  *
526                  * The 'master' represents the composite IO operation to
527                  * user-side. So if something waits for IO, then it will
528                  * wait for the 'master' bio.
529                  */
530                 sector_t first_bad;
531                 int bad_sectors;
532
533                 /*
534                  * Do not set R10BIO_Uptodate if the current device is
535                  * rebuilding or Faulty. This is because we cannot use
536                  * such device for properly reading the data back (we could
537                  * potentially use it, if the current write would have felt
538                  * before rdev->recovery_offset, but for simplicity we don't
539                  * check this here.
540                  */
541                 if (test_bit(In_sync, &rdev->flags) &&
542                     !test_bit(Faulty, &rdev->flags))
543                         set_bit(R10BIO_Uptodate, &r10_bio->state);
544
545                 /* Maybe we can clear some bad blocks. */
546                 if (is_badblock(rdev,
547                                 r10_bio->devs[slot].addr,
548                                 r10_bio->sectors,
549                                 &first_bad, &bad_sectors) && !discard_error) {
550                         bio_put(bio);
551                         if (repl)
552                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553                         else
554                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
555                         dec_rdev = 0;
556                         set_bit(R10BIO_MadeGood, &r10_bio->state);
557                 }
558         }
559
560         /*
561          *
562          * Let's see if all mirrored write operations have finished
563          * already.
564          */
565         one_write_done(r10_bio);
566         if (dec_rdev)
567                 rdev_dec_pending(rdev, conf->mddev);
568         if (to_put)
569                 bio_put(to_put);
570 }
571
572 /*
573  * RAID10 layout manager
574  * As well as the chunksize and raid_disks count, there are two
575  * parameters: near_copies and far_copies.
576  * near_copies * far_copies must be <= raid_disks.
577  * Normally one of these will be 1.
578  * If both are 1, we get raid0.
579  * If near_copies == raid_disks, we get raid1.
580  *
581  * Chunks are laid out in raid0 style with near_copies copies of the
582  * first chunk, followed by near_copies copies of the next chunk and
583  * so on.
584  * If far_copies > 1, then after 1/far_copies of the array has been assigned
585  * as described above, we start again with a device offset of near_copies.
586  * So we effectively have another copy of the whole array further down all
587  * the drives, but with blocks on different drives.
588  * With this layout, and block is never stored twice on the one device.
589  *
590  * raid10_find_phys finds the sector offset of a given virtual sector
591  * on each device that it is on.
592  *
593  * raid10_find_virt does the reverse mapping, from a device and a
594  * sector offset to a virtual address
595  */
596
597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599         int n,f;
600         sector_t sector;
601         sector_t chunk;
602         sector_t stripe;
603         int dev;
604         int slot = 0;
605         int last_far_set_start, last_far_set_size;
606
607         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608         last_far_set_start *= geo->far_set_size;
609
610         last_far_set_size = geo->far_set_size;
611         last_far_set_size += (geo->raid_disks % geo->far_set_size);
612
613         /* now calculate first sector/dev */
614         chunk = r10bio->sector >> geo->chunk_shift;
615         sector = r10bio->sector & geo->chunk_mask;
616
617         chunk *= geo->near_copies;
618         stripe = chunk;
619         dev = sector_div(stripe, geo->raid_disks);
620         if (geo->far_offset)
621                 stripe *= geo->far_copies;
622
623         sector += stripe << geo->chunk_shift;
624
625         /* and calculate all the others */
626         for (n = 0; n < geo->near_copies; n++) {
627                 int d = dev;
628                 int set;
629                 sector_t s = sector;
630                 r10bio->devs[slot].devnum = d;
631                 r10bio->devs[slot].addr = s;
632                 slot++;
633
634                 for (f = 1; f < geo->far_copies; f++) {
635                         set = d / geo->far_set_size;
636                         d += geo->near_copies;
637
638                         if ((geo->raid_disks % geo->far_set_size) &&
639                             (d > last_far_set_start)) {
640                                 d -= last_far_set_start;
641                                 d %= last_far_set_size;
642                                 d += last_far_set_start;
643                         } else {
644                                 d %= geo->far_set_size;
645                                 d += geo->far_set_size * set;
646                         }
647                         s += geo->stride;
648                         r10bio->devs[slot].devnum = d;
649                         r10bio->devs[slot].addr = s;
650                         slot++;
651                 }
652                 dev++;
653                 if (dev >= geo->raid_disks) {
654                         dev = 0;
655                         sector += (geo->chunk_mask + 1);
656                 }
657         }
658 }
659
660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662         struct geom *geo = &conf->geo;
663
664         if (conf->reshape_progress != MaxSector &&
665             ((r10bio->sector >= conf->reshape_progress) !=
666              conf->mddev->reshape_backwards)) {
667                 set_bit(R10BIO_Previous, &r10bio->state);
668                 geo = &conf->prev;
669         } else
670                 clear_bit(R10BIO_Previous, &r10bio->state);
671
672         __raid10_find_phys(geo, r10bio);
673 }
674
675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677         sector_t offset, chunk, vchunk;
678         /* Never use conf->prev as this is only called during resync
679          * or recovery, so reshape isn't happening
680          */
681         struct geom *geo = &conf->geo;
682         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683         int far_set_size = geo->far_set_size;
684         int last_far_set_start;
685
686         if (geo->raid_disks % geo->far_set_size) {
687                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688                 last_far_set_start *= geo->far_set_size;
689
690                 if (dev >= last_far_set_start) {
691                         far_set_size = geo->far_set_size;
692                         far_set_size += (geo->raid_disks % geo->far_set_size);
693                         far_set_start = last_far_set_start;
694                 }
695         }
696
697         offset = sector & geo->chunk_mask;
698         if (geo->far_offset) {
699                 int fc;
700                 chunk = sector >> geo->chunk_shift;
701                 fc = sector_div(chunk, geo->far_copies);
702                 dev -= fc * geo->near_copies;
703                 if (dev < far_set_start)
704                         dev += far_set_size;
705         } else {
706                 while (sector >= geo->stride) {
707                         sector -= geo->stride;
708                         if (dev < (geo->near_copies + far_set_start))
709                                 dev += far_set_size - geo->near_copies;
710                         else
711                                 dev -= geo->near_copies;
712                 }
713                 chunk = sector >> geo->chunk_shift;
714         }
715         vchunk = chunk * geo->raid_disks + dev;
716         sector_div(vchunk, geo->near_copies);
717         return (vchunk << geo->chunk_shift) + offset;
718 }
719
720 /*
721  * This routine returns the disk from which the requested read should
722  * be done. There is a per-array 'next expected sequential IO' sector
723  * number - if this matches on the next IO then we use the last disk.
724  * There is also a per-disk 'last know head position' sector that is
725  * maintained from IRQ contexts, both the normal and the resync IO
726  * completion handlers update this position correctly. If there is no
727  * perfect sequential match then we pick the disk whose head is closest.
728  *
729  * If there are 2 mirrors in the same 2 devices, performance degrades
730  * because position is mirror, not device based.
731  *
732  * The rdev for the device selected will have nr_pending incremented.
733  */
734
735 /*
736  * FIXME: possibly should rethink readbalancing and do it differently
737  * depending on near_copies / far_copies geometry.
738  */
739 static struct md_rdev *read_balance(struct r10conf *conf,
740                                     struct r10bio *r10_bio,
741                                     int *max_sectors)
742 {
743         const sector_t this_sector = r10_bio->sector;
744         int disk, slot;
745         int sectors = r10_bio->sectors;
746         int best_good_sectors;
747         sector_t new_distance, best_dist;
748         struct md_rdev *best_rdev, *rdev = NULL;
749         int do_balance;
750         int best_slot;
751         struct geom *geo = &conf->geo;
752
753         raid10_find_phys(conf, r10_bio);
754         rcu_read_lock();
755         best_slot = -1;
756         best_rdev = NULL;
757         best_dist = MaxSector;
758         best_good_sectors = 0;
759         do_balance = 1;
760         clear_bit(R10BIO_FailFast, &r10_bio->state);
761         /*
762          * Check if we can balance. We can balance on the whole
763          * device if no resync is going on (recovery is ok), or below
764          * the resync window. We take the first readable disk when
765          * above the resync window.
766          */
767         if ((conf->mddev->recovery_cp < MaxSector
768              && (this_sector + sectors >= conf->next_resync)) ||
769             (mddev_is_clustered(conf->mddev) &&
770              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771                                             this_sector + sectors)))
772                 do_balance = 0;
773
774         for (slot = 0; slot < conf->copies ; slot++) {
775                 sector_t first_bad;
776                 int bad_sectors;
777                 sector_t dev_sector;
778
779                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780                         continue;
781                 disk = r10_bio->devs[slot].devnum;
782                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
786                 if (rdev == NULL ||
787                     test_bit(Faulty, &rdev->flags))
788                         continue;
789                 if (!test_bit(In_sync, &rdev->flags) &&
790                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791                         continue;
792
793                 dev_sector = r10_bio->devs[slot].addr;
794                 if (is_badblock(rdev, dev_sector, sectors,
795                                 &first_bad, &bad_sectors)) {
796                         if (best_dist < MaxSector)
797                                 /* Already have a better slot */
798                                 continue;
799                         if (first_bad <= dev_sector) {
800                                 /* Cannot read here.  If this is the
801                                  * 'primary' device, then we must not read
802                                  * beyond 'bad_sectors' from another device.
803                                  */
804                                 bad_sectors -= (dev_sector - first_bad);
805                                 if (!do_balance && sectors > bad_sectors)
806                                         sectors = bad_sectors;
807                                 if (best_good_sectors > sectors)
808                                         best_good_sectors = sectors;
809                         } else {
810                                 sector_t good_sectors =
811                                         first_bad - dev_sector;
812                                 if (good_sectors > best_good_sectors) {
813                                         best_good_sectors = good_sectors;
814                                         best_slot = slot;
815                                         best_rdev = rdev;
816                                 }
817                                 if (!do_balance)
818                                         /* Must read from here */
819                                         break;
820                         }
821                         continue;
822                 } else
823                         best_good_sectors = sectors;
824
825                 if (!do_balance)
826                         break;
827
828                 if (best_slot >= 0)
829                         /* At least 2 disks to choose from so failfast is OK */
830                         set_bit(R10BIO_FailFast, &r10_bio->state);
831                 /* This optimisation is debatable, and completely destroys
832                  * sequential read speed for 'far copies' arrays.  So only
833                  * keep it for 'near' arrays, and review those later.
834                  */
835                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836                         new_distance = 0;
837
838                 /* for far > 1 always use the lowest address */
839                 else if (geo->far_copies > 1)
840                         new_distance = r10_bio->devs[slot].addr;
841                 else
842                         new_distance = abs(r10_bio->devs[slot].addr -
843                                            conf->mirrors[disk].head_position);
844                 if (new_distance < best_dist) {
845                         best_dist = new_distance;
846                         best_slot = slot;
847                         best_rdev = rdev;
848                 }
849         }
850         if (slot >= conf->copies) {
851                 slot = best_slot;
852                 rdev = best_rdev;
853         }
854
855         if (slot >= 0) {
856                 atomic_inc(&rdev->nr_pending);
857                 r10_bio->read_slot = slot;
858         } else
859                 rdev = NULL;
860         rcu_read_unlock();
861         *max_sectors = best_good_sectors;
862
863         return rdev;
864 }
865
866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868         struct r10conf *conf = mddev->private;
869         int i, ret = 0;
870
871         if ((bits & (1 << WB_async_congested)) &&
872             conf->pending_count >= max_queued_requests)
873                 return 1;
874
875         rcu_read_lock();
876         for (i = 0;
877              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878                      && ret == 0;
879              i++) {
880                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882                         struct request_queue *q = bdev_get_queue(rdev->bdev);
883
884                         ret |= bdi_congested(q->backing_dev_info, bits);
885                 }
886         }
887         rcu_read_unlock();
888         return ret;
889 }
890
891 static void flush_pending_writes(struct r10conf *conf)
892 {
893         /* Any writes that have been queued but are awaiting
894          * bitmap updates get flushed here.
895          */
896         spin_lock_irq(&conf->device_lock);
897
898         if (conf->pending_bio_list.head) {
899                 struct blk_plug plug;
900                 struct bio *bio;
901
902                 bio = bio_list_get(&conf->pending_bio_list);
903                 conf->pending_count = 0;
904                 spin_unlock_irq(&conf->device_lock);
905
906                 /*
907                  * As this is called in a wait_event() loop (see freeze_array),
908                  * current->state might be TASK_UNINTERRUPTIBLE which will
909                  * cause a warning when we prepare to wait again.  As it is
910                  * rare that this path is taken, it is perfectly safe to force
911                  * us to go around the wait_event() loop again, so the warning
912                  * is a false-positive. Silence the warning by resetting
913                  * thread state
914                  */
915                 __set_current_state(TASK_RUNNING);
916
917                 blk_start_plug(&plug);
918                 /* flush any pending bitmap writes to disk
919                  * before proceeding w/ I/O */
920                 md_bitmap_unplug(conf->mddev->bitmap);
921                 wake_up(&conf->wait_barrier);
922
923                 while (bio) { /* submit pending writes */
924                         struct bio *next = bio->bi_next;
925                         struct md_rdev *rdev = (void*)bio->bi_disk;
926                         bio->bi_next = NULL;
927                         bio_set_dev(bio, rdev->bdev);
928                         if (test_bit(Faulty, &rdev->flags)) {
929                                 bio_io_error(bio);
930                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
931                                             !blk_queue_discard(bio->bi_disk->queue)))
932                                 /* Just ignore it */
933                                 bio_endio(bio);
934                         else
935                                 generic_make_request(bio);
936                         bio = next;
937                 }
938                 blk_finish_plug(&plug);
939         } else
940                 spin_unlock_irq(&conf->device_lock);
941 }
942
943 /* Barriers....
944  * Sometimes we need to suspend IO while we do something else,
945  * either some resync/recovery, or reconfigure the array.
946  * To do this we raise a 'barrier'.
947  * The 'barrier' is a counter that can be raised multiple times
948  * to count how many activities are happening which preclude
949  * normal IO.
950  * We can only raise the barrier if there is no pending IO.
951  * i.e. if nr_pending == 0.
952  * We choose only to raise the barrier if no-one is waiting for the
953  * barrier to go down.  This means that as soon as an IO request
954  * is ready, no other operations which require a barrier will start
955  * until the IO request has had a chance.
956  *
957  * So: regular IO calls 'wait_barrier'.  When that returns there
958  *    is no backgroup IO happening,  It must arrange to call
959  *    allow_barrier when it has finished its IO.
960  * backgroup IO calls must call raise_barrier.  Once that returns
961  *    there is no normal IO happeing.  It must arrange to call
962  *    lower_barrier when the particular background IO completes.
963  */
964
965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967         BUG_ON(force && !conf->barrier);
968         spin_lock_irq(&conf->resync_lock);
969
970         /* Wait until no block IO is waiting (unless 'force') */
971         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972                             conf->resync_lock);
973
974         /* block any new IO from starting */
975         conf->barrier++;
976
977         /* Now wait for all pending IO to complete */
978         wait_event_lock_irq(conf->wait_barrier,
979                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980                             conf->resync_lock);
981
982         spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void lower_barrier(struct r10conf *conf)
986 {
987         unsigned long flags;
988         spin_lock_irqsave(&conf->resync_lock, flags);
989         conf->barrier--;
990         spin_unlock_irqrestore(&conf->resync_lock, flags);
991         wake_up(&conf->wait_barrier);
992 }
993
994 static void wait_barrier(struct r10conf *conf)
995 {
996         spin_lock_irq(&conf->resync_lock);
997         if (conf->barrier) {
998                 conf->nr_waiting++;
999                 /* Wait for the barrier to drop.
1000                  * However if there are already pending
1001                  * requests (preventing the barrier from
1002                  * rising completely), and the
1003                  * pre-process bio queue isn't empty,
1004                  * then don't wait, as we need to empty
1005                  * that queue to get the nr_pending
1006                  * count down.
1007                  */
1008                 raid10_log(conf->mddev, "wait barrier");
1009                 wait_event_lock_irq(conf->wait_barrier,
1010                                     !conf->barrier ||
1011                                     (atomic_read(&conf->nr_pending) &&
1012                                      current->bio_list &&
1013                                      (!bio_list_empty(&current->bio_list[0]) ||
1014                                       !bio_list_empty(&current->bio_list[1]))),
1015                                     conf->resync_lock);
1016                 conf->nr_waiting--;
1017                 if (!conf->nr_waiting)
1018                         wake_up(&conf->wait_barrier);
1019         }
1020         atomic_inc(&conf->nr_pending);
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027                         (conf->array_freeze_pending))
1028                 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033         /* stop syncio and normal IO and wait for everything to
1034          * go quiet.
1035          * We increment barrier and nr_waiting, and then
1036          * wait until nr_pending match nr_queued+extra
1037          * This is called in the context of one normal IO request
1038          * that has failed. Thus any sync request that might be pending
1039          * will be blocked by nr_pending, and we need to wait for
1040          * pending IO requests to complete or be queued for re-try.
1041          * Thus the number queued (nr_queued) plus this request (extra)
1042          * must match the number of pending IOs (nr_pending) before
1043          * we continue.
1044          */
1045         spin_lock_irq(&conf->resync_lock);
1046         conf->array_freeze_pending++;
1047         conf->barrier++;
1048         conf->nr_waiting++;
1049         wait_event_lock_irq_cmd(conf->wait_barrier,
1050                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051                                 conf->resync_lock,
1052                                 flush_pending_writes(conf));
1053
1054         conf->array_freeze_pending--;
1055         spin_unlock_irq(&conf->resync_lock);
1056 }
1057
1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060         /* reverse the effect of the freeze */
1061         spin_lock_irq(&conf->resync_lock);
1062         conf->barrier--;
1063         conf->nr_waiting--;
1064         wake_up(&conf->wait_barrier);
1065         spin_unlock_irq(&conf->resync_lock);
1066 }
1067
1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069                                    struct md_rdev *rdev)
1070 {
1071         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072             test_bit(R10BIO_Previous, &r10_bio->state))
1073                 return rdev->data_offset;
1074         else
1075                 return rdev->new_data_offset;
1076 }
1077
1078 struct raid10_plug_cb {
1079         struct blk_plug_cb      cb;
1080         struct bio_list         pending;
1081         int                     pending_cnt;
1082 };
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087                                                    cb);
1088         struct mddev *mddev = plug->cb.data;
1089         struct r10conf *conf = mddev->private;
1090         struct bio *bio;
1091
1092         if (from_schedule || current->bio_list) {
1093                 spin_lock_irq(&conf->device_lock);
1094                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095                 conf->pending_count += plug->pending_cnt;
1096                 spin_unlock_irq(&conf->device_lock);
1097                 wake_up(&conf->wait_barrier);
1098                 md_wakeup_thread(mddev->thread);
1099                 kfree(plug);
1100                 return;
1101         }
1102
1103         /* we aren't scheduling, so we can do the write-out directly. */
1104         bio = bio_list_get(&plug->pending);
1105         md_bitmap_unplug(mddev->bitmap);
1106         wake_up(&conf->wait_barrier);
1107
1108         while (bio) { /* submit pending writes */
1109                 struct bio *next = bio->bi_next;
1110                 struct md_rdev *rdev = (void*)bio->bi_disk;
1111                 bio->bi_next = NULL;
1112                 bio_set_dev(bio, rdev->bdev);
1113                 if (test_bit(Faulty, &rdev->flags)) {
1114                         bio_io_error(bio);
1115                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1116                                     !blk_queue_discard(bio->bi_disk->queue)))
1117                         /* Just ignore it */
1118                         bio_endio(bio);
1119                 else
1120                         generic_make_request(bio);
1121                 bio = next;
1122         }
1123         kfree(plug);
1124 }
1125
1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127                                 struct r10bio *r10_bio)
1128 {
1129         struct r10conf *conf = mddev->private;
1130         struct bio *read_bio;
1131         const int op = bio_op(bio);
1132         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133         int max_sectors;
1134         sector_t sectors;
1135         struct md_rdev *rdev;
1136         char b[BDEVNAME_SIZE];
1137         int slot = r10_bio->read_slot;
1138         struct md_rdev *err_rdev = NULL;
1139         gfp_t gfp = GFP_NOIO;
1140
1141         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1142                 /*
1143                  * This is an error retry, but we cannot
1144                  * safely dereference the rdev in the r10_bio,
1145                  * we must use the one in conf.
1146                  * If it has already been disconnected (unlikely)
1147                  * we lose the device name in error messages.
1148                  */
1149                 int disk;
1150                 /*
1151                  * As we are blocking raid10, it is a little safer to
1152                  * use __GFP_HIGH.
1153                  */
1154                 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156                 rcu_read_lock();
1157                 disk = r10_bio->devs[slot].devnum;
1158                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159                 if (err_rdev)
1160                         bdevname(err_rdev->bdev, b);
1161                 else {
1162                         strcpy(b, "???");
1163                         /* This never gets dereferenced */
1164                         err_rdev = r10_bio->devs[slot].rdev;
1165                 }
1166                 rcu_read_unlock();
1167         }
1168         /*
1169          * Register the new request and wait if the reconstruction
1170          * thread has put up a bar for new requests.
1171          * Continue immediately if no resync is active currently.
1172          */
1173         wait_barrier(conf);
1174
1175         sectors = r10_bio->sectors;
1176         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177             bio->bi_iter.bi_sector < conf->reshape_progress &&
1178             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179                 /*
1180                  * IO spans the reshape position.  Need to wait for reshape to
1181                  * pass
1182                  */
1183                 raid10_log(conf->mddev, "wait reshape");
1184                 allow_barrier(conf);
1185                 wait_event(conf->wait_barrier,
1186                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1188                            sectors);
1189                 wait_barrier(conf);
1190         }
1191
1192         rdev = read_balance(conf, r10_bio, &max_sectors);
1193         if (!rdev) {
1194                 if (err_rdev) {
1195                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196                                             mdname(mddev), b,
1197                                             (unsigned long long)r10_bio->sector);
1198                 }
1199                 raid_end_bio_io(r10_bio);
1200                 return;
1201         }
1202         if (err_rdev)
1203                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204                                    mdname(mddev),
1205                                    bdevname(rdev->bdev, b),
1206                                    (unsigned long long)r10_bio->sector);
1207         if (max_sectors < bio_sectors(bio)) {
1208                 struct bio *split = bio_split(bio, max_sectors,
1209                                               gfp, &conf->bio_split);
1210                 bio_chain(split, bio);
1211                 allow_barrier(conf);
1212                 generic_make_request(bio);
1213                 wait_barrier(conf);
1214                 bio = split;
1215                 r10_bio->master_bio = bio;
1216                 r10_bio->sectors = max_sectors;
1217         }
1218         slot = r10_bio->read_slot;
1219
1220         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1221
1222         r10_bio->devs[slot].bio = read_bio;
1223         r10_bio->devs[slot].rdev = rdev;
1224
1225         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1226                 choose_data_offset(r10_bio, rdev);
1227         bio_set_dev(read_bio, rdev->bdev);
1228         read_bio->bi_end_io = raid10_end_read_request;
1229         bio_set_op_attrs(read_bio, op, do_sync);
1230         if (test_bit(FailFast, &rdev->flags) &&
1231             test_bit(R10BIO_FailFast, &r10_bio->state))
1232                 read_bio->bi_opf |= MD_FAILFAST;
1233         read_bio->bi_private = r10_bio;
1234
1235         if (mddev->gendisk)
1236                 trace_block_bio_remap(read_bio->bi_disk->queue,
1237                                       read_bio, disk_devt(mddev->gendisk),
1238                                       r10_bio->sector);
1239         generic_make_request(read_bio);
1240         return;
1241 }
1242
1243 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1244                                   struct bio *bio, bool replacement,
1245                                   int n_copy)
1246 {
1247         const int op = bio_op(bio);
1248         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1249         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1250         unsigned long flags;
1251         struct blk_plug_cb *cb;
1252         struct raid10_plug_cb *plug = NULL;
1253         struct r10conf *conf = mddev->private;
1254         struct md_rdev *rdev;
1255         int devnum = r10_bio->devs[n_copy].devnum;
1256         struct bio *mbio;
1257
1258         if (replacement) {
1259                 rdev = conf->mirrors[devnum].replacement;
1260                 if (rdev == NULL) {
1261                         /* Replacement just got moved to main 'rdev' */
1262                         smp_mb();
1263                         rdev = conf->mirrors[devnum].rdev;
1264                 }
1265         } else
1266                 rdev = conf->mirrors[devnum].rdev;
1267
1268         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1269         if (replacement)
1270                 r10_bio->devs[n_copy].repl_bio = mbio;
1271         else
1272                 r10_bio->devs[n_copy].bio = mbio;
1273
1274         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1275                                    choose_data_offset(r10_bio, rdev));
1276         bio_set_dev(mbio, rdev->bdev);
1277         mbio->bi_end_io = raid10_end_write_request;
1278         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1279         if (!replacement && test_bit(FailFast,
1280                                      &conf->mirrors[devnum].rdev->flags)
1281                          && enough(conf, devnum))
1282                 mbio->bi_opf |= MD_FAILFAST;
1283         mbio->bi_private = r10_bio;
1284
1285         if (conf->mddev->gendisk)
1286                 trace_block_bio_remap(mbio->bi_disk->queue,
1287                                       mbio, disk_devt(conf->mddev->gendisk),
1288                                       r10_bio->sector);
1289         /* flush_pending_writes() needs access to the rdev so...*/
1290         mbio->bi_disk = (void *)rdev;
1291
1292         atomic_inc(&r10_bio->remaining);
1293
1294         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1295         if (cb)
1296                 plug = container_of(cb, struct raid10_plug_cb, cb);
1297         else
1298                 plug = NULL;
1299         if (plug) {
1300                 bio_list_add(&plug->pending, mbio);
1301                 plug->pending_cnt++;
1302         } else {
1303                 spin_lock_irqsave(&conf->device_lock, flags);
1304                 bio_list_add(&conf->pending_bio_list, mbio);
1305                 conf->pending_count++;
1306                 spin_unlock_irqrestore(&conf->device_lock, flags);
1307                 md_wakeup_thread(mddev->thread);
1308         }
1309 }
1310
1311 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1312                                  struct r10bio *r10_bio)
1313 {
1314         struct r10conf *conf = mddev->private;
1315         int i;
1316         struct md_rdev *blocked_rdev;
1317         sector_t sectors;
1318         int max_sectors;
1319
1320         if ((mddev_is_clustered(mddev) &&
1321              md_cluster_ops->area_resyncing(mddev, WRITE,
1322                                             bio->bi_iter.bi_sector,
1323                                             bio_end_sector(bio)))) {
1324                 DEFINE_WAIT(w);
1325                 for (;;) {
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_IDLE);
1328                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1329                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1330                                 break;
1331                         schedule();
1332                 }
1333                 finish_wait(&conf->wait_barrier, &w);
1334         }
1335
1336         /*
1337          * Register the new request and wait if the reconstruction
1338          * thread has put up a bar for new requests.
1339          * Continue immediately if no resync is active currently.
1340          */
1341         wait_barrier(conf);
1342
1343         sectors = r10_bio->sectors;
1344         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345             bio->bi_iter.bi_sector < conf->reshape_progress &&
1346             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1347                 /*
1348                  * IO spans the reshape position.  Need to wait for reshape to
1349                  * pass
1350                  */
1351                 raid10_log(conf->mddev, "wait reshape");
1352                 allow_barrier(conf);
1353                 wait_event(conf->wait_barrier,
1354                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1355                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1356                            sectors);
1357                 wait_barrier(conf);
1358         }
1359
1360         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1361             (mddev->reshape_backwards
1362              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1363                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1364              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1365                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1366                 /* Need to update reshape_position in metadata */
1367                 mddev->reshape_position = conf->reshape_progress;
1368                 set_mask_bits(&mddev->sb_flags, 0,
1369                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1370                 md_wakeup_thread(mddev->thread);
1371                 raid10_log(conf->mddev, "wait reshape metadata");
1372                 wait_event(mddev->sb_wait,
1373                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1374
1375                 conf->reshape_safe = mddev->reshape_position;
1376         }
1377
1378         if (conf->pending_count >= max_queued_requests) {
1379                 md_wakeup_thread(mddev->thread);
1380                 raid10_log(mddev, "wait queued");
1381                 wait_event(conf->wait_barrier,
1382                            conf->pending_count < max_queued_requests);
1383         }
1384         /* first select target devices under rcu_lock and
1385          * inc refcount on their rdev.  Record them by setting
1386          * bios[x] to bio
1387          * If there are known/acknowledged bad blocks on any device
1388          * on which we have seen a write error, we want to avoid
1389          * writing to those blocks.  This potentially requires several
1390          * writes to write around the bad blocks.  Each set of writes
1391          * gets its own r10_bio with a set of bios attached.
1392          */
1393
1394         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1395         raid10_find_phys(conf, r10_bio);
1396 retry_write:
1397         blocked_rdev = NULL;
1398         rcu_read_lock();
1399         max_sectors = r10_bio->sectors;
1400
1401         for (i = 0;  i < conf->copies; i++) {
1402                 int d = r10_bio->devs[i].devnum;
1403                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1404                 struct md_rdev *rrdev = rcu_dereference(
1405                         conf->mirrors[d].replacement);
1406                 if (rdev == rrdev)
1407                         rrdev = NULL;
1408                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409                         atomic_inc(&rdev->nr_pending);
1410                         blocked_rdev = rdev;
1411                         break;
1412                 }
1413                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1414                         atomic_inc(&rrdev->nr_pending);
1415                         blocked_rdev = rrdev;
1416                         break;
1417                 }
1418                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1419                         rdev = NULL;
1420                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1421                         rrdev = NULL;
1422
1423                 r10_bio->devs[i].bio = NULL;
1424                 r10_bio->devs[i].repl_bio = NULL;
1425
1426                 if (!rdev && !rrdev) {
1427                         set_bit(R10BIO_Degraded, &r10_bio->state);
1428                         continue;
1429                 }
1430                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1431                         sector_t first_bad;
1432                         sector_t dev_sector = r10_bio->devs[i].addr;
1433                         int bad_sectors;
1434                         int is_bad;
1435
1436                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1437                                              &first_bad, &bad_sectors);
1438                         if (is_bad < 0) {
1439                                 /* Mustn't write here until the bad block
1440                                  * is acknowledged
1441                                  */
1442                                 atomic_inc(&rdev->nr_pending);
1443                                 set_bit(BlockedBadBlocks, &rdev->flags);
1444                                 blocked_rdev = rdev;
1445                                 break;
1446                         }
1447                         if (is_bad && first_bad <= dev_sector) {
1448                                 /* Cannot write here at all */
1449                                 bad_sectors -= (dev_sector - first_bad);
1450                                 if (bad_sectors < max_sectors)
1451                                         /* Mustn't write more than bad_sectors
1452                                          * to other devices yet
1453                                          */
1454                                         max_sectors = bad_sectors;
1455                                 /* We don't set R10BIO_Degraded as that
1456                                  * only applies if the disk is missing,
1457                                  * so it might be re-added, and we want to
1458                                  * know to recover this chunk.
1459                                  * In this case the device is here, and the
1460                                  * fact that this chunk is not in-sync is
1461                                  * recorded in the bad block log.
1462                                  */
1463                                 continue;
1464                         }
1465                         if (is_bad) {
1466                                 int good_sectors = first_bad - dev_sector;
1467                                 if (good_sectors < max_sectors)
1468                                         max_sectors = good_sectors;
1469                         }
1470                 }
1471                 if (rdev) {
1472                         r10_bio->devs[i].bio = bio;
1473                         atomic_inc(&rdev->nr_pending);
1474                 }
1475                 if (rrdev) {
1476                         r10_bio->devs[i].repl_bio = bio;
1477                         atomic_inc(&rrdev->nr_pending);
1478                 }
1479         }
1480         rcu_read_unlock();
1481
1482         if (unlikely(blocked_rdev)) {
1483                 /* Have to wait for this device to get unblocked, then retry */
1484                 int j;
1485                 int d;
1486
1487                 for (j = 0; j < i; j++) {
1488                         if (r10_bio->devs[j].bio) {
1489                                 d = r10_bio->devs[j].devnum;
1490                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491                         }
1492                         if (r10_bio->devs[j].repl_bio) {
1493                                 struct md_rdev *rdev;
1494                                 d = r10_bio->devs[j].devnum;
1495                                 rdev = conf->mirrors[d].replacement;
1496                                 if (!rdev) {
1497                                         /* Race with remove_disk */
1498                                         smp_mb();
1499                                         rdev = conf->mirrors[d].rdev;
1500                                 }
1501                                 rdev_dec_pending(rdev, mddev);
1502                         }
1503                 }
1504                 allow_barrier(conf);
1505                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1506                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1507                 wait_barrier(conf);
1508                 goto retry_write;
1509         }
1510
1511         if (max_sectors < r10_bio->sectors)
1512                 r10_bio->sectors = max_sectors;
1513
1514         if (r10_bio->sectors < bio_sectors(bio)) {
1515                 struct bio *split = bio_split(bio, r10_bio->sectors,
1516                                               GFP_NOIO, &conf->bio_split);
1517                 bio_chain(split, bio);
1518                 allow_barrier(conf);
1519                 generic_make_request(bio);
1520                 wait_barrier(conf);
1521                 bio = split;
1522                 r10_bio->master_bio = bio;
1523         }
1524
1525         atomic_set(&r10_bio->remaining, 1);
1526         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1527
1528         for (i = 0; i < conf->copies; i++) {
1529                 if (r10_bio->devs[i].bio)
1530                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1531                 if (r10_bio->devs[i].repl_bio)
1532                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1533         }
1534         one_write_done(r10_bio);
1535 }
1536
1537 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1538 {
1539         struct r10conf *conf = mddev->private;
1540         struct r10bio *r10_bio;
1541
1542         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1543
1544         r10_bio->master_bio = bio;
1545         r10_bio->sectors = sectors;
1546
1547         r10_bio->mddev = mddev;
1548         r10_bio->sector = bio->bi_iter.bi_sector;
1549         r10_bio->state = 0;
1550         r10_bio->read_slot = -1;
1551         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1552
1553         if (bio_data_dir(bio) == READ)
1554                 raid10_read_request(mddev, bio, r10_bio);
1555         else
1556                 raid10_write_request(mddev, bio, r10_bio);
1557 }
1558
1559 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1560 {
1561         struct r10conf *conf = mddev->private;
1562         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1563         int chunk_sects = chunk_mask + 1;
1564         int sectors = bio_sectors(bio);
1565
1566         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1567             && md_flush_request(mddev, bio))
1568                 return true;
1569
1570         if (!md_write_start(mddev, bio))
1571                 return false;
1572
1573         /*
1574          * If this request crosses a chunk boundary, we need to split
1575          * it.
1576          */
1577         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1578                      sectors > chunk_sects
1579                      && (conf->geo.near_copies < conf->geo.raid_disks
1580                          || conf->prev.near_copies <
1581                          conf->prev.raid_disks)))
1582                 sectors = chunk_sects -
1583                         (bio->bi_iter.bi_sector &
1584                          (chunk_sects - 1));
1585         __make_request(mddev, bio, sectors);
1586
1587         /* In case raid10d snuck in to freeze_array */
1588         wake_up(&conf->wait_barrier);
1589         return true;
1590 }
1591
1592 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1593 {
1594         struct r10conf *conf = mddev->private;
1595         int i;
1596
1597         if (conf->geo.near_copies < conf->geo.raid_disks)
1598                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1599         if (conf->geo.near_copies > 1)
1600                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1601         if (conf->geo.far_copies > 1) {
1602                 if (conf->geo.far_offset)
1603                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1604                 else
1605                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1606                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1607                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1608         }
1609         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1610                                         conf->geo.raid_disks - mddev->degraded);
1611         rcu_read_lock();
1612         for (i = 0; i < conf->geo.raid_disks; i++) {
1613                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1614                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1615         }
1616         rcu_read_unlock();
1617         seq_printf(seq, "]");
1618 }
1619
1620 /* check if there are enough drives for
1621  * every block to appear on atleast one.
1622  * Don't consider the device numbered 'ignore'
1623  * as we might be about to remove it.
1624  */
1625 static int _enough(struct r10conf *conf, int previous, int ignore)
1626 {
1627         int first = 0;
1628         int has_enough = 0;
1629         int disks, ncopies;
1630         if (previous) {
1631                 disks = conf->prev.raid_disks;
1632                 ncopies = conf->prev.near_copies;
1633         } else {
1634                 disks = conf->geo.raid_disks;
1635                 ncopies = conf->geo.near_copies;
1636         }
1637
1638         rcu_read_lock();
1639         do {
1640                 int n = conf->copies;
1641                 int cnt = 0;
1642                 int this = first;
1643                 while (n--) {
1644                         struct md_rdev *rdev;
1645                         if (this != ignore &&
1646                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1647                             test_bit(In_sync, &rdev->flags))
1648                                 cnt++;
1649                         this = (this+1) % disks;
1650                 }
1651                 if (cnt == 0)
1652                         goto out;
1653                 first = (first + ncopies) % disks;
1654         } while (first != 0);
1655         has_enough = 1;
1656 out:
1657         rcu_read_unlock();
1658         return has_enough;
1659 }
1660
1661 static int enough(struct r10conf *conf, int ignore)
1662 {
1663         /* when calling 'enough', both 'prev' and 'geo' must
1664          * be stable.
1665          * This is ensured if ->reconfig_mutex or ->device_lock
1666          * is held.
1667          */
1668         return _enough(conf, 0, ignore) &&
1669                 _enough(conf, 1, ignore);
1670 }
1671
1672 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1673 {
1674         char b[BDEVNAME_SIZE];
1675         struct r10conf *conf = mddev->private;
1676         unsigned long flags;
1677
1678         /*
1679          * If it is not operational, then we have already marked it as dead
1680          * else if it is the last working disks, ignore the error, let the
1681          * next level up know.
1682          * else mark the drive as failed
1683          */
1684         spin_lock_irqsave(&conf->device_lock, flags);
1685         if (test_bit(In_sync, &rdev->flags)
1686             && !enough(conf, rdev->raid_disk)) {
1687                 /*
1688                  * Don't fail the drive, just return an IO error.
1689                  */
1690                 spin_unlock_irqrestore(&conf->device_lock, flags);
1691                 return;
1692         }
1693         if (test_and_clear_bit(In_sync, &rdev->flags))
1694                 mddev->degraded++;
1695         /*
1696          * If recovery is running, make sure it aborts.
1697          */
1698         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1699         set_bit(Blocked, &rdev->flags);
1700         set_bit(Faulty, &rdev->flags);
1701         set_mask_bits(&mddev->sb_flags, 0,
1702                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1703         spin_unlock_irqrestore(&conf->device_lock, flags);
1704         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1705                 "md/raid10:%s: Operation continuing on %d devices.\n",
1706                 mdname(mddev), bdevname(rdev->bdev, b),
1707                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1708 }
1709
1710 static void print_conf(struct r10conf *conf)
1711 {
1712         int i;
1713         struct md_rdev *rdev;
1714
1715         pr_debug("RAID10 conf printout:\n");
1716         if (!conf) {
1717                 pr_debug("(!conf)\n");
1718                 return;
1719         }
1720         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1721                  conf->geo.raid_disks);
1722
1723         /* This is only called with ->reconfix_mutex held, so
1724          * rcu protection of rdev is not needed */
1725         for (i = 0; i < conf->geo.raid_disks; i++) {
1726                 char b[BDEVNAME_SIZE];
1727                 rdev = conf->mirrors[i].rdev;
1728                 if (rdev)
1729                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1730                                  i, !test_bit(In_sync, &rdev->flags),
1731                                  !test_bit(Faulty, &rdev->flags),
1732                                  bdevname(rdev->bdev,b));
1733         }
1734 }
1735
1736 static void close_sync(struct r10conf *conf)
1737 {
1738         wait_barrier(conf);
1739         allow_barrier(conf);
1740
1741         mempool_exit(&conf->r10buf_pool);
1742 }
1743
1744 static int raid10_spare_active(struct mddev *mddev)
1745 {
1746         int i;
1747         struct r10conf *conf = mddev->private;
1748         struct raid10_info *tmp;
1749         int count = 0;
1750         unsigned long flags;
1751
1752         /*
1753          * Find all non-in_sync disks within the RAID10 configuration
1754          * and mark them in_sync
1755          */
1756         for (i = 0; i < conf->geo.raid_disks; i++) {
1757                 tmp = conf->mirrors + i;
1758                 if (tmp->replacement
1759                     && tmp->replacement->recovery_offset == MaxSector
1760                     && !test_bit(Faulty, &tmp->replacement->flags)
1761                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1762                         /* Replacement has just become active */
1763                         if (!tmp->rdev
1764                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1765                                 count++;
1766                         if (tmp->rdev) {
1767                                 /* Replaced device not technically faulty,
1768                                  * but we need to be sure it gets removed
1769                                  * and never re-added.
1770                                  */
1771                                 set_bit(Faulty, &tmp->rdev->flags);
1772                                 sysfs_notify_dirent_safe(
1773                                         tmp->rdev->sysfs_state);
1774                         }
1775                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1776                 } else if (tmp->rdev
1777                            && tmp->rdev->recovery_offset == MaxSector
1778                            && !test_bit(Faulty, &tmp->rdev->flags)
1779                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1780                         count++;
1781                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1782                 }
1783         }
1784         spin_lock_irqsave(&conf->device_lock, flags);
1785         mddev->degraded -= count;
1786         spin_unlock_irqrestore(&conf->device_lock, flags);
1787
1788         print_conf(conf);
1789         return count;
1790 }
1791
1792 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1793 {
1794         struct r10conf *conf = mddev->private;
1795         int err = -EEXIST;
1796         int mirror;
1797         int first = 0;
1798         int last = conf->geo.raid_disks - 1;
1799
1800         if (mddev->recovery_cp < MaxSector)
1801                 /* only hot-add to in-sync arrays, as recovery is
1802                  * very different from resync
1803                  */
1804                 return -EBUSY;
1805         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1806                 return -EINVAL;
1807
1808         if (md_integrity_add_rdev(rdev, mddev))
1809                 return -ENXIO;
1810
1811         if (rdev->raid_disk >= 0)
1812                 first = last = rdev->raid_disk;
1813
1814         if (rdev->saved_raid_disk >= first &&
1815             rdev->saved_raid_disk < conf->geo.raid_disks &&
1816             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1817                 mirror = rdev->saved_raid_disk;
1818         else
1819                 mirror = first;
1820         for ( ; mirror <= last ; mirror++) {
1821                 struct raid10_info *p = &conf->mirrors[mirror];
1822                 if (p->recovery_disabled == mddev->recovery_disabled)
1823                         continue;
1824                 if (p->rdev) {
1825                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1826                             p->replacement != NULL)
1827                                 continue;
1828                         clear_bit(In_sync, &rdev->flags);
1829                         set_bit(Replacement, &rdev->flags);
1830                         rdev->raid_disk = mirror;
1831                         err = 0;
1832                         if (mddev->gendisk)
1833                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1834                                                   rdev->data_offset << 9);
1835                         conf->fullsync = 1;
1836                         rcu_assign_pointer(p->replacement, rdev);
1837                         break;
1838                 }
1839
1840                 if (mddev->gendisk)
1841                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1842                                           rdev->data_offset << 9);
1843
1844                 p->head_position = 0;
1845                 p->recovery_disabled = mddev->recovery_disabled - 1;
1846                 rdev->raid_disk = mirror;
1847                 err = 0;
1848                 if (rdev->saved_raid_disk != mirror)
1849                         conf->fullsync = 1;
1850                 rcu_assign_pointer(p->rdev, rdev);
1851                 break;
1852         }
1853         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1854                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1855
1856         print_conf(conf);
1857         return err;
1858 }
1859
1860 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1861 {
1862         struct r10conf *conf = mddev->private;
1863         int err = 0;
1864         int number = rdev->raid_disk;
1865         struct md_rdev **rdevp;
1866         struct raid10_info *p;
1867
1868         print_conf(conf);
1869         if (unlikely(number >= mddev->raid_disks))
1870                 return 0;
1871         p = conf->mirrors + number;
1872         if (rdev == p->rdev)
1873                 rdevp = &p->rdev;
1874         else if (rdev == p->replacement)
1875                 rdevp = &p->replacement;
1876         else
1877                 return 0;
1878
1879         if (test_bit(In_sync, &rdev->flags) ||
1880             atomic_read(&rdev->nr_pending)) {
1881                 err = -EBUSY;
1882                 goto abort;
1883         }
1884         /* Only remove non-faulty devices if recovery
1885          * is not possible.
1886          */
1887         if (!test_bit(Faulty, &rdev->flags) &&
1888             mddev->recovery_disabled != p->recovery_disabled &&
1889             (!p->replacement || p->replacement == rdev) &&
1890             number < conf->geo.raid_disks &&
1891             enough(conf, -1)) {
1892                 err = -EBUSY;
1893                 goto abort;
1894         }
1895         *rdevp = NULL;
1896         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1897                 synchronize_rcu();
1898                 if (atomic_read(&rdev->nr_pending)) {
1899                         /* lost the race, try later */
1900                         err = -EBUSY;
1901                         *rdevp = rdev;
1902                         goto abort;
1903                 }
1904         }
1905         if (p->replacement) {
1906                 /* We must have just cleared 'rdev' */
1907                 p->rdev = p->replacement;
1908                 clear_bit(Replacement, &p->replacement->flags);
1909                 smp_mb(); /* Make sure other CPUs may see both as identical
1910                            * but will never see neither -- if they are careful.
1911                            */
1912                 p->replacement = NULL;
1913         }
1914
1915         clear_bit(WantReplacement, &rdev->flags);
1916         err = md_integrity_register(mddev);
1917
1918 abort:
1919
1920         print_conf(conf);
1921         return err;
1922 }
1923
1924 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1925 {
1926         struct r10conf *conf = r10_bio->mddev->private;
1927
1928         if (!bio->bi_status)
1929                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1930         else
1931                 /* The write handler will notice the lack of
1932                  * R10BIO_Uptodate and record any errors etc
1933                  */
1934                 atomic_add(r10_bio->sectors,
1935                            &conf->mirrors[d].rdev->corrected_errors);
1936
1937         /* for reconstruct, we always reschedule after a read.
1938          * for resync, only after all reads
1939          */
1940         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1941         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1942             atomic_dec_and_test(&r10_bio->remaining)) {
1943                 /* we have read all the blocks,
1944                  * do the comparison in process context in raid10d
1945                  */
1946                 reschedule_retry(r10_bio);
1947         }
1948 }
1949
1950 static void end_sync_read(struct bio *bio)
1951 {
1952         struct r10bio *r10_bio = get_resync_r10bio(bio);
1953         struct r10conf *conf = r10_bio->mddev->private;
1954         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1955
1956         __end_sync_read(r10_bio, bio, d);
1957 }
1958
1959 static void end_reshape_read(struct bio *bio)
1960 {
1961         /* reshape read bio isn't allocated from r10buf_pool */
1962         struct r10bio *r10_bio = bio->bi_private;
1963
1964         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1965 }
1966
1967 static void end_sync_request(struct r10bio *r10_bio)
1968 {
1969         struct mddev *mddev = r10_bio->mddev;
1970
1971         while (atomic_dec_and_test(&r10_bio->remaining)) {
1972                 if (r10_bio->master_bio == NULL) {
1973                         /* the primary of several recovery bios */
1974                         sector_t s = r10_bio->sectors;
1975                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976                             test_bit(R10BIO_WriteError, &r10_bio->state))
1977                                 reschedule_retry(r10_bio);
1978                         else
1979                                 put_buf(r10_bio);
1980                         md_done_sync(mddev, s, 1);
1981                         break;
1982                 } else {
1983                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1984                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985                             test_bit(R10BIO_WriteError, &r10_bio->state))
1986                                 reschedule_retry(r10_bio);
1987                         else
1988                                 put_buf(r10_bio);
1989                         r10_bio = r10_bio2;
1990                 }
1991         }
1992 }
1993
1994 static void end_sync_write(struct bio *bio)
1995 {
1996         struct r10bio *r10_bio = get_resync_r10bio(bio);
1997         struct mddev *mddev = r10_bio->mddev;
1998         struct r10conf *conf = mddev->private;
1999         int d;
2000         sector_t first_bad;
2001         int bad_sectors;
2002         int slot;
2003         int repl;
2004         struct md_rdev *rdev = NULL;
2005
2006         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2007         if (repl)
2008                 rdev = conf->mirrors[d].replacement;
2009         else
2010                 rdev = conf->mirrors[d].rdev;
2011
2012         if (bio->bi_status) {
2013                 if (repl)
2014                         md_error(mddev, rdev);
2015                 else {
2016                         set_bit(WriteErrorSeen, &rdev->flags);
2017                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2018                                 set_bit(MD_RECOVERY_NEEDED,
2019                                         &rdev->mddev->recovery);
2020                         set_bit(R10BIO_WriteError, &r10_bio->state);
2021                 }
2022         } else if (is_badblock(rdev,
2023                              r10_bio->devs[slot].addr,
2024                              r10_bio->sectors,
2025                              &first_bad, &bad_sectors))
2026                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2027
2028         rdev_dec_pending(rdev, mddev);
2029
2030         end_sync_request(r10_bio);
2031 }
2032
2033 /*
2034  * Note: sync and recover and handled very differently for raid10
2035  * This code is for resync.
2036  * For resync, we read through virtual addresses and read all blocks.
2037  * If there is any error, we schedule a write.  The lowest numbered
2038  * drive is authoritative.
2039  * However requests come for physical address, so we need to map.
2040  * For every physical address there are raid_disks/copies virtual addresses,
2041  * which is always are least one, but is not necessarly an integer.
2042  * This means that a physical address can span multiple chunks, so we may
2043  * have to submit multiple io requests for a single sync request.
2044  */
2045 /*
2046  * We check if all blocks are in-sync and only write to blocks that
2047  * aren't in sync
2048  */
2049 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2050 {
2051         struct r10conf *conf = mddev->private;
2052         int i, first;
2053         struct bio *tbio, *fbio;
2054         int vcnt;
2055         struct page **tpages, **fpages;
2056
2057         atomic_set(&r10_bio->remaining, 1);
2058
2059         /* find the first device with a block */
2060         for (i=0; i<conf->copies; i++)
2061                 if (!r10_bio->devs[i].bio->bi_status)
2062                         break;
2063
2064         if (i == conf->copies)
2065                 goto done;
2066
2067         first = i;
2068         fbio = r10_bio->devs[i].bio;
2069         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2070         fbio->bi_iter.bi_idx = 0;
2071         fpages = get_resync_pages(fbio)->pages;
2072
2073         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2074         /* now find blocks with errors */
2075         for (i=0 ; i < conf->copies ; i++) {
2076                 int  j, d;
2077                 struct md_rdev *rdev;
2078                 struct resync_pages *rp;
2079
2080                 tbio = r10_bio->devs[i].bio;
2081
2082                 if (tbio->bi_end_io != end_sync_read)
2083                         continue;
2084                 if (i == first)
2085                         continue;
2086
2087                 tpages = get_resync_pages(tbio)->pages;
2088                 d = r10_bio->devs[i].devnum;
2089                 rdev = conf->mirrors[d].rdev;
2090                 if (!r10_bio->devs[i].bio->bi_status) {
2091                         /* We know that the bi_io_vec layout is the same for
2092                          * both 'first' and 'i', so we just compare them.
2093                          * All vec entries are PAGE_SIZE;
2094                          */
2095                         int sectors = r10_bio->sectors;
2096                         for (j = 0; j < vcnt; j++) {
2097                                 int len = PAGE_SIZE;
2098                                 if (sectors < (len / 512))
2099                                         len = sectors * 512;
2100                                 if (memcmp(page_address(fpages[j]),
2101                                            page_address(tpages[j]),
2102                                            len))
2103                                         break;
2104                                 sectors -= len/512;
2105                         }
2106                         if (j == vcnt)
2107                                 continue;
2108                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2109                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2110                                 /* Don't fix anything. */
2111                                 continue;
2112                 } else if (test_bit(FailFast, &rdev->flags)) {
2113                         /* Just give up on this device */
2114                         md_error(rdev->mddev, rdev);
2115                         continue;
2116                 }
2117                 /* Ok, we need to write this bio, either to correct an
2118                  * inconsistency or to correct an unreadable block.
2119                  * First we need to fixup bv_offset, bv_len and
2120                  * bi_vecs, as the read request might have corrupted these
2121                  */
2122                 rp = get_resync_pages(tbio);
2123                 bio_reset(tbio);
2124
2125                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2126
2127                 rp->raid_bio = r10_bio;
2128                 tbio->bi_private = rp;
2129                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2130                 tbio->bi_end_io = end_sync_write;
2131                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2132
2133                 bio_copy_data(tbio, fbio);
2134
2135                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2136                 atomic_inc(&r10_bio->remaining);
2137                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2138
2139                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2140                         tbio->bi_opf |= MD_FAILFAST;
2141                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2142                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2143                 generic_make_request(tbio);
2144         }
2145
2146         /* Now write out to any replacement devices
2147          * that are active
2148          */
2149         for (i = 0; i < conf->copies; i++) {
2150                 int d;
2151
2152                 tbio = r10_bio->devs[i].repl_bio;
2153                 if (!tbio || !tbio->bi_end_io)
2154                         continue;
2155                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2156                     && r10_bio->devs[i].bio != fbio)
2157                         bio_copy_data(tbio, fbio);
2158                 d = r10_bio->devs[i].devnum;
2159                 atomic_inc(&r10_bio->remaining);
2160                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2161                              bio_sectors(tbio));
2162                 generic_make_request(tbio);
2163         }
2164
2165 done:
2166         if (atomic_dec_and_test(&r10_bio->remaining)) {
2167                 md_done_sync(mddev, r10_bio->sectors, 1);
2168                 put_buf(r10_bio);
2169         }
2170 }
2171
2172 /*
2173  * Now for the recovery code.
2174  * Recovery happens across physical sectors.
2175  * We recover all non-is_sync drives by finding the virtual address of
2176  * each, and then choose a working drive that also has that virt address.
2177  * There is a separate r10_bio for each non-in_sync drive.
2178  * Only the first two slots are in use. The first for reading,
2179  * The second for writing.
2180  *
2181  */
2182 static void fix_recovery_read_error(struct r10bio *r10_bio)
2183 {
2184         /* We got a read error during recovery.
2185          * We repeat the read in smaller page-sized sections.
2186          * If a read succeeds, write it to the new device or record
2187          * a bad block if we cannot.
2188          * If a read fails, record a bad block on both old and
2189          * new devices.
2190          */
2191         struct mddev *mddev = r10_bio->mddev;
2192         struct r10conf *conf = mddev->private;
2193         struct bio *bio = r10_bio->devs[0].bio;
2194         sector_t sect = 0;
2195         int sectors = r10_bio->sectors;
2196         int idx = 0;
2197         int dr = r10_bio->devs[0].devnum;
2198         int dw = r10_bio->devs[1].devnum;
2199         struct page **pages = get_resync_pages(bio)->pages;
2200
2201         while (sectors) {
2202                 int s = sectors;
2203                 struct md_rdev *rdev;
2204                 sector_t addr;
2205                 int ok;
2206
2207                 if (s > (PAGE_SIZE>>9))
2208                         s = PAGE_SIZE >> 9;
2209
2210                 rdev = conf->mirrors[dr].rdev;
2211                 addr = r10_bio->devs[0].addr + sect,
2212                 ok = sync_page_io(rdev,
2213                                   addr,
2214                                   s << 9,
2215                                   pages[idx],
2216                                   REQ_OP_READ, 0, false);
2217                 if (ok) {
2218                         rdev = conf->mirrors[dw].rdev;
2219                         addr = r10_bio->devs[1].addr + sect;
2220                         ok = sync_page_io(rdev,
2221                                           addr,
2222                                           s << 9,
2223                                           pages[idx],
2224                                           REQ_OP_WRITE, 0, false);
2225                         if (!ok) {
2226                                 set_bit(WriteErrorSeen, &rdev->flags);
2227                                 if (!test_and_set_bit(WantReplacement,
2228                                                       &rdev->flags))
2229                                         set_bit(MD_RECOVERY_NEEDED,
2230                                                 &rdev->mddev->recovery);
2231                         }
2232                 }
2233                 if (!ok) {
2234                         /* We don't worry if we cannot set a bad block -
2235                          * it really is bad so there is no loss in not
2236                          * recording it yet
2237                          */
2238                         rdev_set_badblocks(rdev, addr, s, 0);
2239
2240                         if (rdev != conf->mirrors[dw].rdev) {
2241                                 /* need bad block on destination too */
2242                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2243                                 addr = r10_bio->devs[1].addr + sect;
2244                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2245                                 if (!ok) {
2246                                         /* just abort the recovery */
2247                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2248                                                   mdname(mddev));
2249
2250                                         conf->mirrors[dw].recovery_disabled
2251                                                 = mddev->recovery_disabled;
2252                                         set_bit(MD_RECOVERY_INTR,
2253                                                 &mddev->recovery);
2254                                         break;
2255                                 }
2256                         }
2257                 }
2258
2259                 sectors -= s;
2260                 sect += s;
2261                 idx++;
2262         }
2263 }
2264
2265 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2266 {
2267         struct r10conf *conf = mddev->private;
2268         int d;
2269         struct bio *wbio = r10_bio->devs[1].bio;
2270         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2271
2272         /* Need to test wbio2->bi_end_io before we call
2273          * generic_make_request as if the former is NULL,
2274          * the latter is free to free wbio2.
2275          */
2276         if (wbio2 && !wbio2->bi_end_io)
2277                 wbio2 = NULL;
2278
2279         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2280                 fix_recovery_read_error(r10_bio);
2281                 if (wbio->bi_end_io)
2282                         end_sync_request(r10_bio);
2283                 if (wbio2)
2284                         end_sync_request(r10_bio);
2285                 return;
2286         }
2287
2288         /*
2289          * share the pages with the first bio
2290          * and submit the write request
2291          */
2292         d = r10_bio->devs[1].devnum;
2293         if (wbio->bi_end_io) {
2294                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2295                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2296                 generic_make_request(wbio);
2297         }
2298         if (wbio2) {
2299                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2300                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2301                              bio_sectors(wbio2));
2302                 generic_make_request(wbio2);
2303         }
2304 }
2305
2306 /*
2307  * Used by fix_read_error() to decay the per rdev read_errors.
2308  * We halve the read error count for every hour that has elapsed
2309  * since the last recorded read error.
2310  *
2311  */
2312 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2313 {
2314         long cur_time_mon;
2315         unsigned long hours_since_last;
2316         unsigned int read_errors = atomic_read(&rdev->read_errors);
2317
2318         cur_time_mon = ktime_get_seconds();
2319
2320         if (rdev->last_read_error == 0) {
2321                 /* first time we've seen a read error */
2322                 rdev->last_read_error = cur_time_mon;
2323                 return;
2324         }
2325
2326         hours_since_last = (long)(cur_time_mon -
2327                             rdev->last_read_error) / 3600;
2328
2329         rdev->last_read_error = cur_time_mon;
2330
2331         /*
2332          * if hours_since_last is > the number of bits in read_errors
2333          * just set read errors to 0. We do this to avoid
2334          * overflowing the shift of read_errors by hours_since_last.
2335          */
2336         if (hours_since_last >= 8 * sizeof(read_errors))
2337                 atomic_set(&rdev->read_errors, 0);
2338         else
2339                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2340 }
2341
2342 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2343                             int sectors, struct page *page, int rw)
2344 {
2345         sector_t first_bad;
2346         int bad_sectors;
2347
2348         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2349             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2350                 return -1;
2351         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2352                 /* success */
2353                 return 1;
2354         if (rw == WRITE) {
2355                 set_bit(WriteErrorSeen, &rdev->flags);
2356                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2357                         set_bit(MD_RECOVERY_NEEDED,
2358                                 &rdev->mddev->recovery);
2359         }
2360         /* need to record an error - either for the block or the device */
2361         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2362                 md_error(rdev->mddev, rdev);
2363         return 0;
2364 }
2365
2366 /*
2367  * This is a kernel thread which:
2368  *
2369  *      1.      Retries failed read operations on working mirrors.
2370  *      2.      Updates the raid superblock when problems encounter.
2371  *      3.      Performs writes following reads for array synchronising.
2372  */
2373
2374 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2375 {
2376         int sect = 0; /* Offset from r10_bio->sector */
2377         int sectors = r10_bio->sectors;
2378         struct md_rdev *rdev;
2379         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2380         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2381
2382         /* still own a reference to this rdev, so it cannot
2383          * have been cleared recently.
2384          */
2385         rdev = conf->mirrors[d].rdev;
2386
2387         if (test_bit(Faulty, &rdev->flags))
2388                 /* drive has already been failed, just ignore any
2389                    more fix_read_error() attempts */
2390                 return;
2391
2392         check_decay_read_errors(mddev, rdev);
2393         atomic_inc(&rdev->read_errors);
2394         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2395                 char b[BDEVNAME_SIZE];
2396                 bdevname(rdev->bdev, b);
2397
2398                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2399                           mdname(mddev), b,
2400                           atomic_read(&rdev->read_errors), max_read_errors);
2401                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2402                           mdname(mddev), b);
2403                 md_error(mddev, rdev);
2404                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2405                 return;
2406         }
2407
2408         while(sectors) {
2409                 int s = sectors;
2410                 int sl = r10_bio->read_slot;
2411                 int success = 0;
2412                 int start;
2413
2414                 if (s > (PAGE_SIZE>>9))
2415                         s = PAGE_SIZE >> 9;
2416
2417                 rcu_read_lock();
2418                 do {
2419                         sector_t first_bad;
2420                         int bad_sectors;
2421
2422                         d = r10_bio->devs[sl].devnum;
2423                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2424                         if (rdev &&
2425                             test_bit(In_sync, &rdev->flags) &&
2426                             !test_bit(Faulty, &rdev->flags) &&
2427                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2428                                         &first_bad, &bad_sectors) == 0) {
2429                                 atomic_inc(&rdev->nr_pending);
2430                                 rcu_read_unlock();
2431                                 success = sync_page_io(rdev,
2432                                                        r10_bio->devs[sl].addr +
2433                                                        sect,
2434                                                        s<<9,
2435                                                        conf->tmppage,
2436                                                        REQ_OP_READ, 0, false);
2437                                 rdev_dec_pending(rdev, mddev);
2438                                 rcu_read_lock();
2439                                 if (success)
2440                                         break;
2441                         }
2442                         sl++;
2443                         if (sl == conf->copies)
2444                                 sl = 0;
2445                 } while (!success && sl != r10_bio->read_slot);
2446                 rcu_read_unlock();
2447
2448                 if (!success) {
2449                         /* Cannot read from anywhere, just mark the block
2450                          * as bad on the first device to discourage future
2451                          * reads.
2452                          */
2453                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2454                         rdev = conf->mirrors[dn].rdev;
2455
2456                         if (!rdev_set_badblocks(
2457                                     rdev,
2458                                     r10_bio->devs[r10_bio->read_slot].addr
2459                                     + sect,
2460                                     s, 0)) {
2461                                 md_error(mddev, rdev);
2462                                 r10_bio->devs[r10_bio->read_slot].bio
2463                                         = IO_BLOCKED;
2464                         }
2465                         break;
2466                 }
2467
2468                 start = sl;
2469                 /* write it back and re-read */
2470                 rcu_read_lock();
2471                 while (sl != r10_bio->read_slot) {
2472                         char b[BDEVNAME_SIZE];
2473
2474                         if (sl==0)
2475                                 sl = conf->copies;
2476                         sl--;
2477                         d = r10_bio->devs[sl].devnum;
2478                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2479                         if (!rdev ||
2480                             test_bit(Faulty, &rdev->flags) ||
2481                             !test_bit(In_sync, &rdev->flags))
2482                                 continue;
2483
2484                         atomic_inc(&rdev->nr_pending);
2485                         rcu_read_unlock();
2486                         if (r10_sync_page_io(rdev,
2487                                              r10_bio->devs[sl].addr +
2488                                              sect,
2489                                              s, conf->tmppage, WRITE)
2490                             == 0) {
2491                                 /* Well, this device is dead */
2492                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2493                                           mdname(mddev), s,
2494                                           (unsigned long long)(
2495                                                   sect +
2496                                                   choose_data_offset(r10_bio,
2497                                                                      rdev)),
2498                                           bdevname(rdev->bdev, b));
2499                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2500                                           mdname(mddev),
2501                                           bdevname(rdev->bdev, b));
2502                         }
2503                         rdev_dec_pending(rdev, mddev);
2504                         rcu_read_lock();
2505                 }
2506                 sl = start;
2507                 while (sl != r10_bio->read_slot) {
2508                         char b[BDEVNAME_SIZE];
2509
2510                         if (sl==0)
2511                                 sl = conf->copies;
2512                         sl--;
2513                         d = r10_bio->devs[sl].devnum;
2514                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2515                         if (!rdev ||
2516                             test_bit(Faulty, &rdev->flags) ||
2517                             !test_bit(In_sync, &rdev->flags))
2518                                 continue;
2519
2520                         atomic_inc(&rdev->nr_pending);
2521                         rcu_read_unlock();
2522                         switch (r10_sync_page_io(rdev,
2523                                              r10_bio->devs[sl].addr +
2524                                              sect,
2525                                              s, conf->tmppage,
2526                                                  READ)) {
2527                         case 0:
2528                                 /* Well, this device is dead */
2529                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2530                                        mdname(mddev), s,
2531                                        (unsigned long long)(
2532                                                sect +
2533                                                choose_data_offset(r10_bio, rdev)),
2534                                        bdevname(rdev->bdev, b));
2535                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2536                                        mdname(mddev),
2537                                        bdevname(rdev->bdev, b));
2538                                 break;
2539                         case 1:
2540                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2541                                        mdname(mddev), s,
2542                                        (unsigned long long)(
2543                                                sect +
2544                                                choose_data_offset(r10_bio, rdev)),
2545                                        bdevname(rdev->bdev, b));
2546                                 atomic_add(s, &rdev->corrected_errors);
2547                         }
2548
2549                         rdev_dec_pending(rdev, mddev);
2550                         rcu_read_lock();
2551                 }
2552                 rcu_read_unlock();
2553
2554                 sectors -= s;
2555                 sect += s;
2556         }
2557 }
2558
2559 static int narrow_write_error(struct r10bio *r10_bio, int i)
2560 {
2561         struct bio *bio = r10_bio->master_bio;
2562         struct mddev *mddev = r10_bio->mddev;
2563         struct r10conf *conf = mddev->private;
2564         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2565         /* bio has the data to be written to slot 'i' where
2566          * we just recently had a write error.
2567          * We repeatedly clone the bio and trim down to one block,
2568          * then try the write.  Where the write fails we record
2569          * a bad block.
2570          * It is conceivable that the bio doesn't exactly align with
2571          * blocks.  We must handle this.
2572          *
2573          * We currently own a reference to the rdev.
2574          */
2575
2576         int block_sectors;
2577         sector_t sector;
2578         int sectors;
2579         int sect_to_write = r10_bio->sectors;
2580         int ok = 1;
2581
2582         if (rdev->badblocks.shift < 0)
2583                 return 0;
2584
2585         block_sectors = roundup(1 << rdev->badblocks.shift,
2586                                 bdev_logical_block_size(rdev->bdev) >> 9);
2587         sector = r10_bio->sector;
2588         sectors = ((r10_bio->sector + block_sectors)
2589                    & ~(sector_t)(block_sectors - 1))
2590                 - sector;
2591
2592         while (sect_to_write) {
2593                 struct bio *wbio;
2594                 sector_t wsector;
2595                 if (sectors > sect_to_write)
2596                         sectors = sect_to_write;
2597                 /* Write at 'sector' for 'sectors' */
2598                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2599                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2600                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2601                 wbio->bi_iter.bi_sector = wsector +
2602                                    choose_data_offset(r10_bio, rdev);
2603                 bio_set_dev(wbio, rdev->bdev);
2604                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2605
2606                 if (submit_bio_wait(wbio) < 0)
2607                         /* Failure! */
2608                         ok = rdev_set_badblocks(rdev, wsector,
2609                                                 sectors, 0)
2610                                 && ok;
2611
2612                 bio_put(wbio);
2613                 sect_to_write -= sectors;
2614                 sector += sectors;
2615                 sectors = block_sectors;
2616         }
2617         return ok;
2618 }
2619
2620 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2621 {
2622         int slot = r10_bio->read_slot;
2623         struct bio *bio;
2624         struct r10conf *conf = mddev->private;
2625         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2626
2627         /* we got a read error. Maybe the drive is bad.  Maybe just
2628          * the block and we can fix it.
2629          * We freeze all other IO, and try reading the block from
2630          * other devices.  When we find one, we re-write
2631          * and check it that fixes the read error.
2632          * This is all done synchronously while the array is
2633          * frozen.
2634          */
2635         bio = r10_bio->devs[slot].bio;
2636         bio_put(bio);
2637         r10_bio->devs[slot].bio = NULL;
2638
2639         if (mddev->ro)
2640                 r10_bio->devs[slot].bio = IO_BLOCKED;
2641         else if (!test_bit(FailFast, &rdev->flags)) {
2642                 freeze_array(conf, 1);
2643                 fix_read_error(conf, mddev, r10_bio);
2644                 unfreeze_array(conf);
2645         } else
2646                 md_error(mddev, rdev);
2647
2648         rdev_dec_pending(rdev, mddev);
2649         allow_barrier(conf);
2650         r10_bio->state = 0;
2651         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2652 }
2653
2654 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2655 {
2656         /* Some sort of write request has finished and it
2657          * succeeded in writing where we thought there was a
2658          * bad block.  So forget the bad block.
2659          * Or possibly if failed and we need to record
2660          * a bad block.
2661          */
2662         int m;
2663         struct md_rdev *rdev;
2664
2665         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2666             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2667                 for (m = 0; m < conf->copies; m++) {
2668                         int dev = r10_bio->devs[m].devnum;
2669                         rdev = conf->mirrors[dev].rdev;
2670                         if (r10_bio->devs[m].bio == NULL ||
2671                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2672                                 continue;
2673                         if (!r10_bio->devs[m].bio->bi_status) {
2674                                 rdev_clear_badblocks(
2675                                         rdev,
2676                                         r10_bio->devs[m].addr,
2677                                         r10_bio->sectors, 0);
2678                         } else {
2679                                 if (!rdev_set_badblocks(
2680                                             rdev,
2681                                             r10_bio->devs[m].addr,
2682                                             r10_bio->sectors, 0))
2683                                         md_error(conf->mddev, rdev);
2684                         }
2685                         rdev = conf->mirrors[dev].replacement;
2686                         if (r10_bio->devs[m].repl_bio == NULL ||
2687                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2688                                 continue;
2689
2690                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2691                                 rdev_clear_badblocks(
2692                                         rdev,
2693                                         r10_bio->devs[m].addr,
2694                                         r10_bio->sectors, 0);
2695                         } else {
2696                                 if (!rdev_set_badblocks(
2697                                             rdev,
2698                                             r10_bio->devs[m].addr,
2699                                             r10_bio->sectors, 0))
2700                                         md_error(conf->mddev, rdev);
2701                         }
2702                 }
2703                 put_buf(r10_bio);
2704         } else {
2705                 bool fail = false;
2706                 for (m = 0; m < conf->copies; m++) {
2707                         int dev = r10_bio->devs[m].devnum;
2708                         struct bio *bio = r10_bio->devs[m].bio;
2709                         rdev = conf->mirrors[dev].rdev;
2710                         if (bio == IO_MADE_GOOD) {
2711                                 rdev_clear_badblocks(
2712                                         rdev,
2713                                         r10_bio->devs[m].addr,
2714                                         r10_bio->sectors, 0);
2715                                 rdev_dec_pending(rdev, conf->mddev);
2716                         } else if (bio != NULL && bio->bi_status) {
2717                                 fail = true;
2718                                 if (!narrow_write_error(r10_bio, m)) {
2719                                         md_error(conf->mddev, rdev);
2720                                         set_bit(R10BIO_Degraded,
2721                                                 &r10_bio->state);
2722                                 }
2723                                 rdev_dec_pending(rdev, conf->mddev);
2724                         }
2725                         bio = r10_bio->devs[m].repl_bio;
2726                         rdev = conf->mirrors[dev].replacement;
2727                         if (rdev && bio == IO_MADE_GOOD) {
2728                                 rdev_clear_badblocks(
2729                                         rdev,
2730                                         r10_bio->devs[m].addr,
2731                                         r10_bio->sectors, 0);
2732                                 rdev_dec_pending(rdev, conf->mddev);
2733                         }
2734                 }
2735                 if (fail) {
2736                         spin_lock_irq(&conf->device_lock);
2737                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2738                         conf->nr_queued++;
2739                         spin_unlock_irq(&conf->device_lock);
2740                         /*
2741                          * In case freeze_array() is waiting for condition
2742                          * nr_pending == nr_queued + extra to be true.
2743                          */
2744                         wake_up(&conf->wait_barrier);
2745                         md_wakeup_thread(conf->mddev->thread);
2746                 } else {
2747                         if (test_bit(R10BIO_WriteError,
2748                                      &r10_bio->state))
2749                                 close_write(r10_bio);
2750                         raid_end_bio_io(r10_bio);
2751                 }
2752         }
2753 }
2754
2755 static void raid10d(struct md_thread *thread)
2756 {
2757         struct mddev *mddev = thread->mddev;
2758         struct r10bio *r10_bio;
2759         unsigned long flags;
2760         struct r10conf *conf = mddev->private;
2761         struct list_head *head = &conf->retry_list;
2762         struct blk_plug plug;
2763
2764         md_check_recovery(mddev);
2765
2766         if (!list_empty_careful(&conf->bio_end_io_list) &&
2767             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2768                 LIST_HEAD(tmp);
2769                 spin_lock_irqsave(&conf->device_lock, flags);
2770                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2771                         while (!list_empty(&conf->bio_end_io_list)) {
2772                                 list_move(conf->bio_end_io_list.prev, &tmp);
2773                                 conf->nr_queued--;
2774                         }
2775                 }
2776                 spin_unlock_irqrestore(&conf->device_lock, flags);
2777                 while (!list_empty(&tmp)) {
2778                         r10_bio = list_first_entry(&tmp, struct r10bio,
2779                                                    retry_list);
2780                         list_del(&r10_bio->retry_list);
2781                         if (mddev->degraded)
2782                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2783
2784                         if (test_bit(R10BIO_WriteError,
2785                                      &r10_bio->state))
2786                                 close_write(r10_bio);
2787                         raid_end_bio_io(r10_bio);
2788                 }
2789         }
2790
2791         blk_start_plug(&plug);
2792         for (;;) {
2793
2794                 flush_pending_writes(conf);
2795
2796                 spin_lock_irqsave(&conf->device_lock, flags);
2797                 if (list_empty(head)) {
2798                         spin_unlock_irqrestore(&conf->device_lock, flags);
2799                         break;
2800                 }
2801                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2802                 list_del(head->prev);
2803                 conf->nr_queued--;
2804                 spin_unlock_irqrestore(&conf->device_lock, flags);
2805
2806                 mddev = r10_bio->mddev;
2807                 conf = mddev->private;
2808                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2809                     test_bit(R10BIO_WriteError, &r10_bio->state))
2810                         handle_write_completed(conf, r10_bio);
2811                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2812                         reshape_request_write(mddev, r10_bio);
2813                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2814                         sync_request_write(mddev, r10_bio);
2815                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2816                         recovery_request_write(mddev, r10_bio);
2817                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2818                         handle_read_error(mddev, r10_bio);
2819                 else
2820                         WARN_ON_ONCE(1);
2821
2822                 cond_resched();
2823                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2824                         md_check_recovery(mddev);
2825         }
2826         blk_finish_plug(&plug);
2827 }
2828
2829 static int init_resync(struct r10conf *conf)
2830 {
2831         int ret, buffs, i;
2832
2833         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2834         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2835         conf->have_replacement = 0;
2836         for (i = 0; i < conf->geo.raid_disks; i++)
2837                 if (conf->mirrors[i].replacement)
2838                         conf->have_replacement = 1;
2839         ret = mempool_init(&conf->r10buf_pool, buffs,
2840                            r10buf_pool_alloc, r10buf_pool_free, conf);
2841         if (ret)
2842                 return ret;
2843         conf->next_resync = 0;
2844         return 0;
2845 }
2846
2847 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2848 {
2849         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2850         struct rsync_pages *rp;
2851         struct bio *bio;
2852         int nalloc;
2853         int i;
2854
2855         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2856             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2857                 nalloc = conf->copies; /* resync */
2858         else
2859                 nalloc = 2; /* recovery */
2860
2861         for (i = 0; i < nalloc; i++) {
2862                 bio = r10bio->devs[i].bio;
2863                 rp = bio->bi_private;
2864                 bio_reset(bio);
2865                 bio->bi_private = rp;
2866                 bio = r10bio->devs[i].repl_bio;
2867                 if (bio) {
2868                         rp = bio->bi_private;
2869                         bio_reset(bio);
2870                         bio->bi_private = rp;
2871                 }
2872         }
2873         return r10bio;
2874 }
2875
2876 /*
2877  * Set cluster_sync_high since we need other nodes to add the
2878  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2879  */
2880 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2881 {
2882         sector_t window_size;
2883         int extra_chunk, chunks;
2884
2885         /*
2886          * First, here we define "stripe" as a unit which across
2887          * all member devices one time, so we get chunks by use
2888          * raid_disks / near_copies. Otherwise, if near_copies is
2889          * close to raid_disks, then resync window could increases
2890          * linearly with the increase of raid_disks, which means
2891          * we will suspend a really large IO window while it is not
2892          * necessary. If raid_disks is not divisible by near_copies,
2893          * an extra chunk is needed to ensure the whole "stripe" is
2894          * covered.
2895          */
2896
2897         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2898         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2899                 extra_chunk = 0;
2900         else
2901                 extra_chunk = 1;
2902         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2903
2904         /*
2905          * At least use a 32M window to align with raid1's resync window
2906          */
2907         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2908                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2909
2910         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2911 }
2912
2913 /*
2914  * perform a "sync" on one "block"
2915  *
2916  * We need to make sure that no normal I/O request - particularly write
2917  * requests - conflict with active sync requests.
2918  *
2919  * This is achieved by tracking pending requests and a 'barrier' concept
2920  * that can be installed to exclude normal IO requests.
2921  *
2922  * Resync and recovery are handled very differently.
2923  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2924  *
2925  * For resync, we iterate over virtual addresses, read all copies,
2926  * and update if there are differences.  If only one copy is live,
2927  * skip it.
2928  * For recovery, we iterate over physical addresses, read a good
2929  * value for each non-in_sync drive, and over-write.
2930  *
2931  * So, for recovery we may have several outstanding complex requests for a
2932  * given address, one for each out-of-sync device.  We model this by allocating
2933  * a number of r10_bio structures, one for each out-of-sync device.
2934  * As we setup these structures, we collect all bio's together into a list
2935  * which we then process collectively to add pages, and then process again
2936  * to pass to generic_make_request.
2937  *
2938  * The r10_bio structures are linked using a borrowed master_bio pointer.
2939  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2940  * has its remaining count decremented to 0, the whole complex operation
2941  * is complete.
2942  *
2943  */
2944
2945 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2946                              int *skipped)
2947 {
2948         struct r10conf *conf = mddev->private;
2949         struct r10bio *r10_bio;
2950         struct bio *biolist = NULL, *bio;
2951         sector_t max_sector, nr_sectors;
2952         int i;
2953         int max_sync;
2954         sector_t sync_blocks;
2955         sector_t sectors_skipped = 0;
2956         int chunks_skipped = 0;
2957         sector_t chunk_mask = conf->geo.chunk_mask;
2958         int page_idx = 0;
2959
2960         /*
2961          * Allow skipping a full rebuild for incremental assembly
2962          * of a clean array, like RAID1 does.
2963          */
2964         if (mddev->bitmap == NULL &&
2965             mddev->recovery_cp == MaxSector &&
2966             mddev->reshape_position == MaxSector &&
2967             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2968             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2969             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2970             conf->fullsync == 0) {
2971                 *skipped = 1;
2972                 return mddev->dev_sectors - sector_nr;
2973         }
2974
2975         if (!mempool_initialized(&conf->r10buf_pool))
2976                 if (init_resync(conf))
2977                         return 0;
2978
2979  skipped:
2980         max_sector = mddev->dev_sectors;
2981         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2982             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2983                 max_sector = mddev->resync_max_sectors;
2984         if (sector_nr >= max_sector) {
2985                 conf->cluster_sync_low = 0;
2986                 conf->cluster_sync_high = 0;
2987
2988                 /* If we aborted, we need to abort the
2989                  * sync on the 'current' bitmap chucks (there can
2990                  * be several when recovering multiple devices).
2991                  * as we may have started syncing it but not finished.
2992                  * We can find the current address in
2993                  * mddev->curr_resync, but for recovery,
2994                  * we need to convert that to several
2995                  * virtual addresses.
2996                  */
2997                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2998                         end_reshape(conf);
2999                         close_sync(conf);
3000                         return 0;
3001                 }
3002
3003                 if (mddev->curr_resync < max_sector) { /* aborted */
3004                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3005                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3006                                                    &sync_blocks, 1);
3007                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3008                                 sector_t sect =
3009                                         raid10_find_virt(conf, mddev->curr_resync, i);
3010                                 md_bitmap_end_sync(mddev->bitmap, sect,
3011                                                    &sync_blocks, 1);
3012                         }
3013                 } else {
3014                         /* completed sync */
3015                         if ((!mddev->bitmap || conf->fullsync)
3016                             && conf->have_replacement
3017                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3018                                 /* Completed a full sync so the replacements
3019                                  * are now fully recovered.
3020                                  */
3021                                 rcu_read_lock();
3022                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3023                                         struct md_rdev *rdev =
3024                                                 rcu_dereference(conf->mirrors[i].replacement);
3025                                         if (rdev)
3026                                                 rdev->recovery_offset = MaxSector;
3027                                 }
3028                                 rcu_read_unlock();
3029                         }
3030                         conf->fullsync = 0;
3031                 }
3032                 md_bitmap_close_sync(mddev->bitmap);
3033                 close_sync(conf);
3034                 *skipped = 1;
3035                 return sectors_skipped;
3036         }
3037
3038         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3039                 return reshape_request(mddev, sector_nr, skipped);
3040
3041         if (chunks_skipped >= conf->geo.raid_disks) {
3042                 /* if there has been nothing to do on any drive,
3043                  * then there is nothing to do at all..
3044                  */
3045                 *skipped = 1;
3046                 return (max_sector - sector_nr) + sectors_skipped;
3047         }
3048
3049         if (max_sector > mddev->resync_max)
3050                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3051
3052         /* make sure whole request will fit in a chunk - if chunks
3053          * are meaningful
3054          */
3055         if (conf->geo.near_copies < conf->geo.raid_disks &&
3056             max_sector > (sector_nr | chunk_mask))
3057                 max_sector = (sector_nr | chunk_mask) + 1;
3058
3059         /*
3060          * If there is non-resync activity waiting for a turn, then let it
3061          * though before starting on this new sync request.
3062          */
3063         if (conf->nr_waiting)
3064                 schedule_timeout_uninterruptible(1);
3065
3066         /* Again, very different code for resync and recovery.
3067          * Both must result in an r10bio with a list of bios that
3068          * have bi_end_io, bi_sector, bi_disk set,
3069          * and bi_private set to the r10bio.
3070          * For recovery, we may actually create several r10bios
3071          * with 2 bios in each, that correspond to the bios in the main one.
3072          * In this case, the subordinate r10bios link back through a
3073          * borrowed master_bio pointer, and the counter in the master
3074          * includes a ref from each subordinate.
3075          */
3076         /* First, we decide what to do and set ->bi_end_io
3077          * To end_sync_read if we want to read, and
3078          * end_sync_write if we will want to write.
3079          */
3080
3081         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3082         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3083                 /* recovery... the complicated one */
3084                 int j;
3085                 r10_bio = NULL;
3086
3087                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3088                         int still_degraded;
3089                         struct r10bio *rb2;
3090                         sector_t sect;
3091                         int must_sync;
3092                         int any_working;
3093                         struct raid10_info *mirror = &conf->mirrors[i];
3094                         struct md_rdev *mrdev, *mreplace;
3095
3096                         rcu_read_lock();
3097                         mrdev = rcu_dereference(mirror->rdev);
3098                         mreplace = rcu_dereference(mirror->replacement);
3099
3100                         if ((mrdev == NULL ||
3101                              test_bit(Faulty, &mrdev->flags) ||
3102                              test_bit(In_sync, &mrdev->flags)) &&
3103                             (mreplace == NULL ||
3104                              test_bit(Faulty, &mreplace->flags))) {
3105                                 rcu_read_unlock();
3106                                 continue;
3107                         }
3108
3109                         still_degraded = 0;
3110                         /* want to reconstruct this device */
3111                         rb2 = r10_bio;
3112                         sect = raid10_find_virt(conf, sector_nr, i);
3113                         if (sect >= mddev->resync_max_sectors) {
3114                                 /* last stripe is not complete - don't
3115                                  * try to recover this sector.
3116                                  */
3117                                 rcu_read_unlock();
3118                                 continue;
3119                         }
3120                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3121                                 mreplace = NULL;
3122                         /* Unless we are doing a full sync, or a replacement
3123                          * we only need to recover the block if it is set in
3124                          * the bitmap
3125                          */
3126                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3127                                                          &sync_blocks, 1);
3128                         if (sync_blocks < max_sync)
3129                                 max_sync = sync_blocks;
3130                         if (!must_sync &&
3131                             mreplace == NULL &&
3132                             !conf->fullsync) {
3133                                 /* yep, skip the sync_blocks here, but don't assume
3134                                  * that there will never be anything to do here
3135                                  */
3136                                 chunks_skipped = -1;
3137                                 rcu_read_unlock();
3138                                 continue;
3139                         }
3140                         atomic_inc(&mrdev->nr_pending);
3141                         if (mreplace)
3142                                 atomic_inc(&mreplace->nr_pending);
3143                         rcu_read_unlock();
3144
3145                         r10_bio = raid10_alloc_init_r10buf(conf);
3146                         r10_bio->state = 0;
3147                         raise_barrier(conf, rb2 != NULL);
3148                         atomic_set(&r10_bio->remaining, 0);
3149
3150                         r10_bio->master_bio = (struct bio*)rb2;
3151                         if (rb2)
3152                                 atomic_inc(&rb2->remaining);
3153                         r10_bio->mddev = mddev;
3154                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3155                         r10_bio->sector = sect;
3156
3157                         raid10_find_phys(conf, r10_bio);
3158
3159                         /* Need to check if the array will still be
3160                          * degraded
3161                          */
3162                         rcu_read_lock();
3163                         for (j = 0; j < conf->geo.raid_disks; j++) {
3164                                 struct md_rdev *rdev = rcu_dereference(
3165                                         conf->mirrors[j].rdev);
3166                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3167                                         still_degraded = 1;
3168                                         break;
3169                                 }
3170                         }
3171
3172                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3173                                                          &sync_blocks, still_degraded);
3174
3175                         any_working = 0;
3176                         for (j=0; j<conf->copies;j++) {
3177                                 int k;
3178                                 int d = r10_bio->devs[j].devnum;
3179                                 sector_t from_addr, to_addr;
3180                                 struct md_rdev *rdev =
3181                                         rcu_dereference(conf->mirrors[d].rdev);
3182                                 sector_t sector, first_bad;
3183                                 int bad_sectors;
3184                                 if (!rdev ||
3185                                     !test_bit(In_sync, &rdev->flags))
3186                                         continue;
3187                                 /* This is where we read from */
3188                                 any_working = 1;
3189                                 sector = r10_bio->devs[j].addr;
3190
3191                                 if (is_badblock(rdev, sector, max_sync,
3192                                                 &first_bad, &bad_sectors)) {
3193                                         if (first_bad > sector)
3194                                                 max_sync = first_bad - sector;
3195                                         else {
3196                                                 bad_sectors -= (sector
3197                                                                 - first_bad);
3198                                                 if (max_sync > bad_sectors)
3199                                                         max_sync = bad_sectors;
3200                                                 continue;
3201                                         }
3202                                 }
3203                                 bio = r10_bio->devs[0].bio;
3204                                 bio->bi_next = biolist;
3205                                 biolist = bio;
3206                                 bio->bi_end_io = end_sync_read;
3207                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3208                                 if (test_bit(FailFast, &rdev->flags))
3209                                         bio->bi_opf |= MD_FAILFAST;
3210                                 from_addr = r10_bio->devs[j].addr;
3211                                 bio->bi_iter.bi_sector = from_addr +
3212                                         rdev->data_offset;
3213                                 bio_set_dev(bio, rdev->bdev);
3214                                 atomic_inc(&rdev->nr_pending);
3215                                 /* and we write to 'i' (if not in_sync) */
3216
3217                                 for (k=0; k<conf->copies; k++)
3218                                         if (r10_bio->devs[k].devnum == i)
3219                                                 break;
3220                                 BUG_ON(k == conf->copies);
3221                                 to_addr = r10_bio->devs[k].addr;
3222                                 r10_bio->devs[0].devnum = d;
3223                                 r10_bio->devs[0].addr = from_addr;
3224                                 r10_bio->devs[1].devnum = i;
3225                                 r10_bio->devs[1].addr = to_addr;
3226
3227                                 if (!test_bit(In_sync, &mrdev->flags)) {
3228                                         bio = r10_bio->devs[1].bio;
3229                                         bio->bi_next = biolist;
3230                                         biolist = bio;
3231                                         bio->bi_end_io = end_sync_write;
3232                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3233                                         bio->bi_iter.bi_sector = to_addr
3234                                                 + mrdev->data_offset;
3235                                         bio_set_dev(bio, mrdev->bdev);
3236                                         atomic_inc(&r10_bio->remaining);
3237                                 } else
3238                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3239
3240                                 /* and maybe write to replacement */
3241                                 bio = r10_bio->devs[1].repl_bio;
3242                                 if (bio)
3243                                         bio->bi_end_io = NULL;
3244                                 /* Note: if mreplace != NULL, then bio
3245                                  * cannot be NULL as r10buf_pool_alloc will
3246                                  * have allocated it.
3247                                  * So the second test here is pointless.
3248                                  * But it keeps semantic-checkers happy, and
3249                                  * this comment keeps human reviewers
3250                                  * happy.
3251                                  */
3252                                 if (mreplace == NULL || bio == NULL ||
3253                                     test_bit(Faulty, &mreplace->flags))
3254                                         break;
3255                                 bio->bi_next = biolist;
3256                                 biolist = bio;
3257                                 bio->bi_end_io = end_sync_write;
3258                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3259                                 bio->bi_iter.bi_sector = to_addr +
3260                                         mreplace->data_offset;
3261                                 bio_set_dev(bio, mreplace->bdev);
3262                                 atomic_inc(&r10_bio->remaining);
3263                                 break;
3264                         }
3265                         rcu_read_unlock();
3266                         if (j == conf->copies) {
3267                                 /* Cannot recover, so abort the recovery or
3268                                  * record a bad block */
3269                                 if (any_working) {
3270                                         /* problem is that there are bad blocks
3271                                          * on other device(s)
3272                                          */
3273                                         int k;
3274                                         for (k = 0; k < conf->copies; k++)
3275                                                 if (r10_bio->devs[k].devnum == i)
3276                                                         break;
3277                                         if (!test_bit(In_sync,
3278                                                       &mrdev->flags)
3279                                             && !rdev_set_badblocks(
3280                                                     mrdev,
3281                                                     r10_bio->devs[k].addr,
3282                                                     max_sync, 0))
3283                                                 any_working = 0;
3284                                         if (mreplace &&
3285                                             !rdev_set_badblocks(
3286                                                     mreplace,
3287                                                     r10_bio->devs[k].addr,
3288                                                     max_sync, 0))
3289                                                 any_working = 0;
3290                                 }
3291                                 if (!any_working)  {
3292                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3293                                                               &mddev->recovery))
3294                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3295                                                        mdname(mddev));
3296                                         mirror->recovery_disabled
3297                                                 = mddev->recovery_disabled;
3298                                 }
3299                                 put_buf(r10_bio);
3300                                 if (rb2)
3301                                         atomic_dec(&rb2->remaining);
3302                                 r10_bio = rb2;
3303                                 rdev_dec_pending(mrdev, mddev);
3304                                 if (mreplace)
3305                                         rdev_dec_pending(mreplace, mddev);
3306                                 break;
3307                         }
3308                         rdev_dec_pending(mrdev, mddev);
3309                         if (mreplace)
3310                                 rdev_dec_pending(mreplace, mddev);
3311                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3312                                 /* Only want this if there is elsewhere to
3313                                  * read from. 'j' is currently the first
3314                                  * readable copy.
3315                                  */
3316                                 int targets = 1;
3317                                 for (; j < conf->copies; j++) {
3318                                         int d = r10_bio->devs[j].devnum;
3319                                         if (conf->mirrors[d].rdev &&
3320                                             test_bit(In_sync,
3321                                                       &conf->mirrors[d].rdev->flags))
3322                                                 targets++;
3323                                 }
3324                                 if (targets == 1)
3325                                         r10_bio->devs[0].bio->bi_opf
3326                                                 &= ~MD_FAILFAST;
3327                         }
3328                 }
3329                 if (biolist == NULL) {
3330                         while (r10_bio) {
3331                                 struct r10bio *rb2 = r10_bio;
3332                                 r10_bio = (struct r10bio*) rb2->master_bio;
3333                                 rb2->master_bio = NULL;
3334                                 put_buf(rb2);
3335                         }
3336                         goto giveup;
3337                 }
3338         } else {
3339                 /* resync. Schedule a read for every block at this virt offset */
3340                 int count = 0;
3341
3342                 /*
3343                  * Since curr_resync_completed could probably not update in
3344                  * time, and we will set cluster_sync_low based on it.
3345                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3346                  * safety reason, which ensures curr_resync_completed is
3347                  * updated in bitmap_cond_end_sync.
3348                  */
3349                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3350                                         mddev_is_clustered(mddev) &&
3351                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3352
3353                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3354                                           &sync_blocks, mddev->degraded) &&
3355                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3356                                                  &mddev->recovery)) {
3357                         /* We can skip this block */
3358                         *skipped = 1;
3359                         return sync_blocks + sectors_skipped;
3360                 }
3361                 if (sync_blocks < max_sync)
3362                         max_sync = sync_blocks;
3363                 r10_bio = raid10_alloc_init_r10buf(conf);
3364                 r10_bio->state = 0;
3365
3366                 r10_bio->mddev = mddev;
3367                 atomic_set(&r10_bio->remaining, 0);
3368                 raise_barrier(conf, 0);
3369                 conf->next_resync = sector_nr;
3370
3371                 r10_bio->master_bio = NULL;
3372                 r10_bio->sector = sector_nr;
3373                 set_bit(R10BIO_IsSync, &r10_bio->state);
3374                 raid10_find_phys(conf, r10_bio);
3375                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3376
3377                 for (i = 0; i < conf->copies; i++) {
3378                         int d = r10_bio->devs[i].devnum;
3379                         sector_t first_bad, sector;
3380                         int bad_sectors;
3381                         struct md_rdev *rdev;
3382
3383                         if (r10_bio->devs[i].repl_bio)
3384                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3385
3386                         bio = r10_bio->devs[i].bio;
3387                         bio->bi_status = BLK_STS_IOERR;
3388                         rcu_read_lock();
3389                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3390                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3391                                 rcu_read_unlock();
3392                                 continue;
3393                         }
3394                         sector = r10_bio->devs[i].addr;
3395                         if (is_badblock(rdev, sector, max_sync,
3396                                         &first_bad, &bad_sectors)) {
3397                                 if (first_bad > sector)
3398                                         max_sync = first_bad - sector;
3399                                 else {
3400                                         bad_sectors -= (sector - first_bad);
3401                                         if (max_sync > bad_sectors)
3402                                                 max_sync = bad_sectors;
3403                                         rcu_read_unlock();
3404                                         continue;
3405                                 }
3406                         }
3407                         atomic_inc(&rdev->nr_pending);
3408                         atomic_inc(&r10_bio->remaining);
3409                         bio->bi_next = biolist;
3410                         biolist = bio;
3411                         bio->bi_end_io = end_sync_read;
3412                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3413                         if (test_bit(FailFast, &rdev->flags))
3414                                 bio->bi_opf |= MD_FAILFAST;
3415                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3416                         bio_set_dev(bio, rdev->bdev);
3417                         count++;
3418
3419                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3420                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3421                                 rcu_read_unlock();
3422                                 continue;
3423                         }
3424                         atomic_inc(&rdev->nr_pending);
3425
3426                         /* Need to set up for writing to the replacement */
3427                         bio = r10_bio->devs[i].repl_bio;
3428                         bio->bi_status = BLK_STS_IOERR;
3429
3430                         sector = r10_bio->devs[i].addr;
3431                         bio->bi_next = biolist;
3432                         biolist = bio;
3433                         bio->bi_end_io = end_sync_write;
3434                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3435                         if (test_bit(FailFast, &rdev->flags))
3436                                 bio->bi_opf |= MD_FAILFAST;
3437                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3438                         bio_set_dev(bio, rdev->bdev);
3439                         count++;
3440                         rcu_read_unlock();
3441                 }
3442
3443                 if (count < 2) {
3444                         for (i=0; i<conf->copies; i++) {
3445                                 int d = r10_bio->devs[i].devnum;
3446                                 if (r10_bio->devs[i].bio->bi_end_io)
3447                                         rdev_dec_pending(conf->mirrors[d].rdev,
3448                                                          mddev);
3449                                 if (r10_bio->devs[i].repl_bio &&
3450                                     r10_bio->devs[i].repl_bio->bi_end_io)
3451                                         rdev_dec_pending(
3452                                                 conf->mirrors[d].replacement,
3453                                                 mddev);
3454                         }
3455                         put_buf(r10_bio);
3456                         biolist = NULL;
3457                         goto giveup;
3458                 }
3459         }
3460
3461         nr_sectors = 0;
3462         if (sector_nr + max_sync < max_sector)
3463                 max_sector = sector_nr + max_sync;
3464         do {
3465                 struct page *page;
3466                 int len = PAGE_SIZE;
3467                 if (sector_nr + (len>>9) > max_sector)
3468                         len = (max_sector - sector_nr) << 9;
3469                 if (len == 0)
3470                         break;
3471                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3472                         struct resync_pages *rp = get_resync_pages(bio);
3473                         page = resync_fetch_page(rp, page_idx);
3474                         /*
3475                          * won't fail because the vec table is big enough
3476                          * to hold all these pages
3477                          */
3478                         bio_add_page(bio, page, len, 0);
3479                 }
3480                 nr_sectors += len>>9;
3481                 sector_nr += len>>9;
3482         } while (++page_idx < RESYNC_PAGES);
3483         r10_bio->sectors = nr_sectors;
3484
3485         if (mddev_is_clustered(mddev) &&
3486             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3487                 /* It is resync not recovery */
3488                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3489                         conf->cluster_sync_low = mddev->curr_resync_completed;
3490                         raid10_set_cluster_sync_high(conf);
3491                         /* Send resync message */
3492                         md_cluster_ops->resync_info_update(mddev,
3493                                                 conf->cluster_sync_low,
3494                                                 conf->cluster_sync_high);
3495                 }
3496         } else if (mddev_is_clustered(mddev)) {
3497                 /* This is recovery not resync */
3498                 sector_t sect_va1, sect_va2;
3499                 bool broadcast_msg = false;
3500
3501                 for (i = 0; i < conf->geo.raid_disks; i++) {
3502                         /*
3503                          * sector_nr is a device address for recovery, so we
3504                          * need translate it to array address before compare
3505                          * with cluster_sync_high.
3506                          */
3507                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3508
3509                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3510                                 broadcast_msg = true;
3511                                 /*
3512                                  * curr_resync_completed is similar as
3513                                  * sector_nr, so make the translation too.
3514                                  */
3515                                 sect_va2 = raid10_find_virt(conf,
3516                                         mddev->curr_resync_completed, i);
3517
3518                                 if (conf->cluster_sync_low == 0 ||
3519                                     conf->cluster_sync_low > sect_va2)
3520                                         conf->cluster_sync_low = sect_va2;
3521                         }
3522                 }
3523                 if (broadcast_msg) {
3524                         raid10_set_cluster_sync_high(conf);
3525                         md_cluster_ops->resync_info_update(mddev,
3526                                                 conf->cluster_sync_low,
3527                                                 conf->cluster_sync_high);
3528                 }
3529         }
3530
3531         while (biolist) {
3532                 bio = biolist;
3533                 biolist = biolist->bi_next;
3534
3535                 bio->bi_next = NULL;
3536                 r10_bio = get_resync_r10bio(bio);
3537                 r10_bio->sectors = nr_sectors;
3538
3539                 if (bio->bi_end_io == end_sync_read) {
3540                         md_sync_acct_bio(bio, nr_sectors);
3541                         bio->bi_status = 0;
3542                         generic_make_request(bio);
3543                 }
3544         }
3545
3546         if (sectors_skipped)
3547                 /* pretend they weren't skipped, it makes
3548                  * no important difference in this case
3549                  */
3550                 md_done_sync(mddev, sectors_skipped, 1);
3551
3552         return sectors_skipped + nr_sectors;
3553  giveup:
3554         /* There is nowhere to write, so all non-sync
3555          * drives must be failed or in resync, all drives
3556          * have a bad block, so try the next chunk...
3557          */
3558         if (sector_nr + max_sync < max_sector)
3559                 max_sector = sector_nr + max_sync;
3560
3561         sectors_skipped += (max_sector - sector_nr);
3562         chunks_skipped ++;
3563         sector_nr = max_sector;
3564         goto skipped;
3565 }
3566
3567 static sector_t
3568 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3569 {
3570         sector_t size;
3571         struct r10conf *conf = mddev->private;
3572
3573         if (!raid_disks)
3574                 raid_disks = min(conf->geo.raid_disks,
3575                                  conf->prev.raid_disks);
3576         if (!sectors)
3577                 sectors = conf->dev_sectors;
3578
3579         size = sectors >> conf->geo.chunk_shift;
3580         sector_div(size, conf->geo.far_copies);
3581         size = size * raid_disks;
3582         sector_div(size, conf->geo.near_copies);
3583
3584         return size << conf->geo.chunk_shift;
3585 }
3586
3587 static void calc_sectors(struct r10conf *conf, sector_t size)
3588 {
3589         /* Calculate the number of sectors-per-device that will
3590          * actually be used, and set conf->dev_sectors and
3591          * conf->stride
3592          */
3593
3594         size = size >> conf->geo.chunk_shift;
3595         sector_div(size, conf->geo.far_copies);
3596         size = size * conf->geo.raid_disks;
3597         sector_div(size, conf->geo.near_copies);
3598         /* 'size' is now the number of chunks in the array */
3599         /* calculate "used chunks per device" */
3600         size = size * conf->copies;
3601
3602         /* We need to round up when dividing by raid_disks to
3603          * get the stride size.
3604          */
3605         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3606
3607         conf->dev_sectors = size << conf->geo.chunk_shift;
3608
3609         if (conf->geo.far_offset)
3610                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3611         else {
3612                 sector_div(size, conf->geo.far_copies);
3613                 conf->geo.stride = size << conf->geo.chunk_shift;
3614         }
3615 }
3616
3617 enum geo_type {geo_new, geo_old, geo_start};
3618 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3619 {
3620         int nc, fc, fo;
3621         int layout, chunk, disks;
3622         switch (new) {
3623         case geo_old:
3624                 layout = mddev->layout;
3625                 chunk = mddev->chunk_sectors;
3626                 disks = mddev->raid_disks - mddev->delta_disks;
3627                 break;
3628         case geo_new:
3629                 layout = mddev->new_layout;
3630                 chunk = mddev->new_chunk_sectors;
3631                 disks = mddev->raid_disks;
3632                 break;
3633         default: /* avoid 'may be unused' warnings */
3634         case geo_start: /* new when starting reshape - raid_disks not
3635                          * updated yet. */
3636                 layout = mddev->new_layout;
3637                 chunk = mddev->new_chunk_sectors;
3638                 disks = mddev->raid_disks + mddev->delta_disks;
3639                 break;
3640         }
3641         if (layout >> 19)
3642                 return -1;
3643         if (chunk < (PAGE_SIZE >> 9) ||
3644             !is_power_of_2(chunk))
3645                 return -2;
3646         nc = layout & 255;
3647         fc = (layout >> 8) & 255;
3648         fo = layout & (1<<16);
3649         geo->raid_disks = disks;
3650         geo->near_copies = nc;
3651         geo->far_copies = fc;
3652         geo->far_offset = fo;
3653         switch (layout >> 17) {
3654         case 0: /* original layout.  simple but not always optimal */
3655                 geo->far_set_size = disks;
3656                 break;
3657         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3658                  * actually using this, but leave code here just in case.*/
3659                 geo->far_set_size = disks/fc;
3660                 WARN(geo->far_set_size < fc,
3661                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3662                 break;
3663         case 2: /* "improved" layout fixed to match documentation */
3664                 geo->far_set_size = fc * nc;
3665                 break;
3666         default: /* Not a valid layout */
3667                 return -1;
3668         }
3669         geo->chunk_mask = chunk - 1;
3670         geo->chunk_shift = ffz(~chunk);
3671         return nc*fc;
3672 }
3673
3674 static void raid10_free_conf(struct r10conf *conf)
3675 {
3676         if (!conf)
3677                 return;
3678
3679         mempool_exit(&conf->r10bio_pool);
3680         kfree(conf->mirrors);
3681         kfree(conf->mirrors_old);
3682         kfree(conf->mirrors_new);
3683         safe_put_page(conf->tmppage);
3684         bioset_exit(&conf->bio_split);
3685         kfree(conf);
3686 }
3687
3688 static struct r10conf *setup_conf(struct mddev *mddev)
3689 {
3690         struct r10conf *conf = NULL;
3691         int err = -EINVAL;
3692         struct geom geo;
3693         int copies;
3694
3695         copies = setup_geo(&geo, mddev, geo_new);
3696
3697         if (copies == -2) {
3698                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3699                         mdname(mddev), PAGE_SIZE);
3700                 goto out;
3701         }
3702
3703         if (copies < 2 || copies > mddev->raid_disks) {
3704                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3705                         mdname(mddev), mddev->new_layout);
3706                 goto out;
3707         }
3708
3709         err = -ENOMEM;
3710         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3711         if (!conf)
3712                 goto out;
3713
3714         /* FIXME calc properly */
3715         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3716                                 sizeof(struct raid10_info),
3717                                 GFP_KERNEL);
3718         if (!conf->mirrors)
3719                 goto out;
3720
3721         conf->tmppage = alloc_page(GFP_KERNEL);
3722         if (!conf->tmppage)
3723                 goto out;
3724
3725         conf->geo = geo;
3726         conf->copies = copies;
3727         err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3728                            r10bio_pool_free, conf);
3729         if (err)
3730                 goto out;
3731
3732         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3733         if (err)
3734                 goto out;
3735
3736         calc_sectors(conf, mddev->dev_sectors);
3737         if (mddev->reshape_position == MaxSector) {
3738                 conf->prev = conf->geo;
3739                 conf->reshape_progress = MaxSector;
3740         } else {
3741                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3742                         err = -EINVAL;
3743                         goto out;
3744                 }
3745                 conf->reshape_progress = mddev->reshape_position;
3746                 if (conf->prev.far_offset)
3747                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3748                 else
3749                         /* far_copies must be 1 */
3750                         conf->prev.stride = conf->dev_sectors;
3751         }
3752         conf->reshape_safe = conf->reshape_progress;
3753         spin_lock_init(&conf->device_lock);
3754         INIT_LIST_HEAD(&conf->retry_list);
3755         INIT_LIST_HEAD(&conf->bio_end_io_list);
3756
3757         spin_lock_init(&conf->resync_lock);
3758         init_waitqueue_head(&conf->wait_barrier);
3759         atomic_set(&conf->nr_pending, 0);
3760
3761         err = -ENOMEM;
3762         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3763         if (!conf->thread)
3764                 goto out;
3765
3766         conf->mddev = mddev;
3767         return conf;
3768
3769  out:
3770         raid10_free_conf(conf);
3771         return ERR_PTR(err);
3772 }
3773
3774 static void raid10_set_io_opt(struct r10conf *conf)
3775 {
3776         int raid_disks = conf->geo.raid_disks;
3777
3778         if (!(conf->geo.raid_disks % conf->geo.near_copies))
3779                 raid_disks /= conf->geo.near_copies;
3780         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3781                          raid_disks);
3782 }
3783
3784 static int raid10_run(struct mddev *mddev)
3785 {
3786         struct r10conf *conf;
3787         int i, disk_idx;
3788         struct raid10_info *disk;
3789         struct md_rdev *rdev;
3790         sector_t size;
3791         sector_t min_offset_diff = 0;
3792         int first = 1;
3793         bool discard_supported = false;
3794
3795         if (mddev_init_writes_pending(mddev) < 0)
3796                 return -ENOMEM;
3797
3798         if (mddev->private == NULL) {
3799                 conf = setup_conf(mddev);
3800                 if (IS_ERR(conf))
3801                         return PTR_ERR(conf);
3802                 mddev->private = conf;
3803         }
3804         conf = mddev->private;
3805         if (!conf)
3806                 goto out;
3807
3808         mddev->thread = conf->thread;
3809         conf->thread = NULL;
3810
3811         if (mddev_is_clustered(conf->mddev)) {
3812                 int fc, fo;
3813
3814                 fc = (mddev->layout >> 8) & 255;
3815                 fo = mddev->layout & (1<<16);
3816                 if (fc > 1 || fo > 0) {
3817                         pr_err("only near layout is supported by clustered"
3818                                 " raid10\n");
3819                         goto out_free_conf;
3820                 }
3821         }
3822
3823         if (mddev->queue) {
3824                 blk_queue_max_discard_sectors(mddev->queue,
3825                                               mddev->chunk_sectors);
3826                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3827                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3828                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3829                 raid10_set_io_opt(conf);
3830         }
3831
3832         rdev_for_each(rdev, mddev) {
3833                 long long diff;
3834
3835                 disk_idx = rdev->raid_disk;
3836                 if (disk_idx < 0)
3837                         continue;
3838                 if (disk_idx >= conf->geo.raid_disks &&
3839                     disk_idx >= conf->prev.raid_disks)
3840                         continue;
3841                 disk = conf->mirrors + disk_idx;
3842
3843                 if (test_bit(Replacement, &rdev->flags)) {
3844                         if (disk->replacement)
3845                                 goto out_free_conf;
3846                         disk->replacement = rdev;
3847                 } else {
3848                         if (disk->rdev)
3849                                 goto out_free_conf;
3850                         disk->rdev = rdev;
3851                 }
3852                 diff = (rdev->new_data_offset - rdev->data_offset);
3853                 if (!mddev->reshape_backwards)
3854                         diff = -diff;
3855                 if (diff < 0)
3856                         diff = 0;
3857                 if (first || diff < min_offset_diff)
3858                         min_offset_diff = diff;
3859
3860                 if (mddev->gendisk)
3861                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3862                                           rdev->data_offset << 9);
3863
3864                 disk->head_position = 0;
3865
3866                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3867                         discard_supported = true;
3868                 first = 0;
3869         }
3870
3871         if (mddev->queue) {
3872                 if (discard_supported)
3873                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3874                                                 mddev->queue);
3875                 else
3876                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3877                                                   mddev->queue);
3878         }
3879         /* need to check that every block has at least one working mirror */
3880         if (!enough(conf, -1)) {
3881                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3882                        mdname(mddev));
3883                 goto out_free_conf;
3884         }
3885
3886         if (conf->reshape_progress != MaxSector) {
3887                 /* must ensure that shape change is supported */
3888                 if (conf->geo.far_copies != 1 &&
3889                     conf->geo.far_offset == 0)
3890                         goto out_free_conf;
3891                 if (conf->prev.far_copies != 1 &&
3892                     conf->prev.far_offset == 0)
3893                         goto out_free_conf;
3894         }
3895
3896         mddev->degraded = 0;
3897         for (i = 0;
3898              i < conf->geo.raid_disks
3899                      || i < conf->prev.raid_disks;
3900              i++) {
3901
3902                 disk = conf->mirrors + i;
3903
3904                 if (!disk->rdev && disk->replacement) {
3905                         /* The replacement is all we have - use it */
3906                         disk->rdev = disk->replacement;
3907                         disk->replacement = NULL;
3908                         clear_bit(Replacement, &disk->rdev->flags);
3909                 }
3910
3911                 if (!disk->rdev ||
3912                     !test_bit(In_sync, &disk->rdev->flags)) {
3913                         disk->head_position = 0;
3914                         mddev->degraded++;
3915                         if (disk->rdev &&
3916                             disk->rdev->saved_raid_disk < 0)
3917                                 conf->fullsync = 1;
3918                 }
3919
3920                 if (disk->replacement &&
3921                     !test_bit(In_sync, &disk->replacement->flags) &&
3922                     disk->replacement->saved_raid_disk < 0) {
3923                         conf->fullsync = 1;
3924                 }
3925
3926                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3927         }
3928
3929         if (mddev->recovery_cp != MaxSector)
3930                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3931                           mdname(mddev));
3932         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3933                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3934                 conf->geo.raid_disks);
3935         /*
3936          * Ok, everything is just fine now
3937          */
3938         mddev->dev_sectors = conf->dev_sectors;
3939         size = raid10_size(mddev, 0, 0);
3940         md_set_array_sectors(mddev, size);
3941         mddev->resync_max_sectors = size;
3942         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3943
3944         if (mddev->queue) {
3945                 int stripe = conf->geo.raid_disks *
3946                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3947
3948                 /* Calculate max read-ahead size.
3949                  * We need to readahead at least twice a whole stripe....
3950                  * maybe...
3951                  */
3952                 stripe /= conf->geo.near_copies;
3953                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3954                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3955         }
3956
3957         if (md_integrity_register(mddev))
3958                 goto out_free_conf;
3959
3960         if (conf->reshape_progress != MaxSector) {
3961                 unsigned long before_length, after_length;
3962
3963                 before_length = ((1 << conf->prev.chunk_shift) *
3964                                  conf->prev.far_copies);
3965                 after_length = ((1 << conf->geo.chunk_shift) *
3966                                 conf->geo.far_copies);
3967
3968                 if (max(before_length, after_length) > min_offset_diff) {
3969                         /* This cannot work */
3970                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3971                         goto out_free_conf;
3972                 }
3973                 conf->offset_diff = min_offset_diff;
3974
3975                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3976                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3977                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3978                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3979                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3980                                                         "reshape");
3981                 if (!mddev->sync_thread)
3982                         goto out_free_conf;
3983         }
3984
3985         return 0;
3986
3987 out_free_conf:
3988         md_unregister_thread(&mddev->thread);
3989         raid10_free_conf(conf);
3990         mddev->private = NULL;
3991 out:
3992         return -EIO;
3993 }
3994
3995 static void raid10_free(struct mddev *mddev, void *priv)
3996 {
3997         raid10_free_conf(priv);
3998 }
3999
4000 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4001 {
4002         struct r10conf *conf = mddev->private;
4003
4004         if (quiesce)
4005                 raise_barrier(conf, 0);
4006         else
4007                 lower_barrier(conf);
4008 }
4009
4010 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4011 {
4012         /* Resize of 'far' arrays is not supported.
4013          * For 'near' and 'offset' arrays we can set the
4014          * number of sectors used to be an appropriate multiple
4015          * of the chunk size.
4016          * For 'offset', this is far_copies*chunksize.
4017          * For 'near' the multiplier is the LCM of
4018          * near_copies and raid_disks.
4019          * So if far_copies > 1 && !far_offset, fail.
4020          * Else find LCM(raid_disks, near_copy)*far_copies and
4021          * multiply by chunk_size.  Then round to this number.
4022          * This is mostly done by raid10_size()
4023          */
4024         struct r10conf *conf = mddev->private;
4025         sector_t oldsize, size;
4026
4027         if (mddev->reshape_position != MaxSector)
4028                 return -EBUSY;
4029
4030         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4031                 return -EINVAL;
4032
4033         oldsize = raid10_size(mddev, 0, 0);
4034         size = raid10_size(mddev, sectors, 0);
4035         if (mddev->external_size &&
4036             mddev->array_sectors > size)
4037                 return -EINVAL;
4038         if (mddev->bitmap) {
4039                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4040                 if (ret)
4041                         return ret;
4042         }
4043         md_set_array_sectors(mddev, size);
4044         if (sectors > mddev->dev_sectors &&
4045             mddev->recovery_cp > oldsize) {
4046                 mddev->recovery_cp = oldsize;
4047                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4048         }
4049         calc_sectors(conf, sectors);
4050         mddev->dev_sectors = conf->dev_sectors;
4051         mddev->resync_max_sectors = size;
4052         return 0;
4053 }
4054
4055 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4056 {
4057         struct md_rdev *rdev;
4058         struct r10conf *conf;
4059
4060         if (mddev->degraded > 0) {
4061                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4062                         mdname(mddev));
4063                 return ERR_PTR(-EINVAL);
4064         }
4065         sector_div(size, devs);
4066
4067         /* Set new parameters */
4068         mddev->new_level = 10;
4069         /* new layout: far_copies = 1, near_copies = 2 */
4070         mddev->new_layout = (1<<8) + 2;
4071         mddev->new_chunk_sectors = mddev->chunk_sectors;
4072         mddev->delta_disks = mddev->raid_disks;
4073         mddev->raid_disks *= 2;
4074         /* make sure it will be not marked as dirty */
4075         mddev->recovery_cp = MaxSector;
4076         mddev->dev_sectors = size;
4077
4078         conf = setup_conf(mddev);
4079         if (!IS_ERR(conf)) {
4080                 rdev_for_each(rdev, mddev)
4081                         if (rdev->raid_disk >= 0) {
4082                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4083                                 rdev->sectors = size;
4084                         }
4085                 conf->barrier = 1;
4086         }
4087
4088         return conf;
4089 }
4090
4091 static void *raid10_takeover(struct mddev *mddev)
4092 {
4093         struct r0conf *raid0_conf;
4094
4095         /* raid10 can take over:
4096          *  raid0 - providing it has only two drives
4097          */
4098         if (mddev->level == 0) {
4099                 /* for raid0 takeover only one zone is supported */
4100                 raid0_conf = mddev->private;
4101                 if (raid0_conf->nr_strip_zones > 1) {
4102                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4103                                 mdname(mddev));
4104                         return ERR_PTR(-EINVAL);
4105                 }
4106                 return raid10_takeover_raid0(mddev,
4107                         raid0_conf->strip_zone->zone_end,
4108                         raid0_conf->strip_zone->nb_dev);
4109         }
4110         return ERR_PTR(-EINVAL);
4111 }
4112
4113 static int raid10_check_reshape(struct mddev *mddev)
4114 {
4115         /* Called when there is a request to change
4116          * - layout (to ->new_layout)
4117          * - chunk size (to ->new_chunk_sectors)
4118          * - raid_disks (by delta_disks)
4119          * or when trying to restart a reshape that was ongoing.
4120          *
4121          * We need to validate the request and possibly allocate
4122          * space if that might be an issue later.
4123          *
4124          * Currently we reject any reshape of a 'far' mode array,
4125          * allow chunk size to change if new is generally acceptable,
4126          * allow raid_disks to increase, and allow
4127          * a switch between 'near' mode and 'offset' mode.
4128          */
4129         struct r10conf *conf = mddev->private;
4130         struct geom geo;
4131
4132         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4133                 return -EINVAL;
4134
4135         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4136                 /* mustn't change number of copies */
4137                 return -EINVAL;
4138         if (geo.far_copies > 1 && !geo.far_offset)
4139                 /* Cannot switch to 'far' mode */
4140                 return -EINVAL;
4141
4142         if (mddev->array_sectors & geo.chunk_mask)
4143                         /* not factor of array size */
4144                         return -EINVAL;
4145
4146         if (!enough(conf, -1))
4147                 return -EINVAL;
4148
4149         kfree(conf->mirrors_new);
4150         conf->mirrors_new = NULL;
4151         if (mddev->delta_disks > 0) {
4152                 /* allocate new 'mirrors' list */
4153                 conf->mirrors_new =
4154                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4155                                 sizeof(struct raid10_info),
4156                                 GFP_KERNEL);
4157                 if (!conf->mirrors_new)
4158                         return -ENOMEM;
4159         }
4160         return 0;
4161 }
4162
4163 /*
4164  * Need to check if array has failed when deciding whether to:
4165  *  - start an array
4166  *  - remove non-faulty devices
4167  *  - add a spare
4168  *  - allow a reshape
4169  * This determination is simple when no reshape is happening.
4170  * However if there is a reshape, we need to carefully check
4171  * both the before and after sections.
4172  * This is because some failed devices may only affect one
4173  * of the two sections, and some non-in_sync devices may
4174  * be insync in the section most affected by failed devices.
4175  */
4176 static int calc_degraded(struct r10conf *conf)
4177 {
4178         int degraded, degraded2;
4179         int i;
4180
4181         rcu_read_lock();
4182         degraded = 0;
4183         /* 'prev' section first */
4184         for (i = 0; i < conf->prev.raid_disks; i++) {
4185                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4186                 if (!rdev || test_bit(Faulty, &rdev->flags))
4187                         degraded++;
4188                 else if (!test_bit(In_sync, &rdev->flags))
4189                         /* When we can reduce the number of devices in
4190                          * an array, this might not contribute to
4191                          * 'degraded'.  It does now.
4192                          */
4193                         degraded++;
4194         }
4195         rcu_read_unlock();
4196         if (conf->geo.raid_disks == conf->prev.raid_disks)
4197                 return degraded;
4198         rcu_read_lock();
4199         degraded2 = 0;
4200         for (i = 0; i < conf->geo.raid_disks; i++) {
4201                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4202                 if (!rdev || test_bit(Faulty, &rdev->flags))
4203                         degraded2++;
4204                 else if (!test_bit(In_sync, &rdev->flags)) {
4205                         /* If reshape is increasing the number of devices,
4206                          * this section has already been recovered, so
4207                          * it doesn't contribute to degraded.
4208                          * else it does.
4209                          */
4210                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4211                                 degraded2++;
4212                 }
4213         }
4214         rcu_read_unlock();
4215         if (degraded2 > degraded)
4216                 return degraded2;
4217         return degraded;
4218 }
4219
4220 static int raid10_start_reshape(struct mddev *mddev)
4221 {
4222         /* A 'reshape' has been requested. This commits
4223          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4224          * This also checks if there are enough spares and adds them
4225          * to the array.
4226          * We currently require enough spares to make the final
4227          * array non-degraded.  We also require that the difference
4228          * between old and new data_offset - on each device - is
4229          * enough that we never risk over-writing.
4230          */
4231
4232         unsigned long before_length, after_length;
4233         sector_t min_offset_diff = 0;
4234         int first = 1;
4235         struct geom new;
4236         struct r10conf *conf = mddev->private;
4237         struct md_rdev *rdev;
4238         int spares = 0;
4239         int ret;
4240
4241         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4242                 return -EBUSY;
4243
4244         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4245                 return -EINVAL;
4246
4247         before_length = ((1 << conf->prev.chunk_shift) *
4248                          conf->prev.far_copies);
4249         after_length = ((1 << conf->geo.chunk_shift) *
4250                         conf->geo.far_copies);
4251
4252         rdev_for_each(rdev, mddev) {
4253                 if (!test_bit(In_sync, &rdev->flags)
4254                     && !test_bit(Faulty, &rdev->flags))
4255                         spares++;
4256                 if (rdev->raid_disk >= 0) {
4257                         long long diff = (rdev->new_data_offset
4258                                           - rdev->data_offset);
4259                         if (!mddev->reshape_backwards)
4260                                 diff = -diff;
4261                         if (diff < 0)
4262                                 diff = 0;
4263                         if (first || diff < min_offset_diff)
4264                                 min_offset_diff = diff;
4265                         first = 0;
4266                 }
4267         }
4268
4269         if (max(before_length, after_length) > min_offset_diff)
4270                 return -EINVAL;
4271
4272         if (spares < mddev->delta_disks)
4273                 return -EINVAL;
4274
4275         conf->offset_diff = min_offset_diff;
4276         spin_lock_irq(&conf->device_lock);
4277         if (conf->mirrors_new) {
4278                 memcpy(conf->mirrors_new, conf->mirrors,
4279                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4280                 smp_mb();
4281                 kfree(conf->mirrors_old);
4282                 conf->mirrors_old = conf->mirrors;
4283                 conf->mirrors = conf->mirrors_new;
4284                 conf->mirrors_new = NULL;
4285         }
4286         setup_geo(&conf->geo, mddev, geo_start);
4287         smp_mb();
4288         if (mddev->reshape_backwards) {
4289                 sector_t size = raid10_size(mddev, 0, 0);
4290                 if (size < mddev->array_sectors) {
4291                         spin_unlock_irq(&conf->device_lock);
4292                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4293                                 mdname(mddev));
4294                         return -EINVAL;
4295                 }
4296                 mddev->resync_max_sectors = size;
4297                 conf->reshape_progress = size;
4298         } else
4299                 conf->reshape_progress = 0;
4300         conf->reshape_safe = conf->reshape_progress;
4301         spin_unlock_irq(&conf->device_lock);
4302
4303         if (mddev->delta_disks && mddev->bitmap) {
4304                 ret = md_bitmap_resize(mddev->bitmap,
4305                                        raid10_size(mddev, 0, conf->geo.raid_disks),
4306                                        0, 0);
4307                 if (ret)
4308                         goto abort;
4309         }
4310         if (mddev->delta_disks > 0) {
4311                 rdev_for_each(rdev, mddev)
4312                         if (rdev->raid_disk < 0 &&
4313                             !test_bit(Faulty, &rdev->flags)) {
4314                                 if (raid10_add_disk(mddev, rdev) == 0) {
4315                                         if (rdev->raid_disk >=
4316                                             conf->prev.raid_disks)
4317                                                 set_bit(In_sync, &rdev->flags);
4318                                         else
4319                                                 rdev->recovery_offset = 0;
4320
4321                                         if (sysfs_link_rdev(mddev, rdev))
4322                                                 /* Failure here  is OK */;
4323                                 }
4324                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4325                                    && !test_bit(Faulty, &rdev->flags)) {
4326                                 /* This is a spare that was manually added */
4327                                 set_bit(In_sync, &rdev->flags);
4328                         }
4329         }
4330         /* When a reshape changes the number of devices,
4331          * ->degraded is measured against the larger of the
4332          * pre and  post numbers.
4333          */
4334         spin_lock_irq(&conf->device_lock);
4335         mddev->degraded = calc_degraded(conf);
4336         spin_unlock_irq(&conf->device_lock);
4337         mddev->raid_disks = conf->geo.raid_disks;
4338         mddev->reshape_position = conf->reshape_progress;
4339         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4340
4341         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4342         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4343         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4344         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4345         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4346
4347         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4348                                                 "reshape");
4349         if (!mddev->sync_thread) {
4350                 ret = -EAGAIN;
4351                 goto abort;
4352         }
4353         conf->reshape_checkpoint = jiffies;
4354         md_wakeup_thread(mddev->sync_thread);
4355         md_new_event(mddev);
4356         return 0;
4357
4358 abort:
4359         mddev->recovery = 0;
4360         spin_lock_irq(&conf->device_lock);
4361         conf->geo = conf->prev;
4362         mddev->raid_disks = conf->geo.raid_disks;
4363         rdev_for_each(rdev, mddev)
4364                 rdev->new_data_offset = rdev->data_offset;
4365         smp_wmb();
4366         conf->reshape_progress = MaxSector;
4367         conf->reshape_safe = MaxSector;
4368         mddev->reshape_position = MaxSector;
4369         spin_unlock_irq(&conf->device_lock);
4370         return ret;
4371 }
4372
4373 /* Calculate the last device-address that could contain
4374  * any block from the chunk that includes the array-address 's'
4375  * and report the next address.
4376  * i.e. the address returned will be chunk-aligned and after
4377  * any data that is in the chunk containing 's'.
4378  */
4379 static sector_t last_dev_address(sector_t s, struct geom *geo)
4380 {
4381         s = (s | geo->chunk_mask) + 1;
4382         s >>= geo->chunk_shift;
4383         s *= geo->near_copies;
4384         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4385         s *= geo->far_copies;
4386         s <<= geo->chunk_shift;
4387         return s;
4388 }
4389
4390 /* Calculate the first device-address that could contain
4391  * any block from the chunk that includes the array-address 's'.
4392  * This too will be the start of a chunk
4393  */
4394 static sector_t first_dev_address(sector_t s, struct geom *geo)
4395 {
4396         s >>= geo->chunk_shift;
4397         s *= geo->near_copies;
4398         sector_div(s, geo->raid_disks);
4399         s *= geo->far_copies;
4400         s <<= geo->chunk_shift;
4401         return s;
4402 }
4403
4404 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4405                                 int *skipped)
4406 {
4407         /* We simply copy at most one chunk (smallest of old and new)
4408          * at a time, possibly less if that exceeds RESYNC_PAGES,
4409          * or we hit a bad block or something.
4410          * This might mean we pause for normal IO in the middle of
4411          * a chunk, but that is not a problem as mddev->reshape_position
4412          * can record any location.
4413          *
4414          * If we will want to write to a location that isn't
4415          * yet recorded as 'safe' (i.e. in metadata on disk) then
4416          * we need to flush all reshape requests and update the metadata.
4417          *
4418          * When reshaping forwards (e.g. to more devices), we interpret
4419          * 'safe' as the earliest block which might not have been copied
4420          * down yet.  We divide this by previous stripe size and multiply
4421          * by previous stripe length to get lowest device offset that we
4422          * cannot write to yet.
4423          * We interpret 'sector_nr' as an address that we want to write to.
4424          * From this we use last_device_address() to find where we might
4425          * write to, and first_device_address on the  'safe' position.
4426          * If this 'next' write position is after the 'safe' position,
4427          * we must update the metadata to increase the 'safe' position.
4428          *
4429          * When reshaping backwards, we round in the opposite direction
4430          * and perform the reverse test:  next write position must not be
4431          * less than current safe position.
4432          *
4433          * In all this the minimum difference in data offsets
4434          * (conf->offset_diff - always positive) allows a bit of slack,
4435          * so next can be after 'safe', but not by more than offset_diff
4436          *
4437          * We need to prepare all the bios here before we start any IO
4438          * to ensure the size we choose is acceptable to all devices.
4439          * The means one for each copy for write-out and an extra one for
4440          * read-in.
4441          * We store the read-in bio in ->master_bio and the others in
4442          * ->devs[x].bio and ->devs[x].repl_bio.
4443          */
4444         struct r10conf *conf = mddev->private;
4445         struct r10bio *r10_bio;
4446         sector_t next, safe, last;
4447         int max_sectors;
4448         int nr_sectors;
4449         int s;
4450         struct md_rdev *rdev;
4451         int need_flush = 0;
4452         struct bio *blist;
4453         struct bio *bio, *read_bio;
4454         int sectors_done = 0;
4455         struct page **pages;
4456
4457         if (sector_nr == 0) {
4458                 /* If restarting in the middle, skip the initial sectors */
4459                 if (mddev->reshape_backwards &&
4460                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4461                         sector_nr = (raid10_size(mddev, 0, 0)
4462                                      - conf->reshape_progress);
4463                 } else if (!mddev->reshape_backwards &&
4464                            conf->reshape_progress > 0)
4465                         sector_nr = conf->reshape_progress;
4466                 if (sector_nr) {
4467                         mddev->curr_resync_completed = sector_nr;
4468                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4469                         *skipped = 1;
4470                         return sector_nr;
4471                 }
4472         }
4473
4474         /* We don't use sector_nr to track where we are up to
4475          * as that doesn't work well for ->reshape_backwards.
4476          * So just use ->reshape_progress.
4477          */
4478         if (mddev->reshape_backwards) {
4479                 /* 'next' is the earliest device address that we might
4480                  * write to for this chunk in the new layout
4481                  */
4482                 next = first_dev_address(conf->reshape_progress - 1,
4483                                          &conf->geo);
4484
4485                 /* 'safe' is the last device address that we might read from
4486                  * in the old layout after a restart
4487                  */
4488                 safe = last_dev_address(conf->reshape_safe - 1,
4489                                         &conf->prev);
4490
4491                 if (next + conf->offset_diff < safe)
4492                         need_flush = 1;
4493
4494                 last = conf->reshape_progress - 1;
4495                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4496                                                & conf->prev.chunk_mask);
4497                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4498                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4499         } else {
4500                 /* 'next' is after the last device address that we
4501                  * might write to for this chunk in the new layout
4502                  */
4503                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4504
4505                 /* 'safe' is the earliest device address that we might
4506                  * read from in the old layout after a restart
4507                  */
4508                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4509
4510                 /* Need to update metadata if 'next' might be beyond 'safe'
4511                  * as that would possibly corrupt data
4512                  */
4513                 if (next > safe + conf->offset_diff)
4514                         need_flush = 1;
4515
4516                 sector_nr = conf->reshape_progress;
4517                 last  = sector_nr | (conf->geo.chunk_mask
4518                                      & conf->prev.chunk_mask);
4519
4520                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4521                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4522         }
4523
4524         if (need_flush ||
4525             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4526                 /* Need to update reshape_position in metadata */
4527                 wait_barrier(conf);
4528                 mddev->reshape_position = conf->reshape_progress;
4529                 if (mddev->reshape_backwards)
4530                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4531                                 - conf->reshape_progress;
4532                 else
4533                         mddev->curr_resync_completed = conf->reshape_progress;
4534                 conf->reshape_checkpoint = jiffies;
4535                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4536                 md_wakeup_thread(mddev->thread);
4537                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4538                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4539                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4540                         allow_barrier(conf);
4541                         return sectors_done;
4542                 }
4543                 conf->reshape_safe = mddev->reshape_position;
4544                 allow_barrier(conf);
4545         }
4546
4547         raise_barrier(conf, 0);
4548 read_more:
4549         /* Now schedule reads for blocks from sector_nr to last */
4550         r10_bio = raid10_alloc_init_r10buf(conf);
4551         r10_bio->state = 0;
4552         raise_barrier(conf, 1);
4553         atomic_set(&r10_bio->remaining, 0);
4554         r10_bio->mddev = mddev;
4555         r10_bio->sector = sector_nr;
4556         set_bit(R10BIO_IsReshape, &r10_bio->state);
4557         r10_bio->sectors = last - sector_nr + 1;
4558         rdev = read_balance(conf, r10_bio, &max_sectors);
4559         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4560
4561         if (!rdev) {
4562                 /* Cannot read from here, so need to record bad blocks
4563                  * on all the target devices.
4564                  */
4565                 // FIXME
4566                 mempool_free(r10_bio, &conf->r10buf_pool);
4567                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4568                 return sectors_done;
4569         }
4570
4571         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4572
4573         bio_set_dev(read_bio, rdev->bdev);
4574         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4575                                + rdev->data_offset);
4576         read_bio->bi_private = r10_bio;
4577         read_bio->bi_end_io = end_reshape_read;
4578         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4579         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4580         read_bio->bi_status = 0;
4581         read_bio->bi_vcnt = 0;
4582         read_bio->bi_iter.bi_size = 0;
4583         r10_bio->master_bio = read_bio;
4584         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4585
4586         /* Now find the locations in the new layout */
4587         __raid10_find_phys(&conf->geo, r10_bio);
4588
4589         blist = read_bio;
4590         read_bio->bi_next = NULL;
4591
4592         rcu_read_lock();
4593         for (s = 0; s < conf->copies*2; s++) {
4594                 struct bio *b;
4595                 int d = r10_bio->devs[s/2].devnum;
4596                 struct md_rdev *rdev2;
4597                 if (s&1) {
4598                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4599                         b = r10_bio->devs[s/2].repl_bio;
4600                 } else {
4601                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4602                         b = r10_bio->devs[s/2].bio;
4603                 }
4604                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4605                         continue;
4606
4607                 bio_set_dev(b, rdev2->bdev);
4608                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4609                         rdev2->new_data_offset;
4610                 b->bi_end_io = end_reshape_write;
4611                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4612                 b->bi_next = blist;
4613                 blist = b;
4614         }
4615
4616         /* Now add as many pages as possible to all of these bios. */
4617
4618         nr_sectors = 0;
4619         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4620         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4621                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4622                 int len = (max_sectors - s) << 9;
4623                 if (len > PAGE_SIZE)
4624                         len = PAGE_SIZE;
4625                 for (bio = blist; bio ; bio = bio->bi_next) {
4626                         /*
4627                          * won't fail because the vec table is big enough
4628                          * to hold all these pages
4629                          */
4630                         bio_add_page(bio, page, len, 0);
4631                 }
4632                 sector_nr += len >> 9;
4633                 nr_sectors += len >> 9;
4634         }
4635         rcu_read_unlock();
4636         r10_bio->sectors = nr_sectors;
4637
4638         /* Now submit the read */
4639         md_sync_acct_bio(read_bio, r10_bio->sectors);
4640         atomic_inc(&r10_bio->remaining);
4641         read_bio->bi_next = NULL;
4642         generic_make_request(read_bio);
4643         sectors_done += nr_sectors;
4644         if (sector_nr <= last)
4645                 goto read_more;
4646
4647         lower_barrier(conf);
4648
4649         /* Now that we have done the whole section we can
4650          * update reshape_progress
4651          */
4652         if (mddev->reshape_backwards)
4653                 conf->reshape_progress -= sectors_done;
4654         else
4655                 conf->reshape_progress += sectors_done;
4656
4657         return sectors_done;
4658 }
4659
4660 static void end_reshape_request(struct r10bio *r10_bio);
4661 static int handle_reshape_read_error(struct mddev *mddev,
4662                                      struct r10bio *r10_bio);
4663 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4664 {
4665         /* Reshape read completed.  Hopefully we have a block
4666          * to write out.
4667          * If we got a read error then we do sync 1-page reads from
4668          * elsewhere until we find the data - or give up.
4669          */
4670         struct r10conf *conf = mddev->private;
4671         int s;
4672
4673         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4674                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4675                         /* Reshape has been aborted */
4676                         md_done_sync(mddev, r10_bio->sectors, 0);
4677                         return;
4678                 }
4679
4680         /* We definitely have the data in the pages, schedule the
4681          * writes.
4682          */
4683         atomic_set(&r10_bio->remaining, 1);
4684         for (s = 0; s < conf->copies*2; s++) {
4685                 struct bio *b;
4686                 int d = r10_bio->devs[s/2].devnum;
4687                 struct md_rdev *rdev;
4688                 rcu_read_lock();
4689                 if (s&1) {
4690                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4691                         b = r10_bio->devs[s/2].repl_bio;
4692                 } else {
4693                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4694                         b = r10_bio->devs[s/2].bio;
4695                 }
4696                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4697                         rcu_read_unlock();
4698                         continue;
4699                 }
4700                 atomic_inc(&rdev->nr_pending);
4701                 rcu_read_unlock();
4702                 md_sync_acct_bio(b, r10_bio->sectors);
4703                 atomic_inc(&r10_bio->remaining);
4704                 b->bi_next = NULL;
4705                 generic_make_request(b);
4706         }
4707         end_reshape_request(r10_bio);
4708 }
4709
4710 static void end_reshape(struct r10conf *conf)
4711 {
4712         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4713                 return;
4714
4715         spin_lock_irq(&conf->device_lock);
4716         conf->prev = conf->geo;
4717         md_finish_reshape(conf->mddev);
4718         smp_wmb();
4719         conf->reshape_progress = MaxSector;
4720         conf->reshape_safe = MaxSector;
4721         spin_unlock_irq(&conf->device_lock);
4722
4723         /* read-ahead size must cover two whole stripes, which is
4724          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4725          */
4726         if (conf->mddev->queue) {
4727                 int stripe = conf->geo.raid_disks *
4728                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4729                 stripe /= conf->geo.near_copies;
4730                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4731                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4732                 raid10_set_io_opt(conf);
4733         }
4734         conf->fullsync = 0;
4735 }
4736
4737 static int handle_reshape_read_error(struct mddev *mddev,
4738                                      struct r10bio *r10_bio)
4739 {
4740         /* Use sync reads to get the blocks from somewhere else */
4741         int sectors = r10_bio->sectors;
4742         struct r10conf *conf = mddev->private;
4743         struct r10bio *r10b;
4744         int slot = 0;
4745         int idx = 0;
4746         struct page **pages;
4747
4748         r10b = kmalloc(sizeof(*r10b) +
4749                sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4750         if (!r10b) {
4751                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4752                 return -ENOMEM;
4753         }
4754
4755         /* reshape IOs share pages from .devs[0].bio */
4756         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4757
4758         r10b->sector = r10_bio->sector;
4759         __raid10_find_phys(&conf->prev, r10b);
4760
4761         while (sectors) {
4762                 int s = sectors;
4763                 int success = 0;
4764                 int first_slot = slot;
4765
4766                 if (s > (PAGE_SIZE >> 9))
4767                         s = PAGE_SIZE >> 9;
4768
4769                 rcu_read_lock();
4770                 while (!success) {
4771                         int d = r10b->devs[slot].devnum;
4772                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4773                         sector_t addr;
4774                         if (rdev == NULL ||
4775                             test_bit(Faulty, &rdev->flags) ||
4776                             !test_bit(In_sync, &rdev->flags))
4777                                 goto failed;
4778
4779                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4780                         atomic_inc(&rdev->nr_pending);
4781                         rcu_read_unlock();
4782                         success = sync_page_io(rdev,
4783                                                addr,
4784                                                s << 9,
4785                                                pages[idx],
4786                                                REQ_OP_READ, 0, false);
4787                         rdev_dec_pending(rdev, mddev);
4788                         rcu_read_lock();
4789                         if (success)
4790                                 break;
4791                 failed:
4792                         slot++;
4793                         if (slot >= conf->copies)
4794                                 slot = 0;
4795                         if (slot == first_slot)
4796                                 break;
4797                 }
4798                 rcu_read_unlock();
4799                 if (!success) {
4800                         /* couldn't read this block, must give up */
4801                         set_bit(MD_RECOVERY_INTR,
4802                                 &mddev->recovery);
4803                         kfree(r10b);
4804                         return -EIO;
4805                 }
4806                 sectors -= s;
4807                 idx++;
4808         }
4809         kfree(r10b);
4810         return 0;
4811 }
4812
4813 static void end_reshape_write(struct bio *bio)
4814 {
4815         struct r10bio *r10_bio = get_resync_r10bio(bio);
4816         struct mddev *mddev = r10_bio->mddev;
4817         struct r10conf *conf = mddev->private;
4818         int d;
4819         int slot;
4820         int repl;
4821         struct md_rdev *rdev = NULL;
4822
4823         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4824         if (repl)
4825                 rdev = conf->mirrors[d].replacement;
4826         if (!rdev) {
4827                 smp_mb();
4828                 rdev = conf->mirrors[d].rdev;
4829         }
4830
4831         if (bio->bi_status) {
4832                 /* FIXME should record badblock */
4833                 md_error(mddev, rdev);
4834         }
4835
4836         rdev_dec_pending(rdev, mddev);
4837         end_reshape_request(r10_bio);
4838 }
4839
4840 static void end_reshape_request(struct r10bio *r10_bio)
4841 {
4842         if (!atomic_dec_and_test(&r10_bio->remaining))
4843                 return;
4844         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4845         bio_put(r10_bio->master_bio);
4846         put_buf(r10_bio);
4847 }
4848
4849 static void raid10_finish_reshape(struct mddev *mddev)
4850 {
4851         struct r10conf *conf = mddev->private;
4852
4853         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4854                 return;
4855
4856         if (mddev->delta_disks > 0) {
4857                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4858                         mddev->recovery_cp = mddev->resync_max_sectors;
4859                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4860                 }
4861                 mddev->resync_max_sectors = mddev->array_sectors;
4862         } else {
4863                 int d;
4864                 rcu_read_lock();
4865                 for (d = conf->geo.raid_disks ;
4866                      d < conf->geo.raid_disks - mddev->delta_disks;
4867                      d++) {
4868                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4869                         if (rdev)
4870                                 clear_bit(In_sync, &rdev->flags);
4871                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4872                         if (rdev)
4873                                 clear_bit(In_sync, &rdev->flags);
4874                 }
4875                 rcu_read_unlock();
4876         }
4877         mddev->layout = mddev->new_layout;
4878         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4879         mddev->reshape_position = MaxSector;
4880         mddev->delta_disks = 0;
4881         mddev->reshape_backwards = 0;
4882 }
4883
4884 static struct md_personality raid10_personality =
4885 {
4886         .name           = "raid10",
4887         .level          = 10,
4888         .owner          = THIS_MODULE,
4889         .make_request   = raid10_make_request,
4890         .run            = raid10_run,
4891         .free           = raid10_free,
4892         .status         = raid10_status,
4893         .error_handler  = raid10_error,
4894         .hot_add_disk   = raid10_add_disk,
4895         .hot_remove_disk= raid10_remove_disk,
4896         .spare_active   = raid10_spare_active,
4897         .sync_request   = raid10_sync_request,
4898         .quiesce        = raid10_quiesce,
4899         .size           = raid10_size,
4900         .resize         = raid10_resize,
4901         .takeover       = raid10_takeover,
4902         .check_reshape  = raid10_check_reshape,
4903         .start_reshape  = raid10_start_reshape,
4904         .finish_reshape = raid10_finish_reshape,
4905         .congested      = raid10_congested,
4906 };
4907
4908 static int __init raid_init(void)
4909 {
4910         return register_md_personality(&raid10_personality);
4911 }
4912
4913 static void raid_exit(void)
4914 {
4915         unregister_md_personality(&raid10_personality);
4916 }
4917
4918 module_init(raid_init);
4919 module_exit(raid_exit);
4920 MODULE_LICENSE("GPL");
4921 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4922 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4923 MODULE_ALIAS("md-raid10");
4924 MODULE_ALIAS("md-level-10");
4925
4926 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);