GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / media / dvb-frontends / mb86a16.c
1 /*
2         Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4         Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the Free Software
18         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26
27 #include <media/dvb_frontend.h>
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30
31 static unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33
34 struct mb86a16_state {
35         struct i2c_adapter              *i2c_adap;
36         const struct mb86a16_config     *config;
37         struct dvb_frontend             frontend;
38
39         /* tuning parameters */
40         int                             frequency;
41         int                             srate;
42
43         /* Internal stuff */
44         int                             master_clk;
45         int                             deci;
46         int                             csel;
47         int                             rsel;
48 };
49
50 #define MB86A16_ERROR           0
51 #define MB86A16_NOTICE          1
52 #define MB86A16_INFO            2
53 #define MB86A16_DEBUG           3
54
55 #define dprintk(x, y, z, format, arg...) do {                                           \
56         if (z) {                                                                        \
57                 if      ((x > MB86A16_ERROR) && (x > y))                                \
58                         printk(KERN_ERR "%s: " format "\n", __func__, ##arg);           \
59                 else if ((x > MB86A16_NOTICE) && (x > y))                               \
60                         printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);        \
61                 else if ((x > MB86A16_INFO) && (x > y))                                 \
62                         printk(KERN_INFO "%s: " format "\n", __func__, ##arg);          \
63                 else if ((x > MB86A16_DEBUG) && (x > y))                                \
64                         printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);         \
65         } else {                                                                        \
66                 if (x > y)                                                              \
67                         printk(format, ##arg);                                          \
68         }                                                                               \
69 } while (0)
70
71 #define TRACE_IN        dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
72 #define TRACE_OUT       dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
73
74 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
75 {
76         int ret;
77         u8 buf[] = { reg, val };
78
79         struct i2c_msg msg = {
80                 .addr = state->config->demod_address,
81                 .flags = 0,
82                 .buf = buf,
83                 .len = 2
84         };
85
86         dprintk(verbose, MB86A16_DEBUG, 1,
87                 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
88                 state->config->demod_address, buf[0], buf[1]);
89
90         ret = i2c_transfer(state->i2c_adap, &msg, 1);
91
92         return (ret != 1) ? -EREMOTEIO : 0;
93 }
94
95 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
96 {
97         int ret;
98         u8 b0[] = { reg };
99         u8 b1[] = { 0 };
100
101         struct i2c_msg msg[] = {
102                 {
103                         .addr = state->config->demod_address,
104                         .flags = 0,
105                         .buf = b0,
106                         .len = 1
107                 }, {
108                         .addr = state->config->demod_address,
109                         .flags = I2C_M_RD,
110                         .buf = b1,
111                         .len = 1
112                 }
113         };
114         ret = i2c_transfer(state->i2c_adap, msg, 2);
115         if (ret != 2) {
116                 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
117                         reg, ret);
118
119                 if (ret < 0)
120                         return ret;
121                 return -EREMOTEIO;
122         }
123         *val = b1[0];
124
125         return ret;
126 }
127
128 static int CNTM_set(struct mb86a16_state *state,
129                     unsigned char timint1,
130                     unsigned char timint2,
131                     unsigned char cnext)
132 {
133         unsigned char val;
134
135         val = (timint1 << 4) | (timint2 << 2) | cnext;
136         if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137                 goto err;
138
139         return 0;
140
141 err:
142         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143         return -EREMOTEIO;
144 }
145
146 static int smrt_set(struct mb86a16_state *state, int rate)
147 {
148         int tmp ;
149         int m ;
150         unsigned char STOFS0, STOFS1;
151
152         m = 1 << state->deci;
153         tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154
155         STOFS0 = tmp & 0x0ff;
156         STOFS1 = (tmp & 0xf00) >> 8;
157
158         if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159                                        (state->csel << 1) |
160                                         state->rsel) < 0)
161                 goto err;
162         if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163                 goto err;
164         if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165                 goto err;
166
167         return 0;
168 err:
169         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170         return -1;
171 }
172
173 static int srst(struct mb86a16_state *state)
174 {
175         if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176                 goto err;
177
178         return 0;
179 err:
180         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181         return -EREMOTEIO;
182
183 }
184
185 static int afcex_data_set(struct mb86a16_state *state,
186                           unsigned char AFCEX_L,
187                           unsigned char AFCEX_H)
188 {
189         if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190                 goto err;
191         if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192                 goto err;
193
194         return 0;
195 err:
196         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197
198         return -1;
199 }
200
201 static int afcofs_data_set(struct mb86a16_state *state,
202                            unsigned char AFCEX_L,
203                            unsigned char AFCEX_H)
204 {
205         if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206                 goto err;
207         if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208                 goto err;
209
210         return 0;
211 err:
212         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213         return -EREMOTEIO;
214 }
215
216 static int stlp_set(struct mb86a16_state *state,
217                     unsigned char STRAS,
218                     unsigned char STRBS)
219 {
220         if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221                 goto err;
222
223         return 0;
224 err:
225         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226         return -EREMOTEIO;
227 }
228
229 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230 {
231         if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232                 goto err;
233         if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234                 goto err;
235
236         return 0;
237 err:
238         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239         return -EREMOTEIO;
240 }
241
242 static int initial_set(struct mb86a16_state *state)
243 {
244         if (stlp_set(state, 5, 7))
245                 goto err;
246
247         udelay(100);
248         if (afcex_data_set(state, 0, 0))
249                 goto err;
250
251         udelay(100);
252         if (afcofs_data_set(state, 0, 0))
253                 goto err;
254
255         udelay(100);
256         if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257                 goto err;
258         if (mb86a16_write(state, 0x2f, 0x21) < 0)
259                 goto err;
260         if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261                 goto err;
262         if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263                 goto err;
264         if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265                 goto err;
266         if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267                 goto err;
268         if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269                 goto err;
270         if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271                 goto err;
272         if (mb86a16_write(state, 0x54, 0xff) < 0)
273                 goto err;
274         if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275                 goto err;
276
277         return 0;
278
279 err:
280         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281         return -EREMOTEIO;
282 }
283
284 static int S01T_set(struct mb86a16_state *state,
285                     unsigned char s1t,
286                     unsigned s0t)
287 {
288         if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289                 goto err;
290
291         return 0;
292 err:
293         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294         return -EREMOTEIO;
295 }
296
297
298 static int EN_set(struct mb86a16_state *state,
299                   int cren,
300                   int afcen)
301 {
302         unsigned char val;
303
304         val = 0x7a | (cren << 7) | (afcen << 2);
305         if (mb86a16_write(state, 0x49, val) < 0)
306                 goto err;
307
308         return 0;
309 err:
310         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311         return -EREMOTEIO;
312 }
313
314 static int AFCEXEN_set(struct mb86a16_state *state,
315                        int afcexen,
316                        int smrt)
317 {
318         unsigned char AFCA ;
319
320         if (smrt > 18875)
321                 AFCA = 4;
322         else if (smrt > 9375)
323                 AFCA = 3;
324         else if (smrt > 2250)
325                 AFCA = 2;
326         else
327                 AFCA = 1;
328
329         if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330                 goto err;
331
332         return 0;
333
334 err:
335         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336         return -EREMOTEIO;
337 }
338
339 static int DAGC_data_set(struct mb86a16_state *state,
340                          unsigned char DAGCA,
341                          unsigned char DAGCW)
342 {
343         if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344                 goto err;
345
346         return 0;
347
348 err:
349         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350         return -EREMOTEIO;
351 }
352
353 static void smrt_info_get(struct mb86a16_state *state, int rate)
354 {
355         if (rate >= 37501) {
356                 state->deci = 0; state->csel = 0; state->rsel = 0;
357         } else if (rate >= 30001) {
358                 state->deci = 0; state->csel = 0; state->rsel = 1;
359         } else if (rate >= 26251) {
360                 state->deci = 0; state->csel = 1; state->rsel = 0;
361         } else if (rate >= 22501) {
362                 state->deci = 0; state->csel = 1; state->rsel = 1;
363         } else if (rate >= 18751) {
364                 state->deci = 1; state->csel = 0; state->rsel = 0;
365         } else if (rate >= 15001) {
366                 state->deci = 1; state->csel = 0; state->rsel = 1;
367         } else if (rate >= 13126) {
368                 state->deci = 1; state->csel = 1; state->rsel = 0;
369         } else if (rate >= 11251) {
370                 state->deci = 1; state->csel = 1; state->rsel = 1;
371         } else if (rate >= 9376) {
372                 state->deci = 2; state->csel = 0; state->rsel = 0;
373         } else if (rate >= 7501) {
374                 state->deci = 2; state->csel = 0; state->rsel = 1;
375         } else if (rate >= 6563) {
376                 state->deci = 2; state->csel = 1; state->rsel = 0;
377         } else if (rate >= 5626) {
378                 state->deci = 2; state->csel = 1; state->rsel = 1;
379         } else if (rate >= 4688) {
380                 state->deci = 3; state->csel = 0; state->rsel = 0;
381         } else if (rate >= 3751) {
382                 state->deci = 3; state->csel = 0; state->rsel = 1;
383         } else if (rate >= 3282) {
384                 state->deci = 3; state->csel = 1; state->rsel = 0;
385         } else if (rate >= 2814) {
386                 state->deci = 3; state->csel = 1; state->rsel = 1;
387         } else if (rate >= 2344) {
388                 state->deci = 4; state->csel = 0; state->rsel = 0;
389         } else if (rate >= 1876) {
390                 state->deci = 4; state->csel = 0; state->rsel = 1;
391         } else if (rate >= 1641) {
392                 state->deci = 4; state->csel = 1; state->rsel = 0;
393         } else if (rate >= 1407) {
394                 state->deci = 4; state->csel = 1; state->rsel = 1;
395         } else if (rate >= 1172) {
396                 state->deci = 5; state->csel = 0; state->rsel = 0;
397         } else if (rate >=  939) {
398                 state->deci = 5; state->csel = 0; state->rsel = 1;
399         } else if (rate >=  821) {
400                 state->deci = 5; state->csel = 1; state->rsel = 0;
401         } else {
402                 state->deci = 5; state->csel = 1; state->rsel = 1;
403         }
404
405         if (state->csel == 0)
406                 state->master_clk = 92000;
407         else
408                 state->master_clk = 61333;
409
410 }
411
412 static int signal_det(struct mb86a16_state *state,
413                       int smrt,
414                       unsigned char *SIG)
415 {
416         int ret;
417         int smrtd;
418         unsigned char S[3];
419         int i;
420
421         if (*SIG > 45) {
422                 if (CNTM_set(state, 2, 1, 2) < 0) {
423                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
424                         return -1;
425                 }
426         } else {
427                 if (CNTM_set(state, 3, 1, 2) < 0) {
428                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
429                         return -1;
430                 }
431         }
432         for (i = 0; i < 3; i++) {
433                 if (i == 0)
434                         smrtd = smrt * 98 / 100;
435                 else if (i == 1)
436                         smrtd = smrt;
437                 else
438                         smrtd = smrt * 102 / 100;
439                 smrt_info_get(state, smrtd);
440                 smrt_set(state, smrtd);
441                 srst(state);
442                 msleep_interruptible(10);
443                 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
444                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
445                         return -EREMOTEIO;
446                 }
447         }
448         if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
449                 ret = 1;
450         else
451                 ret = 0;
452
453         *SIG = S[1];
454
455         if (CNTM_set(state, 0, 1, 2) < 0) {
456                 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
457                 return -1;
458         }
459
460         return ret;
461 }
462
463 static int rf_val_set(struct mb86a16_state *state,
464                       int f,
465                       int smrt,
466                       unsigned char R)
467 {
468         unsigned char C, F, B;
469         int M;
470         unsigned char rf_val[5];
471         int ack = -1;
472
473         if (smrt > 37750)
474                 C = 1;
475         else if (smrt > 18875)
476                 C = 2;
477         else if (smrt > 5500)
478                 C = 3;
479         else
480                 C = 4;
481
482         if (smrt > 30500)
483                 F = 3;
484         else if (smrt > 9375)
485                 F = 1;
486         else if (smrt > 4625)
487                 F = 0;
488         else
489                 F = 2;
490
491         if (f < 1060)
492                 B = 0;
493         else if (f < 1175)
494                 B = 1;
495         else if (f < 1305)
496                 B = 2;
497         else if (f < 1435)
498                 B = 3;
499         else if (f < 1570)
500                 B = 4;
501         else if (f < 1715)
502                 B = 5;
503         else if (f < 1845)
504                 B = 6;
505         else if (f < 1980)
506                 B = 7;
507         else if (f < 2080)
508                 B = 8;
509         else
510                 B = 9;
511
512         M = f * (1 << R) / 2;
513
514         rf_val[0] = 0x01 | (C << 3) | (F << 1);
515         rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
516         rf_val[2] = (M & 0x00ff0) >> 4;
517         rf_val[3] = ((M & 0x0000f) << 4) | B;
518
519         /* Frequency Set */
520         if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
521                 ack = 0;
522         if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
523                 ack = 0;
524         if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
525                 ack = 0;
526         if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
527                 ack = 0;
528         if (mb86a16_write(state, 0x25, 0x01) < 0)
529                 ack = 0;
530         if (ack == 0) {
531                 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
532                 return -EREMOTEIO;
533         }
534
535         return 0;
536 }
537
538 static int afcerr_chk(struct mb86a16_state *state)
539 {
540         unsigned char AFCM_L, AFCM_H ;
541         int AFCM ;
542         int afcm, afcerr ;
543
544         if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
545                 goto err;
546         if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
547                 goto err;
548
549         AFCM = (AFCM_H << 8) + AFCM_L;
550
551         if (AFCM > 2048)
552                 afcm = AFCM - 4096;
553         else
554                 afcm = AFCM;
555         afcerr = afcm * state->master_clk / 8192;
556
557         return afcerr;
558
559 err:
560         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
561         return -EREMOTEIO;
562 }
563
564 static int dagcm_val_get(struct mb86a16_state *state)
565 {
566         int DAGCM;
567         unsigned char DAGCM_H, DAGCM_L;
568
569         if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
570                 goto err;
571         if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
572                 goto err;
573
574         DAGCM = (DAGCM_H << 8) + DAGCM_L;
575
576         return DAGCM;
577
578 err:
579         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
580         return -EREMOTEIO;
581 }
582
583 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
584 {
585         u8 stat, stat2;
586         struct mb86a16_state *state = fe->demodulator_priv;
587
588         *status = 0;
589
590         if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
591                 goto err;
592         if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
593                 goto err;
594         if ((stat > 25) && (stat2 > 25))
595                 *status |= FE_HAS_SIGNAL;
596         if ((stat > 45) && (stat2 > 45))
597                 *status |= FE_HAS_CARRIER;
598
599         if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
600                 goto err;
601
602         if (stat & 0x01)
603                 *status |= FE_HAS_SYNC;
604         if (stat & 0x01)
605                 *status |= FE_HAS_VITERBI;
606
607         if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
608                 goto err;
609
610         if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
611                 *status |= FE_HAS_LOCK;
612
613         return 0;
614
615 err:
616         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
617         return -EREMOTEIO;
618 }
619
620 static int sync_chk(struct mb86a16_state *state,
621                     unsigned char *VIRM)
622 {
623         unsigned char val;
624         int sync;
625
626         if (mb86a16_read(state, 0x0d, &val) != 2)
627                 goto err;
628
629         dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
630         sync = val & 0x01;
631         *VIRM = (val & 0x1c) >> 2;
632
633         return sync;
634 err:
635         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
636         *VIRM = 0;
637         return -EREMOTEIO;
638
639 }
640
641 static int freqerr_chk(struct mb86a16_state *state,
642                        int fTP,
643                        int smrt,
644                        int unit)
645 {
646         unsigned char CRM, AFCML, AFCMH;
647         unsigned char temp1, temp2, temp3;
648         int crm, afcm, AFCM;
649         int crrerr, afcerr;             /* kHz */
650         int frqerr;                     /* MHz */
651         int afcen, afcexen = 0;
652         int R, M, fOSC, fOSC_OFS;
653
654         if (mb86a16_read(state, 0x43, &CRM) != 2)
655                 goto err;
656
657         if (CRM > 127)
658                 crm = CRM - 256;
659         else
660                 crm = CRM;
661
662         crrerr = smrt * crm / 256;
663         if (mb86a16_read(state, 0x49, &temp1) != 2)
664                 goto err;
665
666         afcen = (temp1 & 0x04) >> 2;
667         if (afcen == 0) {
668                 if (mb86a16_read(state, 0x2a, &temp1) != 2)
669                         goto err;
670                 afcexen = (temp1 & 0x20) >> 5;
671         }
672
673         if (afcen == 1) {
674                 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
675                         goto err;
676                 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
677                         goto err;
678         } else if (afcexen == 1) {
679                 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
680                         goto err;
681                 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
682                         goto err;
683         }
684         if ((afcen == 1) || (afcexen == 1)) {
685                 smrt_info_get(state, smrt);
686                 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
687                 if (AFCM > 255)
688                         afcm = AFCM - 512;
689                 else
690                         afcm = AFCM;
691
692                 afcerr = afcm * state->master_clk / 8192;
693         } else
694                 afcerr = 0;
695
696         if (mb86a16_read(state, 0x22, &temp1) != 2)
697                 goto err;
698         if (mb86a16_read(state, 0x23, &temp2) != 2)
699                 goto err;
700         if (mb86a16_read(state, 0x24, &temp3) != 2)
701                 goto err;
702
703         R = (temp1 & 0xe0) >> 5;
704         M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
705         if (R == 0)
706                 fOSC = 2 * M;
707         else
708                 fOSC = M;
709
710         fOSC_OFS = fOSC - fTP;
711
712         if (unit == 0) {        /* MHz */
713                 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
714                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
715                 else
716                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
717         } else {        /* kHz */
718                 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
719         }
720
721         return frqerr;
722 err:
723         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
724         return -EREMOTEIO;
725 }
726
727 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
728 {
729         unsigned char R;
730
731         if (smrt > 9375)
732                 R = 0;
733         else
734                 R = 1;
735
736         return R;
737 }
738
739 static void swp_info_get(struct mb86a16_state *state,
740                          int fOSC_start,
741                          int smrt,
742                          int v, int R,
743                          int swp_ofs,
744                          int *fOSC,
745                          int *afcex_freq,
746                          unsigned char *AFCEX_L,
747                          unsigned char *AFCEX_H)
748 {
749         int AFCEX ;
750         int crnt_swp_freq ;
751
752         crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
753
754         if (R == 0)
755                 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
756         else
757                 *fOSC = (crnt_swp_freq + 500) / 1000;
758
759         if (*fOSC >= crnt_swp_freq)
760                 *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
761         else
762                 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
763
764         AFCEX = *afcex_freq * 8192 / state->master_clk;
765         *AFCEX_L =  AFCEX & 0x00ff;
766         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
767 }
768
769
770 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
771                                int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
772 {
773         int swp_freq ;
774
775         if ((i % 2 == 1) && (v <= vmax)) {
776                 /* positive v (case 1) */
777                 if ((v - 1 == vmin)                             &&
778                     (*(V + 30 + v) >= 0)                        &&
779                     (*(V + 30 + v - 1) >= 0)                    &&
780                     (*(V + 30 + v - 1) > *(V + 30 + v))         &&
781                     (*(V + 30 + v - 1) > SIGMIN)) {
782
783                         swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
784                         *SIG1 = *(V + 30 + v - 1);
785                 } else if ((v == vmax)                          &&
786                            (*(V + 30 + v) >= 0)                 &&
787                            (*(V + 30 + v - 1) >= 0)             &&
788                            (*(V + 30 + v) > *(V + 30 + v - 1))  &&
789                            (*(V + 30 + v) > SIGMIN)) {
790                         /* (case 2) */
791                         swp_freq = fOSC * 1000 + afcex_freq;
792                         *SIG1 = *(V + 30 + v);
793                 } else if ((*(V + 30 + v) > 0)                  &&
794                            (*(V + 30 + v - 1) > 0)              &&
795                            (*(V + 30 + v - 2) > 0)              &&
796                            (*(V + 30 + v - 3) > 0)              &&
797                            (*(V + 30 + v - 1) > *(V + 30 + v))  &&
798                            (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
799                            ((*(V + 30 + v - 1) > SIGMIN)        ||
800                            (*(V + 30 + v - 2) > SIGMIN))) {
801                         /* (case 3) */
802                         if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
803                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
804                                 *SIG1 = *(V + 30 + v - 1);
805                         } else {
806                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
807                                 *SIG1 = *(V + 30 + v - 2);
808                         }
809                 } else if ((v == vmax)                          &&
810                            (*(V + 30 + v) >= 0)                 &&
811                            (*(V + 30 + v - 1) >= 0)             &&
812                            (*(V + 30 + v - 2) >= 0)             &&
813                            (*(V + 30 + v) > *(V + 30 + v - 2))  &&
814                            (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
815                            ((*(V + 30 + v) > SIGMIN)            ||
816                            (*(V + 30 + v - 1) > SIGMIN))) {
817                         /* (case 4) */
818                         if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
819                                 swp_freq = fOSC * 1000 + afcex_freq;
820                                 *SIG1 = *(V + 30 + v);
821                         } else {
822                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
823                                 *SIG1 = *(V + 30 + v - 1);
824                         }
825                 } else  {
826                         swp_freq = -1 ;
827                 }
828         } else if ((i % 2 == 0) && (v >= vmin)) {
829                 /* Negative v (case 1) */
830                 if ((*(V + 30 + v) > 0)                         &&
831                     (*(V + 30 + v + 1) > 0)                     &&
832                     (*(V + 30 + v + 2) > 0)                     &&
833                     (*(V + 30 + v + 1) > *(V + 30 + v))         &&
834                     (*(V + 30 + v + 1) > *(V + 30 + v + 2))     &&
835                     (*(V + 30 + v + 1) > SIGMIN)) {
836
837                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
838                         *SIG1 = *(V + 30 + v + 1);
839                 } else if ((v + 1 == vmax)                      &&
840                            (*(V + 30 + v) >= 0)                 &&
841                            (*(V + 30 + v + 1) >= 0)             &&
842                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
843                            (*(V + 30 + v + 1) > SIGMIN)) {
844                         /* (case 2) */
845                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
846                         *SIG1 = *(V + 30 + v);
847                 } else if ((v == vmin)                          &&
848                            (*(V + 30 + v) > 0)                  &&
849                            (*(V + 30 + v + 1) > 0)              &&
850                            (*(V + 30 + v + 2) > 0)              &&
851                            (*(V + 30 + v) > *(V + 30 + v + 1))  &&
852                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
853                            (*(V + 30 + v) > SIGMIN)) {
854                         /* (case 3) */
855                         swp_freq = fOSC * 1000 + afcex_freq;
856                         *SIG1 = *(V + 30 + v);
857                 } else if ((*(V + 30 + v) >= 0)                 &&
858                            (*(V + 30 + v + 1) >= 0)             &&
859                            (*(V + 30 + v + 2) >= 0)             &&
860                            (*(V + 30 + v + 3) >= 0)             &&
861                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
862                            (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
863                            ((*(V + 30 + v + 1) > SIGMIN)        ||
864                             (*(V + 30 + v + 2) > SIGMIN))) {
865                         /* (case 4) */
866                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
867                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
868                                 *SIG1 = *(V + 30 + v + 1);
869                         } else {
870                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
871                                 *SIG1 = *(V + 30 + v + 2);
872                         }
873                 } else if ((*(V + 30 + v) >= 0)                 &&
874                            (*(V + 30 + v + 1) >= 0)             &&
875                            (*(V + 30 + v + 2) >= 0)             &&
876                            (*(V + 30 + v + 3) >= 0)             &&
877                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
878                            (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
879                            (*(V + 30 + v) > *(V + 30 + v + 3))  &&
880                            (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
881                            ((*(V + 30 + v) > SIGMIN)            ||
882                             (*(V + 30 + v + 1) > SIGMIN))) {
883                         /* (case 5) */
884                         if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
885                                 swp_freq = fOSC * 1000 + afcex_freq;
886                                 *SIG1 = *(V + 30 + v);
887                         } else {
888                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
889                                 *SIG1 = *(V + 30 + v + 1);
890                         }
891                 } else if ((v + 2 == vmin)                      &&
892                            (*(V + 30 + v) >= 0)                 &&
893                            (*(V + 30 + v + 1) >= 0)             &&
894                            (*(V + 30 + v + 2) >= 0)             &&
895                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
896                            (*(V + 30 + v + 2) > *(V + 30 + v))  &&
897                            ((*(V + 30 + v + 1) > SIGMIN)        ||
898                             (*(V + 30 + v + 2) > SIGMIN))) {
899                         /* (case 6) */
900                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
901                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
902                                 *SIG1 = *(V + 30 + v + 1);
903                         } else {
904                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
905                                 *SIG1 = *(V + 30 + v + 2);
906                         }
907                 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
908                         swp_freq = fOSC * 1000;
909                         *SIG1 = *(V + 30 + v);
910                 } else
911                         swp_freq = -1;
912         } else
913                 swp_freq = -1;
914
915         return swp_freq;
916 }
917
918 static void swp_info_get2(struct mb86a16_state *state,
919                           int smrt,
920                           int R,
921                           int swp_freq,
922                           int *afcex_freq,
923                           int *fOSC,
924                           unsigned char *AFCEX_L,
925                           unsigned char *AFCEX_H)
926 {
927         int AFCEX ;
928
929         if (R == 0)
930                 *fOSC = (swp_freq + 1000) / 2000 * 2;
931         else
932                 *fOSC = (swp_freq + 500) / 1000;
933
934         if (*fOSC >= swp_freq)
935                 *afcex_freq = *fOSC * 1000 - swp_freq;
936         else
937                 *afcex_freq = swp_freq - *fOSC * 1000;
938
939         AFCEX = *afcex_freq * 8192 / state->master_clk;
940         *AFCEX_L =  AFCEX & 0x00ff;
941         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
942 }
943
944 static void afcex_info_get(struct mb86a16_state *state,
945                            int afcex_freq,
946                            unsigned char *AFCEX_L,
947                            unsigned char *AFCEX_H)
948 {
949         int AFCEX ;
950
951         AFCEX = afcex_freq * 8192 / state->master_clk;
952         *AFCEX_L =  AFCEX & 0x00ff;
953         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
954 }
955
956 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
957 {
958         /* SLOCK0 = 0 */
959         if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
960                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
961                 return -EREMOTEIO;
962         }
963
964         return 0;
965 }
966
967 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
968 {
969         /* Viterbi Rate, IQ Settings */
970         if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
971                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
972                 return -EREMOTEIO;
973         }
974
975         return 0;
976 }
977
978 static int FEC_srst(struct mb86a16_state *state)
979 {
980         if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
981                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
982                 return -EREMOTEIO;
983         }
984
985         return 0;
986 }
987
988 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
989 {
990         if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
991                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
992                 return -EREMOTEIO;
993         }
994
995         return 0;
996 }
997
998 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
999 {
1000         if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1001                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1002                 return -EREMOTEIO;
1003         }
1004
1005         return 0;
1006 }
1007
1008
1009 static int mb86a16_set_fe(struct mb86a16_state *state)
1010 {
1011         u8 agcval, cnmval;
1012
1013         int i, j;
1014         int fOSC = 0;
1015         int fOSC_start = 0;
1016         int wait_t;
1017         int fcp;
1018         int swp_ofs;
1019         int V[60];
1020         u8 SIG1MIN;
1021
1022         unsigned char CREN, AFCEN, AFCEXEN;
1023         unsigned char SIG1;
1024         unsigned char TIMINT1, TIMINT2, TIMEXT;
1025         unsigned char S0T, S1T;
1026         unsigned char S2T;
1027 /*      unsigned char S2T, S3T; */
1028         unsigned char S4T, S5T;
1029         unsigned char AFCEX_L, AFCEX_H;
1030         unsigned char R;
1031         unsigned char VIRM;
1032         unsigned char ETH, VIA;
1033         unsigned char junk;
1034
1035         int loop;
1036         int ftemp;
1037         int v, vmax, vmin;
1038         int vmax_his, vmin_his;
1039         int swp_freq, prev_swp_freq[20];
1040         int prev_freq_num;
1041         int signal_dupl;
1042         int afcex_freq;
1043         int signal;
1044         int afcerr;
1045         int temp_freq, delta_freq;
1046         int dagcm[4];
1047         int smrt_d;
1048 /*      int freq_err; */
1049         int n;
1050         int ret = -1;
1051         int sync;
1052
1053         dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1054
1055         fcp = 3000;
1056         swp_ofs = state->srate / 4;
1057
1058         for (i = 0; i < 60; i++)
1059                 V[i] = -1;
1060
1061         for (i = 0; i < 20; i++)
1062                 prev_swp_freq[i] = 0;
1063
1064         SIG1MIN = 25;
1065
1066         for (n = 0; ((n < 3) && (ret == -1)); n++) {
1067                 SEQ_set(state, 0);
1068                 iq_vt_set(state, 0);
1069
1070                 CREN = 0;
1071                 AFCEN = 0;
1072                 AFCEXEN = 1;
1073                 TIMINT1 = 0;
1074                 TIMINT2 = 1;
1075                 TIMEXT = 2;
1076                 S1T = 0;
1077                 S0T = 0;
1078
1079                 if (initial_set(state) < 0) {
1080                         dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1081                         return -1;
1082                 }
1083                 if (DAGC_data_set(state, 3, 2) < 0) {
1084                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1085                         return -1;
1086                 }
1087                 if (EN_set(state, CREN, AFCEN) < 0) {
1088                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1089                         return -1; /* (0, 0) */
1090                 }
1091                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1092                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1093                         return -1; /* (1, smrt) = (1, symbolrate) */
1094                 }
1095                 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1096                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1097                         return -1; /* (0, 1, 2) */
1098                 }
1099                 if (S01T_set(state, S1T, S0T) < 0) {
1100                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1101                         return -1; /* (0, 0) */
1102                 }
1103                 smrt_info_get(state, state->srate);
1104                 if (smrt_set(state, state->srate) < 0) {
1105                         dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1106                         return -1;
1107                 }
1108
1109                 R = vco_dev_get(state, state->srate);
1110                 if (R == 1)
1111                         fOSC_start = state->frequency;
1112
1113                 else if (R == 0) {
1114                         if (state->frequency % 2 == 0) {
1115                                 fOSC_start = state->frequency;
1116                         } else {
1117                                 fOSC_start = state->frequency + 1;
1118                                 if (fOSC_start > 2150)
1119                                         fOSC_start = state->frequency - 1;
1120                         }
1121                 }
1122                 loop = 1;
1123                 ftemp = fOSC_start * 1000;
1124                 vmax = 0 ;
1125                 while (loop == 1) {
1126                         ftemp = ftemp + swp_ofs;
1127                         vmax++;
1128
1129                         /* Upper bound */
1130                         if (ftemp > 2150000) {
1131                                 loop = 0;
1132                                 vmax--;
1133                         } else {
1134                                 if ((ftemp == 2150000) ||
1135                                     (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1136                                         loop = 0;
1137                         }
1138                 }
1139
1140                 loop = 1;
1141                 ftemp = fOSC_start * 1000;
1142                 vmin = 0 ;
1143                 while (loop == 1) {
1144                         ftemp = ftemp - swp_ofs;
1145                         vmin--;
1146
1147                         /* Lower bound */
1148                         if (ftemp < 950000) {
1149                                 loop = 0;
1150                                 vmin++;
1151                         } else {
1152                                 if ((ftemp == 950000) ||
1153                                     (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1154                                         loop = 0;
1155                         }
1156                 }
1157
1158                 wait_t = (8000 + state->srate / 2) / state->srate;
1159                 if (wait_t == 0)
1160                         wait_t = 1;
1161
1162                 i = 0;
1163                 j = 0;
1164                 prev_freq_num = 0;
1165                 loop = 1;
1166                 signal = 0;
1167                 vmax_his = 0;
1168                 vmin_his = 0;
1169                 v = 0;
1170
1171                 while (loop == 1) {
1172                         swp_info_get(state, fOSC_start, state->srate,
1173                                      v, R, swp_ofs, &fOSC,
1174                                      &afcex_freq, &AFCEX_L, &AFCEX_H);
1175
1176                         udelay(100);
1177                         if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1178                                 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1179                                 return -1;
1180                         }
1181                         udelay(100);
1182                         if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1183                                 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1184                                 return -1;
1185                         }
1186                         if (srst(state) < 0) {
1187                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1188                                 return -1;
1189                         }
1190                         msleep_interruptible(wait_t);
1191
1192                         if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1193                                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1194                                 return -1;
1195                         }
1196                         V[30 + v] = SIG1 ;
1197                         swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1198                                                       SIG1MIN, fOSC, afcex_freq,
1199                                                       swp_ofs, &SIG1);  /* changed */
1200
1201                         signal_dupl = 0;
1202                         for (j = 0; j < prev_freq_num; j++) {
1203                                 if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1204                                         signal_dupl = 1;
1205                                         dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1206                                 }
1207                         }
1208                         if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1209                                 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1210                                 prev_swp_freq[prev_freq_num] = swp_freq;
1211                                 prev_freq_num++;
1212                                 swp_info_get2(state, state->srate, R, swp_freq,
1213                                               &afcex_freq, &fOSC,
1214                                               &AFCEX_L, &AFCEX_H);
1215
1216                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1217                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1218                                         return -1;
1219                                 }
1220                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1221                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1222                                         return -1;
1223                                 }
1224                                 signal = signal_det(state, state->srate, &SIG1);
1225                                 if (signal == 1) {
1226                                         dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1227                                         loop = 0;
1228                                 } else {
1229                                         dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1230                                         smrt_info_get(state, state->srate);
1231                                         if (smrt_set(state, state->srate) < 0) {
1232                                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1233                                                 return -1;
1234                                         }
1235                                 }
1236                         }
1237                         if (v > vmax)
1238                                 vmax_his = 1 ;
1239                         if (v < vmin)
1240                                 vmin_his = 1 ;
1241                         i++;
1242
1243                         if ((i % 2 == 1) && (vmax_his == 1))
1244                                 i++;
1245                         if ((i % 2 == 0) && (vmin_his == 1))
1246                                 i++;
1247
1248                         if (i % 2 == 1)
1249                                 v = (i + 1) / 2;
1250                         else
1251                                 v = -i / 2;
1252
1253                         if ((vmax_his == 1) && (vmin_his == 1))
1254                                 loop = 0 ;
1255                 }
1256
1257                 if (signal == 1) {
1258                         dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1259                         S1T = 7 ;
1260                         S0T = 1 ;
1261                         CREN = 0 ;
1262                         AFCEN = 1 ;
1263                         AFCEXEN = 0 ;
1264
1265                         if (S01T_set(state, S1T, S0T) < 0) {
1266                                 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1267                                 return -1;
1268                         }
1269                         smrt_info_get(state, state->srate);
1270                         if (smrt_set(state, state->srate) < 0) {
1271                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1272                                 return -1;
1273                         }
1274                         if (EN_set(state, CREN, AFCEN) < 0) {
1275                                 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1276                                 return -1;
1277                         }
1278                         if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1279                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1280                                 return -1;
1281                         }
1282                         afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1283                         if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1284                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1285                                 return -1;
1286                         }
1287                         if (srst(state) < 0) {
1288                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1289                                 return -1;
1290                         }
1291                         /* delay 4~200 */
1292                         wait_t = 200000 / state->master_clk + 200000 / state->srate;
1293                         msleep(wait_t);
1294                         afcerr = afcerr_chk(state);
1295                         if (afcerr == -1)
1296                                 return -1;
1297
1298                         swp_freq = fOSC * 1000 + afcerr ;
1299                         AFCEXEN = 1 ;
1300                         if (state->srate >= 1500)
1301                                 smrt_d = state->srate / 3;
1302                         else
1303                                 smrt_d = state->srate / 2;
1304                         smrt_info_get(state, smrt_d);
1305                         if (smrt_set(state, smrt_d) < 0) {
1306                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1307                                 return -1;
1308                         }
1309                         if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1310                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1311                                 return -1;
1312                         }
1313                         R = vco_dev_get(state, smrt_d);
1314                         if (DAGC_data_set(state, 2, 0) < 0) {
1315                                 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1316                                 return -1;
1317                         }
1318                         for (i = 0; i < 3; i++) {
1319                                 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1320                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1321                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1322                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1323                                         return -1;
1324                                 }
1325                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1326                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1327                                         return -1;
1328                                 }
1329                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1330                                 msleep(wait_t);
1331                                 dagcm[i] = dagcm_val_get(state);
1332                         }
1333                         if ((dagcm[0] > dagcm[1]) &&
1334                             (dagcm[0] > dagcm[2]) &&
1335                             (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1336
1337                                 temp_freq = swp_freq - 2 * state->srate / 8;
1338                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1339                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1340                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1341                                         return -1;
1342                                 }
1343                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1344                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1345                                         return -1;
1346                                 }
1347                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1348                                 msleep(wait_t);
1349                                 dagcm[3] = dagcm_val_get(state);
1350                                 if (dagcm[3] > dagcm[1])
1351                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1352                                 else
1353                                         delta_freq = 0;
1354                         } else if ((dagcm[2] > dagcm[1]) &&
1355                                    (dagcm[2] > dagcm[0]) &&
1356                                    (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1357
1358                                 temp_freq = swp_freq + 2 * state->srate / 8;
1359                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1360                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1361                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1362                                         return -1;
1363                                 }
1364                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1365                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1366                                         return -1;
1367                                 }
1368                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1369                                 msleep(wait_t);
1370                                 dagcm[3] = dagcm_val_get(state);
1371                                 if (dagcm[3] > dagcm[1])
1372                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1373                                 else
1374                                         delta_freq = 0 ;
1375
1376                         } else {
1377                                 delta_freq = 0 ;
1378                         }
1379                         dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1380                         swp_freq += delta_freq;
1381                         dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1382                         if (abs(state->frequency * 1000 - swp_freq) > 3800) {
1383                                 dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1384                         } else {
1385
1386                                 S1T = 0;
1387                                 S0T = 3;
1388                                 CREN = 1;
1389                                 AFCEN = 0;
1390                                 AFCEXEN = 1;
1391
1392                                 if (S01T_set(state, S1T, S0T) < 0) {
1393                                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1394                                         return -1;
1395                                 }
1396                                 if (DAGC_data_set(state, 0, 0) < 0) {
1397                                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1398                                         return -1;
1399                                 }
1400                                 R = vco_dev_get(state, state->srate);
1401                                 smrt_info_get(state, state->srate);
1402                                 if (smrt_set(state, state->srate) < 0) {
1403                                         dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1404                                         return -1;
1405                                 }
1406                                 if (EN_set(state, CREN, AFCEN) < 0) {
1407                                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1408                                         return -1;
1409                                 }
1410                                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1411                                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1412                                         return -1;
1413                                 }
1414                                 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1415                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1416                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1417                                         return -1;
1418                                 }
1419                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1420                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1421                                         return -1;
1422                                 }
1423                                 if (srst(state) < 0) {
1424                                         dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1425                                         return -1;
1426                                 }
1427                                 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1428                                 if (wait_t == 0)
1429                                         wait_t = 1;
1430                                 msleep_interruptible(wait_t);
1431                                 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1432                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1433                                         return -EREMOTEIO;
1434                                 }
1435
1436                                 if (SIG1 > 110) {
1437                                         S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1438                                         wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1439                                 } else if (SIG1 > 105) {
1440                                         S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1441                                         wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1442                                 } else if (SIG1 > 85) {
1443                                         S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1444                                         wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1445                                 } else if (SIG1 > 65) {
1446                                         S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1447                                         wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1448                                 } else {
1449                                         S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1450                                         wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1451                                 }
1452                                 wait_t *= 2; /* FOS */
1453                                 S2T_set(state, S2T);
1454                                 S45T_set(state, S4T, S5T);
1455                                 Vi_set(state, ETH, VIA);
1456                                 srst(state);
1457                                 msleep_interruptible(wait_t);
1458                                 sync = sync_chk(state, &VIRM);
1459                                 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1460                                 if (VIRM) {
1461                                         if (VIRM == 4) {
1462                                                 /* 5/6 */
1463                                                 if (SIG1 > 110)
1464                                                         wait_t = (786432 + state->srate / 2) / state->srate;
1465                                                 else
1466                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1467                                                 if (state->srate < 5000)
1468                                                         /* FIXME ! , should be a long wait ! */
1469                                                         msleep_interruptible(wait_t);
1470                                                 else
1471                                                         msleep_interruptible(wait_t);
1472
1473                                                 if (sync_chk(state, &junk) == 0) {
1474                                                         iq_vt_set(state, 1);
1475                                                         FEC_srst(state);
1476                                                 }
1477                                         }
1478                                         /* 1/2, 2/3, 3/4, 7/8 */
1479                                         if (SIG1 > 110)
1480                                                 wait_t = (786432 + state->srate / 2) / state->srate;
1481                                         else
1482                                                 wait_t = (1572864 + state->srate / 2) / state->srate;
1483                                         msleep_interruptible(wait_t);
1484                                         SEQ_set(state, 1);
1485                                 } else {
1486                                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1487                                         SEQ_set(state, 1);
1488                                         ret = -1;
1489                                 }
1490                         }
1491                 } else {
1492                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1493                         ret = -1;
1494                 }
1495
1496                 sync = sync_chk(state, &junk);
1497                 if (sync) {
1498                         dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1499                         freqerr_chk(state, state->frequency, state->srate, 1);
1500                         ret = 0;
1501                         break;
1502                 }
1503         }
1504
1505         mb86a16_read(state, 0x15, &agcval);
1506         mb86a16_read(state, 0x26, &cnmval);
1507         dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1508
1509         return ret;
1510 }
1511
1512 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1513                                    struct dvb_diseqc_master_cmd *cmd)
1514 {
1515         struct mb86a16_state *state = fe->demodulator_priv;
1516         int i;
1517         u8 regs;
1518
1519         if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1520                 goto err;
1521         if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1522                 goto err;
1523         if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1524                 goto err;
1525
1526         regs = 0x18;
1527
1528         if (cmd->msg_len > 5 || cmd->msg_len < 4)
1529                 return -EINVAL;
1530
1531         for (i = 0; i < cmd->msg_len; i++) {
1532                 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1533                         goto err;
1534
1535                 regs++;
1536         }
1537         i += 0x90;
1538
1539         msleep_interruptible(10);
1540
1541         if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1542                 goto err;
1543         if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1544                 goto err;
1545
1546         return 0;
1547
1548 err:
1549         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1550         return -EREMOTEIO;
1551 }
1552
1553 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1554                                      enum fe_sec_mini_cmd burst)
1555 {
1556         struct mb86a16_state *state = fe->demodulator_priv;
1557
1558         switch (burst) {
1559         case SEC_MINI_A:
1560                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1561                                                        MB86A16_DCC1_TBEN  |
1562                                                        MB86A16_DCC1_TBO) < 0)
1563                         goto err;
1564                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1565                         goto err;
1566                 break;
1567         case SEC_MINI_B:
1568                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1569                                                        MB86A16_DCC1_TBEN) < 0)
1570                         goto err;
1571                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1572                         goto err;
1573                 break;
1574         }
1575
1576         return 0;
1577 err:
1578         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1579         return -EREMOTEIO;
1580 }
1581
1582 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1583 {
1584         struct mb86a16_state *state = fe->demodulator_priv;
1585
1586         switch (tone) {
1587         case SEC_TONE_ON:
1588                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1589                         goto err;
1590                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1591                                                        MB86A16_DCC1_CTOE) < 0)
1592
1593                         goto err;
1594                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1595                         goto err;
1596                 break;
1597         case SEC_TONE_OFF:
1598                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1599                         goto err;
1600                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1601                         goto err;
1602                 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1603                         goto err;
1604                 break;
1605         default:
1606                 return -EINVAL;
1607         }
1608         return 0;
1609
1610 err:
1611         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1612         return -EREMOTEIO;
1613 }
1614
1615 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1616 {
1617         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1618         struct mb86a16_state *state = fe->demodulator_priv;
1619
1620         state->frequency = p->frequency / 1000;
1621         state->srate = p->symbol_rate / 1000;
1622
1623         if (!mb86a16_set_fe(state)) {
1624                 dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1625                 return DVBFE_ALGO_SEARCH_SUCCESS;
1626         }
1627
1628         dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1629         return DVBFE_ALGO_SEARCH_FAILED;
1630 }
1631
1632 static void mb86a16_release(struct dvb_frontend *fe)
1633 {
1634         struct mb86a16_state *state = fe->demodulator_priv;
1635         kfree(state);
1636 }
1637
1638 static int mb86a16_init(struct dvb_frontend *fe)
1639 {
1640         return 0;
1641 }
1642
1643 static int mb86a16_sleep(struct dvb_frontend *fe)
1644 {
1645         return 0;
1646 }
1647
1648 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1649 {
1650         u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1651         u32 timer;
1652
1653         struct mb86a16_state *state = fe->demodulator_priv;
1654
1655         *ber = 0;
1656         if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1657                 goto err;
1658         if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1659                 goto err;
1660         if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1661                 goto err;
1662         if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1663                 goto err;
1664         if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1665                 goto err;
1666         /* BER monitor invalid when BER_EN = 0  */
1667         if (ber_mon & 0x04) {
1668                 /* coarse, fast calculation     */
1669                 *ber = ber_tab & 0x1f;
1670                 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1671                 if (ber_mon & 0x01) {
1672                         /*
1673                          * BER_SEL = 1, The monitored BER is the estimated
1674                          * value with a Reed-Solomon decoder error amount at
1675                          * the deinterleaver output.
1676                          * monitored BER is expressed as a 20 bit output in total
1677                          */
1678                         ber_rst = (ber_mon >> 3) & 0x03;
1679                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1680                         if (ber_rst == 0)
1681                                 timer =  12500000;
1682                         else if (ber_rst == 1)
1683                                 timer =  25000000;
1684                         else if (ber_rst == 2)
1685                                 timer =  50000000;
1686                         else /* ber_rst == 3 */
1687                                 timer = 100000000;
1688
1689                         *ber /= timer;
1690                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1691                 } else {
1692                         /*
1693                          * BER_SEL = 0, The monitored BER is the estimated
1694                          * value with a Viterbi decoder error amount at the
1695                          * QPSK demodulator output.
1696                          * monitored BER is expressed as a 24 bit output in total
1697                          */
1698                         ber_tim = (ber_mon >> 1) & 0x01;
1699                         *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1700                         if (ber_tim == 0)
1701                                 timer = 16;
1702                         else /* ber_tim == 1 */
1703                                 timer = 24;
1704
1705                         *ber /= 2 ^ timer;
1706                         dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1707                 }
1708         }
1709         return 0;
1710 err:
1711         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1712         return -EREMOTEIO;
1713 }
1714
1715 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1716 {
1717         u8 agcm = 0;
1718         struct mb86a16_state *state = fe->demodulator_priv;
1719
1720         *strength = 0;
1721         if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1722                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1723                 return -EREMOTEIO;
1724         }
1725
1726         *strength = ((0xff - agcm) * 100) / 256;
1727         dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1728         *strength = (0xffff - 0xff) + agcm;
1729
1730         return 0;
1731 }
1732
1733 struct cnr {
1734         u8 cn_reg;
1735         u8 cn_val;
1736 };
1737
1738 static const struct cnr cnr_tab[] = {
1739         {  35,  2 },
1740         {  40,  3 },
1741         {  50,  4 },
1742         {  60,  5 },
1743         {  70,  6 },
1744         {  80,  7 },
1745         {  92,  8 },
1746         { 103,  9 },
1747         { 115, 10 },
1748         { 138, 12 },
1749         { 162, 15 },
1750         { 180, 18 },
1751         { 185, 19 },
1752         { 189, 20 },
1753         { 195, 22 },
1754         { 199, 24 },
1755         { 201, 25 },
1756         { 202, 26 },
1757         { 203, 27 },
1758         { 205, 28 },
1759         { 208, 30 }
1760 };
1761
1762 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1763 {
1764         struct mb86a16_state *state = fe->demodulator_priv;
1765         int i = 0;
1766         int low_tide = 2, high_tide = 30, q_level;
1767         u8  cn;
1768
1769         *snr = 0;
1770         if (mb86a16_read(state, 0x26, &cn) != 2) {
1771                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1772                 return -EREMOTEIO;
1773         }
1774
1775         for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1776                 if (cn < cnr_tab[i].cn_reg) {
1777                         *snr = cnr_tab[i].cn_val;
1778                         break;
1779                 }
1780         }
1781         q_level = (*snr * 100) / (high_tide - low_tide);
1782         dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1783         *snr = (0xffff - 0xff) + *snr;
1784
1785         return 0;
1786 }
1787
1788 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1789 {
1790         u8 dist;
1791         struct mb86a16_state *state = fe->demodulator_priv;
1792
1793         if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1794                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1795                 return -EREMOTEIO;
1796         }
1797         *ucblocks = dist;
1798
1799         return 0;
1800 }
1801
1802 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1803 {
1804         return DVBFE_ALGO_CUSTOM;
1805 }
1806
1807 static const struct dvb_frontend_ops mb86a16_ops = {
1808         .delsys = { SYS_DVBS },
1809         .info = {
1810                 .name                   = "Fujitsu MB86A16 DVB-S",
1811                 .frequency_min_hz       =  950 * MHz,
1812                 .frequency_max_hz       = 2150 * MHz,
1813                 .frequency_stepsize_hz  =    3 * MHz,
1814                 .symbol_rate_min        = 1000000,
1815                 .symbol_rate_max        = 45000000,
1816                 .symbol_rate_tolerance  = 500,
1817                 .caps                   = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1818                                           FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1819                                           FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1820                                           FE_CAN_FEC_AUTO
1821         },
1822         .release                        = mb86a16_release,
1823
1824         .get_frontend_algo              = mb86a16_frontend_algo,
1825         .search                         = mb86a16_search,
1826         .init                           = mb86a16_init,
1827         .sleep                          = mb86a16_sleep,
1828         .read_status                    = mb86a16_read_status,
1829
1830         .read_ber                       = mb86a16_read_ber,
1831         .read_signal_strength           = mb86a16_read_signal_strength,
1832         .read_snr                       = mb86a16_read_snr,
1833         .read_ucblocks                  = mb86a16_read_ucblocks,
1834
1835         .diseqc_send_master_cmd         = mb86a16_send_diseqc_msg,
1836         .diseqc_send_burst              = mb86a16_send_diseqc_burst,
1837         .set_tone                       = mb86a16_set_tone,
1838 };
1839
1840 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1841                                     struct i2c_adapter *i2c_adap)
1842 {
1843         u8 dev_id = 0;
1844         struct mb86a16_state *state = NULL;
1845
1846         state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1847         if (state == NULL)
1848                 goto error;
1849
1850         state->config = config;
1851         state->i2c_adap = i2c_adap;
1852
1853         mb86a16_read(state, 0x7f, &dev_id);
1854         if (dev_id != 0xfe)
1855                 goto error;
1856
1857         memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1858         state->frontend.demodulator_priv = state;
1859         state->frontend.ops.set_voltage = state->config->set_voltage;
1860
1861         return &state->frontend;
1862 error:
1863         kfree(state);
1864         return NULL;
1865 }
1866 EXPORT_SYMBOL(mb86a16_attach);
1867 MODULE_LICENSE("GPL");
1868 MODULE_AUTHOR("Manu Abraham");