GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 /*
2  * drivers/media/i2c/smiapp/smiapp-core.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2010--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8  *
9  * Based on smiapp driver by Vimarsh Zutshi
10  * Based on jt8ev1.c by Vimarsh Zutshi
11  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2 as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  */
22
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/module.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/slab.h>
31 #include <linux/smiapp.h>
32 #include <linux/v4l2-mediabus.h>
33 #include <media/v4l2-device.h>
34 #include <media/v4l2-of.h>
35
36 #include "smiapp.h"
37
38 #define SMIAPP_ALIGN_DIM(dim, flags)    \
39         ((flags) & V4L2_SEL_FLAG_GE     \
40          ? ALIGN((dim), 2)              \
41          : (dim) & ~1)
42
43 /*
44  * smiapp_module_idents - supported camera modules
45  */
46 static const struct smiapp_module_ident smiapp_module_idents[] = {
47         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
48         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
49         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
50         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
51         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
52         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
53         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
54         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
55         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
56         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
57         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
58 };
59
60 /*
61  *
62  * Dynamic Capability Identification
63  *
64  */
65
66 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
67 {
68         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
69         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
70         unsigned int i;
71         int rval;
72         int line_count = 0;
73         int embedded_start = -1, embedded_end = -1;
74         int image_start = 0;
75
76         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
77                            &fmt_model_type);
78         if (rval)
79                 return rval;
80
81         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
82                            &fmt_model_subtype);
83         if (rval)
84                 return rval;
85
86         ncol_desc = (fmt_model_subtype
87                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
88                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
89         nrow_desc = fmt_model_subtype
90                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
91
92         dev_dbg(&client->dev, "format_model_type %s\n",
93                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
94                 ? "2 byte" :
95                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
96                 ? "4 byte" : "is simply bad");
97
98         for (i = 0; i < ncol_desc + nrow_desc; i++) {
99                 u32 desc;
100                 u32 pixelcode;
101                 u32 pixels;
102                 char *which;
103                 char *what;
104
105                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
106                         rval = smiapp_read(
107                                 sensor,
108                                 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
109                                 &desc);
110                         if (rval)
111                                 return rval;
112
113                         pixelcode =
114                                 (desc
115                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
116                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
117                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
118                 } else if (fmt_model_type
119                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
120                         rval = smiapp_read(
121                                 sensor,
122                                 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
123                                 &desc);
124                         if (rval)
125                                 return rval;
126
127                         pixelcode =
128                                 (desc
129                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
130                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
131                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
132                 } else {
133                         dev_dbg(&client->dev,
134                                 "invalid frame format model type %d\n",
135                                 fmt_model_type);
136                         return -EINVAL;
137                 }
138
139                 if (i < ncol_desc)
140                         which = "columns";
141                 else
142                         which = "rows";
143
144                 switch (pixelcode) {
145                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
146                         what = "embedded";
147                         break;
148                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
149                         what = "dummy";
150                         break;
151                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
152                         what = "black";
153                         break;
154                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
155                         what = "dark";
156                         break;
157                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
158                         what = "visible";
159                         break;
160                 default:
161                         what = "invalid";
162                         dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
163                         break;
164                 }
165
166                 dev_dbg(&client->dev, "%s pixels: %d %s\n",
167                         what, pixels, which);
168
169                 if (i < ncol_desc)
170                         continue;
171
172                 /* Handle row descriptors */
173                 if (pixelcode
174                     == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
175                         embedded_start = line_count;
176                 } else {
177                         if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
178                             || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
179                                 image_start = line_count;
180                         if (embedded_start != -1 && embedded_end == -1)
181                                 embedded_end = line_count;
182                 }
183                 line_count += pixels;
184         }
185
186         if (embedded_start == -1 || embedded_end == -1) {
187                 embedded_start = 0;
188                 embedded_end = 0;
189         }
190
191         sensor->image_start = image_start;
192
193         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
194                 embedded_start, embedded_end);
195         dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
196
197         return 0;
198 }
199
200 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
201 {
202         struct smiapp_pll *pll = &sensor->pll;
203         int rval;
204
205         rval = smiapp_write(
206                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
207         if (rval < 0)
208                 return rval;
209
210         rval = smiapp_write(
211                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
212         if (rval < 0)
213                 return rval;
214
215         rval = smiapp_write(
216                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
217         if (rval < 0)
218                 return rval;
219
220         rval = smiapp_write(
221                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
222         if (rval < 0)
223                 return rval;
224
225         /* Lane op clock ratio does not apply here. */
226         rval = smiapp_write(
227                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
228                 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
229         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
230                 return rval;
231
232         rval = smiapp_write(
233                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
234         if (rval < 0)
235                 return rval;
236
237         return smiapp_write(
238                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
239 }
240
241 static int smiapp_pll_try(struct smiapp_sensor *sensor,
242                           struct smiapp_pll *pll)
243 {
244         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
245         struct smiapp_pll_limits lim = {
246                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
247                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
248                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
249                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
250                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
251                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
252                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
253                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
254
255                 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
256                 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
257                 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
258                 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
259                 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
260                 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
261                 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
262                 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
263
264                 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
265                 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
266                 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
267                 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
268                 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
269                 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
270                 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
271                 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
272
273                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
274                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
275         };
276
277         return smiapp_pll_calculate(&client->dev, &lim, pll);
278 }
279
280 static int smiapp_pll_update(struct smiapp_sensor *sensor)
281 {
282         struct smiapp_pll *pll = &sensor->pll;
283         int rval;
284
285         pll->binning_horizontal = sensor->binning_horizontal;
286         pll->binning_vertical = sensor->binning_vertical;
287         pll->link_freq =
288                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
289         pll->scale_m = sensor->scale_m;
290         pll->bits_per_pixel = sensor->csi_format->compressed;
291
292         rval = smiapp_pll_try(sensor, pll);
293         if (rval < 0)
294                 return rval;
295
296         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
297                                  pll->pixel_rate_pixel_array);
298         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
299
300         return 0;
301 }
302
303
304 /*
305  *
306  * V4L2 Controls handling
307  *
308  */
309
310 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
311 {
312         struct v4l2_ctrl *ctrl = sensor->exposure;
313         int max;
314
315         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
316                 + sensor->vblank->val
317                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
318
319         __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
320 }
321
322 /*
323  * Order matters.
324  *
325  * 1. Bits-per-pixel, descending.
326  * 2. Bits-per-pixel compressed, descending.
327  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
328  *    orders must be defined.
329  */
330 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
331         { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
332         { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
333         { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
334         { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
335         { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
336         { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
337         { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
338         { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
339         { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
340         { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
341         { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
342         { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
343         { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
344         { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
345         { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
346         { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
347         { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
348         { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
349         { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
350         { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
351         { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
352         { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
353         { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
354         { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
355 };
356
357 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
358
359 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
360                                  - (unsigned long)smiapp_csi_data_formats) \
361                                 / sizeof(*smiapp_csi_data_formats))
362
363 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
364 {
365         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
366         int flip = 0;
367
368         if (sensor->hflip) {
369                 if (sensor->hflip->val)
370                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
371
372                 if (sensor->vflip->val)
373                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
374         }
375
376         flip ^= sensor->hvflip_inv_mask;
377
378         dev_dbg(&client->dev, "flip %d\n", flip);
379         return sensor->default_pixel_order ^ flip;
380 }
381
382 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
383 {
384         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
385         unsigned int csi_format_idx =
386                 to_csi_format_idx(sensor->csi_format) & ~3;
387         unsigned int internal_csi_format_idx =
388                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
389         unsigned int pixel_order = smiapp_pixel_order(sensor);
390
391         sensor->mbus_frame_fmts =
392                 sensor->default_mbus_frame_fmts << pixel_order;
393         sensor->csi_format =
394                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
395         sensor->internal_csi_format =
396                 &smiapp_csi_data_formats[internal_csi_format_idx
397                                          + pixel_order];
398
399         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
400                >= ARRAY_SIZE(smiapp_csi_data_formats));
401
402         dev_dbg(&client->dev, "new pixel order %s\n",
403                 pixel_order_str[pixel_order]);
404 }
405
406 static const char * const smiapp_test_patterns[] = {
407         "Disabled",
408         "Solid Colour",
409         "Eight Vertical Colour Bars",
410         "Colour Bars With Fade to Grey",
411         "Pseudorandom Sequence (PN9)",
412 };
413
414 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
415 {
416         struct smiapp_sensor *sensor =
417                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
418                         ->sensor;
419         u32 orient = 0;
420         int exposure;
421         int rval;
422
423         switch (ctrl->id) {
424         case V4L2_CID_ANALOGUE_GAIN:
425                 return smiapp_write(
426                         sensor,
427                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
428
429         case V4L2_CID_EXPOSURE:
430                 return smiapp_write(
431                         sensor,
432                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
433
434         case V4L2_CID_HFLIP:
435         case V4L2_CID_VFLIP:
436                 if (sensor->streaming)
437                         return -EBUSY;
438
439                 if (sensor->hflip->val)
440                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
441
442                 if (sensor->vflip->val)
443                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
444
445                 orient ^= sensor->hvflip_inv_mask;
446                 rval = smiapp_write(sensor,
447                                     SMIAPP_REG_U8_IMAGE_ORIENTATION,
448                                     orient);
449                 if (rval < 0)
450                         return rval;
451
452                 smiapp_update_mbus_formats(sensor);
453
454                 return 0;
455
456         case V4L2_CID_VBLANK:
457                 exposure = sensor->exposure->val;
458
459                 __smiapp_update_exposure_limits(sensor);
460
461                 if (exposure > sensor->exposure->maximum) {
462                         sensor->exposure->val =
463                                 sensor->exposure->maximum;
464                         rval = smiapp_set_ctrl(
465                                 sensor->exposure);
466                         if (rval < 0)
467                                 return rval;
468                 }
469
470                 return smiapp_write(
471                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
472                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
473                         + ctrl->val);
474
475         case V4L2_CID_HBLANK:
476                 return smiapp_write(
477                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
478                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
479                         + ctrl->val);
480
481         case V4L2_CID_LINK_FREQ:
482                 if (sensor->streaming)
483                         return -EBUSY;
484
485                 return smiapp_pll_update(sensor);
486
487         case V4L2_CID_TEST_PATTERN: {
488                 unsigned int i;
489
490                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
491                         v4l2_ctrl_activate(
492                                 sensor->test_data[i],
493                                 ctrl->val ==
494                                 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
495
496                 return smiapp_write(
497                         sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
498         }
499
500         case V4L2_CID_TEST_PATTERN_RED:
501                 return smiapp_write(
502                         sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
503
504         case V4L2_CID_TEST_PATTERN_GREENR:
505                 return smiapp_write(
506                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
507
508         case V4L2_CID_TEST_PATTERN_BLUE:
509                 return smiapp_write(
510                         sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
511
512         case V4L2_CID_TEST_PATTERN_GREENB:
513                 return smiapp_write(
514                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
515
516         case V4L2_CID_PIXEL_RATE:
517                 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
518                 return 0;
519
520         default:
521                 return -EINVAL;
522         }
523 }
524
525 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
526         .s_ctrl = smiapp_set_ctrl,
527 };
528
529 static int smiapp_init_controls(struct smiapp_sensor *sensor)
530 {
531         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
532         int rval;
533
534         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
535         if (rval)
536                 return rval;
537
538         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
539
540         sensor->analog_gain = v4l2_ctrl_new_std(
541                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
542                 V4L2_CID_ANALOGUE_GAIN,
543                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
544                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
545                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
546                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
547
548         /* Exposure limits will be updated soon, use just something here. */
549         sensor->exposure = v4l2_ctrl_new_std(
550                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
551                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
552
553         sensor->hflip = v4l2_ctrl_new_std(
554                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
555                 V4L2_CID_HFLIP, 0, 1, 1, 0);
556         sensor->vflip = v4l2_ctrl_new_std(
557                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
558                 V4L2_CID_VFLIP, 0, 1, 1, 0);
559
560         sensor->vblank = v4l2_ctrl_new_std(
561                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
562                 V4L2_CID_VBLANK, 0, 1, 1, 0);
563
564         if (sensor->vblank)
565                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
566
567         sensor->hblank = v4l2_ctrl_new_std(
568                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
569                 V4L2_CID_HBLANK, 0, 1, 1, 0);
570
571         if (sensor->hblank)
572                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
573
574         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
575                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
576                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
577
578         v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
579                                      &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
580                                      ARRAY_SIZE(smiapp_test_patterns) - 1,
581                                      0, 0, smiapp_test_patterns);
582
583         if (sensor->pixel_array->ctrl_handler.error) {
584                 dev_err(&client->dev,
585                         "pixel array controls initialization failed (%d)\n",
586                         sensor->pixel_array->ctrl_handler.error);
587                 return sensor->pixel_array->ctrl_handler.error;
588         }
589
590         sensor->pixel_array->sd.ctrl_handler =
591                 &sensor->pixel_array->ctrl_handler;
592
593         v4l2_ctrl_cluster(2, &sensor->hflip);
594
595         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
596         if (rval)
597                 return rval;
598
599         sensor->src->ctrl_handler.lock = &sensor->mutex;
600
601         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
602                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
603                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
604
605         if (sensor->src->ctrl_handler.error) {
606                 dev_err(&client->dev,
607                         "src controls initialization failed (%d)\n",
608                         sensor->src->ctrl_handler.error);
609                 return sensor->src->ctrl_handler.error;
610         }
611
612         sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
613
614         return 0;
615 }
616
617 /*
618  * For controls that require information on available media bus codes
619  * and linke frequencies.
620  */
621 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
622 {
623         unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
624                 sensor->csi_format->compressed - SMIAPP_COMPRESSED_BASE];
625         unsigned int max, i;
626
627         for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
628                 int max_value = (1 << sensor->csi_format->width) - 1;
629
630                 sensor->test_data[i] = v4l2_ctrl_new_std(
631                                 &sensor->pixel_array->ctrl_handler,
632                                 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
633                                 0, max_value, 1, max_value);
634         }
635
636         for (max = 0; sensor->hwcfg->op_sys_clock[max + 1]; max++);
637
638         sensor->link_freq = v4l2_ctrl_new_int_menu(
639                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
640                 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
641                 __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
642
643         return sensor->src->ctrl_handler.error;
644 }
645
646 static void smiapp_free_controls(struct smiapp_sensor *sensor)
647 {
648         unsigned int i;
649
650         for (i = 0; i < sensor->ssds_used; i++)
651                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
652 }
653
654 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
655                              unsigned int n)
656 {
657         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
658         unsigned int i;
659         u32 val;
660         int rval;
661
662         for (i = 0; i < n; i++) {
663                 rval = smiapp_read(
664                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
665                 if (rval)
666                         return rval;
667                 sensor->limits[limit[i]] = val;
668                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
669                         smiapp_reg_limits[limit[i]].addr,
670                         smiapp_reg_limits[limit[i]].what, val, val);
671         }
672
673         return 0;
674 }
675
676 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
677 {
678         unsigned int i;
679         int rval;
680
681         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
682                 rval = smiapp_get_limits(sensor, &i, 1);
683                 if (rval < 0)
684                         return rval;
685         }
686
687         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
688                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
689
690         return 0;
691 }
692
693 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
694 {
695         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
696         static u32 const limits[] = {
697                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
698                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
699                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
700                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
701                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
702                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
703                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
704         };
705         static u32 const limits_replace[] = {
706                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
707                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
708                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
709                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
710                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
711                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
712                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
713         };
714         unsigned int i;
715         int rval;
716
717         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
718             SMIAPP_BINNING_CAPABILITY_NO) {
719                 for (i = 0; i < ARRAY_SIZE(limits); i++)
720                         sensor->limits[limits[i]] =
721                                 sensor->limits[limits_replace[i]];
722
723                 return 0;
724         }
725
726         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
727         if (rval < 0)
728                 return rval;
729
730         /*
731          * Sanity check whether the binning limits are valid. If not,
732          * use the non-binning ones.
733          */
734         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
735             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
736             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
737                 return 0;
738
739         for (i = 0; i < ARRAY_SIZE(limits); i++) {
740                 dev_dbg(&client->dev,
741                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
742                         smiapp_reg_limits[limits[i]].addr,
743                         smiapp_reg_limits[limits[i]].what,
744                         sensor->limits[limits_replace[i]],
745                         sensor->limits[limits_replace[i]]);
746                 sensor->limits[limits[i]] =
747                         sensor->limits[limits_replace[i]];
748         }
749
750         return 0;
751 }
752
753 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
754 {
755         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
756         struct smiapp_pll *pll = &sensor->pll;
757         unsigned int type, n;
758         unsigned int i, pixel_order;
759         int rval;
760
761         rval = smiapp_read(
762                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
763         if (rval)
764                 return rval;
765
766         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
767
768         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
769                            &pixel_order);
770         if (rval)
771                 return rval;
772
773         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
774                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
775                 return -EINVAL;
776         }
777
778         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
779                 pixel_order_str[pixel_order]);
780
781         switch (type) {
782         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
783                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
784                 break;
785         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
786                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
787                 break;
788         default:
789                 return -EINVAL;
790         }
791
792         sensor->default_pixel_order = pixel_order;
793         sensor->mbus_frame_fmts = 0;
794
795         for (i = 0; i < n; i++) {
796                 unsigned int fmt, j;
797
798                 rval = smiapp_read(
799                         sensor,
800                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
801                 if (rval)
802                         return rval;
803
804                 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
805                         i, fmt >> 8, (u8)fmt);
806
807                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
808                         const struct smiapp_csi_data_format *f =
809                                 &smiapp_csi_data_formats[j];
810
811                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
812                                 continue;
813
814                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
815                                 continue;
816
817                         dev_dbg(&client->dev, "jolly good! %d\n", j);
818
819                         sensor->default_mbus_frame_fmts |= 1 << j;
820                 }
821         }
822
823         /* Figure out which BPP values can be used with which formats. */
824         pll->binning_horizontal = 1;
825         pll->binning_vertical = 1;
826         pll->scale_m = sensor->scale_m;
827
828         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
829                 const struct smiapp_csi_data_format *f =
830                         &smiapp_csi_data_formats[i];
831                 unsigned long *valid_link_freqs =
832                         &sensor->valid_link_freqs[
833                                 f->compressed - SMIAPP_COMPRESSED_BASE];
834                 unsigned int j;
835
836                 BUG_ON(f->compressed < SMIAPP_COMPRESSED_BASE);
837                 BUG_ON(f->compressed > SMIAPP_COMPRESSED_MAX);
838
839                 if (!(sensor->default_mbus_frame_fmts & 1 << i))
840                         continue;
841
842                 pll->bits_per_pixel = f->compressed;
843
844                 for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
845                         pll->link_freq = sensor->hwcfg->op_sys_clock[j];
846
847                         rval = smiapp_pll_try(sensor, pll);
848                         dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
849                                 pll->link_freq, pll->bits_per_pixel,
850                                 rval ? "not ok" : "ok");
851                         if (rval)
852                                 continue;
853
854                         set_bit(j, valid_link_freqs);
855                 }
856
857                 if (!*valid_link_freqs) {
858                         dev_info(&client->dev,
859                                  "no valid link frequencies for %u bpp\n",
860                                  f->compressed);
861                         sensor->default_mbus_frame_fmts &= ~BIT(i);
862                         continue;
863                 }
864
865                 if (!sensor->csi_format
866                     || f->width > sensor->csi_format->width
867                     || (f->width == sensor->csi_format->width
868                         && f->compressed > sensor->csi_format->compressed)) {
869                         sensor->csi_format = f;
870                         sensor->internal_csi_format = f;
871                 }
872         }
873
874         if (!sensor->csi_format) {
875                 dev_err(&client->dev, "no supported mbus code found\n");
876                 return -EINVAL;
877         }
878
879         smiapp_update_mbus_formats(sensor);
880
881         return 0;
882 }
883
884 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
885 {
886         struct v4l2_ctrl *vblank = sensor->vblank;
887         struct v4l2_ctrl *hblank = sensor->hblank;
888         int min, max;
889
890         min = max_t(int,
891                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
892                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
893                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
894         max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
895                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
896
897         __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
898
899         min = max_t(int,
900                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
901                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
902                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
903         max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
904                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
905
906         __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
907
908         __smiapp_update_exposure_limits(sensor);
909 }
910
911 static int smiapp_update_mode(struct smiapp_sensor *sensor)
912 {
913         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
914         unsigned int binning_mode;
915         int rval;
916
917         dev_dbg(&client->dev, "frame size: %dx%d\n",
918                 sensor->src->crop[SMIAPP_PAD_SRC].width,
919                 sensor->src->crop[SMIAPP_PAD_SRC].height);
920         dev_dbg(&client->dev, "csi format width: %d\n",
921                 sensor->csi_format->width);
922
923         /* Binning has to be set up here; it affects limits */
924         if (sensor->binning_horizontal == 1 &&
925             sensor->binning_vertical == 1) {
926                 binning_mode = 0;
927         } else {
928                 u8 binning_type =
929                         (sensor->binning_horizontal << 4)
930                         | sensor->binning_vertical;
931
932                 rval = smiapp_write(
933                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
934                 if (rval < 0)
935                         return rval;
936
937                 binning_mode = 1;
938         }
939         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
940         if (rval < 0)
941                 return rval;
942
943         /* Get updated limits due to binning */
944         rval = smiapp_get_limits_binning(sensor);
945         if (rval < 0)
946                 return rval;
947
948         rval = smiapp_pll_update(sensor);
949         if (rval < 0)
950                 return rval;
951
952         /* Output from pixel array, including blanking */
953         smiapp_update_blanking(sensor);
954
955         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
956         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
957
958         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
959                 sensor->pll.pixel_rate_pixel_array /
960                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
961                   + sensor->hblank->val) *
962                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
963                   + sensor->vblank->val) / 100));
964
965         return 0;
966 }
967
968 /*
969  *
970  * SMIA++ NVM handling
971  *
972  */
973 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
974                            unsigned char *nvm)
975 {
976         u32 i, s, p, np, v;
977         int rval = 0, rval2;
978
979         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
980         for (p = 0; p < np; p++) {
981                 rval = smiapp_write(
982                         sensor,
983                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
984                 if (rval)
985                         goto out;
986
987                 rval = smiapp_write(sensor,
988                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
989                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
990                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
991                 if (rval)
992                         goto out;
993
994                 for (i = 0; i < 1000; i++) {
995                         rval = smiapp_read(
996                                 sensor,
997                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
998
999                         if (rval)
1000                                 goto out;
1001
1002                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
1003                                 break;
1004
1005                         if (--i == 0) {
1006                                 rval = -ETIMEDOUT;
1007                                 goto out;
1008                         }
1009
1010                 }
1011
1012                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1013                         rval = smiapp_read(
1014                                 sensor,
1015                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1016                                 &v);
1017                         if (rval)
1018                                 goto out;
1019
1020                         *nvm++ = v;
1021                 }
1022         }
1023
1024 out:
1025         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1026         if (rval < 0)
1027                 return rval;
1028         else
1029                 return rval2;
1030 }
1031
1032 /*
1033  *
1034  * SMIA++ CCI address control
1035  *
1036  */
1037 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1038 {
1039         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1040         int rval;
1041         u32 val;
1042
1043         client->addr = sensor->hwcfg->i2c_addr_dfl;
1044
1045         rval = smiapp_write(sensor,
1046                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1047                             sensor->hwcfg->i2c_addr_alt << 1);
1048         if (rval)
1049                 return rval;
1050
1051         client->addr = sensor->hwcfg->i2c_addr_alt;
1052
1053         /* verify addr change went ok */
1054         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1055         if (rval)
1056                 return rval;
1057
1058         if (val != sensor->hwcfg->i2c_addr_alt << 1)
1059                 return -ENODEV;
1060
1061         return 0;
1062 }
1063
1064 /*
1065  *
1066  * SMIA++ Mode Control
1067  *
1068  */
1069 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1070 {
1071         struct smiapp_flash_strobe_parms *strobe_setup;
1072         unsigned int ext_freq = sensor->hwcfg->ext_clk;
1073         u32 tmp;
1074         u32 strobe_adjustment;
1075         u32 strobe_width_high_rs;
1076         int rval;
1077
1078         strobe_setup = sensor->hwcfg->strobe_setup;
1079
1080         /*
1081          * How to calculate registers related to strobe length. Please
1082          * do not change, or if you do at least know what you're
1083          * doing. :-)
1084          *
1085          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1086          *
1087          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1088          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1089          *
1090          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1091          * flash_strobe_adjustment E N, [1 - 0xff]
1092          *
1093          * The formula above is written as below to keep it on one
1094          * line:
1095          *
1096          * l / 10^6 = w / e * a
1097          *
1098          * Let's mark w * a by x:
1099          *
1100          * x = w * a
1101          *
1102          * Thus, we get:
1103          *
1104          * x = l * e / 10^6
1105          *
1106          * The strobe width must be at least as long as requested,
1107          * thus rounding upwards is needed.
1108          *
1109          * x = (l * e + 10^6 - 1) / 10^6
1110          * -----------------------------
1111          *
1112          * Maximum possible accuracy is wanted at all times. Thus keep
1113          * a as small as possible.
1114          *
1115          * Calculate a, assuming maximum w, with rounding upwards:
1116          *
1117          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1118          * -------------------------------------
1119          *
1120          * Thus, we also get w, with that a, with rounding upwards:
1121          *
1122          * w = (x + a - 1) / a
1123          * -------------------
1124          *
1125          * To get limits:
1126          *
1127          * x E [1, (2^16 - 1) * (2^8 - 1)]
1128          *
1129          * Substituting maximum x to the original formula (with rounding),
1130          * the maximum l is thus
1131          *
1132          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1133          *
1134          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1135          * --------------------------------------------------
1136          *
1137          * flash_strobe_length must be clamped between 1 and
1138          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1139          *
1140          * Then,
1141          *
1142          * flash_strobe_adjustment = ((flash_strobe_length *
1143          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1144          *
1145          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1146          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1147          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1148          */
1149         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1150                       1000000 + 1, ext_freq);
1151         strobe_setup->strobe_width_high_us =
1152                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1153
1154         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1155                         1000000 - 1), 1000000ULL);
1156         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1157         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1158                                 strobe_adjustment;
1159
1160         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1161                             strobe_setup->mode);
1162         if (rval < 0)
1163                 goto out;
1164
1165         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1166                             strobe_adjustment);
1167         if (rval < 0)
1168                 goto out;
1169
1170         rval = smiapp_write(
1171                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1172                 strobe_width_high_rs);
1173         if (rval < 0)
1174                 goto out;
1175
1176         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1177                             strobe_setup->strobe_delay);
1178         if (rval < 0)
1179                 goto out;
1180
1181         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1182                             strobe_setup->stobe_start_point);
1183         if (rval < 0)
1184                 goto out;
1185
1186         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1187                             strobe_setup->trigger);
1188
1189 out:
1190         sensor->hwcfg->strobe_setup->trigger = 0;
1191
1192         return rval;
1193 }
1194
1195 /* -----------------------------------------------------------------------------
1196  * Power management
1197  */
1198
1199 static int smiapp_power_on(struct smiapp_sensor *sensor)
1200 {
1201         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1202         unsigned int sleep;
1203         int rval;
1204
1205         rval = regulator_enable(sensor->vana);
1206         if (rval) {
1207                 dev_err(&client->dev, "failed to enable vana regulator\n");
1208                 return rval;
1209         }
1210         usleep_range(1000, 1000);
1211
1212         rval = clk_prepare_enable(sensor->ext_clk);
1213         if (rval < 0) {
1214                 dev_dbg(&client->dev, "failed to enable xclk\n");
1215                 goto out_xclk_fail;
1216         }
1217         usleep_range(1000, 1000);
1218
1219         gpiod_set_value(sensor->xshutdown, 1);
1220
1221         sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1222         usleep_range(sleep, sleep);
1223
1224         /*
1225          * Failures to respond to the address change command have been noticed.
1226          * Those failures seem to be caused by the sensor requiring a longer
1227          * boot time than advertised. An additional 10ms delay seems to work
1228          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1229          * unnecessary. The failures need to be investigated to find a proper
1230          * fix, and a delay will likely need to be added here if the I2C write
1231          * retry hack is reverted before the root cause of the boot time issue
1232          * is found.
1233          */
1234
1235         if (sensor->hwcfg->i2c_addr_alt) {
1236                 rval = smiapp_change_cci_addr(sensor);
1237                 if (rval) {
1238                         dev_err(&client->dev, "cci address change error\n");
1239                         goto out_cci_addr_fail;
1240                 }
1241         }
1242
1243         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1244                             SMIAPP_SOFTWARE_RESET);
1245         if (rval < 0) {
1246                 dev_err(&client->dev, "software reset failed\n");
1247                 goto out_cci_addr_fail;
1248         }
1249
1250         if (sensor->hwcfg->i2c_addr_alt) {
1251                 rval = smiapp_change_cci_addr(sensor);
1252                 if (rval) {
1253                         dev_err(&client->dev, "cci address change error\n");
1254                         goto out_cci_addr_fail;
1255                 }
1256         }
1257
1258         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1259                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1260         if (rval) {
1261                 dev_err(&client->dev, "compression mode set failed\n");
1262                 goto out_cci_addr_fail;
1263         }
1264
1265         rval = smiapp_write(
1266                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1267                 sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1268         if (rval) {
1269                 dev_err(&client->dev, "extclk frequency set failed\n");
1270                 goto out_cci_addr_fail;
1271         }
1272
1273         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1274                             sensor->hwcfg->lanes - 1);
1275         if (rval) {
1276                 dev_err(&client->dev, "csi lane mode set failed\n");
1277                 goto out_cci_addr_fail;
1278         }
1279
1280         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1281                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1282         if (rval) {
1283                 dev_err(&client->dev, "fast standby set failed\n");
1284                 goto out_cci_addr_fail;
1285         }
1286
1287         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1288                             sensor->hwcfg->csi_signalling_mode);
1289         if (rval) {
1290                 dev_err(&client->dev, "csi signalling mode set failed\n");
1291                 goto out_cci_addr_fail;
1292         }
1293
1294         /* DPHY control done by sensor based on requested link rate */
1295         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1296                             SMIAPP_DPHY_CTRL_UI);
1297         if (rval < 0)
1298                 return rval;
1299
1300         rval = smiapp_call_quirk(sensor, post_poweron);
1301         if (rval) {
1302                 dev_err(&client->dev, "post_poweron quirks failed\n");
1303                 goto out_cci_addr_fail;
1304         }
1305
1306         /* Are we still initialising...? If yes, return here. */
1307         if (!sensor->pixel_array)
1308                 return 0;
1309
1310         rval = v4l2_ctrl_handler_setup(
1311                 &sensor->pixel_array->ctrl_handler);
1312         if (rval)
1313                 goto out_cci_addr_fail;
1314
1315         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1316         if (rval)
1317                 goto out_cci_addr_fail;
1318
1319         mutex_lock(&sensor->mutex);
1320         rval = smiapp_update_mode(sensor);
1321         mutex_unlock(&sensor->mutex);
1322         if (rval < 0)
1323                 goto out_cci_addr_fail;
1324
1325         return 0;
1326
1327 out_cci_addr_fail:
1328         gpiod_set_value(sensor->xshutdown, 0);
1329         clk_disable_unprepare(sensor->ext_clk);
1330
1331 out_xclk_fail:
1332         regulator_disable(sensor->vana);
1333         return rval;
1334 }
1335
1336 static void smiapp_power_off(struct smiapp_sensor *sensor)
1337 {
1338         /*
1339          * Currently power/clock to lens are enable/disabled separately
1340          * but they are essentially the same signals. So if the sensor is
1341          * powered off while the lens is powered on the sensor does not
1342          * really see a power off and next time the cci address change
1343          * will fail. So do a soft reset explicitly here.
1344          */
1345         if (sensor->hwcfg->i2c_addr_alt)
1346                 smiapp_write(sensor,
1347                              SMIAPP_REG_U8_SOFTWARE_RESET,
1348                              SMIAPP_SOFTWARE_RESET);
1349
1350         gpiod_set_value(sensor->xshutdown, 0);
1351         clk_disable_unprepare(sensor->ext_clk);
1352         usleep_range(5000, 5000);
1353         regulator_disable(sensor->vana);
1354         sensor->streaming = false;
1355 }
1356
1357 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1358 {
1359         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1360         int ret = 0;
1361
1362         mutex_lock(&sensor->power_mutex);
1363
1364         if (on && !sensor->power_count) {
1365                 /* Power on and perform initialisation. */
1366                 ret = smiapp_power_on(sensor);
1367                 if (ret < 0)
1368                         goto out;
1369         } else if (!on && sensor->power_count == 1) {
1370                 smiapp_power_off(sensor);
1371         }
1372
1373         /* Update the power count. */
1374         sensor->power_count += on ? 1 : -1;
1375         WARN_ON(sensor->power_count < 0);
1376
1377 out:
1378         mutex_unlock(&sensor->power_mutex);
1379         return ret;
1380 }
1381
1382 /* -----------------------------------------------------------------------------
1383  * Video stream management
1384  */
1385
1386 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1387 {
1388         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1389         int rval;
1390
1391         mutex_lock(&sensor->mutex);
1392
1393         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1394                             (sensor->csi_format->width << 8) |
1395                             sensor->csi_format->compressed);
1396         if (rval)
1397                 goto out;
1398
1399         rval = smiapp_pll_configure(sensor);
1400         if (rval)
1401                 goto out;
1402
1403         /* Analog crop start coordinates */
1404         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1405                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1406         if (rval < 0)
1407                 goto out;
1408
1409         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1410                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1411         if (rval < 0)
1412                 goto out;
1413
1414         /* Analog crop end coordinates */
1415         rval = smiapp_write(
1416                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1417                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1418                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1419         if (rval < 0)
1420                 goto out;
1421
1422         rval = smiapp_write(
1423                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1424                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1425                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1426         if (rval < 0)
1427                 goto out;
1428
1429         /*
1430          * Output from pixel array, including blanking, is set using
1431          * controls below. No need to set here.
1432          */
1433
1434         /* Digital crop */
1435         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1436             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1437                 rval = smiapp_write(
1438                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1439                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1440                 if (rval < 0)
1441                         goto out;
1442
1443                 rval = smiapp_write(
1444                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1445                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1446                 if (rval < 0)
1447                         goto out;
1448
1449                 rval = smiapp_write(
1450                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1451                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1452                 if (rval < 0)
1453                         goto out;
1454
1455                 rval = smiapp_write(
1456                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1457                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1458                 if (rval < 0)
1459                         goto out;
1460         }
1461
1462         /* Scaling */
1463         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1464             != SMIAPP_SCALING_CAPABILITY_NONE) {
1465                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1466                                     sensor->scaling_mode);
1467                 if (rval < 0)
1468                         goto out;
1469
1470                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1471                                     sensor->scale_m);
1472                 if (rval < 0)
1473                         goto out;
1474         }
1475
1476         /* Output size from sensor */
1477         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1478                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1479         if (rval < 0)
1480                 goto out;
1481         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1482                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1483         if (rval < 0)
1484                 goto out;
1485
1486         if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1487              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1488               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1489             sensor->hwcfg->strobe_setup != NULL &&
1490             sensor->hwcfg->strobe_setup->trigger != 0) {
1491                 rval = smiapp_setup_flash_strobe(sensor);
1492                 if (rval)
1493                         goto out;
1494         }
1495
1496         rval = smiapp_call_quirk(sensor, pre_streamon);
1497         if (rval) {
1498                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1499                 goto out;
1500         }
1501
1502         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1503                             SMIAPP_MODE_SELECT_STREAMING);
1504
1505 out:
1506         mutex_unlock(&sensor->mutex);
1507
1508         return rval;
1509 }
1510
1511 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1512 {
1513         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1514         int rval;
1515
1516         mutex_lock(&sensor->mutex);
1517         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1518                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1519         if (rval)
1520                 goto out;
1521
1522         rval = smiapp_call_quirk(sensor, post_streamoff);
1523         if (rval)
1524                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1525
1526 out:
1527         mutex_unlock(&sensor->mutex);
1528         return rval;
1529 }
1530
1531 /* -----------------------------------------------------------------------------
1532  * V4L2 subdev video operations
1533  */
1534
1535 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1536 {
1537         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1538         int rval;
1539
1540         if (sensor->streaming == enable)
1541                 return 0;
1542
1543         if (enable) {
1544                 sensor->streaming = true;
1545                 rval = smiapp_start_streaming(sensor);
1546                 if (rval < 0)
1547                         sensor->streaming = false;
1548         } else {
1549                 rval = smiapp_stop_streaming(sensor);
1550                 sensor->streaming = false;
1551         }
1552
1553         return rval;
1554 }
1555
1556 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1557                                  struct v4l2_subdev_pad_config *cfg,
1558                                  struct v4l2_subdev_mbus_code_enum *code)
1559 {
1560         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1561         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1562         unsigned int i;
1563         int idx = -1;
1564         int rval = -EINVAL;
1565
1566         mutex_lock(&sensor->mutex);
1567
1568         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1569                 subdev->name, code->pad, code->index);
1570
1571         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1572                 if (code->index)
1573                         goto out;
1574
1575                 code->code = sensor->internal_csi_format->code;
1576                 rval = 0;
1577                 goto out;
1578         }
1579
1580         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1581                 if (sensor->mbus_frame_fmts & (1 << i))
1582                         idx++;
1583
1584                 if (idx == code->index) {
1585                         code->code = smiapp_csi_data_formats[i].code;
1586                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1587                                 code->index, i, code->code);
1588                         rval = 0;
1589                         break;
1590                 }
1591         }
1592
1593 out:
1594         mutex_unlock(&sensor->mutex);
1595
1596         return rval;
1597 }
1598
1599 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1600                                   unsigned int pad)
1601 {
1602         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1603
1604         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1605                 return sensor->csi_format->code;
1606         else
1607                 return sensor->internal_csi_format->code;
1608 }
1609
1610 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1611                                struct v4l2_subdev_pad_config *cfg,
1612                                struct v4l2_subdev_format *fmt)
1613 {
1614         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1615
1616         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1617                 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg, fmt->pad);
1618         } else {
1619                 struct v4l2_rect *r;
1620
1621                 if (fmt->pad == ssd->source_pad)
1622                         r = &ssd->crop[ssd->source_pad];
1623                 else
1624                         r = &ssd->sink_fmt;
1625
1626                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1627                 fmt->format.width = r->width;
1628                 fmt->format.height = r->height;
1629                 fmt->format.field = V4L2_FIELD_NONE;
1630         }
1631
1632         return 0;
1633 }
1634
1635 static int smiapp_get_format(struct v4l2_subdev *subdev,
1636                              struct v4l2_subdev_pad_config *cfg,
1637                              struct v4l2_subdev_format *fmt)
1638 {
1639         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1640         int rval;
1641
1642         mutex_lock(&sensor->mutex);
1643         rval = __smiapp_get_format(subdev, cfg, fmt);
1644         mutex_unlock(&sensor->mutex);
1645
1646         return rval;
1647 }
1648
1649 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1650                                     struct v4l2_subdev_pad_config *cfg,
1651                                     struct v4l2_rect **crops,
1652                                     struct v4l2_rect **comps, int which)
1653 {
1654         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1655         unsigned int i;
1656
1657         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1658                 if (crops)
1659                         for (i = 0; i < subdev->entity.num_pads; i++)
1660                                 crops[i] = &ssd->crop[i];
1661                 if (comps)
1662                         *comps = &ssd->compose;
1663         } else {
1664                 if (crops) {
1665                         for (i = 0; i < subdev->entity.num_pads; i++) {
1666                                 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1667                                 BUG_ON(!crops[i]);
1668                         }
1669                 }
1670                 if (comps) {
1671                         *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1672                                                              SMIAPP_PAD_SINK);
1673                         BUG_ON(!*comps);
1674                 }
1675         }
1676 }
1677
1678 /* Changes require propagation only on sink pad. */
1679 static void smiapp_propagate(struct v4l2_subdev *subdev,
1680                              struct v4l2_subdev_pad_config *cfg, int which,
1681                              int target)
1682 {
1683         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1684         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1685         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1686
1687         smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1688
1689         switch (target) {
1690         case V4L2_SEL_TGT_CROP:
1691                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1692                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1693                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1694                         if (ssd == sensor->scaler) {
1695                                 sensor->scale_m =
1696                                         sensor->limits[
1697                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1698                                 sensor->scaling_mode =
1699                                         SMIAPP_SCALING_MODE_NONE;
1700                         } else if (ssd == sensor->binner) {
1701                                 sensor->binning_horizontal = 1;
1702                                 sensor->binning_vertical = 1;
1703                         }
1704                 }
1705                 /* Fall through */
1706         case V4L2_SEL_TGT_COMPOSE:
1707                 *crops[SMIAPP_PAD_SRC] = *comp;
1708                 break;
1709         default:
1710                 BUG();
1711         }
1712 }
1713
1714 static const struct smiapp_csi_data_format
1715 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1716 {
1717         const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1718         unsigned int i;
1719
1720         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1721                 if (sensor->mbus_frame_fmts & (1 << i)
1722                     && smiapp_csi_data_formats[i].code == code)
1723                         return &smiapp_csi_data_formats[i];
1724         }
1725
1726         return csi_format;
1727 }
1728
1729 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1730                                     struct v4l2_subdev_pad_config *cfg,
1731                                     struct v4l2_subdev_format *fmt)
1732 {
1733         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1734         const struct smiapp_csi_data_format *csi_format,
1735                 *old_csi_format = sensor->csi_format;
1736         unsigned long *valid_link_freqs;
1737         u32 code = fmt->format.code;
1738         unsigned int i;
1739         int rval;
1740
1741         rval = __smiapp_get_format(subdev, cfg, fmt);
1742         if (rval)
1743                 return rval;
1744
1745         /*
1746          * Media bus code is changeable on src subdev's source pad. On
1747          * other source pads we just get format here.
1748          */
1749         if (subdev != &sensor->src->sd)
1750                 return 0;
1751
1752         csi_format = smiapp_validate_csi_data_format(sensor, code);
1753
1754         fmt->format.code = csi_format->code;
1755
1756         if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1757                 return 0;
1758
1759         sensor->csi_format = csi_format;
1760
1761         if (csi_format->width != old_csi_format->width)
1762                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1763                         __v4l2_ctrl_modify_range(
1764                                 sensor->test_data[i], 0,
1765                                 (1 << csi_format->width) - 1, 1, 0);
1766
1767         if (csi_format->compressed == old_csi_format->compressed)
1768                 return 0;
1769
1770         valid_link_freqs = 
1771                 &sensor->valid_link_freqs[sensor->csi_format->compressed
1772                                           - SMIAPP_COMPRESSED_BASE];
1773
1774         __v4l2_ctrl_modify_range(
1775                 sensor->link_freq, 0,
1776                 __fls(*valid_link_freqs), ~*valid_link_freqs,
1777                 __ffs(*valid_link_freqs));
1778
1779         return smiapp_pll_update(sensor);
1780 }
1781
1782 static int smiapp_set_format(struct v4l2_subdev *subdev,
1783                              struct v4l2_subdev_pad_config *cfg,
1784                              struct v4l2_subdev_format *fmt)
1785 {
1786         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1787         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1788         struct v4l2_rect *crops[SMIAPP_PADS];
1789
1790         mutex_lock(&sensor->mutex);
1791
1792         if (fmt->pad == ssd->source_pad) {
1793                 int rval;
1794
1795                 rval = smiapp_set_format_source(subdev, cfg, fmt);
1796
1797                 mutex_unlock(&sensor->mutex);
1798
1799                 return rval;
1800         }
1801
1802         /* Sink pad. Width and height are changeable here. */
1803         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1804         fmt->format.width &= ~1;
1805         fmt->format.height &= ~1;
1806         fmt->format.field = V4L2_FIELD_NONE;
1807
1808         fmt->format.width =
1809                 clamp(fmt->format.width,
1810                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1811                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1812         fmt->format.height =
1813                 clamp(fmt->format.height,
1814                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1815                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1816
1817         smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1818
1819         crops[ssd->sink_pad]->left = 0;
1820         crops[ssd->sink_pad]->top = 0;
1821         crops[ssd->sink_pad]->width = fmt->format.width;
1822         crops[ssd->sink_pad]->height = fmt->format.height;
1823         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1824                 ssd->sink_fmt = *crops[ssd->sink_pad];
1825         smiapp_propagate(subdev, cfg, fmt->which,
1826                          V4L2_SEL_TGT_CROP);
1827
1828         mutex_unlock(&sensor->mutex);
1829
1830         return 0;
1831 }
1832
1833 /*
1834  * Calculate goodness of scaled image size compared to expected image
1835  * size and flags provided.
1836  */
1837 #define SCALING_GOODNESS                100000
1838 #define SCALING_GOODNESS_EXTREME        100000000
1839 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1840                             int h, int ask_h, u32 flags)
1841 {
1842         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1843         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1844         int val = 0;
1845
1846         w &= ~1;
1847         ask_w &= ~1;
1848         h &= ~1;
1849         ask_h &= ~1;
1850
1851         if (flags & V4L2_SEL_FLAG_GE) {
1852                 if (w < ask_w)
1853                         val -= SCALING_GOODNESS;
1854                 if (h < ask_h)
1855                         val -= SCALING_GOODNESS;
1856         }
1857
1858         if (flags & V4L2_SEL_FLAG_LE) {
1859                 if (w > ask_w)
1860                         val -= SCALING_GOODNESS;
1861                 if (h > ask_h)
1862                         val -= SCALING_GOODNESS;
1863         }
1864
1865         val -= abs(w - ask_w);
1866         val -= abs(h - ask_h);
1867
1868         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1869                 val -= SCALING_GOODNESS_EXTREME;
1870
1871         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1872                 w, ask_h, h, ask_h, val);
1873
1874         return val;
1875 }
1876
1877 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1878                                       struct v4l2_subdev_pad_config *cfg,
1879                                       struct v4l2_subdev_selection *sel,
1880                                       struct v4l2_rect **crops,
1881                                       struct v4l2_rect *comp)
1882 {
1883         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1884         unsigned int i;
1885         unsigned int binh = 1, binv = 1;
1886         int best = scaling_goodness(
1887                 subdev,
1888                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1889                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1890
1891         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1892                 int this = scaling_goodness(
1893                         subdev,
1894                         crops[SMIAPP_PAD_SINK]->width
1895                         / sensor->binning_subtypes[i].horizontal,
1896                         sel->r.width,
1897                         crops[SMIAPP_PAD_SINK]->height
1898                         / sensor->binning_subtypes[i].vertical,
1899                         sel->r.height, sel->flags);
1900
1901                 if (this > best) {
1902                         binh = sensor->binning_subtypes[i].horizontal;
1903                         binv = sensor->binning_subtypes[i].vertical;
1904                         best = this;
1905                 }
1906         }
1907         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1908                 sensor->binning_vertical = binv;
1909                 sensor->binning_horizontal = binh;
1910         }
1911
1912         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1913         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1914 }
1915
1916 /*
1917  * Calculate best scaling ratio and mode for given output resolution.
1918  *
1919  * Try all of these: horizontal ratio, vertical ratio and smallest
1920  * size possible (horizontally).
1921  *
1922  * Also try whether horizontal scaler or full scaler gives a better
1923  * result.
1924  */
1925 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1926                                       struct v4l2_subdev_pad_config *cfg,
1927                                       struct v4l2_subdev_selection *sel,
1928                                       struct v4l2_rect **crops,
1929                                       struct v4l2_rect *comp)
1930 {
1931         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1932         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1933         u32 min, max, a, b, max_m;
1934         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1935         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1936         u32 try[4];
1937         u32 ntry = 0;
1938         unsigned int i;
1939         int best = INT_MIN;
1940
1941         sel->r.width = min_t(unsigned int, sel->r.width,
1942                              crops[SMIAPP_PAD_SINK]->width);
1943         sel->r.height = min_t(unsigned int, sel->r.height,
1944                               crops[SMIAPP_PAD_SINK]->height);
1945
1946         a = crops[SMIAPP_PAD_SINK]->width
1947                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1948         b = crops[SMIAPP_PAD_SINK]->height
1949                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1950         max_m = crops[SMIAPP_PAD_SINK]->width
1951                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1952                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1953
1954         a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1955                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1956         b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1957                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1958         max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1959                       sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1960
1961         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1962
1963         min = min(max_m, min(a, b));
1964         max = min(max_m, max(a, b));
1965
1966         try[ntry] = min;
1967         ntry++;
1968         if (min != max) {
1969                 try[ntry] = max;
1970                 ntry++;
1971         }
1972         if (max != max_m) {
1973                 try[ntry] = min + 1;
1974                 ntry++;
1975                 if (min != max) {
1976                         try[ntry] = max + 1;
1977                         ntry++;
1978                 }
1979         }
1980
1981         for (i = 0; i < ntry; i++) {
1982                 int this = scaling_goodness(
1983                         subdev,
1984                         crops[SMIAPP_PAD_SINK]->width
1985                         / try[i]
1986                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1987                         sel->r.width,
1988                         crops[SMIAPP_PAD_SINK]->height,
1989                         sel->r.height,
1990                         sel->flags);
1991
1992                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1993
1994                 if (this > best) {
1995                         scale_m = try[i];
1996                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1997                         best = this;
1998                 }
1999
2000                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2001                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2002                         continue;
2003
2004                 this = scaling_goodness(
2005                         subdev, crops[SMIAPP_PAD_SINK]->width
2006                         / try[i]
2007                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2008                         sel->r.width,
2009                         crops[SMIAPP_PAD_SINK]->height
2010                         / try[i]
2011                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2012                         sel->r.height,
2013                         sel->flags);
2014
2015                 if (this > best) {
2016                         scale_m = try[i];
2017                         mode = SMIAPP_SCALING_MODE_BOTH;
2018                         best = this;
2019                 }
2020         }
2021
2022         sel->r.width =
2023                 (crops[SMIAPP_PAD_SINK]->width
2024                  / scale_m
2025                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2026         if (mode == SMIAPP_SCALING_MODE_BOTH)
2027                 sel->r.height =
2028                         (crops[SMIAPP_PAD_SINK]->height
2029                          / scale_m
2030                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2031                         & ~1;
2032         else
2033                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2034
2035         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2036                 sensor->scale_m = scale_m;
2037                 sensor->scaling_mode = mode;
2038         }
2039 }
2040 /* We're only called on source pads. This function sets scaling. */
2041 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2042                               struct v4l2_subdev_pad_config *cfg,
2043                               struct v4l2_subdev_selection *sel)
2044 {
2045         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2046         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2047         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2048
2049         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2050
2051         sel->r.top = 0;
2052         sel->r.left = 0;
2053
2054         if (ssd == sensor->binner)
2055                 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2056         else
2057                 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2058
2059         *comp = sel->r;
2060         smiapp_propagate(subdev, cfg, sel->which,
2061                          V4L2_SEL_TGT_COMPOSE);
2062
2063         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2064                 return smiapp_update_mode(sensor);
2065
2066         return 0;
2067 }
2068
2069 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2070                                   struct v4l2_subdev_selection *sel)
2071 {
2072         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2073         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2074
2075         /* We only implement crop in three places. */
2076         switch (sel->target) {
2077         case V4L2_SEL_TGT_CROP:
2078         case V4L2_SEL_TGT_CROP_BOUNDS:
2079                 if (ssd == sensor->pixel_array
2080                     && sel->pad == SMIAPP_PA_PAD_SRC)
2081                         return 0;
2082                 if (ssd == sensor->src
2083                     && sel->pad == SMIAPP_PAD_SRC)
2084                         return 0;
2085                 if (ssd == sensor->scaler
2086                     && sel->pad == SMIAPP_PAD_SINK
2087                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2088                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2089                         return 0;
2090                 return -EINVAL;
2091         case V4L2_SEL_TGT_NATIVE_SIZE:
2092                 if (ssd == sensor->pixel_array
2093                     && sel->pad == SMIAPP_PA_PAD_SRC)
2094                         return 0;
2095                 return -EINVAL;
2096         case V4L2_SEL_TGT_COMPOSE:
2097         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2098                 if (sel->pad == ssd->source_pad)
2099                         return -EINVAL;
2100                 if (ssd == sensor->binner)
2101                         return 0;
2102                 if (ssd == sensor->scaler
2103                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2104                     != SMIAPP_SCALING_CAPABILITY_NONE)
2105                         return 0;
2106                 /* Fall through */
2107         default:
2108                 return -EINVAL;
2109         }
2110 }
2111
2112 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2113                            struct v4l2_subdev_pad_config *cfg,
2114                            struct v4l2_subdev_selection *sel)
2115 {
2116         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2117         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2118         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2119         struct v4l2_rect _r;
2120
2121         smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2122
2123         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2124                 if (sel->pad == ssd->sink_pad)
2125                         src_size = &ssd->sink_fmt;
2126                 else
2127                         src_size = &ssd->compose;
2128         } else {
2129                 if (sel->pad == ssd->sink_pad) {
2130                         _r.left = 0;
2131                         _r.top = 0;
2132                         _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2133                                 ->width;
2134                         _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2135                                 ->height;
2136                         src_size = &_r;
2137                 } else {
2138                         src_size =
2139                                 v4l2_subdev_get_try_compose(
2140                                         subdev, cfg, ssd->sink_pad);
2141                 }
2142         }
2143
2144         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2145                 sel->r.left = 0;
2146                 sel->r.top = 0;
2147         }
2148
2149         sel->r.width = min(sel->r.width, src_size->width);
2150         sel->r.height = min(sel->r.height, src_size->height);
2151
2152         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2153         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2154
2155         *crops[sel->pad] = sel->r;
2156
2157         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2158                 smiapp_propagate(subdev, cfg, sel->which,
2159                                  V4L2_SEL_TGT_CROP);
2160
2161         return 0;
2162 }
2163
2164 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2165                                   struct v4l2_subdev_pad_config *cfg,
2166                                   struct v4l2_subdev_selection *sel)
2167 {
2168         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2169         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2170         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2171         struct v4l2_rect sink_fmt;
2172         int ret;
2173
2174         ret = __smiapp_sel_supported(subdev, sel);
2175         if (ret)
2176                 return ret;
2177
2178         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2179
2180         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2181                 sink_fmt = ssd->sink_fmt;
2182         } else {
2183                 struct v4l2_mbus_framefmt *fmt =
2184                         v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2185
2186                 sink_fmt.left = 0;
2187                 sink_fmt.top = 0;
2188                 sink_fmt.width = fmt->width;
2189                 sink_fmt.height = fmt->height;
2190         }
2191
2192         switch (sel->target) {
2193         case V4L2_SEL_TGT_CROP_BOUNDS:
2194         case V4L2_SEL_TGT_NATIVE_SIZE:
2195                 if (ssd == sensor->pixel_array) {
2196                         sel->r.left = sel->r.top = 0;
2197                         sel->r.width =
2198                                 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2199                         sel->r.height =
2200                                 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2201                 } else if (sel->pad == ssd->sink_pad) {
2202                         sel->r = sink_fmt;
2203                 } else {
2204                         sel->r = *comp;
2205                 }
2206                 break;
2207         case V4L2_SEL_TGT_CROP:
2208         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2209                 sel->r = *crops[sel->pad];
2210                 break;
2211         case V4L2_SEL_TGT_COMPOSE:
2212                 sel->r = *comp;
2213                 break;
2214         }
2215
2216         return 0;
2217 }
2218
2219 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2220                                 struct v4l2_subdev_pad_config *cfg,
2221                                 struct v4l2_subdev_selection *sel)
2222 {
2223         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2224         int rval;
2225
2226         mutex_lock(&sensor->mutex);
2227         rval = __smiapp_get_selection(subdev, cfg, sel);
2228         mutex_unlock(&sensor->mutex);
2229
2230         return rval;
2231 }
2232 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2233                                 struct v4l2_subdev_pad_config *cfg,
2234                                 struct v4l2_subdev_selection *sel)
2235 {
2236         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2237         int ret;
2238
2239         ret = __smiapp_sel_supported(subdev, sel);
2240         if (ret)
2241                 return ret;
2242
2243         mutex_lock(&sensor->mutex);
2244
2245         sel->r.left = max(0, sel->r.left & ~1);
2246         sel->r.top = max(0, sel->r.top & ~1);
2247         sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2248         sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2249
2250         sel->r.width = max_t(unsigned int,
2251                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2252                              sel->r.width);
2253         sel->r.height = max_t(unsigned int,
2254                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2255                               sel->r.height);
2256
2257         switch (sel->target) {
2258         case V4L2_SEL_TGT_CROP:
2259                 ret = smiapp_set_crop(subdev, cfg, sel);
2260                 break;
2261         case V4L2_SEL_TGT_COMPOSE:
2262                 ret = smiapp_set_compose(subdev, cfg, sel);
2263                 break;
2264         default:
2265                 ret = -EINVAL;
2266         }
2267
2268         mutex_unlock(&sensor->mutex);
2269         return ret;
2270 }
2271
2272 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2273 {
2274         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2275
2276         *frames = sensor->frame_skip;
2277         return 0;
2278 }
2279
2280 static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2281 {
2282         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2283
2284         *lines = sensor->image_start;
2285
2286         return 0;
2287 }
2288
2289 /* -----------------------------------------------------------------------------
2290  * sysfs attributes
2291  */
2292
2293 static ssize_t
2294 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2295                       char *buf)
2296 {
2297         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2298         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2299         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2300         unsigned int nbytes;
2301
2302         if (!sensor->dev_init_done)
2303                 return -EBUSY;
2304
2305         if (!sensor->nvm_size) {
2306                 /* NVM not read yet - read it now */
2307                 sensor->nvm_size = sensor->hwcfg->nvm_size;
2308                 if (smiapp_set_power(subdev, 1) < 0)
2309                         return -ENODEV;
2310                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2311                         dev_err(&client->dev, "nvm read failed\n");
2312                         return -ENODEV;
2313                 }
2314                 smiapp_set_power(subdev, 0);
2315         }
2316         /*
2317          * NVM is still way below a PAGE_SIZE, so we can safely
2318          * assume this for now.
2319          */
2320         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2321         memcpy(buf, sensor->nvm, nbytes);
2322
2323         return nbytes;
2324 }
2325 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2326
2327 static ssize_t
2328 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2329                         char *buf)
2330 {
2331         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2332         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2333         struct smiapp_module_info *minfo = &sensor->minfo;
2334
2335         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2336                         minfo->manufacturer_id, minfo->model_id,
2337                         minfo->revision_number_major) + 1;
2338 }
2339
2340 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2341
2342 /* -----------------------------------------------------------------------------
2343  * V4L2 subdev core operations
2344  */
2345
2346 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2347 {
2348         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2349         struct smiapp_module_info *minfo = &sensor->minfo;
2350         unsigned int i;
2351         int rval = 0;
2352
2353         minfo->name = SMIAPP_NAME;
2354
2355         /* Module info */
2356         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2357                                  &minfo->manufacturer_id);
2358         if (!rval)
2359                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2360                                          &minfo->model_id);
2361         if (!rval)
2362                 rval = smiapp_read_8only(sensor,
2363                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2364                                          &minfo->revision_number_major);
2365         if (!rval)
2366                 rval = smiapp_read_8only(sensor,
2367                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2368                                          &minfo->revision_number_minor);
2369         if (!rval)
2370                 rval = smiapp_read_8only(sensor,
2371                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2372                                          &minfo->module_year);
2373         if (!rval)
2374                 rval = smiapp_read_8only(sensor,
2375                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2376                                          &minfo->module_month);
2377         if (!rval)
2378                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2379                                          &minfo->module_day);
2380
2381         /* Sensor info */
2382         if (!rval)
2383                 rval = smiapp_read_8only(sensor,
2384                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2385                                          &minfo->sensor_manufacturer_id);
2386         if (!rval)
2387                 rval = smiapp_read_8only(sensor,
2388                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2389                                          &minfo->sensor_model_id);
2390         if (!rval)
2391                 rval = smiapp_read_8only(sensor,
2392                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2393                                          &minfo->sensor_revision_number);
2394         if (!rval)
2395                 rval = smiapp_read_8only(sensor,
2396                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2397                                          &minfo->sensor_firmware_version);
2398
2399         /* SMIA */
2400         if (!rval)
2401                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2402                                          &minfo->smia_version);
2403         if (!rval)
2404                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2405                                          &minfo->smiapp_version);
2406
2407         if (rval) {
2408                 dev_err(&client->dev, "sensor detection failed\n");
2409                 return -ENODEV;
2410         }
2411
2412         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2413                 minfo->manufacturer_id, minfo->model_id);
2414
2415         dev_dbg(&client->dev,
2416                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2417                 minfo->revision_number_major, minfo->revision_number_minor,
2418                 minfo->module_year, minfo->module_month, minfo->module_day);
2419
2420         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2421                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2422
2423         dev_dbg(&client->dev,
2424                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2425                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2426
2427         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2428                 minfo->smia_version, minfo->smiapp_version);
2429
2430         /*
2431          * Some modules have bad data in the lvalues below. Hope the
2432          * rvalues have better stuff. The lvalues are module
2433          * parameters whereas the rvalues are sensor parameters.
2434          */
2435         if (!minfo->manufacturer_id && !minfo->model_id) {
2436                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2437                 minfo->model_id = minfo->sensor_model_id;
2438                 minfo->revision_number_major = minfo->sensor_revision_number;
2439         }
2440
2441         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2442                 if (smiapp_module_idents[i].manufacturer_id
2443                     != minfo->manufacturer_id)
2444                         continue;
2445                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2446                         continue;
2447                 if (smiapp_module_idents[i].flags
2448                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2449                         if (smiapp_module_idents[i].revision_number_major
2450                             < minfo->revision_number_major)
2451                                 continue;
2452                 } else {
2453                         if (smiapp_module_idents[i].revision_number_major
2454                             != minfo->revision_number_major)
2455                                 continue;
2456                 }
2457
2458                 minfo->name = smiapp_module_idents[i].name;
2459                 minfo->quirk = smiapp_module_idents[i].quirk;
2460                 break;
2461         }
2462
2463         if (i >= ARRAY_SIZE(smiapp_module_idents))
2464                 dev_warn(&client->dev,
2465                          "no quirks for this module; let's hope it's fully compliant\n");
2466
2467         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2468                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2469                 minfo->revision_number_major);
2470
2471         return 0;
2472 }
2473
2474 static const struct v4l2_subdev_ops smiapp_ops;
2475 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2476 static const struct media_entity_operations smiapp_entity_ops;
2477
2478 static int smiapp_register_subdevs(struct smiapp_sensor *sensor)
2479 {
2480         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2481         struct smiapp_subdev *ssds[] = {
2482                 sensor->scaler,
2483                 sensor->binner,
2484                 sensor->pixel_array,
2485         };
2486         unsigned int i;
2487         int rval;
2488
2489         for (i = 0; i < SMIAPP_SUBDEVS - 1; i++) {
2490                 struct smiapp_subdev *this = ssds[i + 1];
2491                 struct smiapp_subdev *last = ssds[i];
2492
2493                 if (!last)
2494                         continue;
2495
2496                 rval = media_entity_pads_init(&this->sd.entity,
2497                                          this->npads, this->pads);
2498                 if (rval) {
2499                         dev_err(&client->dev,
2500                                 "media_entity_pads_init failed\n");
2501                         return rval;
2502                 }
2503
2504                 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2505                                                    &this->sd);
2506                 if (rval) {
2507                         dev_err(&client->dev,
2508                                 "v4l2_device_register_subdev failed\n");
2509                         return rval;
2510                 }
2511
2512                 rval = media_create_pad_link(&this->sd.entity,
2513                                              this->source_pad,
2514                                              &last->sd.entity,
2515                                              last->sink_pad,
2516                                              MEDIA_LNK_FL_ENABLED |
2517                                              MEDIA_LNK_FL_IMMUTABLE);
2518                 if (rval) {
2519                         dev_err(&client->dev,
2520                                 "media_create_pad_link failed\n");
2521                         return rval;
2522                 }
2523         }
2524
2525         return 0;
2526 }
2527
2528 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2529 {
2530         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2531
2532         device_remove_file(&client->dev, &dev_attr_nvm);
2533         device_remove_file(&client->dev, &dev_attr_ident);
2534
2535         smiapp_free_controls(sensor);
2536 }
2537
2538 static int smiapp_init(struct smiapp_sensor *sensor)
2539 {
2540         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2541         struct smiapp_pll *pll = &sensor->pll;
2542         struct smiapp_subdev *last = NULL;
2543         unsigned int i;
2544         int rval;
2545
2546         sensor->vana = devm_regulator_get(&client->dev, "vana");
2547         if (IS_ERR(sensor->vana)) {
2548                 dev_err(&client->dev, "could not get regulator for vana\n");
2549                 return PTR_ERR(sensor->vana);
2550         }
2551
2552         sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2553         if (IS_ERR(sensor->ext_clk)) {
2554                 dev_err(&client->dev, "could not get clock (%ld)\n",
2555                         PTR_ERR(sensor->ext_clk));
2556                 return -EPROBE_DEFER;
2557         }
2558
2559         rval = clk_set_rate(sensor->ext_clk,
2560                             sensor->hwcfg->ext_clk);
2561         if (rval < 0) {
2562                 dev_err(&client->dev,
2563                         "unable to set clock freq to %u\n",
2564                         sensor->hwcfg->ext_clk);
2565                 return rval;
2566         }
2567
2568         sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2569                                                     GPIOD_OUT_LOW);
2570         if (IS_ERR(sensor->xshutdown))
2571                 return PTR_ERR(sensor->xshutdown);
2572
2573         rval = smiapp_power_on(sensor);
2574         if (rval)
2575                 return -ENODEV;
2576
2577         rval = smiapp_identify_module(sensor);
2578         if (rval) {
2579                 rval = -ENODEV;
2580                 goto out_power_off;
2581         }
2582
2583         rval = smiapp_get_all_limits(sensor);
2584         if (rval) {
2585                 rval = -ENODEV;
2586                 goto out_power_off;
2587         }
2588
2589         /*
2590          * Handle Sensor Module orientation on the board.
2591          *
2592          * The application of H-FLIP and V-FLIP on the sensor is modified by
2593          * the sensor orientation on the board.
2594          *
2595          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2596          * both H-FLIP and V-FLIP for normal operation which also implies
2597          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2598          * controls will need to be internally inverted.
2599          *
2600          * Rotation also changes the bayer pattern.
2601          */
2602         if (sensor->hwcfg->module_board_orient ==
2603             SMIAPP_MODULE_BOARD_ORIENT_180)
2604                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2605                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2606
2607         rval = smiapp_call_quirk(sensor, limits);
2608         if (rval) {
2609                 dev_err(&client->dev, "limits quirks failed\n");
2610                 goto out_power_off;
2611         }
2612
2613         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2614                 u32 val;
2615
2616                 rval = smiapp_read(sensor,
2617                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2618                 if (rval < 0) {
2619                         rval = -ENODEV;
2620                         goto out_power_off;
2621                 }
2622                 sensor->nbinning_subtypes = min_t(u8, val,
2623                                                   SMIAPP_BINNING_SUBTYPES);
2624
2625                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2626                         rval = smiapp_read(
2627                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2628                         if (rval < 0) {
2629                                 rval = -ENODEV;
2630                                 goto out_power_off;
2631                         }
2632                         sensor->binning_subtypes[i] =
2633                                 *(struct smiapp_binning_subtype *)&val;
2634
2635                         dev_dbg(&client->dev, "binning %xx%x\n",
2636                                 sensor->binning_subtypes[i].horizontal,
2637                                 sensor->binning_subtypes[i].vertical);
2638                 }
2639         }
2640         sensor->binning_horizontal = 1;
2641         sensor->binning_vertical = 1;
2642
2643         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2644                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2645                 rval = -ENOENT;
2646                 goto out_power_off;
2647         }
2648         /* SMIA++ NVM initialization - it will be read from the sensor
2649          * when it is first requested by userspace.
2650          */
2651         if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
2652                 sensor->nvm = devm_kzalloc(&client->dev,
2653                                 sensor->hwcfg->nvm_size, GFP_KERNEL);
2654                 if (sensor->nvm == NULL) {
2655                         dev_err(&client->dev, "nvm buf allocation failed\n");
2656                         rval = -ENOMEM;
2657                         goto out_cleanup;
2658                 }
2659
2660                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2661                         dev_err(&client->dev, "sysfs nvm entry failed\n");
2662                         rval = -EBUSY;
2663                         goto out_cleanup;
2664                 }
2665         }
2666
2667         /* We consider this as profile 0 sensor if any of these are zero. */
2668         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2669             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2670             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2671             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2672                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2673         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2674                    != SMIAPP_SCALING_CAPABILITY_NONE) {
2675                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2676                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2677                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2678                 else
2679                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2680                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2681                 sensor->ssds_used++;
2682         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2683                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2684                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2685                 sensor->ssds_used++;
2686         }
2687         sensor->binner = &sensor->ssds[sensor->ssds_used];
2688         sensor->ssds_used++;
2689         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2690         sensor->ssds_used++;
2691
2692         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2693
2694         /* prepare PLL configuration input values */
2695         pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2696         pll->csi2.lanes = sensor->hwcfg->lanes;
2697         pll->ext_clk_freq_hz = sensor->hwcfg->ext_clk;
2698         pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2699         /* Profile 0 sensors have no separate OP clock branch. */
2700         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2701                 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2702
2703         for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2704                 struct {
2705                         struct smiapp_subdev *ssd;
2706                         char *name;
2707                 } const __this[] = {
2708                         { sensor->scaler, "scaler", },
2709                         { sensor->binner, "binner", },
2710                         { sensor->pixel_array, "pixel array", },
2711                 }, *_this = &__this[i];
2712                 struct smiapp_subdev *this = _this->ssd;
2713
2714                 if (!this)
2715                         continue;
2716
2717                 if (this != sensor->src)
2718                         v4l2_subdev_init(&this->sd, &smiapp_ops);
2719
2720                 this->sensor = sensor;
2721
2722                 if (this == sensor->pixel_array) {
2723                         this->npads = 1;
2724                 } else {
2725                         this->npads = 2;
2726                         this->source_pad = 1;
2727                 }
2728
2729                 snprintf(this->sd.name,
2730                          sizeof(this->sd.name), "%s %s %d-%4.4x",
2731                          sensor->minfo.name, _this->name,
2732                          i2c_adapter_id(client->adapter), client->addr);
2733
2734                 this->sink_fmt.width =
2735                         sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2736                 this->sink_fmt.height =
2737                         sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2738                 this->compose.width = this->sink_fmt.width;
2739                 this->compose.height = this->sink_fmt.height;
2740                 this->crop[this->source_pad] = this->compose;
2741                 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2742                 if (this != sensor->pixel_array) {
2743                         this->crop[this->sink_pad] = this->compose;
2744                         this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2745                 }
2746
2747                 this->sd.entity.ops = &smiapp_entity_ops;
2748
2749                 if (last == NULL) {
2750                         last = this;
2751                         continue;
2752                 }
2753
2754                 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2755                 this->sd.internal_ops = &smiapp_internal_ops;
2756                 this->sd.owner = THIS_MODULE;
2757                 v4l2_set_subdevdata(&this->sd, client);
2758
2759                 last = this;
2760         }
2761
2762         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2763
2764         sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
2765
2766         /* final steps */
2767         smiapp_read_frame_fmt(sensor);
2768         rval = smiapp_init_controls(sensor);
2769         if (rval < 0)
2770                 goto out_cleanup;
2771
2772         rval = smiapp_call_quirk(sensor, init);
2773         if (rval)
2774                 goto out_cleanup;
2775
2776         rval = smiapp_get_mbus_formats(sensor);
2777         if (rval) {
2778                 rval = -ENODEV;
2779                 goto out_cleanup;
2780         }
2781
2782         rval = smiapp_init_late_controls(sensor);
2783         if (rval) {
2784                 rval = -ENODEV;
2785                 goto out_cleanup;
2786         }
2787
2788         mutex_lock(&sensor->mutex);
2789         rval = smiapp_update_mode(sensor);
2790         mutex_unlock(&sensor->mutex);
2791         if (rval) {
2792                 dev_err(&client->dev, "update mode failed\n");
2793                 goto out_cleanup;
2794         }
2795
2796         sensor->streaming = false;
2797         sensor->dev_init_done = true;
2798
2799         smiapp_power_off(sensor);
2800
2801         return 0;
2802
2803 out_cleanup:
2804         smiapp_cleanup(sensor);
2805
2806 out_power_off:
2807         smiapp_power_off(sensor);
2808         return rval;
2809 }
2810
2811 static int smiapp_registered(struct v4l2_subdev *subdev)
2812 {
2813         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2814         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2815         int rval;
2816
2817         if (!client->dev.of_node) {
2818                 rval = smiapp_init(sensor);
2819                 if (rval)
2820                         return rval;
2821         }
2822
2823         rval = smiapp_register_subdevs(sensor);
2824         if (rval)
2825                 smiapp_cleanup(sensor);
2826
2827         return rval;
2828 }
2829
2830 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2831 {
2832         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2833         struct smiapp_sensor *sensor = ssd->sensor;
2834         u32 mbus_code =
2835                 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2836         unsigned int i;
2837
2838         mutex_lock(&sensor->mutex);
2839
2840         for (i = 0; i < ssd->npads; i++) {
2841                 struct v4l2_mbus_framefmt *try_fmt =
2842                         v4l2_subdev_get_try_format(sd, fh->pad, i);
2843                 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(sd, fh->pad, i);
2844                 struct v4l2_rect *try_comp;
2845
2846                 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2847                 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2848                 try_fmt->code = mbus_code;
2849                 try_fmt->field = V4L2_FIELD_NONE;
2850
2851                 try_crop->top = 0;
2852                 try_crop->left = 0;
2853                 try_crop->width = try_fmt->width;
2854                 try_crop->height = try_fmt->height;
2855
2856                 if (ssd != sensor->pixel_array)
2857                         continue;
2858
2859                 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2860                 *try_comp = *try_crop;
2861         }
2862
2863         mutex_unlock(&sensor->mutex);
2864
2865         return smiapp_set_power(sd, 1);
2866 }
2867
2868 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2869 {
2870         return smiapp_set_power(sd, 0);
2871 }
2872
2873 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2874         .s_stream = smiapp_set_stream,
2875 };
2876
2877 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2878         .s_power = smiapp_set_power,
2879 };
2880
2881 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2882         .enum_mbus_code = smiapp_enum_mbus_code,
2883         .get_fmt = smiapp_get_format,
2884         .set_fmt = smiapp_set_format,
2885         .get_selection = smiapp_get_selection,
2886         .set_selection = smiapp_set_selection,
2887 };
2888
2889 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2890         .g_skip_frames = smiapp_get_skip_frames,
2891         .g_skip_top_lines = smiapp_get_skip_top_lines,
2892 };
2893
2894 static const struct v4l2_subdev_ops smiapp_ops = {
2895         .core = &smiapp_core_ops,
2896         .video = &smiapp_video_ops,
2897         .pad = &smiapp_pad_ops,
2898         .sensor = &smiapp_sensor_ops,
2899 };
2900
2901 static const struct media_entity_operations smiapp_entity_ops = {
2902         .link_validate = v4l2_subdev_link_validate,
2903 };
2904
2905 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2906         .registered = smiapp_registered,
2907         .open = smiapp_open,
2908         .close = smiapp_close,
2909 };
2910
2911 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2912         .open = smiapp_open,
2913         .close = smiapp_close,
2914 };
2915
2916 /* -----------------------------------------------------------------------------
2917  * I2C Driver
2918  */
2919
2920 #ifdef CONFIG_PM
2921
2922 static int smiapp_suspend(struct device *dev)
2923 {
2924         struct i2c_client *client = to_i2c_client(dev);
2925         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2926         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2927         bool streaming;
2928
2929         BUG_ON(mutex_is_locked(&sensor->mutex));
2930
2931         if (sensor->power_count == 0)
2932                 return 0;
2933
2934         if (sensor->streaming)
2935                 smiapp_stop_streaming(sensor);
2936
2937         streaming = sensor->streaming;
2938
2939         smiapp_power_off(sensor);
2940
2941         /* save state for resume */
2942         sensor->streaming = streaming;
2943
2944         return 0;
2945 }
2946
2947 static int smiapp_resume(struct device *dev)
2948 {
2949         struct i2c_client *client = to_i2c_client(dev);
2950         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2951         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2952         int rval;
2953
2954         if (sensor->power_count == 0)
2955                 return 0;
2956
2957         rval = smiapp_power_on(sensor);
2958         if (rval)
2959                 return rval;
2960
2961         if (sensor->streaming)
2962                 rval = smiapp_start_streaming(sensor);
2963
2964         return rval;
2965 }
2966
2967 #else
2968
2969 #define smiapp_suspend  NULL
2970 #define smiapp_resume   NULL
2971
2972 #endif /* CONFIG_PM */
2973
2974 static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2975 {
2976         struct smiapp_hwconfig *hwcfg;
2977         struct v4l2_of_endpoint *bus_cfg;
2978         struct device_node *ep;
2979         int i;
2980         int rval;
2981
2982         if (!dev->of_node)
2983                 return dev->platform_data;
2984
2985         ep = of_graph_get_next_endpoint(dev->of_node, NULL);
2986         if (!ep)
2987                 return NULL;
2988
2989         bus_cfg = v4l2_of_alloc_parse_endpoint(ep);
2990         if (IS_ERR(bus_cfg))
2991                 goto out_err;
2992
2993         hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2994         if (!hwcfg)
2995                 goto out_err;
2996
2997         switch (bus_cfg->bus_type) {
2998         case V4L2_MBUS_CSI2:
2999                 hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
3000                 break;
3001                 /* FIXME: add CCP2 support. */
3002         default:
3003                 goto out_err;
3004         }
3005
3006         hwcfg->lanes = bus_cfg->bus.mipi_csi2.num_data_lanes;
3007         dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
3008
3009         /* NVM size is not mandatory */
3010         of_property_read_u32(dev->of_node, "nokia,nvm-size",
3011                                     &hwcfg->nvm_size);
3012
3013         rval = of_property_read_u32(dev->of_node, "clock-frequency",
3014                                     &hwcfg->ext_clk);
3015         if (rval) {
3016                 dev_warn(dev, "can't get clock-frequency\n");
3017                 goto out_err;
3018         }
3019
3020         dev_dbg(dev, "nvm %d, clk %d, csi %d\n", hwcfg->nvm_size,
3021                 hwcfg->ext_clk, hwcfg->csi_signalling_mode);
3022
3023         if (!bus_cfg->nr_of_link_frequencies) {
3024                 dev_warn(dev, "no link frequencies defined\n");
3025                 goto out_err;
3026         }
3027
3028         hwcfg->op_sys_clock = devm_kcalloc(
3029                 dev, bus_cfg->nr_of_link_frequencies + 1 /* guardian */,
3030                 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3031         if (!hwcfg->op_sys_clock)
3032                 goto out_err;
3033
3034         for (i = 0; i < bus_cfg->nr_of_link_frequencies; i++) {
3035                 hwcfg->op_sys_clock[i] = bus_cfg->link_frequencies[i];
3036                 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
3037         }
3038
3039         v4l2_of_free_endpoint(bus_cfg);
3040         of_node_put(ep);
3041         return hwcfg;
3042
3043 out_err:
3044         v4l2_of_free_endpoint(bus_cfg);
3045         of_node_put(ep);
3046         return NULL;
3047 }
3048
3049 static int smiapp_probe(struct i2c_client *client,
3050                         const struct i2c_device_id *devid)
3051 {
3052         struct smiapp_sensor *sensor;
3053         struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
3054         int rval;
3055
3056         if (hwcfg == NULL)
3057                 return -ENODEV;
3058
3059         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3060         if (sensor == NULL)
3061                 return -ENOMEM;
3062
3063         sensor->hwcfg = hwcfg;
3064         mutex_init(&sensor->mutex);
3065         mutex_init(&sensor->power_mutex);
3066         sensor->src = &sensor->ssds[sensor->ssds_used];
3067
3068         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
3069         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
3070         sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
3071         sensor->src->sensor = sensor;
3072
3073         sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
3074         rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3075                                  sensor->src->pads);
3076         if (rval < 0)
3077                 return rval;
3078
3079         if (client->dev.of_node) {
3080                 rval = smiapp_init(sensor);
3081                 if (rval)
3082                         goto out_media_entity_cleanup;
3083         }
3084
3085         rval = v4l2_async_register_subdev(&sensor->src->sd);
3086         if (rval < 0)
3087                 goto out_media_entity_cleanup;
3088
3089         return 0;
3090
3091 out_media_entity_cleanup:
3092         media_entity_cleanup(&sensor->src->sd.entity);
3093
3094         return rval;
3095 }
3096
3097 static int smiapp_remove(struct i2c_client *client)
3098 {
3099         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3100         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3101         unsigned int i;
3102
3103         v4l2_async_unregister_subdev(subdev);
3104
3105         if (sensor->power_count) {
3106                 gpiod_set_value(sensor->xshutdown, 0);
3107                 clk_disable_unprepare(sensor->ext_clk);
3108                 sensor->power_count = 0;
3109         }
3110
3111         for (i = 0; i < sensor->ssds_used; i++) {
3112                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3113                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3114         }
3115         smiapp_cleanup(sensor);
3116
3117         return 0;
3118 }
3119
3120 static const struct of_device_id smiapp_of_table[] = {
3121         { .compatible = "nokia,smia" },
3122         { },
3123 };
3124 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3125
3126 static const struct i2c_device_id smiapp_id_table[] = {
3127         { SMIAPP_NAME, 0 },
3128         { },
3129 };
3130 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3131
3132 static const struct dev_pm_ops smiapp_pm_ops = {
3133         .suspend        = smiapp_suspend,
3134         .resume         = smiapp_resume,
3135 };
3136
3137 static struct i2c_driver smiapp_i2c_driver = {
3138         .driver = {
3139                 .of_match_table = smiapp_of_table,
3140                 .name = SMIAPP_NAME,
3141                 .pm = &smiapp_pm_ops,
3142         },
3143         .probe  = smiapp_probe,
3144         .remove = smiapp_remove,
3145         .id_table = smiapp_id_table,
3146 };
3147
3148 module_i2c_driver(smiapp_i2c_driver);
3149
3150 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3151 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3152 MODULE_LICENSE("GPL");