GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / media / platform / vsp1 / vsp1_rpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define RPF_MAX_WIDTH                           8190
21 #define RPF_MAX_HEIGHT                          8190
22
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25         u32 top_y0;
26         u32 bottom_y0;
27         u32 top_c0;
28         u32 bottom_c0;
29         u32 top_c1;
30         u32 bottom_c1;
31         u32 reserved0;
32         u32 reserved1;
33 } __packed;
34
35 /* -----------------------------------------------------------------------------
36  * Device Access
37  */
38
39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
41 {
42         vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43                                data);
44 }
45
46 /* -----------------------------------------------------------------------------
47  * V4L2 Subdevice Operations
48  */
49
50 static const struct v4l2_subdev_ops rpf_ops = {
51         .pad    = &vsp1_rwpf_pad_ops,
52 };
53
54 /* -----------------------------------------------------------------------------
55  * VSP1 Entity Operations
56  */
57
58 static void rpf_configure_stream(struct vsp1_entity *entity,
59                                  struct vsp1_pipeline *pipe,
60                                  struct vsp1_dl_body *dlb)
61 {
62         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
63         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
64         const struct v4l2_pix_format_mplane *format = &rpf->format;
65         const struct v4l2_mbus_framefmt *source_format;
66         const struct v4l2_mbus_framefmt *sink_format;
67         unsigned int left = 0;
68         unsigned int top = 0;
69         u32 pstride;
70         u32 infmt;
71
72         /* Stride */
73         pstride = format->plane_fmt[0].bytesperline
74                 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
75         if (format->num_planes > 1)
76                 pstride |= format->plane_fmt[1].bytesperline
77                         << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
78
79         /*
80          * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
81          * of pstride by 2 is conveniently OK here as we are multiplying both
82          * values.
83          */
84         if (pipe->interlaced)
85                 pstride *= 2;
86
87         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
88
89         /* Format */
90         sink_format = vsp1_entity_get_pad_format(&rpf->entity,
91                                                  rpf->entity.config,
92                                                  RWPF_PAD_SINK);
93         source_format = vsp1_entity_get_pad_format(&rpf->entity,
94                                                    rpf->entity.config,
95                                                    RWPF_PAD_SOURCE);
96
97         infmt = VI6_RPF_INFMT_CIPM
98               | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
99
100         if (fmtinfo->swap_yc)
101                 infmt |= VI6_RPF_INFMT_SPYCS;
102         if (fmtinfo->swap_uv)
103                 infmt |= VI6_RPF_INFMT_SPUVS;
104
105         if (sink_format->code != source_format->code)
106                 infmt |= VI6_RPF_INFMT_CSC;
107
108         vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
109         vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
110
111         /* Output location */
112         if (pipe->brx) {
113                 const struct v4l2_rect *compose;
114
115                 compose = vsp1_entity_get_pad_selection(pipe->brx,
116                                                         pipe->brx->config,
117                                                         rpf->brx_input,
118                                                         V4L2_SEL_TGT_COMPOSE);
119                 left = compose->left;
120                 top = compose->top;
121         }
122
123         if (pipe->interlaced)
124                 top /= 2;
125
126         vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
127                        (left << VI6_RPF_LOC_HCOORD_SHIFT) |
128                        (top << VI6_RPF_LOC_VCOORD_SHIFT));
129
130         /*
131          * On Gen2 use the alpha channel (extended to 8 bits) when available or
132          * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
133          * otherwise.
134          *
135          * The Gen3 RPF has extended alpha capability and can both multiply the
136          * alpha channel by a fixed global alpha value, and multiply the pixel
137          * components to convert the input to premultiplied alpha.
138          *
139          * As alpha premultiplication is available in the BRx for both Gen2 and
140          * Gen3 we handle it there and use the Gen3 alpha multiplier for global
141          * alpha multiplication only. This however prevents conversion to
142          * premultiplied alpha if no BRx is present in the pipeline. If that use
143          * case turns out to be useful we will revisit the implementation (for
144          * Gen3 only).
145          *
146          * We enable alpha multiplication on Gen3 using the fixed alpha value
147          * set through the V4L2_CID_ALPHA_COMPONENT control when the input
148          * contains an alpha channel. On Gen2 the global alpha is ignored in
149          * that case.
150          *
151          * In all cases, disable color keying.
152          */
153         vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
154                        (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
155                                        : VI6_RPF_ALPH_SEL_ASEL_FIXED));
156
157         if (entity->vsp1->info->gen == 3) {
158                 u32 mult;
159
160                 if (fmtinfo->alpha) {
161                         /*
162                          * When the input contains an alpha channel enable the
163                          * alpha multiplier. If the input is premultiplied we
164                          * need to multiply both the alpha channel and the pixel
165                          * components by the global alpha value to keep them
166                          * premultiplied. Otherwise multiply the alpha channel
167                          * only.
168                          */
169                         bool premultiplied = format->flags
170                                            & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
171
172                         mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
173                              | (premultiplied ?
174                                 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
175                                 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
176                 } else {
177                         /*
178                          * When the input doesn't contain an alpha channel the
179                          * global alpha value is applied in the unpacking unit,
180                          * the alpha multiplier isn't needed and must be
181                          * disabled.
182                          */
183                         mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
184                              | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
185                 }
186
187                 rpf->mult_alpha = mult;
188         }
189
190         vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
191         vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
192
193 }
194
195 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
196                                        struct vsp1_dl_list *dl)
197 {
198         const struct v4l2_pix_format_mplane *format = &rpf->format;
199         struct vsp1_dl_ext_cmd *cmd;
200         struct vsp1_extcmd_auto_fld_body *auto_fld;
201         u32 offset_y, offset_c;
202
203         cmd = vsp1_dl_get_pre_cmd(dl);
204         if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
205                 return;
206
207         /* Re-index our auto_fld to match the current RPF. */
208         auto_fld = cmd->data;
209         auto_fld = &auto_fld[rpf->entity.index];
210
211         auto_fld->top_y0 = rpf->mem.addr[0];
212         auto_fld->top_c0 = rpf->mem.addr[1];
213         auto_fld->top_c1 = rpf->mem.addr[2];
214
215         offset_y = format->plane_fmt[0].bytesperline;
216         offset_c = format->plane_fmt[1].bytesperline;
217
218         auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
219         auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
220         auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
221
222         cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
223 }
224
225 static void rpf_configure_frame(struct vsp1_entity *entity,
226                                 struct vsp1_pipeline *pipe,
227                                 struct vsp1_dl_list *dl,
228                                 struct vsp1_dl_body *dlb)
229 {
230         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
231
232         vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
233                        rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
234         vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
235                        (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
236
237         vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
238 }
239
240 static void rpf_configure_partition(struct vsp1_entity *entity,
241                                     struct vsp1_pipeline *pipe,
242                                     struct vsp1_dl_list *dl,
243                                     struct vsp1_dl_body *dlb)
244 {
245         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
246         struct vsp1_rwpf_memory mem = rpf->mem;
247         struct vsp1_device *vsp1 = rpf->entity.vsp1;
248         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
249         const struct v4l2_pix_format_mplane *format = &rpf->format;
250         struct v4l2_rect crop;
251
252         /*
253          * Source size and crop offsets.
254          *
255          * The crop offsets correspond to the location of the crop
256          * rectangle top left corner in the plane buffer. Only two
257          * offsets are needed, as planes 2 and 3 always have identical
258          * strides.
259          */
260         crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
261
262         /*
263          * Partition Algorithm Control
264          *
265          * The partition algorithm can split this frame into multiple
266          * slices. We must scale our partition window based on the pipe
267          * configuration to match the destination partition window.
268          * To achieve this, we adjust our crop to provide a 'sub-crop'
269          * matching the expected partition window. Only 'left' and
270          * 'width' need to be adjusted.
271          */
272         if (pipe->partitions > 1) {
273                 crop.width = pipe->partition->rpf.width;
274                 crop.left += pipe->partition->rpf.left;
275         }
276
277         if (pipe->interlaced) {
278                 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
279                 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
280         }
281
282         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
283                        (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
284                        (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
285         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
286                        (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
287                        (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
288
289         mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
290                      + crop.left * fmtinfo->bpp[0] / 8;
291
292         if (format->num_planes > 1) {
293                 unsigned int bpl = format->plane_fmt[1].bytesperline;
294                 unsigned int offset;
295
296                 offset = crop.top / fmtinfo->vsub * bpl
297                        + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8;
298                 mem.addr[1] += offset;
299                 mem.addr[2] += offset;
300         }
301
302         /*
303          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
304          * formats. Swap the U and V planes manually in that case.
305          */
306         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
307             fmtinfo->swap_uv)
308                 swap(mem.addr[1], mem.addr[2]);
309
310         /*
311          * Interlaced pipelines will use the extended pre-cmd to process
312          * SRCM_ADDR_{Y,C0,C1}
313          */
314         if (pipe->interlaced) {
315                 vsp1_rpf_configure_autofld(rpf, dl);
316         } else {
317                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
318                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
319                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
320         }
321 }
322
323 static void rpf_partition(struct vsp1_entity *entity,
324                           struct vsp1_pipeline *pipe,
325                           struct vsp1_partition *partition,
326                           unsigned int partition_idx,
327                           struct vsp1_partition_window *window)
328 {
329         partition->rpf = *window;
330 }
331
332 static const struct vsp1_entity_operations rpf_entity_ops = {
333         .configure_stream = rpf_configure_stream,
334         .configure_frame = rpf_configure_frame,
335         .configure_partition = rpf_configure_partition,
336         .partition = rpf_partition,
337 };
338
339 /* -----------------------------------------------------------------------------
340  * Initialization and Cleanup
341  */
342
343 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
344 {
345         struct vsp1_rwpf *rpf;
346         char name[6];
347         int ret;
348
349         rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
350         if (rpf == NULL)
351                 return ERR_PTR(-ENOMEM);
352
353         rpf->max_width = RPF_MAX_WIDTH;
354         rpf->max_height = RPF_MAX_HEIGHT;
355
356         rpf->entity.ops = &rpf_entity_ops;
357         rpf->entity.type = VSP1_ENTITY_RPF;
358         rpf->entity.index = index;
359
360         sprintf(name, "rpf.%u", index);
361         ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
362                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
363         if (ret < 0)
364                 return ERR_PTR(ret);
365
366         /* Initialize the control handler. */
367         ret = vsp1_rwpf_init_ctrls(rpf, 0);
368         if (ret < 0) {
369                 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
370                         index);
371                 goto error;
372         }
373
374         v4l2_ctrl_handler_setup(&rpf->ctrls);
375
376         return rpf;
377
378 error:
379         vsp1_entity_destroy(&rpf->entity);
380         return ERR_PTR(ret);
381 }